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Sparse Representations in Audio and Music:

from Coding to Source Separation
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R. Gribonval, Senior Member, IEEE, and M. E. Davies, Member, IEEE

Abstract—Sparse representations have proved a powerful tool
in the analysis and processing of audio signals and already lie
at the heart of popular coding standards such as MP3 and
Dolby AAC. In this paper we give an overview of a number
of current and emerging applications of sparse representations
in areas from audio coding, audio enhancement and music
transcription to blind source separation solutions that can solve
the “cocktail party problem”. In each case we will show how the
prior assumption that the audio signals are approximately sparse
in some time-frequency representation allows us to address the
associated signal processing task.

I. INTRODUCTION

Over recent years there has been growing interest in finding

ways to transform signals into sparse representations, i.e.

representations where most coefficients are zero. These sparse

representations are proving to be a particularly interesting and

powerful tool for analysis and processing of audio signals.

Audio signals are typically generated either by resonant

systems or by physical impacts, or both. Resonant systems

produce sounds that are dominated by a small number of

frequency components, allowing a sparse representation of the

signal in the frequency domain. Impacts produce sounds that

are concentrated in time, allowing a sparse representation of

the signal in either directly the time domain, or in terms of a

small number of wavelets. The use of sparse representations

therefore appears to be a very appropriate approach for audio.
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In this article, we will examine a range of applications of

sparse representations to audio and music signals. We will

see how this concept of sparsity can be used to design new

methods for audio coding which have improved performance

over non-sparse methods; how it can be used to perform

denoising and enhancement on degraded audio signals; and

how it can be used to separate source signals from mixed

audio signals, particularly when there are more sources than

microphones. Finally, we will also see how finding a sparse

decomposition can lead to a note-like representation of musical

signals, similar to automatic music transcription.

A. Sparse Representations of an Audio Signal

Suppose we have a sampled audio signal with � samples

����, � � � � � , which we can write in a row vector form

as �� � ������ � � � � ��� ��. For audio signals we are typically

dealing with signals sampled below 20 kHz, but for simplicity

we will assume our sampled time � takes integer values. It is

often convenient to decompose �� into a weighted sum of �
basis vectors ��� � ������� � � � � ���� ��, with the contribution

of the �-th basis vector weighted by a coefficient ��:

���� �

�
�

���

������� or �� �

�
�

���

��
��� (1)

or in matrix form

�� � ��� (2)

where � is the matrix with elements ����� � �����.
The most familiar representation of this type in audio signal

processing is the (Discrete) Fourier representation. Here we

have the same number of basis vectors as signal samples (� �
� ), and the basis matrix elements are given by

����� �
�

�
���

�

���

�
��

�

(3)

where � �
�
��. Now it remains for us to find the coefficients

�� in this representation of ��. In the case of our Fourier

representation, this is straightforward: the matrix � is square

and invertible, and in fact orthogonal, so �� can be calculated

directly as �� � ����� � �������, where the superscript ��
denotes the conjugate transpose.

Signal representations corresponding to invertible trans-

forms such as the DFT, the discrete cosine transform (DCT),

or the discrete wavelets transform (DWT) are convenient and

easy to calculate. However, it is possible to find many alterna-

tive representations. In particular, if we allow the number of
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basis vectors (and hence coefficients) to exceed the number of

signal samples, � � � , then solving (2) for the representation

coefficient vector �� is in general not unique: there will be a

whole ��� � �-dimensional subspace of vectors �� which sat-

isfy �� � ���. In this case we say that (2) is underdetermined.

A common choice in this situation is to use the Moore-Penrose

pseudoinverse �
�, yielding �� � ����. However, in this article

we are interested in finding representations that are sparse, i.e.

representations where only a small number of the coefficients

of �� are non-zero.

B. Advantages of sparse representations

Finding a sparse representation for a signal has many

advantages for applications such as coding, enhancement,

or source separation. In coding, a sparse representation has

only a few non-zero values, so only these values (and their

locations) need to be encoded to transmit or store the signal. In

enhancement, the noise or other disturbing signal is typically

not represented by the same coefficients as the sparse signal.

