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Abstract 
The coded aperture snapshot spectral imager (CASSI) is an optical architecture that captures spectral images using compressive sensing. This system 
improves the sensing speed and reduces the large amount of collected data given by conventional spectral imaging systems. In several applications, 
it is necessary to analyze changes that occur between short periods of time. This paper first presents a sparsity analysis for spectral video signals, to 
obtain accurate approximations and better comply compressed sensing theory. The use of the CASSI system in compressive spectral video sensing 
then is proposed. The main goal of this approach is to capture the spatio-spectral information of dynamic scenes using a 2-dimensional set of 
projections. This application involves the use of a digital micro-mirror device that implements the traditional coded apertures used by CASSI. 
Simulations show that accurate reconstructions along the spatial, spectral and temporal axes are attained, with PSNR values of around 30 dB.  
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Representaciones dispersas de escenas dinámicas y reconstrucciones 
a partir de muestreo compresivo 

 
Resumen 
El sistema de adquisición de imágenes espectrales de apertura codificada (CASSI) es una arquitectura óptica que capta imágenes espectrales 
usando muestreo compresivo. Este sistema acelera la detección y reduce la gran cantidad de datos adquiridos por los sistemas tradicionales. 
En algunas aplicaciones es necesario analizar la variabilidad de la escena en períodos cortos de tiempo. Este trabajo presenta un  análisis 
de las bases de representación para imágenes espectrales dinámicas, con el fin de obtener aproximaciones correctas a partir de su 
representación dispersa, y permitir la aplicación de muestreo compresivo. Posteriormente se propone el uso del sistema CASSI captar la 
información espacial y espectral de escenas dinámicas utilizando un conjunto de proyecciones bidimensionales. Esto  implica el uso de un 
dispositivo de microespejos digitales que implementa las aperturas codificadas utilizadas en CASSI. Resultados muestran que es posible 
obtener reconstrucciones correctas en las dimensiones espaciales, espectral y temporal, con valores de PSNR alrededor de 30 dB. 
 
Palabras clave: imágenes espectrales dinámicas, muestreo compresivo de imágenes multi-espectrales, representaciones dispersas, 
aperturas codificadas, CASSI. 

 
 
 

1.  Introduction 
 
Traditional imaging architectures capture light intensity 

values on each spatial location and compression techniques 
are then used for data storage and transmission [1]. In 
contrast, spectral imaging provides light intensity values 
across a range of wavelengths. Thus, each spatial point of a 

spectral image provides a complete spectral signature of the 
composition of a scene. Conventional spectral imaging 
systems rely on Nyquist criterion to acquire the spatio-
spectral information of an object or scene. These systems 
experience an extremely low sensing speed and, need to store 
large amounts of collected data, proportional to the desired 
resolution [2]. An alternative approach for spectral imaging  
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Figure 1. General CASSI Optical architecture.  
Source: [2] 

 
 

acquisition, known as Compressive Spectral Imaging (CSI), 
has recently emerged. CSI applies compressed sensing (CS) 
principles to capture and recover the spatial and spectral 
information of a scene in a single two-dimensional set of 
projections. In particular, CSI assumes that a spectral image ۴ ∈ Թேൈேൈ௅, has a sparse representation in a basis શ, such 
that it can be recovered from ߭ ≪ ܰଶܮ random projections 
[3]. Therefore, the selection of the sparse basis શ is critical 
to obtain good reconstruction results [4]. 

The coded aperture snapshot spectral imager (CASSI) 
shown in Fig. 1 is an optical architecture designed to capture 
CSI measurements [3,5]. The CASSI architecture comprises 
a set of lenses, a coded aperture, a dispersive element 
(commonly a prism), and a focal plane array (FPA) detector. 
Several variations of the CASSI system have been proposed 
to improve the quality of the obtained images. For instance, 
multiple shots can be attained by varying the coded aperture 
patterns, thus, more information about the scene is extracted 
[6-8]; an optimal coded aperture design for spectral 
selectivity has been proposed in [3]; a high resolution coded 
aperture and a low resolution FPA are used to obtain spatial 
super resolution in the CASSI system without incurring on 
expensive detectors [9]. Furthermore, spectral super 
resolution is attained by adding a second coded aperture [10]. 
Finally, traditional block-unblock coded apertures have 
recently been replaced by an array of optical filters [11].  

