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Abstract 

We develop an approach for a sparse representation for Gaussian Process 

(GP) models in order to overcome the limitations of GPs caused by large 
data sets. The method is based on a combination of a Bayesian online al

gorithm together with a sequential construction of a relevant subsample 
of the data which fully specifies the prediction of the model. Experi

mental results on toy examples and large real-world data sets indicate the 

efficiency of the approach. 

1 Introduction 

Gaussian processes (GP) [1; 15] provide promising non-parametric tools for modelling 
real-world statistical problems. Like other kernel based methods, e.g. Support Vector Ma

chines (SVMs) [13], they combine a high flexibility ofthe model by working in high (often 

00) dimensional feature spaces with the simplicity that all operations are "kernelized" i.e. 
they are performed in the (lower dimensional) input space using positive definite kernels. 

An important advantage of GPs over other non-Bayesian models is the explicit probabilistic 

formulation of the model. This does not only provide the modeller with (Bayesian) confi
dence intervals (for regression) or posterior class probabilities (for classification) but also 

immediately opens the possibility to treat other nonstandard data models (e.g. Quantum 
inverse statistics [4]). 

Unfortunately the drawback of GP models (which was originally apparent in SVMs as well, 

but has now been overcome [6]) lies in the huge increase of the computational cost with 
the number of training data. This seems to preclude applications of GPs to large datasets. 

This paper presents an approach to overcome this problem. It is based on a combination of 
an online learning approach requiring only a single sweep through the data and a method 

to reduce the number of parameters representing the model. 

Making use of the proposed parametrisation the method extracts a subset of the examples 

and the prediction relies only on these basis vectors (BV). The memory requirement of the 

algorithm scales thus only with the size of this set. Experiments with real-world datasets 
confirm the good performance of the proposed method. 1 

1 A different approach for dealing with large datasets was suggested by V. Tresp [12]. His method 



2 Gaussian Process Models 

GPs belong to Bayesian non-parametric models where likelihoods are parametrised by a 
Gaussian stochastic process (random field) a(x) which is indexed by the continuous input 

variable x . The prior knowledge about a is expressed in the prior mean and the covariance 
given by the kernel Ko(x,x') = Cov(a(x), a(x')) [14; 15]. In the following, only zero 
mean GP priors are used. 

In supervised learning the process a(x) is used as a latent variable in the likelihood 
P(yla(x)) which denotes the probability of output Y given the input x . Based on a set 
of input-output pairs (xn, Yn) with Xn E Rm and Yn E R (n = 1, N) the Bayesian learn
ing method computes the posterior distribution of the process a(x) using the prior and 
likelihood [14; 15; 3]. 

Although the prior is a Gaussian process, the posterior process usually is not Gaussian 
(except for the special case of regression with Gaussian noise). Nevertheless, various ap
proaches have been introduced recently to approximate the posterior averages [11 ; 9]. Our 
approach is based on the idea of approximating the true posterior process p{ a} by a Gaus
sian process q{a} which is fully specified by a covariance kernel Kt(x,x') and posterior 
mean (a(x))t, where t is the number of training data processed by the algorithm so far. 
Such an approximation could be formulated within the variational approach, where q is 

chosen such that the relative entropy D(q,p) == Eq In ~ is minimal [9]. However, in this 

formulation, the expectation is over the approximate process q rather than over p. It seems 

intuitively better to minimise the other KL divergence given by D(p, q) == Ep In ~, be

cause the expectation is over the true distribution. Unfortunately, such a computation is 
generally not possible. The following online approach can be understood as an approxima
tion to this task. 