Therefore discarding the “wrong” coefficients can remove a

large proportion of the unwanted noise, leaving a much cleaner

restored signal. Finally, in source separation, if each signal to

be separated has a sparse representation, then there is a good

chance that there will be little overlap between the small sets

of coefficients used to represent the different source signals.

Therefore by selecting the coefficients “used” by each source

signal, we can restore each of the original signals with most

of the interference from the unwanted signals removed.

For typical steady-state audio signals, the Fourier repre-

sentation already does quite a good job of providing an

approximately sparse representation. If an audio signal consists

of only stationary oscillations, without onsets or transients, a

representation based on a short-time Fourier transform (STFT)

or a Modified Discrete Cosine Transform (MDCT) [1] will

include some large-amplitude coefficients corresponding to the

main frequencies of oscillation of the signal, with little energy

in between these.

However, audio signals also typically contain short tran-

sients at the onsets of musical notes or other sounds. These

would not have a sparse representation in an STFT or MDCT

basis, but instead in such a representation would require a large

number of frequency components to be active simultaneously.

One approach to overcome this is therefore to look for a

representation in terms of a union of bases, each with different

time-frequency characteristics. For example, we could create

a “tall, thin” basis matrix

� �

�

��

��

�

(4)

composed of both an MDCT basis ��, designed to represent

the steady-state sinusoidal parts, and a Wavelet basis ��

designed to represent the transient, edge-like parts. We could

write this representation as

�� � ��� � ����� � ����� (5)

where the joint coefficient vector �� � ���� ���� is a concatena-

tion of the MDCT and Wavelet coefficients. This type of idea

is known in audio processing as hybrid representations [2] and

also appears in image processing as multilayered representa-

tions [3] or Morphological Component Analysis [4]. Many

other unions are possible, such as unions of MDCT bases

with differing time-frequency resolutions. While the number

of basis vectors, and hence the number of possible coefficients,

is larger in a union of bases, we may find that the resulting

representation has fewer non-zero coefficients and is therefore

sparser (Fig. 1).
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Fig. 1. Representations of an audio signal in (a) a single MDCT basis, and
(b) a union of eight MDCT bases with different window sizes (“8*MDCT”).

C. Recovering sparse representations

To find a sparse representation when the system is underde-

termined is not quite so straightforward as for the square and

invertible case. Finding the true sparsest representation

������
��

������ � �� � ���� (6)

where the 0-norm ����� is the number of non-zero elements

of ��, is an NP-hard problem, so would take us a very long

time to solve. However, it is possible to find an approximate

solution to this. One method is to use the so-called Basis

Pursuit relaxation, where instead of looking to solve (6) we

look for a solution to the easier problem

������
��

������ � �� � ���� (7)

where the 1-norm ����� �
�

� ���� is the sum of the absolute

values. Eqn. (7) is equivalent to a linear program (LP), and

can be solved by a range of general or specialist methods, see

e.g. [5], [6], [7], [8], [9], [10], [11].

Another alternative is to use a greedy algorithm to find

an approximation to (6). For example, the matching pursuits

(MP) algorithm [12] and orthogonal matching pursuit (OMP)

algorithm [13] are well-known examples of this type of greedy

algorithm. There are many more in the literature [14], [15],

[16] and considerable recent work in the area of sparse

representations has concentrated on theoretically optimal and

practically efficient methods to find solutions (or approximate

solutions) to (6) or (7). Nevertheless, MP is still used in
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real-world problems since there are efficient implementations

available, such as the Matching Pursuit Toolkit (MPTK)1 [17].