In many applications such as surveillance, or some 
microscopic biological studies, the scenes under analysis are not 
completely static; conversely, many changes may occur between 
short periods of time. Thus, not only the spatial and spectral, but 
also temporal information is of high interest. For instance, 
hyperspectral video is used for object or human tracking [12-15], 
for cancer detection through endoscopy [16], bile duct inspection 
[17] and several types of surgery [18,19]. The acquisition of this 
four-dimensional information from a scene is known as spectral 
video sensing. Furthermore, when CS techniques are used to 
sense these video signals, it is known as compressive spectral 
video sensing. Previous works have proposed different video 
spectral acquisition approaches. For instance, in [20] different 
sets of spectral bands are measured on each video frame, and then 
a sparsity assumption is used to reconstruct the data. Since each 
frame does not contain information from all the spectral bands, 
this approach is not capable of capturing the variations that may 
occur on the spectral bands during the acquisition time. Other 
spectral video sensing approaches include multiple sensors to 
capture several video streams that are processed to obtain a single 
high-resolution signal [21], or dispersive elements in conjunction 
with occlusion masks to capture spectral information in a 

monochrome camera [22,23]. These approaches, however, do 
not employ CS theory. Moreover, an architecture named coded 
aperture compressive temporal imaging (CACTI) captures a 
single coded measurement by shifting a large coded aperture 
[24]; this coded measurement is then used to estimate several 
video frames, but no spectral information is taken into account. 
Similar spectral video sensing approaches can be found in [25-
27]. CS concepts have been recently exploited in spectral video 
sensing, in particular, a recent variation of CACTI is the coded 
aperture compressive spectral-temporal imaging (CACSTI) [28, 
29], which employs mechanical translation of a coded aperture 
and spectral dispersion to capture a multi-spectral dynamic scene 
onto a monochrome detector. Capturing information from all 
frames in a single snapshot however, leads to an extremely ill-
posed reconstruction problem.   

This paper presents a sparsity analysis of spectral video 
signals. These sparse representations can be exploited by using 
the CASSI system to capture the spatio-spectral information of 
dynamic scenes. In particular, this approach implements the 
coded aperture patterns using a digital micro-mirror device 
(DMD) that switches the patterns to independently encode the 
information from different frames. More specifically, the 
compressive spectral video problem can be expressed in the 
following ways: the input source is a four-dimensional array with 
two spatial, one spectral and, one temporal dimension. The 
physical phenomenon is mathematically described in the 
following way: the ࢓ െth spectral video frame of the input 
source, ࢓ࡲ ∈ Թࡺൈࡺൈࡸ, is first spatially modulated by the coded 
aperture ࢓ࢀ ∈ Թࡺൈࡺ, where ࢓ ൌ ૙, … , ࡰ െ ૚ indexes the 
temporal dimension; thus, a coded aperture pattern remains fixed 
to capture the information from each frame. Then, the dispersive 
element decomposes the encoded source frame into its spectral 
components. Finally, the encoded spatio-spectral information 
from a specific frame is integrated across the spectral components 
into the FPA, such that multiplexed spatio-spectral information is 
captured on each pixel. The output of the system for the ࢓ െth 
frame can be modeled as ࢟࢓ ൌ  is the vector ࢓ࢌ where ,࢓ࢌ࢓ࡴ
form the video frame ࢓ࡲ and, ࢓ࡴ is the transfer function of the 
system that contains the effects of the coded aperture ࢓ࢀ and the 
prism. This procedure is repeated to capture information from a 
scene in different frames of time.  

A variation of the CASSI system allows multiple 
snapshot acquisition of a spectral scene [2,6,8,30]. This 
modification results in better reconstruction quality. Using 
this multiple-shot scheme, several measurement sets are 
captured for each frame in the spectral video, using different 
coded aperture patterns. Different patterns can be 
implemented using DMD [7] or piezo-electric devices [8]. 
Thus, the measurements from ܭ snapshots and ܦ frames can 
be arranged as ܡ ൌ ሾሺܡ଴ሻ் … ሺܡ௄ିଵሻ்ሿ், where ܡ௜ ൌቂ൫ܡ଴௜ ൯்൫ܡଵ௜ ൯் … ൫ܡ஽ିଵ௜ ൯்ቃ்

, such that the sensing model can 
be rewritten as ܡ ൌ  where ۶ is the sensing matrix that ,܎۶
contains all ۶௠’s and ܎ is the vector representation of the 
complete video data set ܎ ൌ ଵ்܎଴்܎ൣ … ஽ିଵ்൧்܎

. In practice, 
the maximum number of measurements directly depends on 
both the pattern rate of the DMD and, the integration time of 
the detector. Most commercial DMDs have pattern rates of 
around 30 KHz, yet most CCD detectors can integrate 30 
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frames-per-second. In other words, a high-speed detector is a 
critical device in these kinds of applications. 

