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Abstract—In this paper, we propose a new sparsity-based al-
gorithm for automatic target detection in hyperspectral imagery
(HSI). This algorithm is based on the concept that a pixel in HSI
lies in a low-dimensional subspace and thus can be represented
as a sparse linear combination of the training samples. The
sparse representation (a sparse vector corresponding to the linear
combination of a few selected training samples) of a test sample
can be recovered by solving an �-norm minimization problem.
With the recent development of the compressed sensing theory,
such minimization problem can be recast as a standard linear
programming problem or efficiently approximated by greedy
pursuit algorithms. Once the sparse vector is obtained, the class
of the test sample can be determined by the characteristics of the
sparse vector on reconstruction. In addition to the constraints
on sparsity and reconstruction accuracy, we also exploit the fact
that in HSI the neighboring pixels have a similar spectral char-
acteristic (smoothness). In our proposed algorithm, a smoothness
constraint is also imposed by forcing the vector Laplacian at
each reconstructed pixel to be minimum all the time within the
minimization process. The proposed sparsity-based algorithm
is applied to several hyperspectral imagery to detect targets of
interest. Simulation results show that our algorithm outperforms
the classical hyperspectral target detection algorithms, such as
the popular spectral matched filters, matched subspace detectors,
adaptive subspace detectors, as well as binary classifiers such as
support vector machines.

Index Terms—Hyperspectral imagery, sparse recovery, sparse
representation, spatial correlation, target detection.

I. INTRODUCTION

H
YPERSPECTRAL remote sensors capture digital images

in hundreds of narrow spectral bands (about 10 nm wide),

which span the visible to infrared spectrum [1]. Pixels in HSI are

represented by -dimensional vectors where is the number

of spectral bands. Different materials are usually assumed to be

spectrally separable as they reflect electromagnetic energy dif-

ferently at specific wavelengths. This property enables discrim-

ination of materials based on the radiance spectrum obtained

Manuscript received April 20, 2010; revised September 24, 2010 and De-
cember 20, 2010; accepted January 31, 2011. Date of publication February 10,
2011; date of current version May 18, 2011. This paper was supported in part by
the Army Research Office (ARO) under Grant 58110-MA-II and in part by the
National Science Foundation (NSF) under Grant CCF-0728893. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Gustavo Camps-Valls.

Y. Chen and T. D. Tran are with the Department of Electrical and Com-
puter Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
(e-mail: ychen98@jhu.edu; trac@jhu.edu).

N. M. Nasrabadi is with the U.S. Army Research Laboratory, Adelphi, MD
20783 USA (e-mail: nnasraba@arl.army.mil).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2011.2113170

by hyperspectral imagery. HSI has found many applications in

various fields such as military [2]–[4], agriculture [5], [6], and

mineralogy [7]. One of the important applications of HSI is

target detection, which can be viewed as a two-class classifica-

tion problem where pixels are labeled as target (target present)

or background (target absent) based on their spectral character-

istics. Support vector machines [8], [9] have been a powerful

tool to solve supervised classification problems and have shown

a good classification performance for hyperspectral classifica-

tion [10], [11]. A number of algorithms also have been proposed

for target detection in HSI based on statistical hypothesis testing

techniques [2]. Among these approaches, spectral matched fil-

ters [12], [13], matched subspace detectors [14], and adaptive

subspace detectors [15] have been widely used to detect targets

of interests. The details of these classical algorithms will be de-

scribed in the next section.

Recently, a novel signal classification technique via sparse

representation have been proposed for face recognition [16]. It

is observed that aligned faces of the same object with varying

lighting conditions approximately lie in a low-dimensional sub-

space [17]. Thus, a test face image can be sparsely represented

by training samples from all classes. The most compact rep-

resentation can be obtained by solving a sparsity-constrained

optimization problem. This algorithm exploits the discrimina-

tive nature of sparse representation and the reconstruction of the

test sample provides directly its classification label. This idea

naturally extends to other signal classification problems such

as iris recognition [18], tumor classification [19], and HSI un-

mixing [20].

In this paper, we propose a target detection algorithm based

on sparse representation for HSI data. We use the same sparsity

model in [16] where a test sample is approximately represented

by very few training samples from both target and background

dictionaries, and the recovered sparse representation is used di-

rectly for detection. In addition to the constraints on sparsity

and reconstruction accuracy, we show that it is necessary to ex-

ploit the fact that neighboring HSI pixels usually have a sim-

ilar spectral characteristics as well. To achieve this, we impose

a smoothing constraint on the reconstructed image by forcing

the vector Laplacian, as defined in Section III-D, of the recon-

structed pixels to be zero. By incorporating this spatial corre-

lation, the detection performance is significantly improved for

images in which targets consist of multiple pixels.

