
Sparse Representation for Gaussian Process

Models

Lehel Csat6 and Manfred Opper
Neural Computing Research Group

School of Engineering and Applied Sciences

B4 7ET Birmingham, United Kingdom

{csat o l, oppe r m} @as t on. ac .uk

Abstract

We develop an approach for a sparse representation for Gaussian Process

(GP) models in order to overcome the limitations of GPs caused by large
data sets. The method is based on a combination of a Bayesian online al

gorithm together with a sequential construction of a relevant subsample
of the data which fully specifies the prediction of the model. Experi

mental results on toy examples and large real-world data sets indicate the

efficiency of the approach.

1 Introduction

Gaussian processes (GP) [1; 15] provide promising non-parametric tools for modelling
real-world statistical problems. Like other kernel based methods, e.g. Support Vector Ma

chines (SVMs) [13], they combine a high flexibility ofthe model by working in high (often

00) dimensional feature spaces with the simplicity that all operations are "kernelized" i.e.
they are performed in the (lower dimensional) input space using positive definite kernels.

An important advantage of GPs over other non-Bayesian models is the explicit probabilistic

formulation of the model. This does not only provide the modeller with (Bayesian) confi
dence intervals (for regression) or posterior class probabilities (for classification) but also

immediately opens the possibility to treat other nonstandard data models (e.g. Quantum
inverse statistics [4]).

Unfortunately the drawback of GP models (which was originally apparent in SVMs as well,

but has now been overcome [6]) lies in the huge increase of the computational cost with
the number of training data. This seems to preclude applications of GPs to large datasets.

This paper presents an approach to overcome this problem. It is based on a combination of
an online learning approach requiring only a single sweep through the data and a method

to reduce the number of parameters representing the model.

Making use of the proposed parametrisation the method extracts a subset of the examples

and the prediction relies only on these basis vectors (BV). The memory requirement of the

algorithm scales thus only with the size of this set. Experiments with real-world datasets
confirm the good performance of the proposed method. 1

1 A different approach for dealing with large datasets was suggested by V. Tresp [12]. His method

2 Gaussian Process Models

GPs belong to Bayesian non-parametric models where likelihoods are parametrised by a
Gaussian stochastic process (random field) a(x) which is indexed by the continuous input

variable x . The prior knowledge about a is expressed in the prior mean and the covariance
given by the kernel Ko(x,x') = Cov(a(x), a(x')) [14; 15]. In the following, only zero
mean GP priors are used.

In supervised learning the process a(x) is used as a latent variable in the likelihood
P(yla(x)) which denotes the probability of output Y given the input x . Based on a set
of input-output pairs (xn, Yn) with Xn E Rm and Yn E R (n = 1, N) the Bayesian learn
ing method computes the posterior distribution of the process a(x) using the prior and
likelihood [14; 15; 3].

Although the prior is a Gaussian process, the posterior process usually is not Gaussian
(except for the special case of regression with Gaussian noise). Nevertheless, various ap
proaches have been introduced recently to approximate the posterior averages [11 ; 9]. Our
approach is based on the idea of approximating the true posterior process p{ a} by a Gaus
sian process q{a} which is fully specified by a covariance kernel Kt(x,x') and posterior
mean (a(x))t, where t is the number of training data processed by the algorithm so far.
Such an approximation could be formulated within the variational approach, where q is

chosen such that the relative entropy D(q,p) == Eq In ~ is minimal [9]. However, in this

formulation, the expectation is over the approximate process q rather than over p. It seems

intuitively better to minimise the other KL divergence given by D(p, q) == Ep In ~, be

cause the expectation is over the true distribution. Unfortunately, such a computation is
generally not possible. The following online approach can be understood as an approxima
tion to this task.

3 Online learning for Gaussian Processes

In this section we briefly review the main idea of the Bayesian online approach (see e.g. [5])
to GP models. We process the training data sequentially one after the other. Assume we
have a Gaussian approximation to the posterior process at time t . We use the next example
t + 1 to update the posterior using Bayes rule via

p(a) = P(Yt+1la(Xt+l))Pt(q)

- (P(Yt+1la(xt+1)))t

Since the resulting posterior p(q) is non-Gaussian, we project it to the closest Gaussian
process q which minimises the KL divergence D(p, q). Note, that now the new approxi
mation q is on "correct" side of the KL divergence. The minimisation can be performed
exactly, leading to a match of the means and covariances of p and q. Since p is much less
complex than the full posterior, it is possible to write down the changes in the first two
moments analytically [2]:

(a(x))t+1 = (a(x))t + b1 Kt(x,xt+d

Kt+1(x,x') = Kt(x,x') + b2K t(x,xt+1)Kt (xt+1,x')

where the scalar coefficients b1 and b2 are:

(1)

(2)

with averaging performed with respect to the marginal Gaussian distribution of the process

variable a at input Xt+1' Note, that this yields a one dimensional integral! Derivatives are

is based on splitting the data-set into smaller subsets and training individual GP predictors on each of

them. The final prediction is achieved by a specific weighting of the individual predictors.