The set of projections captured in the FPA, ܡ, is then used 
to recover the four-dimensional (spatio-spectral-temporal) 
input scene. The reconstruction is performed by solving an 
optimization problem that finds a sparse representation of the 
original data in a given basis. Commonly, the reconstruction 
problem is expressed as ܎መ ൌ શሺargmin஘‖ܡ െ ۶શી‖ଶ ൅ߦ‖ી‖ଵሻ, where 	ી is a sparse representation of ܎ in the basis શ, and ߦ is a regularization constant.  

This paper contains two major contributions; first, a 
sparsity analysis is developed in order to determine the basis 
that provides the sparsest representation of spectral video 
signals. Then, we present a mathematical model for the multi-
shot CASSI system that can capture dynamic scenes using a 
two-dimensional set of projections. This paper is organized 
as follows: first, an introduction of sparse representation for 
dynamic scenes is presented; then, the mathematical model 
for compressive spectral imaging of spectral dynamic scenes 
is shown; finally, simulations and results to test this approach 
are included in section 4. 

 
2.  Sparse representation of spectral video signals  

 
Compressed sensing exploits the fact that many signals 

are naturally sparse, or have a sparse representation on a 
given basis. In other words, this concept establishes that most 
of the energy from a signal is concentrated in either a small 
portion of its elements or its coefficients on a representation 
basis. Let ۴ ∈ Թேൈேൈ௅ൈ஽  be a spectral video with ܰ ൈ ܰ 
pixels of spatial resolution, ܮ spectral bands and ܦ video 
frames. The vector form of ۴, ܎ ∈ Թ௡ with ݊ ൌ ܰଶܦܮ, can 
be represented on the basis શ ∈ Թ௡ൈ௡ as 

܎  ൌ શી , (1) 
 

where ી is a sparse vector of coefficients. 
In particular, CSI also relies on the sparsity nature of the data. 

Commonly, one representation basis is used for each dimension of 
a spectral image. Thus, four representation bases are used for 
spectral video signals, શଵ and શଶ	for the spatial axes, શଷ for the 
spectral axis and, શସ for the temporal coordinate. In general, if one 
frame of a video spectral signal is a common spectral image data 
cube, then it can be expressed as ܎ ൌ શଷୈી, where શଷୈ ൌ શଵ ⊗શଶ ⊗ શଷ and, ⊗ denotes the kronecker product. Usually in 
spectral images, a 2D Wavelet transformation is used for the spatial 
dimensions શଵ ⊗ શଶ and, the Discrete Cosine Transform (DCT) 
is used for the spectral dimension, શଷ. Fig. 2 shows the sparse 
representation of one frame from a spectral video using three 
different Kronecker product bases. Fig. 2 (a) shows the 8 original 
spectral bands of the single frame, Fig. 2 (b) presents the spectral 
frame representation using a 1-dimensional Wavelet 
transformation, Fig. 2 (c) shows the frame representation in a 2-
dimensional Wavelet basis and, Fig. 2 (d) shows the spectral frame 
representation in a three-dimensional basis obtained from the 
Kronecker product between a 2D Wavelet Symmlet 8 and a DCT 
bases. It can be noticed in Fig. 2 that the Kronecker product basis 
provides a sparser representation of the spectral frame. Thus, most 
of the energy from the signal is concentrated in fewer 
coefficients	ી.  

The effect of the different bases is illustrated in Fig. 3, 
where different approximations of one spectral frame are 
obtained by retaining only 1% of the sparse representation 
coefficients in a Wavelet 1D, Wavelet 2D and a Kronecker 
product bases. These approximations are obtained by 
expressing the signal in the corresponding representation 
bases, then the coefficients are sorted according to their 
magnitude and the smallest coefficients of the video frame in 
each basis are set to zero, while the 1% largest elements are 
preserved. A reconstruction is then obtained by applying the 
correspondent inverse transformation represented as	શ. It 
can be noticed in Fig. 3 that the approximation images show 
a great similarity with the original, especially when the 
Kronecker product basis is employed. 