II. CODING

Coding is arguably the most straightforward application

of sparse representations. Indeed, reversibly transforming the

signal into a new domain where the information is con-

centrated on a few terms is the main idea underlying data

compression. The transform coder is a classical technique used

in source coding [18]. When the transform is orthonormal

it can be shown (under certain assumptions) that the gain

achievable through transform coding is directly linked to the

transform’s ability to concentrate the energy of the signal in

a small number of coefficients [19]. However, this problem

is not as straightforward as it may seem, since there is no

single fixed orthonormal basis where all audio signals have

a sparse representation. Audio signals are in general quite

diverse in nature: they mostly have a strong tonal part, but also

some lower-energy components such as transients components

(at note attacks) and wide-band noise that are nonetheless

important in the perception of audio signals. These tonal,

transient and noise components are optimally represented in

bases with different respective requirements in terms of time-

frequency localization.

We will consider two main approaches to handle this issue.

The first approach is to find an adapted orthonormal basis, best

fitted to the local features of the signal. This is the technique

employed in most state-of-the-art commercial audio codecs,

such as MPEG 2/4 Advanced Audio Codec (AAC). The second

approach uses dictionary redundancy to accommodate this

variety of features, leading to a sparser representation, but

where each coefficient carries more information.

A. Coding in adapted orthogonal bases

For coding, using an orthonormal basis seems an obvious

choice. Orthonormal bases yield invertible transforms with no

redundancy, so the number of coefficients in the transform

domain is equal to the number of samples. Many multimedia

signals have compact representations in orthonormal bases: for

example, images are often well suited to wavelet represen-

tations (EZW, JPEG200). Furthermore, several orthonormal

schemes also have fast implementations due to the special

structure of the basis, such as the FFT for implementing the

DFT, or Mallat’s multiresolution algorithm for the DWT [19].

For audio signals, a natural choice for an orthonormal

transform might be to use one based on the STFT. However,

for real signals the Balian-Low theorem tells us that there

cannot be a real orthonormal transform based on local Fourier

transforms with nice regularities properties both in time and

frequency.

To overcome this we can use so-called Lapped Orthogonal

Transforms, which exploit special aliasing cancellation prop-

erties of the cosine transform, when the window obeys two

conditions on symmetry and energy-preservation. The discrete

1mptk.irisa.fr

version of these classes of transforms leads to the Modified

Discrete Cosine Transform (MDCT) [1], with atoms such as

�������� � ����
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(8)

with � the frame size, � � �� �� and window ���� defined

for � � �� � � � � �� � �. Again, there are a number of fast

implementations of the MDCT based on the FFT. The MDCT

is one key to success of the ubiquitous “MP3” (MPEG-1 layer

III) coding standard, and is now used in the majority of state-

of-the-art coding standards, such as MPEG 2/4 AAC.

Using the simple MDCT as described above has severe

limitations. Firstly, it is not shift-invariant: at very-low bitrates,

this can lead to so-called “warbling artefacts”, or “birdies” (as

these distortions appear most notably at the higher end of the

spectrum). Seondly, the time resolution is limited: for a typical

frame size of � � ���� samples at a 44.1 kHz sampling

frequency, the resolution is 43 Hz and time resolution is 23

ms. For some very transient signals, such as drums or attacks

at note onsets, this value is quite large: this leads to what

are known as pre-echo artefacts where the quantization noise

“leaks” within the whole window, before the actual burst of

energy.

However, the MDCT offers an extra degree of freedom in

the choice of the window. This leads to the field of adaptive

(orthogonal) transforms: when the encoding algorithm detects

that the signal is transient in nature, it switches to a “small

window” type, whose size is typically 1/8-th of the long

window. The transition from long windows to short windows

(and vice-versa) is performed by asymmetric windows.

B. Coding in overcomplete bases

Using overcomplete bases for coding may at first seem

counter-intuitive, as the number of analysis coefficients is in-

creased. However, we can take advantage of the extra degrees

of freedom to increase the sparsity of the set of coefficients:

the larger the dictionary, the sparser a solution can be expected.