One of the advantages of our proposed approach is that there

is no explicit assumption on the statistical distribution character-

istics of the observed data as in the previous target detection al-

gorithms [12]–[15]. Furthermore, in the spectral matched filter,

the target spectral signature is a single vector, usually obtained
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by averaging the training target samples or from a spectral li-

brary. However, using a single target spectrum is usually insuf-

ficient to represent the target spectral characteristics since the

target spectrum changes with the environmental situation. This

problem can be avoided by using a target subspace model rep-

resented by training samples that account for the target spec-

trum under various conditions of illumination and atmospheric

conditions, making the dictionary invariant to the environmental

variations [21], [22]. This environmental invariant approach can

easily be incorporated into our algorithm by augmenting the

target and background dictionaries with synthetically generated

spectral signatures in order to construct better target and back-

ground subspaces. Moreover, unlike the other detectors based

on statistical hypothesis testing, the sparsity model in our ap-

proach has the flexibility of imposing additional restrictions cor-

responding to the characteristics of HSI such as smoothness

across neighboring hyperspectral pixels.

The paper is structured as follows. Section II briefly de-

scribes several previously proposed approaches commonly

used in automatic target detection in HSI. Our sparsity-driven

target detection algorithm is presented in Section III. The

effectiveness of the proposed method is demonstrated by sim-

ulation results presented in Section IV. Conclusions are drawn

in Section V. Throughout this paper, matrices and vectors are

denoted by upper and lower case boldface letters, respectively.

II. PREVIOUS APPROACHES

In this section, we briefly introduce previously developed ap-
proaches for target detection in HSI. Specifically, we describe
problem formulation of support vector machines (SVMs), fol-
lowed by the signal models and detector expressions of the clas-
sical detectors including spectral matched filter (SMF), matched
subspace detectors (MSDs), and adaptive subspace detectors
(ASDs). Implementation details of the three statistical detec-
tors and their nonlinear (kernel) versions can be found in [23],
whereas details of SVM can be found in [24].

A. Support Vector Machines

The SVM approach [8] solves the supervised binary classifi-
cation problem by seeking the optimal hyperplane that separates
two classes with the largest margin. A nonlinear SVM (called
kernel SVM) is often implemented to further improve the sepa-
ration between classes by projecting the samples onto a higher
dimensional feature space. In kernel SVM, the dot products in
the original SVM formulation are replaced by a nonlinear kernel
function using the kernel trick [8].

It has also been shown that the integration of the contex-
tual information via composite kernels in SVM (i.e., contextual
SVM) leads to an improvement in HSI classification over the
traditional spectral-only SVM [24], [25]. In contextual SVM,
a pixel is redefined as a combination of the spectral pixel

and its spatial feature (e.g., the mean and standard de-
viation per spectral band) extracted in a small neighborhood.
In this paper, we implemented contextual SVM with a com-
posite kernel that fuses the spectral and spatial information via
a weighted summation

(1)

where is the tradeoff between spatial kernel and
spectral kernel . Examples of possible kernels can be found
in [26].

B. Spectral Matched Filter

Let be a spectral observation con-
sisting of spectral bands. The model for SMF can be ex-
pressed by

target absent

target present (2)

where is the target abundance measure ( when no
target is present and when a target is present),

is the spectral signature of the target, and
is the additive background noise.
Assume is zero-mean Gaussian random noise. Using the

generalized likelihood ratio test (GLRT), the output of SMF for
a test input is given by [12]

(3)

where represents the estimated covariance matrix for the cen-
tered observation data. If the output is greater than a
prescribed threshold , then the test sample will be determined
as a target; otherwise, it will be labeled as background.

Variations of SMF include the adaptive SMF (ASMF) where
the background clutter covariance matrix is estimated from a
small number of samples in the neighborhood of the test sample
and the regularized SMF [27] where a regularization term
is added to force the filter coefficients to shrink and become
smooth. The regularized SMF is implemented in Section IV for
detector performance comparison.

C. Matched Subspace Detectors

In the previous SMF approach, only a single target spectral
signature is used. However, in MSD, a pixel is modeled in terms
of target subspace and background subspace which are obtained
using target and background training data, respectively. The
target detection set-up for MSD is

target absent

target present (4)

where and represent matrices whose columns are linearly
independent and span the background and target subspaces, re-
spectively; and are unknown vectors whose entries are co-
efficients accounting for the abundances of the corresponding
column vectors of and , respectively; and is additive
Gaussian noise.