Previous works analyze the sparse representation of a 
single frame from a spectral video that can be seen as a static 
spectral image and, can be modeled using a three-
dimensional basis, શଷୈ. However, appropriate sparse 
representations of the whole dynamic spectral scenes have 
not been yet considered in the literature. It has been 
previously shown that the three-dimensional basis provides 
the sparsest representation of the three-dimensional structure 
of a spectral image. Similarly, a four-dimensional basis 
(શସୈ) exploits the sparsity of a dynamic spectral image, 
given that a single transformation is assumed for each 
coordinate of the signal. Thus, a dynamic spectral (four-
dimensional) video can be mathematically represented as  

܎  ൌ શସୈી (2)  
 

where શସୈ ൌ શ૚ ⊗ શ૛ ⊗ શ૜ ⊗ શ૝ and, ሼશ௜ሽ௜ୀଵସ  is a set of 
different 1-dimensional transformations. An analysis of the 
representation bases applied to spectral video signals is 
presented in Section 4. 

 
3.  Compressive spectral imaging for spectral dynamic 
scenes 

 
Compressive spectral imaging theory has previously been 

used to acquire spatial and spectral information of a scene. 
These previous optical architectures can be extended to the 
acquisition of dynamic spectral scenes, by exploiting the 
sparse basis discussed in the preceding section. In particular, 
the CASSI architecture presented in Fig. 1 can be employed 
to sense video spectral information. Fig. 4 shows the sensing 
process for a dynamic spectral scene. 

Several measurement shots are usually captured in CSI, 
such that the captured projections extract most of the details 
in the scene, and thus the obtained reconstruction is more 
accurate. Furthermore, increasing the number of captured 
projections during a particular frame leads to a less ill-posed 
inverse problem. In particular, each additional measurement 
shot uses a different coded aperture for each frame, which 
remains fixed during the integration time of the detector. 
First, the mathematical model for a single shot is presented, 
and then a model for the multiple shot scheme is developed.
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Figure 2. Sparse representation comparison between the (a) original video frame 
coefficients and its representation on the (b) one-dimensional Wavelet, (c) two-
dimensional Wavelet and, (d) the Kronecker product basis between the 2D 
Wavelet and DCT.  
Source: Authors. 

 
 

3.1.  Single snapshot mathematical model 
 
Let ଴݂ሺݔ, ,ݕ ,ߣ ߬ሻ be a dynamic spectral source, where ݔ,  ݕ

index the spatial axes, ߣ is the index for the spectral 
dimension, and ߬	is the temporal/frame index. Each frame 
from the source is first spatially modulated by a time-
dependent coded aperture ܶሺݔ, ,ݕ ߬ሻ. This coded aperture 
remains fixed for each frame during the integration time of 
each measurement shot. In other words, every frame from the 
scene is modulated by a different pattern in the coded 
aperture.  

Then, the coded field correspondent to each frame is dispersed 
by a prism yielding ଵ݂ሺݔ, ,ݕ ,ߣ ߬ሻ, as expressed in eq. (3) 

 ଵ݂ሺݔ, ,ݕ ,ߣ ߬ሻ ൌ ∬ ଴݂ሺݔ, ,ݕ ,ߣ ߬ሻܶሺݔ, ,ݕ ߬ሻ݄൫ݔᇱ െ ݔ െ ܵሺߣሻ൯݀ݔᇱ݀ݕᇱ 	 ൌ଴݂ሺݔ െ ܵሺߣሻ, ,ݕ ,ߣ ߬ሻܶሺݔ െ ܵሺߣሻ, ,ݕ ߬ሻ         (3) 
 

where ܵሺߣሻ represents the dispersion function of the prism 
and, ݄ሺ∙ሻ is the impulse response of the system. The output 
for the ݉-th frame, ܇௠ is obtained by integrating the field ଵ݂ሺݔ, ,ݕ ,ߣ ߬ሻ over the spectral range sensitivity of the camera, Λ, during the interval time ሾ݉Δ௧ , ሺ݉ ൅ 1ሻΔ௧ሿ, where  

 
 

Figure 3. Sparse spectral frame representation using different bases. Selected 
spectral bands are represented using 1% of their sparse representation 
coefficients.  
Source: Authors. 