~ '

/:'~es

(a)

<PH!

,

, -------- -

(b)

Figure 1: Projection of the new input <Pt+! to the subspace spanned by previous inputs.

<l>t+l is the projection to the linear span of {<Pih=l ,t. and <Pres the residual vector. Sub
figure (a) shows the projections to the subspace, and (b) gives a geometric picture of the

"measurable part" of the error It+! from eq. (8).

taken with respect to (a(x))t . Note also that this procedure does not equal the extended
Kalman filter which involves linearisations of likelihoods, whereas in our approach it is

possible to use non-smooth likelihoods (e.g. noise free classifications) without problems.

It turns out, that the recursion (1) is solved by the parametrisation

(a(x))t = L~=IKo(x,xi)at(i)

Kt(x,x') = Ko(x,x') + LL=IKo(x,Xi)Ct(ij)Ko(xj,x') (3)

such that in each on-line step, we have to update only the vector of a's and the matrix

of C's. For notational convenience we use vector at = [at(1), ... , at (N)jT and matrix

C t = {Ct (ij) h,j=I,N. Zero-mean GP with kernel Ko is used as the starting point for the
algorithm: ao = a and Co = a will be the starting parameters.

The update of the parameters defined in (3) is found to be

at+! = at + bl [Ctkt+l + et+!l

C t+! = C t + b2 [C tkt+l + et+!l [C tkt+! + et+lf
(4)

with kt+! = [KO(XI,Xt+!), ... , Ko(xt ,xt+!)jT, et+! the t + 1-th unit vector (all compo
nents except t + 1-th are zero), and the scalar coefficients bl and b2 computed from (2).

The serious drawback of this approach, which it shares with many other kernel methods, is

the quadratic increase of the matrix size with the training data.

4 Sparse representation

We use the following idea for reducing the increase of the size of C and a (for a similar ap
proach see [8]). We consider the feature expansion of the kernel Ko(x,x') = <p(X)T <p(x')
and decompose the new feature vector <p(Xt+!) as a linear combination of the previous

features and a residual <Pres:

A "t A <p(Xt+!) = <Pt+! + <Pres = ~ i=l ei<p(Xi) + <Pres (5)

where <l>t+! is the projection of <Pt+! to the previous inputs and et+! = [el' . . . ' etjT are

the coordinates of <l>t+! with respect to the basis {<Pih=l,t. We can then re-express the GP
means:

(6)

with Qt+l(i) = at+l(i) + et+1(i)at+1(t + 1) and 'YHI the residual (or novelty factor)
associated with the new feature vector. The vector et+1 and the residual term 'Yt+1 are all
expressed in terms of kernels:

A _ K(-I)k - k* kT K(-I)k (7)
et+1 - B HI 'Yt+1 - t+1 - t+1 B t+1

with KB(ij) = {KO(Xi,Xj)h,j=l,t and kt+1 = K o(Xt+1,Xt+1). The relation between
the quantities et+1 and 'Yt+1 is illustrated in Figure 1.

Neglecting the last term in the decomposition of the new input (5) and performing the
update with the resulting vector is equivalent to the update rule (4) with et+1 replaced by

et+1. Note that the dimension of parameter space is not increased by this approximative

update. The memory required by the algorithm scales quadratically only with the size of

the set of "basis vectors", i.e. those examples for which the full update (4) is made. This
is similar to Support Vectors [13], without the need to solve the (high dimensional) convex

optimisation problem. It is also related to the kernel PCA and the reduced set method [8]

where the full solution is computed first and then a reduced set is used for prediction.

Replacing the input vector cJl t +1 by its projection on the linear span of the BVs when
updating the GP parameters induces changes in the GP2. However, the replacement of the

true feature vector by its approximation leaves the mean function unchanged at each B V i =

1, t. That is, the functions (a(x))t+1 from (6) and (a(x))t+1 = L~=I Qt+1(i)Ko(Xi,X)
have the same value at all Xl. The change at Xt+1 is

Ct+1 = l(a(xt+1))t+1 - (a(xt+t})t+11 = Ibl l'Yt+1 (8)

with bi the factor from (2).

As a consequence, a good approximation to the full GP solution is obtained if the input
for which we have only a small change in the mean function of the posterior process is not

included in the set of BV s. The change is given by Ct+1 and the decision of including Xt+1
or not is based on the "score" associated to it.