The GLRT for the above model is [14]

(5)

where is the projection matrix associated with the back-
ground subspace , and is the projection matrix associ-
ated with the target-and-background subspace . Usually,
the eigenvectors corresponding to the significant eigenvalues of
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the target and background covariance matrices are used to gen-
erate the columns of and , respectively. For a prescribed
threshold , if the output , then will be labeled
as target; otherwise, it will be labeled as background.

D. Adaptive Subspace Detectors

A scaled background noise under is used in ASD because
in the case of subpixel targets, the amount of background cov-
ered area may be different from that of a pure background pixel.
For ASD, the detection model for a measurement is

target absent

target present (6)

where is a matrix whose columns are linearly independent
vectors that span the target subspace is an unknown
vector of the abundances of the corresponding columns of

is Gaussian random noise, and is a scalar. The measure-
ment is assumed to be background noise under hypothesis
and a linear combination of a target subspace signal and scaled
background noise under hypothesis .

The GLRT for the above problem is given by [15]

(7)

where is the estimated background covariance. Similar to the
cases of SMF and MSD, if , then will be de-
clared as target; otherwise, it will be labeled as background.

III. SPARSITY-BASED TARGET DETECTION

In this section, we introduce the first sparsity-based HSI

target detection algorithm by sparsely representing the test

sample using a structured dictionary consisting of target and

background training samples. We first describe the details of

the sparse subspace model employed in the proposed algorithm,

and then demonstrate its ability as a classifier.

A. Sparsity Model

Let be a hyperspectral pixel observation, which is a -di-

mensional vector whose entries correspond to responses to var-

ious spectral bands. If is a background pixel, its spectrum ap-

proximately lies in a low-dimensional subspace spanned by the

background training samples . The pixel can

then be approximately represented as a linear combination of

the training samples as follows:

(8)

where is the number of background training samples,

is the background dictionary whose columns are the

background training samples (also called atoms), and is an

unknown vector whose entries are the abundances of the corre-

sponding atoms in . In our model, turns out to be a sparse

vector (i.e., a vector with only few nonzero entries). To better

Fig. 1. Example of sparse representation of a background pixel. (a) The original
pixel ��� (blue solid) and its approximation ��� ��� represented by four training
samples in ��� (red dashed). The MSE between ��� and ��� ��� is ���� � �� .
(b) The sparse representation ��� of ���. (c) The four background training spectral
signatures corresponding to the non-zero entries of ���.

illustrate this model, an example is shown in Fig. 1. A back-

ground sample consisting of bands (blue solid)

and its approximation (red dashed) are shown in Fig. 1(a).

The background dictionary contains training sam-

ples which are randomly picked from the entire image including

spectral signature for multiple background materials (e.g., vege-

tation, dirt road, and soil). The sparse representation is shown

in Fig. 1(b). We see that only 4 out of the 1300 entries of are

nonzero. The four atoms (background training samples) of

corresponding to the nonzero entries are shown in Fig. 1(c). The

test sample is approximated by a linear combination of only

four training atoms with a small reconstruction error of mean

squared error .

Similarly, a target pixel approximately lies in the target sub-

space spanned by the target training samples ,

which can also be sparsely represented by a linear combination

of the training samples

(9)

where is the number of target training samples, is the

target dictionary consisting of the target training pixels,

and is a sparse vector whose entries contain the abundances
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Fig. 2. Example of sparse representation of a target test sample. (a) The original
pixel ��� (blue solid) and reconstructed pixel ��� ��� represented by four training
samples in ��� (red dashed). The MSE between ��� and ��� ��� is ���� � �� .
(b) The sparse representation ��� of ���. (c) The four target training spectral signa-
tures corresponding to the nonzero entries of ���.

of the corresponding target atoms in . An example demon-

strating the effectiveness of this sparse-representation model is

depicted in Fig. 2. The target dictionary has training

samples. Note that because of the lack of availability of the

target spectral signatures, the size of the training dictionary for

targets is usually much smaller than that of the background dic-

tionary. Fig. 2(a) shows the original target spectral (blue solid)

and its approximation (red dashed) from four training atoms.

The sparse vector is shown in Fig. 2(b), and the atoms in

corresponding to the nonzero entries of are shown in Fig. 2(c).

In our proposed detection algorithm, an unknown test sample

is modeled to lie in the union of the background and target sub-

spaces. Therefore, by combining the two dictionaries and

, a test sample can be written as a sparse linear combina-

tion of all training pixels

(10)

where is a matrix con-

sisting of both background and target training samples, and

is a -dimensional vector con-

sisting of the two vectors and associated with the two

dictionaries. This model is similar to that of the MSD in (4)

where the test sample is assumed to lie in a subspace spanned

by training samples from both background and target classes.