 
 Δ௧ is the integration time of the detector. Thus, the resulting 

field ௠ܻሺݔ,  ሻ can be expressed asݕ
 

௠ܻሺݔ, ሻݕ ൌ න න ଵ݂ሺݔ, ,ݕ ,ߣ ߬ሻ݀߬݀ߣஃ
ሺ௠ାଵሻ୼೟௠୼೟ 																				

ൌ න න ଴݂ሺݔ െ ܵሺߣሻ, ,ݕ ,ߣ ߬ሻஃ
ሺ௠ାଵሻ୼೟௠୼೟ൈ ܶሺݔ െ ܵሺߣሻ, ,ݕ ߬ሻ݀ߣ ݀߬																		 

(4) 

 
for ݉ ൌ 0, … , ܦ െ 1. 
 

Since the detector is a pixelated array, the energy from the ݉-th frame that is captured in the ሺ݆, ℓሻ െ th	pixel can be 
expressed as 

 ሺ ௠ܻሻ௝ℓ ൌ ඵ ௠ܻሺݔ, ,ሺ݆݌ሻݕ ℓ; ,ݔ  (5) ݕ݀ݔሻ݀ݕ

 
where ݌ሺ݆, ℓ; ,ݔ ሻݕ ൌ rect ቀ௫୼ െ ݆, ௬୼ െ ℓቁ represents the 
rectangular pixel, with pixel size Δ. Similarly, the ݉ -th coded 
aperture can be also discretized as 

 ௠ܶሺݔ, ሻݕ ൌ ∑ ሺ ௠ܶሻ௝ℓrect ቀ௫୼ െ ݆, ௬୼ െ ℓቁ௝,ℓ  and the discrete source 
can be represented as 

௝ℓ௞௠ܨ  ൌ න ම ଴݂ሺݔ, ,ݕ ,ߣ ߬ሻ݀߬݀ߣ݀ݕ݀ݔሺ௠ାଵሻ୼೟௠୼ഓ  (6) 
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Figure 4. Process of CASSI imaging for a dynamic spectral scene with ܦ 
frames. Each frame is spatially coded by a different coded aperture and then 
dispersed by the prism. Each detector pixel contains spectral information 
from several bands.  
Source: Authors. 

 
 

where ݆, ℓ ൌ 0, … , ܰ െ 1, index the spatial coordinates, ݇ ൌ0, … , ܮ െ 1, indexes the spectral components, ݉ ൌ 0, … , ܦ െ1, indexes the frames. This discretization yields a 4-
dimensional representation of the dynamic scene, ۴ ∈Թேൈேൈ௅ൈ஽, where ܰ ൈ ܰ are the spatial dimensions, ܮ is the 
number of spectral bands and, ܦ is the number of frames. 
Using these discrete representations, the energy captured on 
the detector, that comes from the ݉ െ th frame, can be 
written as 

 ሺ ௠ܻሻ௝ℓ ൌ ෍ ௝ሺℓି௞ሻ௞௠ሺܨ ௠ܶሻ௝ሺℓି௞ሻ ൅ ሺ߱௠ሻ௝ℓ௞  (7) 

 
where the dispersion effect is represented by the shifting in 
the ℓ-axis and, ߱௠ is the noise in the system. 

The measurement set acquired from a single frame, ܇௠, 
can be represented in vector form as ܡ௠. Similarly, the spatio-
spectral source ۴ can be expressed in vector form as 	∈Թேమ௅஽, and the relation between the ݉ െ th source frame and 
its correspondent measurement set is given by 

௠ܡ  ൌ ۶௠܎௠ ൅ ૑௠ 
 

(8) 
 

 
where ܎௠ is the vector representation of the ݉ -th frame and, ۶௠ 
is the single-shot CASSI sensing matrix that accounts for the 
effects of the coded aperture pattern ܂௠	and the dispersive 
element. Furthermore, measurements acquired from different 
frames can also be arranged in a single vector, ܡ ൌሾܡ଴்ܡଵ் …  ௠் is the vector representation ofܡ ஽ିଵ்ሿ், whereܡ
the measurement corresponding to the ݉ െ  frame. Thus, the ݄ݐ
system can be modeled in matrix form as follows 

ܡ  ൌ ܎۶ ൅ ૑, (9) 
 

 
Figure 5. Single shot sensing matrix example for N=4, L=3 and, D=2. Notice 
that ݐ଴ and ݐଵ are the vector representations of ଴ܶand ଵܶ, respectively.  
Source: Authors. 