Only those coefficients which are deemed to be significant will

be transmitted and coded, i.e. ���� � �

���
�������, where �

is a small subset of indices. However, the size of the dictionary

cannot be increased at will to increase sparsity, for two

reasons. Firstly, solving the inverse problem is computationally

intensive and very large dictionaries may lead to overly long

computations. Secondly, not only must the values ������� be

transmitted, but also the subset �� � � � �� of significant

parameters must itself be specified.

In [20], the simultaneous use of � � � MDCT bases was

proposed and evaluated, where the scales (frame sizes) �� go

as powers of two �� � ���
�, � � � � � � �, with window

lengths from 128 to 16384 samples (2.9 ms to 370 ms).

The 8-times overcomplete dictionary is now �� � ������ �
� � � � ��� � � � � ���. To reduce pre-echo, large

windows are removed from the dictionary near onsets. Finally,

the significant coefficients ������� are quantized and encoded

together with their parameters �� � � � ��. For the sake of

efficiency, the sparse decomposition is performed using the

Matching Pursuit algorithm [12].
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Formal listening tests have shown that this coder (named

“8*MDCT”) outperforms MPEG-2 AAC at very low bitrates

(around 24 kbps) for some simple sounds while being of

similar quality for complex, polyphonic sounds. At the highest

bitrates (above 64 kbps), where a large number of transform

coefficients have to be encoded and transmitted, having to

encode the extra scale parameter becomes a heavy penalty,

and the overcomplete dictionary performs slightly worse than

the (adapted) orthogonal basis, although transparency can still

be obtained in both cases.

C. New trends

A further key advantage of using overcomplete representa-

tions such as “8*MDCT” is that a large part of the information

is carried by the significant scale-frequency-time parameters

�� � ��� �� �� � � � ��, which provide directly interpretable

information about the signal content. This can be useful

for instance in audio indexing for data mining: if a large

sound database is available in an encoded format, a large

quantity of user-intuitive information can be easily inferred

from the sparse representation, at a very low computational

cost. The “8*MDCT” representation was found to have similar

performance to the state-of-the-art in common Music Infor-

mation Retrieval tasks (e.g. rhythm extraction, chord analysis,

and genre classification) while MP3 and AAC codecs only

performed well in the rhythm extraction, due to poor frequency

resolution of those transforms for the other tasks [21].

Sparse overcomplete representations also offer a step to-

wards the “Holy Grail” of audio coding: object coding [22].

In this paradigm, any recording would be decomposed into

a number of elementary constituents such as notes, or in-

struments’ melodic lines, that could be rearranged at will

without perceivable loss in sound quality. Of course, this if

far out of reach for current technology if we make no further

assumptions on the signal, as this would imply that we were

able to fully solve both the “hard” problems of polyphonic

transcription and the underdetermined source separation prob-

lem. However, some attempts in very restricted cases [23],

[24] indicate that this may be the right approach towards

“musically-intelligent” coding.

D. Application to denoising

Finding an efficient encoding of an audio signal based on

sparse representations can also help us with audio denoising.

Typically, while the desired part of the signal is well repre-

sented by the sparse representation, noise is typically poorly

represented by the sparse representation. By transforming

our signal to its sparse representation, discarding the smaller

coefficients, and reconstructing the signal again we have a

simple way to suppress a significant part of the signal noise.

Many improvements can be made over this simple model.

If this is considered in a Bayesian framework, the task is to

estimate the most probable original signal given the corrupted

observation. Such a Bayesian framework allows the inclusion

of structural priors for musical audio objects that take into

account the ‘vertical’ frequency structure of transients and

the ‘horizontal’ structure of tonals, as well as the variance

of the residual noise. Such a structured model can help to

reduce the so-called ‘birdies’ or ‘musical noise’ that can occur

due to switching of time-frequency coefficients. However,

calculating the sparse representation is more complex than

a straightforward Basis Pursuit method, but Markov chain

Monte-Carlo (MCMC) methods have been used for this [25].

III. SOURCE SEPARATION

In many applications, audio recordings are mixtures of

underlying audio signals and it is desirable to recover those

original signals. For example, in a meeting room we may have

several microphones, but each one collects a mixture of several

talkers. To automatically transcribe the minutes of a meeting, a

first step would be to separate these into one channel per talker.