However, in the case of MSD, the target and background are

assumed to have a Gaussian distribution and GLRT is used to

develop the detector. In our sparsity-based model, no assump-

tion about the target and background distributions is required.

Also, in the MSD signal model, the columns of the background

and target dictionaries have to be independent in order to

generate the required projection operators. In our approach,

the subspace model is more generalized since independence

between the training samples is not necessary. The vector

is a concatenation of the two vectors associated with the

background and target dictionaries and is also a sparse vector

as follows. Since the background (e.g., trees, grass, road, soil)

and target (e.g., metal, paint, glass) pixels usually consist of

different materials, they have distinct spectral signatures and

thus the spectrum of target and background pixels lie in dif-

ferent subspaces. For example, if is a target pixel, then ideally

it cannot be represented by the background training samples.

In this case, is a zero vector and is a sparse vector. On

the other hand, if belongs to the background class, then is

sparse and is a zero vector. Therefore, the test sample can

be sparsely represented by combined background and target

dictionaries, and the locations of nonzero entries in the sparse

vector actually contains critical information about the class

of the test sample . Next, we demonstrate how to obtain and

how to label the class of a test sample from .

B. Reconstruction and Detection

This section considers the reconstruction problem of finding

the sparse vector for a test sample , given the dictionary .

As discussed above, a test sample can be approximately rep-

resented by very few training samples. Given the dictionary of

training samples , the representation satisfying

can be obtained by solving the following optimization

problem for the sparsest vector:

subject to (11)

where denotes -norm which is defined as the number

of nonzero entries in the vector (also called the sparsity level

of the vector). The above problem of minimizing the -norm

is a NP-hard problem. If the solution is sufficiently sparse,

this NP-hard problem can be relaxed to a linear programming

problem by replacing the -norm by -norm, which can then

be solved efficiently by convex programming techniques [28],

[29]. Alternatively, the problem in (11) can also be approxi-

mately solved by greedy pursuit algorithms such as orthogonal

matching pursuit (OMP) [30] or subspace pursuit (SP) [31].

Due to the presence of approximation errors in empirical data,

the equality constraint in (11) can be relaxed to an inequality

one

subject to (12)

where is the error tolerance. The above problem can also be

interpreted as minimizing the approximation error within a cer-

tain sparsity level

subject to (13)



CHEN et al.: SPARSE REPRESENTATION FOR TARGET DETECTION IN HYPERSPECTRAL IMAGERY 633

where is a given upper bound on the sparsity level [32]. In

[33], it has been shown that the solutions to the problems in (12)

and (13) coincide for properly chosen parameters and , and

therefore the two problems are in some sense equivalent. In this

paper, the greedy SP algorithm [31] is used to approximately

solve the sparse recovery problem (13) due to its computational

efficiency.

The sparse vector is recovered by decomposing the pixel

over the given dictionary to find the few atoms in that

best represent the test pixel . The recovery process implic-

itly leads to a competition between the two subspaces. There-

fore, the recovered sparse representation is naturally discrimi-

native. Once the sparse vector is obtained, the class of can

be determined by comparing the residuals

and , where and represent the recov-

ered sparse coefficients corresponding to the background and

target dictionaries, respectively. In our approach, the output of

detector is calculated by

(14)

If with being a prescribed threshold, then is deter-

mined as a target pixel; otherwise, is labeled as background.

Fig. 3 shows an example of sparse reconstruction of a back-

ground test sample and a comparison to the pseudo-inverse re-

construction. This example illustrates the advantage of -norm

in classification problems over the conventional -norm. The

pseudo-inverse solution is obtained by solving the following

minimum -norm problem:

subject to (15)

The above problem in (15), for the underdetermined linear

system , has a closed-form solution with

being the pseudo-inverse of . For a test sample and training

dictionary , the minimum -norm vector and minimum

-norm vector are shown in Figs. 3(a) and (b), respectively.

Blue and red represent entries corresponding to the background

and target dictionaries, respectively. The original test sample

and the partial reconstructed pixels using only the background

dictionary and only the target dictio-

nary are shown in Figs. 3(c) and (d).

Although the pseudo-inverse solution yields perfect recon-

struction, we see that it is not sparse and its nonzero entries

spread over both classes. Thus, cannot be used directly for

detection. The minimum -norm solution , on the contrary,

has all of its nonzero entries concentrated in the background

part, which indicates that the test sample lies in the background

subspace. Furthermore, with the pseudo-inverse solution , as

seen in Fig. 3(d), neither nor accurately approxi-

mates the original pixel, leading to a small difference between

the residuals and . Hence,

the solution cannot be used to determine the class of the

input solely based on the residuals. On the other hand, the

residuals associated with the minimum -norm solution are

(i.e., the original pixel is well

approximated by the background dictionary). Clearly, is a

background pixel using the minimum -norm solution.