 
 

 
Figure 6. Multiple shot acquisition for a dynamic spectral scene. Each 
measurement shot has a duration Δ௧ ⁄ܭ  shots are captured for each frame ܭ .
and a detector with integration time ߂௧ ⁄ܭ  is assumed. Each frame snapshot 
uses a different coded aperture.  
Source: Authors. 

 
 

where ۶	 ∈ Թ஽ேሺேା௅ିଵሻൈ஽ேమ௅ is the single-shot sensing 
matrix for the complete dynamic scene. This matrix groups 
the matrices for all frames as the matrix given by ۶ ൌdiagሺ۶଴۶ଵ … ۶஽ିଵሻ. Fig. 5 shows an example of the 
structure of the sensing matrix ۶, in which the white points 
correspond to the non-zero elements of the matrices ۶௠	and, 
are determined by the coded aperture patterns used for each 
frame.  

 
3.2.  Multiple snapshot mathematical model 

 
In general, a single snapshot in CASSI allows the 

underlying data cube to be reconstructed. However, multiple 
snapshots using different coded aperture patterns yield a less 
ill-posed inverse problem, and better quality reconstructions. 

Similarly, several measurement shots can be captured for 
each single source frame. To this end, the duration of the frame 
is seen as a set of smaller time intervals, in which the coded 
aperture pattern is shuffled and, the detector captures a new set of 
compressive measurements each time. Thus, each measurement 
shot has duration of Δ௧ ⁄ܭ  time units, and ܭ measurement shots 
are captured for each frame. Fig. 6 presents a timeline that 
illustrates this concept. It can be noticed that a detector with 
integration time Δ௧ ⁄ܭ  is assumed.  

Consequently, eq. (8) can be rewritten to index the 
measurement shots. Thus, the ݅-th shot correspondent to the ݉-th frame is expressed as 

௠௜ܡ  ൌ ۶௠௜ ௠܎ ൅ ૑௠௜  (10) 
 

for ݅ ൌ 0, … , ܭ െ 1. Here, ۶௠௜ 	represents the sensing matrix 
and corresponds to the ݅-th  shot for the ݉-th frame. 
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Similarly, all the measurement shots captured for a single 
frame can be arranged as ܡ௠ ൌ ሾሺܡ௠଴ ሻ்ሺܡ௠ଵ ሻ் … ሺܡ௠௄ିଵሻ்ሿ் 
such that the multi-shot sensing approach can be expressed 
as in eq. (9) with ܡ ൌ ሾሺܡ଴ሻ் … ሺܡ஽ିଵሻ்ሿ். However, ۶	 ∈Թ௄஽ேሺேା௅ିଵሻൈ஽ேమ௅	in this case is the sensing matrix that is 
associated with the full data using	ܭ measurement shots, and 
is given by the expression  

 

۶ ൌ
ێێۏ
ێێێ
ێێێ
ۍێێ ۶଴଴۶଴ଵ⋮۶଴௄ିଵ ۶ଵ଴⋮۶ଵ௄ିଵ⋮ ⋱ ۶஽ିଵ଴⋮۶஽ିଵ௄ିଵۑۑے

ۑۑۑ
ۑۑۑ
ېۑۑ
 . (11) 

 
Fig. 7 shows an example of this matrix for ܰ ൌ ܮ ,6 ൌ 3 
spectral bands, ܦ ൌ 2 frames and, ܭ ൌ 2 shots. The upper 
half of this matrix corresponds to the first frame and the lower 
half matrix accounts for the second frame. As in Fig. 5, each 
diagonal stands for a spectral band. 

The set of measurements ܡ is then used to obtain a 
reconstruction of the underlying 4-dimensional data. This 
reconstruction is attained by solving the inverse problem ܎መ ൌશସ஽ሺargminી‖ܡ െ ۶શସ஽ી‖ଶ ൅ ξ‖ી‖ଵሻ, where ξ is a 
regularization constant, ۶ is the sensing matrix in eq. (11) 
and,	ી is a sparse representation of ܎ on the basis શସ஽.   