The absence of matrix inversions is an important issue when dealing with large datasets .
The matrix inversion from the projection equation (7) can be avoided by iterative inversion3

of the Gram matrix Q = Ki/:

Qt+1 = Qt + 'Yt;1 (et+1 - et+t) (et+1 - et+If (9)

An important comment is that if the new input is in the linear span of the BVs, then it will
not be included in the basis set, avoiding thus: 1.) the small singular values of the matrix

K Band 2.) the redundancy in representing the problem.

4.1 Deleting a basis vector

The above section gave a method to leave out a vector that is not significant for the predic

tion purposes. However, it did not provide us with a method to eliminate one of the already
existing BV-s.

Let us assume that an input Xt+1 has just been added to the set of BV s. Since we know that

an addition had taken place, the update rule (4) with the t + 1-th unit vector et+1 was last
performed. Since the model parameters at the previous step had an empty t + 1-th row and

column, the parameters before thefull update can be identified.

The removal of the last basis vector can be done with the following steps: 1) computing
the parameters before the update of the GP and 2) performing a reduced update of the

2Equation (7) also minimises the KL-distance between the full posterior (the one that increases

parameter space) and a parametric distribution using only the old BVs.

3 A guide is available from Sam Roweis: http://www.gatsby.ucl.ac.uk/rvroweis/notes.html

C t+ l Qt+l

d t) c*
dt) Q

....................... , ...

C * T c* Q *T q*

Figure 2: Decomposition of model parameters for the update equation (10) .

model without the inclusion of the basis vector (eq. (4) using et+1)' The updates for model

parameters a, C, and Q are "inverted" by inverting the coupled equations (4) and (9):

Q*
& = a(t) - a*

q*

C = C(t) + c* Q*Q*T _ ~ [Q*C*T + C*Q*T]
q*2 q*

Q*Q*T
Q=Q(t) __ _

q*

(10)

where the elements needed to update the model are extracted from the extended parameters

as illustrated in Figure 2.

The consequence of the identification permits us to evaluate the score for the last BV. But

since the order of the BVs is approximately arbitrary, we can assign a score to each BV

lat+l(i)1

Ci = Qt+1 (i, i)'
(11)

Thus we have a method to estimate the score of each basis vector at any time and to elimi

nate the one with the least contribution to the GP output (the mean), providing a sparse GP

with a full control over memory size.

5 Simulation results

To apply the online learning rules (4), the data likelihood for the specific problem has to be

averaged with respect to a Gaussian. Using eq. (2), the coefficients b1 and b2 are obtained.

The marginal of the GP at Xt+1 is a normal distribution with mean (a(Xt+1))t = a[kt+1

and variance 0';'+1 = kt+1 +k;+1 C tkt+1 where the GP parameters at time t are considered.

As a first example, we consider regression with Gaussian output noise 0'5 for which

1 (2 2) (Yt+1 - (a(Xt+1)t)2
In(P(Yt+1l a(Xt+d))t=-2"ln 271'(0'0+0'11:'+1) - 2(2+ 2)2

0'0 0'11:'+1
(12)

For classification we use the probit model. The outputs are binary Y E {-I, I} and the

probability is given by the error function (where u = ya/O'o):

P(yla) = Erf - = . f(C dte- t /2 (ya) 1 l U
2

0'0 V 271' 00

The averaged log-likelihood for the new data point at time tis:

((I ())) (Yt+1 a[kt+1) P Yt+1 a Xt+1 = Erf

j 0'5 + O'i'+l

(13)

1.4

1.2

0.8

0.6

0.4

~
0.2

-0.2

~
- 0.4

-3 -2

~

,"

-1

(a)

100 150 200 250 300 350 400 450 500 550
of BasIs Vectors

(b)

Figure 3: Simulation results for regression (a) and classification (b). For details see text.

For the regression case we have chosen the toy data model y = sin(x)/x + (where (is
a zero-mean Gaussian random variable with variance (]"~ and an RBF kernel. Figure 3.a
shows the result of applying the algorithm for 600 input data and restricting the number
of BVs to 20. The dash-dotted line is the true function, the continuous line is the ap
proximation with the Bayesian standard deviation plotted by dotted lines (a gradient-like
approximation for the output noise based on maximising the likelihood (12) lead us to the
variance with which the data has been generated).

For classification we used the data from the US postal database4 of handwritten zip codes
together with an RBF kernel. The database has 7291 training and 2007 test data of 16 x 16
grey-scale images. To apply the classification method to this database, 10 binary classifi
cation problems were solved and the final output was the class with the largest probability.