Sparse representations can be of significant help in solving this

type of source separation problem.

Let us first consider the instantaneous mixing model, where

we ignore time delays and reverberation. Here we have � audio

sources �����, � � �� � � � � � which are instantaneously mixed

to give � observations �����, � � �� � � � � � according to

����� �
�
�

���

�������� � ����� (9)

where ��� is the amount of source � that appears in observation

�, and ����� is noise on the observation �����. This type of

mixture might occur in, for example, pan-potted stereo, where

early stereo recordings were produced by changing the amount

of each source mixed to the left and right channels without

any time delays or other effects2. We can also write (9) in

vector or matrix notation as

���� �
�

�

������� � ���� or � � ���� (10)

where e.g. the matrix � is an ��� matrix with columns ����
and rows ���, and �� is the �th column of the mixing matrix

� � ���� �.
If the noise � is small, the mixing matrix � is known, and

� is square (� � �) and full rank, then we can estimate the

sources using ����� � �
��

����; if we have more observations

than sources (� � �) we can use the pseudo-inverse ����� �
�

�
����. If � is not known (blind source separation) then we

could use a technique such as independent component analysis

(ICA) to estimate it [26].

However, if we have fewer observations than sources (� �
�), then we cannot use matrix inversion (or pseudo-inversion)

to unmix the sources. In this case, called underdetermined

source separation [27], [28], we can use sparse representations

both to help separate the sources, and, for blind source

separation, to estimate the mixing matrix �.

A. Underdetermined separation by binary masking

If we transform the signal mixtures ��� � ������������ into

a domain where they have a sparse representation, it is likely

that most coefficients of the transformed mixture correspond to

2A more accurate model for acoustic recordings is the convolutive model
considered below in Eq. (16)
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either none or only one of the original sources. By identifying

and matching up the sources present in each coefficient, we

can recover the original, unmixed sources. Suppose that our �
source signals ��� all have sparse representations using atoms
��� from a full rank ��� basis matrix � (with � � � ), i.e.,

��� �
�

�

��� ��� � � � � � (11)

where ��� are the sparse representation coeffients. In matrix

notation we can write � � �� and � � ��
��.

Now denoting � � ��
�� the representation of � in the

basis �, for noiseless instantaneous mixing we have

� � ��� (12)

For a simple special case, suppose that � is so sparse that at

most one source coefficient �� is active at each transform index

�, i.e. ��� � � for � �� �� . In other words, each column of �

contains at most one nonzero entry, and the source transformed

representations are said to have disjoint supports. Then (12)

becomes

�� � �������� � � � � � (13)

so that each vector �� is a scaled version of one of the mixing

matrix columns �� . Therefore, when � is known, for each �
we can estimate �� by finding the mixing matrix column ��

which is most correlated with ��:

��� � ������
�

���� ���
�����

� � � � � (14)

and we construct a mask ��� � � if � � ��� , � otherwise.

Therefore using this mask to identify the active sources, and

multiplying (13) by �
�
��

and rearranging we get

���� � ���
�
�
� ��

�����
(15)

from which we can estimate the sources as �� � ���. Due

to the binary nature of ��� this approach is known as binary

masking.

Even though the assumption that the sources have disjoint

supports in the transformed domain is not satisfied for most

real audio signals and standard transforms, the binary masking

approach remains relevant to obtain accurate (although non

exact) estimates of the sources as soon as they have almost

disjoint supports, i.e., at each transform index � at most one

source � has a non negligible coefficient ��� .

The assumption that the sources have essentially disjoint

supports in the transformed domain is highly dependent on

the chosen transform matrix �. This is illustrated in Fig. 2

where on top we displayed the coefficients ��� of three musical

sources (i.e. � � �) in some domain �, below we displayed

the coefficients ��� � �
� of a stereophonic mixture of the

sources (i.e., � � �) in the same domain, and at the bottom

we displayed the scatter plot of �� , that is to say the collection

of ���� � � � � �� .