Fig. 3. Example of sparse reconstruction of a background test sample with a
comparison to the minimum � -norm (pseudoinverse) solution. (a) Minimum
� -norm solution ���� . (b) Pseudo-inverse solution ���� � ��� ���. (c) Minimum
� -norm reconstruction from the background dictionary ���� � ��� ���� (blue

dashed), reconstruction from the target dictionary ���� � ��� ���� (red dashed), and
the original test sample ��� (black solid). (d) Pseudo-inverse reconstruction from
the background dictionary ���� � ��� ���� (blue dashed), reconstruction from

the target dictionary ���� � ��� ���� (red dashed), and the original test sample ���
(black solid).

C. Background and Target Dictionary Construction

Another aspect of the problem that requires careful attention

is how to construct appropriate dictionaries and . Global

dictionaries for target and background can be designed using

given training data. However, in target detection applications

there is usually a lack of training data especially for the target.

The background is often modeled by a subspace by using some

random pixels from the test image. Furthermore, a single target

spectral signature, as employed in SMF, is often insufficient to

represent a target material as the spectrum is affected by envi-

ronmental conditions (e.g., illumination and atmospheric vari-

ations). By using physical models and the MORTRAN atmo-

spheric-modeling program [34], meaningful target spectral sig-

natures can be generated which can capture the target signature

appearance over a wide range of atmospheric conditions. For ex-

ample, in [21] a target subspace was constructed by generating a

large number of target signatures using MORTRAN under var-

ious atmospheric conditions. A similar idea can be incorporated

in our approach to construct a redundant target dictionary which

could be invariant to the environmental variations. Furthermore,

it can be combined with the idea of frame generation [35], [36]

by imposing the constraints on tightness, maximum robustness,

equiangularity, etc., to design more desirable overcomplete dic-

tionaries. The K-SVD dictionary design technique [37], which

alternately minimizes sparsity of the representation and updates

the codebook to better fit the data, can also be used to form the

redundant dictionaries to further improve the performance of the

proposed sparsity-based algorithm.

In this paper, we use a small global target dictionary con-

structed by using some of the target pixels on one of the targets

in the scene. For the background dictionary, instead of using
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Fig. 4. Dual window centered at test sample ���.

a fixed global background dictionary containing samples from

various background materials (e.g., trees, grass, road, buildings,

etc.), we use an adaptive local background dictionary in order to

better represent and capture the spectral signature of test sample.

Specifically, the background dictionary is generated locally

for each test pixel using a dual window centered at the pixel

of interest, as shown in Fig. 4. The inner window should be

larger than the size of a target. Only pixels in the outer region

form the atoms in . In this way, the subspace spanned by

the background dictionary becomes adaptive to the local sta-

tistics. Therefore, if the test sample is a background pixel, it is

highly likely that it finds very similar spectral characteristic in

the background dictionary. On the other hand, if the test sample

is a target pixel, it would be difficult for the pixel to find a good

match in since the outer window region does not include any

target pixels. The usage of a dual window significantly improves

the detection performance over a global background dictionary,

as is shown via the simulation results in Section IV.

D. Detection With Smoothing Constraint

In the above process, the sparsity-based target detector is

applied to each pixel in the test region independently without

considering the correlation between neighboring pixels. Hy-

perspectral imagery, however, is usually smooth in the sense

that neighboring pixels usually consist of similar materials and

have similar spectral characteristics where small differences are

often due to sensor noise and/or atmospheric variation. In this

paper, we assume that there are multiple pixels on the target.

Therefore, we propose to incorporate a smoothing penalty term

in the proposed sparsity-based detector in order to exploit the

spatial correlation between neighboring pixels.

Let be a pixel of interest in a hyperspectral image , and

be its four nearest neighbors in the spatial do-

main, as shown in Fig. 5. While searching for the sparsest rep-

resentation of the test sample , we simultaneously minimize

the vector Laplacian at the reconstructed pixel , which is a

-dimensional vector calculated as

(16)

where is the reconstruction of and is the corre-

sponding recovered sparse vector. In this way, the reconstructed

test sample is forced to have a similar spectral characteristics as

its four nearest neighbors; hence, smoothness is enforced across

the spectral pixels in the reconstructed image.

Fig. 5. Four nearest neighbors of a pixel ��� .

Let be the sparse vector associated with (i.e., ).