 
4.  Simulations and Results 

 
Simulations were performed in order to first determine 

the basis that provides the sparsest representation of 
dynamic spectral images and, second to test the model to 
sense and recover these types of images using CSI. All the 
simulations used a test data base composed by 16 frames, 
each of them with 8 spectral bands and 128 ൈ 128 pixels of 
spatial resolution [20]. An RGB false color representation 
of the frames in this data base is presented in Fig. 8. In 
addition, the spectral responses of a specific point in the 
scene over time are depicted in Fig. 9. Random coded 
aperture patterns were used for all the experiments, in 
particular the entries of these patterns are realizations of a 
Bernoulli random variable with parameter	݌ ൌ 0.5. All 
simulations were conducted using an Intel Core i7 3.6 GHz 
processor and, 64 GB RAM memory. 

 
4.1.  Sparse representations 

 
Using eq. (2), different combinations of bases were tested 

for dynamic spectral scene representation. Previous results 
show that a Kronecker product between two-dimensional 
Wavelet Symmlet 8 and DCT bases provides a good sparse 
representation of spectral images [3,10]. Taking this into 
account, simulation results are presented for four 
combinations of Wavelet Symmlet 8 and DCT bases applied 
to the four dimensions of the test spectral video. More 
specifically, the kronecker product bases presented in 

 
Figure 7. Multi-shot sensing matrix example for N=4, L=3, D=2 and, K=2.  
Source: Authors. 

 
 

 
Figure 8. RGB representation of the 16 frames in the test data base. Each 
frame has 128x128 pixels of spatial resolution and 8 spectral bands.  
Source: Authors. 

 
 
Table 1 were tested. 
 

Table 1. 
Kronecker product bases used for simulations. Bases’ names consist of four 
letters; the first two represent the bases for the spatial dimensions, the third 
corresponds to the spectral dimension and the last one accounts for the 
temporal dimension. W: Wavelet, D: DCT.  

Basis Name Spatial  શ૚ ⊗ શ૛ 
Spectral શ૜ 

Temporal શ૝ 
WWDD 2D-Wavelet DCT DCT 
WWWW 
WWWD 
WWDW 

2D-Wavelet 
2D-Wavelet 
2D-Wavelet 

1D-Wavelet 
1D-Wavelet 

DCT 

1D-Wavelet 
DCT 

1D-Wavelet 
Source: Authors.
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Figure 9. Spectral responses for different frames, of the indicated spatial 
point P.  
Source: Authors. 

 
 
Fig. 10 shows the coefficients of the test data base on each 

basis from Table 1. It can be noticed that the bases WWWW 
and WWDW provide similar results, as do WWDD and 
WWWW. However, WWWW and WWDW coefficients 
experience a more pronounced decay, which indicates that 
these bases provide the sparsest representations. 

The effect of using different bases can be also illustrated 
by obtaining an approximation of the original data base. This 
process consists of setting the smallest absolute value 
coefficients in the basis શ	to	zero, while a percentage of the 
largest coefficients are preserved and, the reconstruction is 
obtained applying the inverse transformation. 

Fig. 11 shows the Peak Signal-to-Noise Ratio (PSNR) as 
a function of the percentage of coefficients used to 
approximate the underlying signal. It can be seen that the best 
PSNR results are obtained from the sparsest representations; 
the WWWW and WWDW bases improve the results by up to 
30 dB. A comparison of the representations obtained from the 
different bases, using just the 10% largest coefficients, is 
shown in Fig. 12(a). 

These approximations correspond to a portion of the 
fourth spectral band from the first frame. As previously 
mentioned, WWWW and WWDW bases provide accurate 
quality representations, while objects in the results from 
the other bases are hardly visible. Similarly, Fig. 12(b) 
presents the representations obtained from the 50% largest 
coefficients. It can be seen that a clearer approximation is 
obtained for all bases. However, the WWWW and WWDW 
bases still provide better results. In addition, the spectral 
and temporal approximations for two spatial points of the 
scene are illustrated in Figs. 13, 14, respectively. These 
figures demonstrate that the WWDW and WWWW bases  

 
Figure 10. Kronecker sparse bases representation of a test data base for 
representation in Table 1.  
Source: Authors. 

 
 

 
Figure 11. PSNR Representation as a function of the percentage of 
coefficients used to approximate the data base.  
Source: Authors. 

 
 

provide the most accurate representations of the spectral 
video signal. 