3 Online learning for Gaussian Processes 

In this section we briefly review the main idea of the Bayesian online approach (see e.g. [5]) 
to GP models. We process the training data sequentially one after the other. Assume we 
have a Gaussian approximation to the posterior process at time t . We use the next example 
t + 1 to update the posterior using Bayes rule via 

p(a) = P(Yt+1la(Xt+l))Pt(q) 

- (P(Yt+1la(xt+1)))t 

Since the resulting posterior p(q) is non-Gaussian, we project it to the closest Gaussian 
process q which minimises the KL divergence D(p, q). Note, that now the new approxi
mation q is on "correct" side of the KL divergence. The minimisation can be performed 
exactly, leading to a match of the means and covariances of p and q. Since p is much less 
complex than the full posterior, it is possible to write down the changes in the first two 
moments analytically [2]: 

(a(x))t+1 = (a(x))t + b1 Kt(x,xt+d 

Kt+1(x,x') = Kt(x,x') + b2K t(x,xt+1)Kt (xt+1,x') 

where the scalar coefficients b1 and b2 are: 

(1) 

(2) 

with averaging performed with respect to the marginal Gaussian distribution of the process 

variable a at input Xt+1' Note, that this yields a one dimensional integral! Derivatives are 

is based on splitting the data-set into smaller subsets and training individual GP predictors on each of 

them. The final prediction is achieved by a specific weighting of the individual predictors. 
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Figure 1: Projection of the new input <Pt+! to the subspace spanned by previous inputs. 

<l>t+l is the projection to the linear span of {<Pih=l ,t. and <Pres the residual vector. Sub
figure (a) shows the projections to the subspace, and (b) gives a geometric picture of the 

"measurable part" of the error It+! from eq. (8). 

taken with respect to (a(x))t . Note also that this procedure does not equal the extended 
Kalman filter which involves linearisations of likelihoods, whereas in our approach it is 

possible to use non-smooth likelihoods (e.g. noise free classifications) without problems. 

It turns out, that the recursion (1) is solved by the parametrisation 

(a(x))t = L~=IKo(x,xi)at(i) 

Kt(x,x') = Ko(x,x') + LL=IKo(x,Xi)Ct(ij)Ko(xj,x') (3) 

such that in each on-line step, we have to update only the vector of a's and the matrix 

of C's. For notational convenience we use vector at = [at(1), ... , at (N)jT and matrix 

C t = {Ct (ij) h,j=I,N. Zero-mean GP with kernel Ko is used as the starting point for the 
algorithm: ao = a and Co = a will be the starting parameters. 

The update of the parameters defined in (3) is found to be 

at+! = at + bl [Ctkt+l + et+!l 

C t+! = C t + b2 [C tkt+l + et+!l [C tkt+! + et+lf 
(4) 

with kt+! = [KO(XI,Xt+!), ... , Ko(xt ,xt+!)jT, et+! the t + 1-th unit vector (all compo
nents except t + 1-th are zero), and the scalar coefficients bl and b2 computed from (2). 

The serious drawback of this approach, which it shares with many other kernel methods, is 

the quadratic increase of the matrix size with the training data. 

4 Sparse representation 

We use the following idea for reducing the increase of the size of C and a (for a similar ap
proach see [8]). We consider the feature expansion of the kernel Ko(x,x') = <p(X)T <p(x') 
and decompose the new feature vector <p(Xt+!) as a linear combination of the previous 

features and a residual <Pres: 

A "t A <p(Xt+!) = <Pt+! + <Pres = ~ i=l ei<p(Xi) + <Pres (5) 

where <l>t+! is the projection of <Pt+! to the previous inputs and et+! = [el' . . . ' etjT are 

the coordinates of <l>t+! with respect to the basis {<Pih=l,t. We can then re-express the GP 
means: 

(6) 



with Qt+l(i) = at+l(i) + et+1(i)at+1(t + 1) and 'YHI the residual (or novelty factor) 
associated with the new feature vector. The vector et+1 and the residual term 'Yt+1 are all 
expressed in terms of kernels: 

A _ K(-I)k - k* kT K(-I)k (7) 
et+1 - B HI 'Yt+1 - t+1 - t+1 B t+1 

with KB(ij) = {KO(Xi,Xj)h,j=l,t and kt+1 = K o(Xt+1,Xt+1). The relation between 
the quantities et+1 and 'Yt+1 is illustrated in Figure 1. 