The new problem with the smoothing constraint can now be

formulated as

minimize

subject to:

(17)

In (17), we aim to find the sparsest vector that approximately sat-

isfies two sets of linear constraints. The first set forces the vector

Laplacian of the reconstructed pixel to be minimal such that

the reconstructed neighboring pixels have similar spectral char-

acteristics, and the second set minimizes reconstruction errors.

Now denote the concatenation of ’s and ’s by

... and
... (18)

The linear constraints can be written in terms of and as

. . . (19)

Therefore, the optimization problem in (17) can be reformulated

as

minimize

subject to: (20)

where

and

The problem in (20) is the standard form of a linearly con-

strained sparsity-minimization problem and can be solved using

the greedy SP algorithm [31]. Similar to the previous case in
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Fig. 6. Example comparing the reconstruction and detection problem for a
background test sample without and with the smoothing constraint. (a) Solution
to (11) (without smoothing constraint). (b) By solving (11), the reconstruction
from the background dictionary (blue dashed), reconstruction from the target
dictionary (red dashed), and the original test sample (black solid). (c) Solution
to (20) (with smoothing constraint) for the centered test sample. (d) By solving
(20), the reconstruction from the background dictionary (blue dashed), recon-
struction from the target dictionary (red dashed), and the original test sample
(black solid).

(11), this problem can also be relaxed to allow for approxima-

tion errors in empirical data and be rewritten as

subject to (21)

or

subject to (22)

where is the error tolerance and is the sparsity level.

By exploiting the smoothness across the HSI pixels, the

detection performance can be significantly improved. Fig. 6

shows an example of a background test sample which is

misclassified as a target using (11), but is correctly labeled

using (20) with the smoothing constraint. The solution to (11)

for the given test sample is depicted in Fig. 6(a). We see

that the nonzero entries of the solution correspond to both

background and target training atoms, and the residuals are

. In the case with the smoothing

constraint, by solving (20), the nonzero entries only concentrate

on part corresponding to the background dictionary, and the

residuals are . Clearly, and the test

sample will thus be correctly labeled as a background sample.

Once the sparse vector in (20) is obtained, detection can be

performed based on the characteristics of the sparse coefficients

as it was done in Section III-B. We calculate the total residuals

obtained separately from the target and background dictionaries

Fig. 7. Results for Desert Radiance II (DR-II) from (20) with the smoothing
constraint. (a) Averaged image over 150 bands. (b) Sparsity-based target de-
tector output: difference between � and � . (c) Residual � corresponding to
the local background dictionary using the dual-window approach. (d) Residual
� corresponding to the target dictionary.

and

(23)

where and denote the recovered sparse coefficients for

associated with the background and target dictionaries, respec-

tively. The output of the proposed sparsity-based detector for

the center pixel is computed by the difference of residuals

and the detection decision is made in a similar fashion as in the

other algorithms introduced in Section II:

(24)

That is, if the output is greater than a prescribed threshold

, then the test sample is labeled as a target; otherwise it is

labeled as background.

IV. SIMULATION RESULTS AND ANALYSIS

The proposed target detection algorithm, as well as the SMF,

MSD, ASD, and SVM, are applied to several real HSI, and the

results are compared both visually and quantitatively by the re-

ceiver operating characteristics (ROC) curves. The ROC curve

describes the probability of detection (PD) as a function of the

probability of false alarms (PFA). To be more specific, we pick

thousands of different thresholds between the minimal and max-

imal values of the detector output. The class labels for all pixels

in the test region are determined at each threshold. The PFA

is calculated by the number of false alarms (background pixels

determined as target) over the total number of pixels in the test

region, and the PD is the ratio of the number of hits (target pixels

determined as target) and the total number of true target pixels.

Two of the images, the desert radiance II data collection

(DR-II) and forest radiance I data collection (FR-I), are from a

hyperspectral digital imagery collection experiment (HYDICE)

sensor [38]. The HYDICE sensor generates 210 bands across

the whole spectral range from 0.4 to 2.5 m which includes the

visible and short-wave infrared bands. We use 150 of the 210

bands (23rd-101st, 109th-136th, and 152nd-194th), removing
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Fig. 8. Output for DR-II using local background dictionary (dual-window ap-
proach), with (a) sparsity-based target detector without smoothing constraint
using (11), (b) SVM with composite kernel, (c) MSD, (d) SMF, and (e) ASD.
(f) We repeat here the result of our proposed sparsity-based target detector with
smoothing constraint for visual comparison.