On the left (Fig. 2-(a)), the three musical sources are playing

one after another, and the transform is simply the identity

matrix � � �, which is associated with the so-called Dirac

basis. At each time instant �, a single source is active, hence

the scatter plot of �� clearly displays “spokes”, with directions

given by the columns �� of �. In this simple case, the sources

can be separated by simply segmenting their time-domain

representation using (14) to determine which source is active

at each time instant.

In the middle (Fig. 2-(b)), the three musical sources are

playing together, and the transform is still the Dirac basis

� � �. The disjoint support assumption is clearly violated

in the time domain, and the scatter plot no longer reveals

the directions of the columns �� of �. On the right (Fig. 2-

(c)), the same three musical sources as in Fig. 2-(b) are

displayed but in the time-frequency domain rather than the

time domain, using the MDCT transform, i.e., the atoms ��� are

given by (8). On the top we observe that, for each source, many

transform coefficients are small while only a few of them are

non negligible and appear as spikes. A detailed study would

show that these spikes appear at different transform indices �
for different sources, so for each transform index there is at

most one source coefficient � which is non negligible. This

is confirmed by the scatter plot at the bottom, where we can

see that the vectors �� are concentrated along “spokes” in the

directions of the columns �� of �.

As well as allowing separation for known �, the scatter

plot at the bottom of Fig. 2-(c) also illustrates that sparse

representations also allow us to estimate � from the data,

in the blind source separation case. If at most one source

coefficient is active at each transform index �, then the

directions of the “spokes” in Fig. 2-(c) correspond to the

columns of �. Therefore estimation of the columns �� of �,

up to a scaling ambiguity, becomes a clustering problem which

can be addressed using e.g. K-means or weighted variants [27],

[29], [30], [31].

Finally, we mention that binary masking can also be used

when only one channel is available, provided that at most one

source is significantly active at each time-frequency index.

However in the single channel case we no longer have a

direction �� to allow us to determine which source is active

on which transform index �. Additional statistical information

must be exploited to identify the active sources and build the

separating masks ��� � ��� ��. For example, non-negative ma-

trix factorization (NMF) or Gaussian Mixture Models (GMMs)

of short time Fourier spectra can be used to build non-binary

versions of these masks � � ��� � �, associated with time-

varying Wiener filtering [32], [33], [34].

B. Time-frequency masking of anechoic mixtures

Binary masking can also be extended when there is noise,

and when the mixture process is convolutive, rather than

instantaneous. The convolutive mixing model, which accounts

for the sound relections on the walls of a meeting room and

the overall reverberation, is as follows:

����� �
�
�

���

��
�

����

����������� ��� � � � � �� (16)

where ������ is the mixing filter applied to source � to get

its contribution to observation �. In matrix notation we can
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Fig. 2. Top: coefficients of three musical sources. Middle: coefficients of two mixtures of the three sources. Bottom: scatter plot of the mixture coefficients
(plain lines indicate the directions �� of the columns of the mixing matrix, the colors indicate to which source is associated which column). Left (a): the
three musical sources do not play together; time domain coefficients. Middle (b): the three musical sources play together; time domain coefficients. Right (c):
the three musical sources play together; time-frequency (MDCT) domain coefficients.

write � � � � �, where � denotes convolution. The STFT

of both sides yields an approximate time-frequency domain

mixing model [27]

����� �� �
�
�

���

����������� ��� � � � � �� (17)

at frequency � and time frame � . For anechoic mixtures, we

ignore reverberation but allow different propagation times and

attenuations between each source and each microphone. Here

the mixing filters ������ become simple gains ��� and delays

��� , giving ������ � ��� ������������.

At time-frequency index ��� ��, suppose that we know that

the only significant source coefficients are indexed by � � � �
� ��� ��, i.e., ����� �� � � for � �� � . Then (17) becomes

����� �� �
�

���

����������� ��� � � � � �� (18)

so that the vectors � � ���� �� �� ������ ���
�
��� and � �

���� �� �� ������ ���
�
��� satisfy

� � �� ����� (19)

where �� ��� � ����������������� and �� � ������� .