Neglecting the last term in the decomposition of the new input (5) and performing the 
update with the resulting vector is equivalent to the update rule (4) with et+1 replaced by 

et+1. Note that the dimension of parameter space is not increased by this approximative 

update. The memory required by the algorithm scales quadratically only with the size of 

the set of "basis vectors", i.e. those examples for which the full update (4) is made. This 
is similar to Support Vectors [13], without the need to solve the (high dimensional) convex 

optimisation problem. It is also related to the kernel PCA and the reduced set method [8] 

where the full solution is computed first and then a reduced set is used for prediction. 

Replacing the input vector cJl t +1 by its projection on the linear span of the BVs when 
updating the GP parameters induces changes in the GP2. However, the replacement of the 

true feature vector by its approximation leaves the mean function unchanged at each B V i = 

1, t. That is, the functions (a(x))t+1 from (6) and (a(x))t+1 = L~=I Qt+1(i)Ko(Xi,X) 
have the same value at all Xl. The change at Xt+1 is 

Ct+1 = l(a(xt+1))t+1 - (a(xt+t})t+11 = Ibl l'Yt+1 (8) 

with bi the factor from (2). 

As a consequence, a good approximation to the full GP solution is obtained if the input 
for which we have only a small change in the mean function of the posterior process is not 

included in the set of BV s. The change is given by Ct+1 and the decision of including Xt+1 
or not is based on the "score" associated to it. 

The absence of matrix inversions is an important issue when dealing with large datasets . 
The matrix inversion from the projection equation (7) can be avoided by iterative inversion3 

of the Gram matrix Q = Ki/: 

Qt+1 = Qt + 'Yt;1 (et+1 - et+t) (et+1 - et+If (9) 

An important comment is that if the new input is in the linear span of the BVs, then it will 
not be included in the basis set, avoiding thus: 1.) the small singular values of the matrix 

K Band 2.) the redundancy in representing the problem. 

4.1 Deleting a basis vector 

The above section gave a method to leave out a vector that is not significant for the predic

tion purposes. However, it did not provide us with a method to eliminate one of the already 
existing BV-s. 

Let us assume that an input Xt+1 has just been added to the set of BV s. Since we know that 

an addition had taken place, the update rule (4) with the t + 1-th unit vector et+1 was last 
performed. Since the model parameters at the previous step had an empty t + 1-th row and 

column, the parameters before thefull update can be identified. 

The removal of the last basis vector can be done with the following steps: 1) computing 
the parameters before the update of the GP and 2) performing a reduced update of the 

2Equation (7) also minimises the KL-distance between the full posterior (the one that increases 

parameter space) and a parametric distribution using only the old BVs. 

3 A guide is available from Sam Roweis: http://www.gatsby.ucl.ac.uk/rvroweis/notes.html 
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Figure 2: Decomposition of model parameters for the update equation (10) . 

model without the inclusion of the basis vector (eq. (4) using et+1)' The updates for model 

parameters a, C, and Q are "inverted" by inverting the coupled equations (4) and (9): 

Q* 
& = a(t) - a*

q* 

C = C(t) + c* Q*Q*T _ ~ [Q*C*T + C*Q*T] 
q*2 q* 

Q*Q*T 
Q=Q(t) __ _ 

q* 

(10) 

where the elements needed to update the model are extracted from the extended parameters 

as illustrated in Figure 2. 

The consequence of the identification permits us to evaluate the score for the last BV. But 

since the order of the BVs is approximately arbitrary, we can assign a score to each BV 

lat+l(i)1 

Ci = Qt+1 (i, i)' 
(11) 

Thus we have a method to estimate the score of each basis vector at any time and to elimi

nate the one with the least contribution to the GP output (the mean), providing a sparse GP 

with a full control over memory size. 

5 Simulation results 

To apply the online learning rules (4), the data likelihood for the specific problem has to be 

averaged with respect to a Gaussian. Using eq. (2), the coefficients b1 and b2 are obtained. 

The marginal of the GP at Xt+1 is a normal distribution with mean (a(Xt+1))t = a[kt+1 

and variance 0';'+1 = kt+1 +k;+1 C tkt+1 where the GP parameters at time t are considered. 