Fig. 9. Results for forest radiance I (FR-I) from (20) with smoothing constraint.
(a) Averaged image over 150 bands. (b) Sparsity-based target detector output:
difference between � and � . (c) Residual � corresponding to the background
dictionary (dual-window approach). (d) Residual � corresponding to the target
dictionary.

the absorption and low-SNR bands. The DR-II image contains

six military target on the dirt road and the FR-I image contains

14 targets along the tree line as depicted in Figs. 7(a) and 9(a),

respectively. For these two HYDICE images, every pixel on the

targets is considered a target pixel. The third image, collected

from the Airborne Hyperspectral Imager (AHI) [39] operating

in the long-wave infrared spectrum ranging from 8 to 11.5 m,

contains surface and buried mines as shown in Fig. 11(a), in

which every pixel has 70 spectral bands. In this image, there

are about 230 mines, each roughly of size 5 5 pixels and each

mine is treated as a target when computing the PD.

For DR-II and FR-I, the spectral signatures of the target

are collected directly from pixels

from the leftmost target in the given hyperspectral data. The

background signatures are generated by the

pixels in the outer region of a dual window as discussed in

Fig. 10. Output for FR-I using local background dictionary (dual-window ap-
proach), with (a) sparsity-based target detector without smoothing constraint
using (11), (b) SVM with composite kernel, (c) MSD, (d) SMF, and (e) ASD.
(f) We repeat here the result of our proposed sparsity-based target detector with
smoothing constraint for visual comparison.

Fig. 11. Results for the mine image from (20) with smoothing constraint.
(a) Averaged image over 70 bands. (b) Detector output: difference between
� and � . (c) Residual � corresponding to the background dictionary
(dual-window approach). (d) Residual � corresponding to the target dictionary.

Section III. The size of the outer and inner windows are 21 21

and 15 15, respectively, and there are background

training samples. The subspace pursuit algorithm [31] is used

to solve the sparsity-constrained problems (11) and (20). The

results of the proposed detector with the smoothing constraint

for DR-II are shown in Fig. 7(b)–(d). Fig. 7(c) and (d) shows

the residuals corresponding to the background dictionary

, and the residual corresponding to the

target dictionary , respectively, whereas

Fig. 7(b) shows the difference between and . In Fig. 7(c),

while background pixels are dark, the target pixels are bright

due to the fact that for each target pixel the sparsity-constrained

optimizer could not find good matches from the background

dictionary; therefore, the sparse vector and the residual

associated with the background dictionary is . On

the contrary, in Fig. 7(d), the targets are dark while the back-

ground are bright. Finally, as shown in Fig. 7(b), the difference

between and will further suppress the background and
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Fig. 12. Output for the mine image using local background dictionary (dual-
window approach), with (a) sparsity-based target detector without smoothing
constraint, (b) SVM with composite kernel, (c) MSD, (d) SMF, and (e) ASD.
(f) We repeat here the result of our proposed sparsity-based target detector with
smoothing constraint for visual comparison.

emphasizes the targets, thus yielding better detection perfor-

mance. Similar results can be seen in Fig. 9(b)–(d) for the FR-I

image. In Fig. 9(c) which represents the residual image ,

although the targets are bright, we can also see the shadow of

trees near the upper and right borders of the image has higher

magnitude than the other background areas. In Fig. 9(b), the

shadow is suppressed and this improves the false alarm rate.

Similar results can be observed in Fig. 11 for the mine

image, where the target dictionary is generated from

training samples of two mines, each occupying a

5 5 area, outside the test region. Since the targets in this

image are smaller than that of the two HYDICE images, the

inner window size is chosen to be 9 9 and the outer window

size remains 21 21. The background dictionary then

consists of samples.

Next we demonstrate the importance of employing a locally

adaptive background dictionary. The sparsity-based target de-

tection algorithm is applied to the DR-II and FR-I images using

local and global background dictionaries. The local is gener-

ated by pixels in the outer region of the dual window

centered at the test sample as in Fig. 4, and the global dictionary

( for DR-II and for FR-I) is generated by

randomly collecting background pixels, which can be reduced

to a smaller size by an unsupervised clustering algorithm such as

K-means. The detection performance is significantly improved

by using a local dictionary, as seen in the ROC curves shown

in Fig. 13. This is because a fixed global dictionary fails to cap-

ture the local similarity between pixels in a small neighborhood.

A local dictionary exploits the local statistics and helps to find

better resemblance of test samples. We see in Fig. 13 that the de-

tector using local dictionaries outperforms the one using global

dictionaries by a large margin for both HYDICE images.