Therefore, for each time-frequency index ��� ��, if we know

the matrix ���� and the set � � � ��� �� of most significantly

active sources, we can estimate the source coefficients as [35]

� ������ ������ �� �
�
� ������� �� (20)

� ������ ���� ��� �� � (21)

where �� ��� is the mixing filter submatrix for the active

sources at frequency �. Each source can finally be recon-

structed by inverse STFT, using e.g. the overlap-add method.

In practice, if we only know the matrix ����, the critical

difficulty is to identify the set � of most significantly active

sources. For a “reasonably small” number of sources with

“sufficiently sparse” time-frequency representations, straight-

forward statistical considerations show that, at most time-

frequency points ��� ��, the total number of active sources is

small and does not exceed some � � � � . Identifying the set �
of active source amounts to searching for an approximation

� � ����� where � has few nonzero entries. This is a

sparse approximation problem, which needs to be addressed

independently at each time-frequency point.

While binary masking corresponds to searching for � with

at most one nonzero entry (� � � �) [27], non-binary masking

can be performed choosing, e.g., the minimum �-norm � such

that � � ����� (Basis Pursuit) (7), as proposed in [28], or

the minimum �-norm solution with � � � [36].

We have seen in this section that sparse representations

can be particularly useful when tackling source separation

problems. As well as the approaches we have touched on here
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there are many other interesting methods, such as convolutive

blind source separation and sparse filter models, which involve

sparse representations in the time and/or time-frequency do-

mains. For surveys of some these methods see e.g. [37], [38].

IV. AUTOMATIC MUSIC TRANSCRIPTION

So far the coefficients in the sparse representation have been

fairly arbitrary, so we were only interested in whether such a

sparse representation exists, not specifically what the coeffi-

cients mean. However, in some cases, we can assign a specific

meaning to the sparse coefficients themselves. For example, in

a piece of keyboard music, such as a harpsichord or piano solo,

only a few of the many possible notes are playing at any one

time. Therefore the notes form a sparse representation when

compared to, for example, a time-frequency spectrogram.

In the simplest case, suppose that ���� �
����� ��� � � � � ���� ��� � � � � ���� ���� is the spectrum

at frame � . Then we approximate this by the model

���� � ����� �
�

�

������� (22)

where �� is the contribution of the spectrum due to note �, and

���� � ������� � � � � ������
� is the vector of note activities

����� at frame � . In this simple case, we are assuming that

each note � produces just a scaled version of the note spectra

�� at each frame � .

Joining all these spectral vectors together across frames, in

matrix notation we get

� � ��� (23)

The basis dictionary � is no longer of a fixed MDCT

or FFT form, but instead must be learned from the data

� � ������. To do this, we can use methods such as gradient

descent in a probabilistic framework [39], [40] or the recent

K-SVD algorithm [41]. When applied to MIDI-synthesized

harpsichord music, this simple model is able to identify most

of the notes present in the piece, and produce a sparse ‘piano-

roll’ representation of the music, a simple version of automatic

music transcription (Fig. 3). For more complex sounds, such

as those produced by a real piano, the simple assumption of

scaled spectra per note no longer holds, and several sparse

coefficients are typically needed to represent each note [42].

It is also possible to apply this sparse representations model

directly in the time domain, by searching for shift-invariant

sparse coding of the musical audio waveforms. Here a ‘spik-

ing’ representation of the signal is found, which combines with

the shift-invariant dictionary to generate the audio signal. For

more details and a comparison of these methods, see [43].

V. CONCLUSIONS

In this article we have given an overview of a number of

current and emerging applications of sparse representations

to audio signals. In pariticular, we have seen how we can

use sparse representations in audio coding, denoising, source

separation, and automatic music transcription. We believe that

is an exciting area of research, and we anticipate that there

will be many further advances in this area in the future.
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