As a first example, we consider regression with Gaussian output noise 0'5 for which 

1 ( 2 2 ) (Yt+1 - (a(Xt+1)t)2 
In(P(Yt+1l a(Xt+d))t=-2"ln 271'(0'0+0'11:'+1) - 2( 2+ 2 )2 

0'0 0'11:'+1 
(12) 

For classification we use the probit model. The outputs are binary Y E {-I, I} and the 

probability is given by the error function (where u = ya/O'o): 

P(yla) = Erf - = . f(C dte- t /2 ( ya) 1 l U 
2 

0'0 V 271' 00 

The averaged log-likelihood for the new data point at time tis: 

( ( I ( ))) ( Yt+1 a[kt+1 ) P Yt+1 a Xt+1 = Erf 

j 0'5 + O'i'+l 

(13) 



1.4 

1.2 

0.8 

0.6 

0.4 

~ 
0.2 

-0.2 

~ 
- 0.4 

-3 -2 

~ 

," 

-1 

(a) 

100 150 200 250 300 350 400 450 500 550 
# of BasIs Vectors 

(b) 

Figure 3: Simulation results for regression (a) and classification (b). For details see text. 

For the regression case we have chosen the toy data model y = sin(x)/x + ( where ( is 
a zero-mean Gaussian random variable with variance (]"~ and an RBF kernel. Figure 3.a 
shows the result of applying the algorithm for 600 input data and restricting the number 
of BVs to 20. The dash-dotted line is the true function, the continuous line is the ap
proximation with the Bayesian standard deviation plotted by dotted lines (a gradient-like 
approximation for the output noise based on maximising the likelihood (12) lead us to the 
variance with which the data has been generated). 

For classification we used the data from the US postal database4 of handwritten zip codes 
together with an RBF kernel. The database has 7291 training and 2007 test data of 16 x 16 
grey-scale images. To apply the classification method to this database, 10 binary classifi
cation problems were solved and the final output was the class with the largest probability. 

The same BVs have been considered for each classifier and if a deletion was required, the 
BV having the minimum cumulative score was deleted. The cumulative score was cho
sen to be the maximum of the scores for each classifier. Figure 3.b shows the test error 
as a function of the size of the basis set. We find that the test error is rather stable over 
a considerable range of basis set sizes. Also a comparison with a second sweep through 
the data shows that the algorithm seems to have already extracted the relevant information 
out of the data within a single sweep. Using a polynomial kernel for the USPS dataset and 
500 BVs we achieved a test error of 4.83%, which compares favourably with other sparse 
approaches [10; 8] but uses smaller basis sets than the SVM (2540 reported in [8]). 

We also applied our algorithm to the NIST datasetS which contains 60000 data. Using a 
fourth order polynomial kernel with only 500 BVs we achieved a test error of 3.13% and 
we expect that improvements are possible by using a kernel with tunable hyperparameters. 
The possibility of computing the posterior class probabilities allows us to reject data. When 
the test data for which the maximum probability was below 0.5 was rejected, the test error 
was 1.53% with 1.60% of rejection rate. 

4Prom: http://www.kernel-machines.org/data.html 

5 Available from: http://www.research.att.comryann/ocr/rnnist/ 



6 Conclusion and further research 

This paper presents a sparse approximation for GPs similar to the one found in SVMs [13] 

or relevance vector machines [10]. In contrast to these other approaches our algorithm 

is fully online and does not construct the sparse representation from the full data set (for 

sequential optimisation for SVM see [6]). 

An important open question (besides the issue of model selection) is how to choose the 

minimal size of the set of basis vectors such that the predictive performance is not much 
deteriorated by the approximation involved. In fact, our numerical classification experi

ments suggest that the prediction performance is considerably stable when the basis set is 
above a certain size. It would be interesting if one could relate this minimum size to the 

effective dimensionality of the problem being defined as the number of feature dimensions 

which are well estimated by the data. One may argue as follows: Replacing the true kernel 

by a modified (finite dimensional) one which contains only the well estimated features will 
not change the predictive power. On the other hand, for kernels with a feature space of 

finite dimensionality M, it is easy to see that we need never more than M basis vectors, 

because of linear dependence. Whether such reasoning will lead to a practical procedure 
for choosing the appropriate basis set size, is a question for further research. 
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