Under the same settings (i.e., same target and background

training samples for all detectors), we compare the performance

Fig. 13. ROC curves using the sparsity-based target detector with smoothing
constraint for (a) DR-II and (b) FR-I with local and global background
dictionaries.

of the proposed sparsity-based algorithm to the previously de-

veloped conventional classifier SVM and detectors MSD, SMF,

ASD using both global and local background dictionaries. Let

and be, respec-

tively, the target and background dictionaries used in the pro-

posed sparsity-based algorithm. Note that in the local case,

is adaptive and changes for each test pixel. In order to have a

fair comparison, in the case of SMF the target signature is the

mean of the target dictionary atoms and the back-

ground covariance is obtained from the background dictionary

. In the SMF implementation, a regularization term is added

to the background covariance matrix such that the inverse ma-

trix in (3) is more stable, as described in [27]. In the case of

MSD, the eigenvectors corresponding to the significant eigen-

values of the covariance matrices obtained from atoms in and

are used to generate the basis for the target and background

subspaces, respectively [23]. For ASD, the basis for target sub-

space are generated in the same way as in MSD. The ASD noise

covariance matrix is computed from the background training

samples and a regularization term is added to the

noise covariance matrix in order to obtain a stable inverse ma-

trix. In SVM, a model is trained using atoms in and as two

different classes using a composite kernel which combines the

spectral and spatial feature via a weighted summation, where
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Fig. 14. ROC curves for DR-II. (a) Global background dictionary,� � ����.
(b) local background dictionary (dual-window approach), � � ���.

and in (1) are radial basis function kernels [9]. All parame-

ters are adjusted to obtain the best possible performance. Under

the current setting of target and background dictionaries, the

proposed detector has computational complexity comparable to

that of the classical detectors SMF, MSD, and ASD.

The ROC curves in both the global and local cases for DR-II

are shown in Fig. 14. We see that the sparsity-based detector

with the smoothing term using a local background dictionary

outperforms all other detectors. The SMF performs poorly since

the target signature is represented by a single vector, while in all

other approaches the targets are assumed to approximately lie

in a subspace. For visual comparison, the detector outputs for

SVM, MSD, SMF, and ASD are also displayed in Fig. 8, where

the locally adaptive background dictionary is employed. One

can immediately notice that the sparsity-based detector with the

smoothing constraint also leads to the best visual quality.

The ROC curves for FR-I are shown in Fig. 15. The FR-I

image is more difficult than the DR-II due to the presence of

the trees and shadow whose spectral curves have some resem-

blance to that of the targets. From the ROC plots, the proposed

algorithm still leads to the best performance. For visual inspec-

tion, the detection results obtained by SVM, MSD, SMF, and

ASD are illustrated in Fig. 10. For all detectors in Fig. 10, we

can see the bright spots in the shadow area along the tree line.

Fig. 15. ROC curves for FR-I. (a) Global background dictionary,� � ����.
(b) local background dictionary (dual-window approach), � � ���.

Fig. 16. ROC curves for the mine image using local background dictionary
(dual-window approach), � � ���.

This is alleviated by the proposed detection algorithm, as seen

in Fig. 9(b).

The AHI image of mines is the most difficult one among the

three test images. The targets include surface mines and buried

mines that are invisible. In this case, the ROC curve is obtained

slightly differently in that only one pixel on the mine needs

to be correctly labeled for the mine to be declared as a target.

Therefore, the PD is calculated by the number of hits divided
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by the total number of mines in the test region. In this experi-

ment, for all detectors, we use target training samples

from two mines outside the test region and back-

ground training samples adaptively constructed for each test

pixel by the dual-window approach with inner and outer win-

dows of size 9 9 and 21 21, respectively. The ROC curves

for the mine image using local dictionaries are shown in Fig. 16.

The proposed sparsity-based target detection algorithm still out-

performs the other algorithms, especially at low PFA. The out-

puts for SVM, MSD, SMF, and ASD are displayed as images in

Fig. 12. We see that although the MSD yields higher PD at cer-

tain PFA, there is a large background area in the middle of the

image where pixels have very high magnitude, hence increasing

the number of false alarms.

V. CONCLUSION

In this paper, we propose a target detection algorithm for hy-

perspectral imagery based on sparse representation of the test

samples. In the proposed algorithm, the sparse representation is

recovered by solving a constrained optimization problem that

simultaneously addresses the sparsity constraint, reconstruction

accuracy, and a smoothness penalty on the reconstructed image.

Detection decision is obtained from the recovered sparse vectors

by reconstruction. The new algorithm consistently outperforms

the previously developed detectors in terms of both qualitative

and quantitative measures, as demonstrated by experimental re-

sults in several real hyperspectral images. Future research in-

cludes the construction of better dictionaries. For example, the

proposed detector can be improved by generating dictionaries

invariant to the effect of atmospheric absorption [21]. We will

also investigate the design and exploitation of more discrimina-

tive dictionaries learned from the training data [37], [40].
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