 
 

4.2.  Reconstruction of dynamic spectral scenes 
 
Several measurement shots were simulated to test the 

model presented in eq. (9) and eq. (11). In these cases, 
WWDW and WWWW, the representation bases that provide 
the sparsest approximations of the scene were used.  

The procedure followed in this experiment consists of 
simulating the measurement set using the multi-shot model 
described in section 3.1. Then, the measurement set is used as 
the input of a compressed sensing reconstruction algorithm to 
obtain an approximation of the original scene. Specifically, the 
GPSR algorithm was used to solve the inverse problem [31]. 
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Figure 12 (a). Representation of the 4th spectral band from the first frame 
using inverse transformation from the 10% largest coefficients on each basis. 
The PSNR is indicated.  
Source: Authors. 

 
 

  
Figure 12 (b). Approximation of the 4th spectral band from the first frame 
using inverse transformation from the 50% largest coefficients on each basis. 
The PSNR is indicated.  
Source: Authors. 

 
 
Fig. 15 shows the reconstruction PSNR as a function of 

the number of measurement shots per frame, ܭ, used to 
obtain the reconstruction of the scene with 16 frames with 128 ൈ 128 pixels and 8 spectral bands. The PSNR values are 
calculated as the average of the PSNR for all the spectral 
bands and frames. It can be seen that for both representation 
bases, increasing the number of shots per frame leads to a 
higher PSNR value. However, the WWDW basis provides a 
slightly better PSNR value.  

Fig. 16 shows the reconstruction of one spectral band 
obtained from different frames, using both representation 
bases. In general, this figure shows that both bases provide 
visually accurate reconstructions. 

The performance of the multi-shot model can be 
demonstrated by comparing the spectral response of a 
specific point in the original scene with its correspondent 
reconstruction. Fig. 14 presents this comparison for three  

 
Point A 

 

Point B 

 
Figure 13 Spectral approximations of two spatial points and two frames 
using inverse transformation from the 10% largest coefficients on each basis.  
Source: Authors. 

 
 

 
Point A 

 

Point B 

 
Figure 14. Temporal approximations of two spatial points and two spectral 
bands using inverse transformation from the 10% largest coefficients on each 
basis.  
Source: Authors. 

 
 

spatial points as indicated. Specifically, the spectral 
responses for these points measured in two different 
frames are shown. These results were obtained using the 
WWDW representation basis and ܭ ൌ 3 measurement 
shots per frame. Fig. 17 shows that this model provides an 
accurate spectral reconstruction. The false color 
representation of frame 1 intends to show the spatial 
location of the selected points. 
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Figure 15. Average reconstruction PSNR as a function of the number of 
measurement shots used on each frame. The two bases from Section 4.1 that 
provide the sparsest representation were used. Source: Authors. 

 
 

 
Figure 16. Reconstructions of the test data base using the WWDW and 
WWWW representation bases and ܭ ൌ 4 measurement shots per frame. 
Two spectral bands from two different frames are shown.  
Source: Authors. 

 
 

 

Point A 

 
Point B 

 

Point C 

 
Figure 17. Reconstruction along the spectral axis of three highlighted spatial 
points from two different frames using the WWDW representation basis. 
The false color representation of frame 1 intends to show the spatial location 
of the selected points.  
Source: Authors. 

 

Point A 

 
Point B 

 

Point C 

 
Figure 18. Reconstruction along the temporal axis of three highlighted 
spatial points from the first and fifth spectral bands using the WWDW 
representation basis.  
Source: Authors. 

 
 
Similarly, a different strategy to show the accuracy of the 

model is to compare the behavior of the original scene 
measured at a specific spatial point and spectral band over time 
with the correspondent reconstruction. Fig. 18 shows the results 
for three points in the first and fifth spectral bands, as indicated. 
These results show that the reconstructions obtained are close 
representations of the original dynamic spectral scene. 

 
5.  Conclusions 

 
A mathematical model for sparse representations of dynamic 

scenes in compressive spectral video sensing has been presented. 
Experiments show that the WWDW and WWWW bases provide 
the sparsest representations of these types of signals. A variation 
of the CASSI system for compressive spectral video sensing has 
been also presented. The mathematical models for single-frame 
and multi-frame capture with the CASSI system have been 
proposed. Simulation results show the accuracy of the model in 
spatial, spectral and temporal reconstructions. In general, 
reconstruction PSNR values of around 30 dB were obtained with 
the proposed model.  
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