The same BVs have been considered for each classifier and if a deletion was required, the
BV having the minimum cumulative score was deleted. The cumulative score was cho
sen to be the maximum of the scores for each classifier. Figure 3.b shows the test error
as a function of the size of the basis set. We find that the test error is rather stable over
a considerable range of basis set sizes. Also a comparison with a second sweep through
the data shows that the algorithm seems to have already extracted the relevant information
out of the data within a single sweep. Using a polynomial kernel for the USPS dataset and
500 BVs we achieved a test error of 4.83%, which compares favourably with other sparse
approaches [10; 8] but uses smaller basis sets than the SVM (2540 reported in [8]).

We also applied our algorithm to the NIST datasetS which contains 60000 data. Using a
fourth order polynomial kernel with only 500 BVs we achieved a test error of 3.13% and
we expect that improvements are possible by using a kernel with tunable hyperparameters.
The possibility of computing the posterior class probabilities allows us to reject data. When
the test data for which the maximum probability was below 0.5 was rejected, the test error
was 1.53% with 1.60% of rejection rate.

4Prom: http://www.kernel-machines.org/data.html

5 Available from: http://www.research.att.comryann/ocr/rnnist/

6 Conclusion and further research

This paper presents a sparse approximation for GPs similar to the one found in SVMs [13]

or relevance vector machines [10]. In contrast to these other approaches our algorithm

is fully online and does not construct the sparse representation from the full data set (for

sequential optimisation for SVM see [6]).

An important open question (besides the issue of model selection) is how to choose the

minimal size of the set of basis vectors such that the predictive performance is not much
deteriorated by the approximation involved. In fact, our numerical classification experi

ments suggest that the prediction performance is considerably stable when the basis set is
above a certain size. It would be interesting if one could relate this minimum size to the

effective dimensionality of the problem being defined as the number of feature dimensions

which are well estimated by the data. One may argue as follows: Replacing the true kernel

by a modified (finite dimensional) one which contains only the well estimated features will
not change the predictive power. On the other hand, for kernels with a feature space of

finite dimensionality M, it is easy to see that we need never more than M basis vectors,

because of linear dependence. Whether such reasoning will lead to a practical procedure
for choosing the appropriate basis set size, is a question for further research.

7 Acknowledgement

This work was supported by EPSRC grant no. GRlM81608.

References

[1] J. M. Bernardo and A. F. Smith. Bayesian Theory. John Wiley & Sons, 1994.

[2] L. Csat6, E. Fokoue, M. Opper, B. Schottky, and O. Winther. Efficient approaches to Gaussian

process classification. In NIPS, volume 12, pages 251- 257. The MIT Press, 2000.

[3] M. Gibbs and D. J. MacKay. Efficient implementation of Gaussian processes. Technical report,

http://wol.ra.phy.cam.ac.uklmackay/abstracts/gpros.html. 1999.

[4] J. C. Lemm, J. Uhlig, and A. Weiguny. A Bayesian approach to inverse quantum statistics.

Phys.Rev.Lett. , 84:2006, 2000.

[5] M. Opper. A Bayesian approach to online learning. In Saad [7], pages 363- 378.

[6] J. C. Platt. Fast training of Support Vector Machines using sequential minimal optimisation. In

Advances in Kernel Methods (Support Vector Learning).

[7] D. Saad, editor. On-Line Learning in Neural Networks. Cambridge Univ. Press, 1998.

[8] B. Scholkopf, S. Mika, C. J. Burges, P. Knirsch, K-R. Miiller, G. Ratsch, and A. J. Smola. Input

space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks,

10(5):1000-1017, September 1999.

[9] M. Seeger. Bayesian model selection for Support Vector Machines, Gaussian processes and

other kernel classifiers. In S. A. Solla, T. KLeen, and K-R. Miiller, editors, NIPS, vol

ume 12. The MIT Press, 2000.

[10] M. Tipping. The Relevance Vector Machine. In S. A. Solla, T. KLeen, and K-R. Miiller,

editors, NIPS, volume 12. The MIT Press, 2000.

[11] G. F. Trecate, C. K 1. Williams, and M. Opper. Finite-dimensional approximation of Gaussian

processes. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, NIPS, volume 11. The

MIT Press, 1999.

[12] v. Tresp. A Bayesian committee machine. Neural Computation, accepted.

[13] V. N. Vapnik. The Nature oj Statistical Learning Theory. Springer-Verlag, New York, NY, 1995.

[14] C. K 1. Williams. Prediction with Gaussian processes. In M. 1. Jordan, editor, Learning in

Graphical Models. The MIT Press, 1999.

[15] C. K 1. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky,

M. C. Mozer, and M. E. Hasselmo, editors, NIPS, volume 8. The MIT Press, 1996.

