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S
ignal acquisition and reconstruction is at the heart of signal processing, and

sampling theorems provide the bridge between the continuous and the dis-

crete-time worlds. The most celebrated and widely used sampling theorem is

often attributed to Shannon (and many others, from Whittaker to Kotel’nikov

and Nyquist, to name a few) and gives a sufficient condition, namely bandlim-

itedness, for an exact sampling and interpolation formula. The sampling rate, at twice the

maximum frequency present in the signal, is usually called the Nyquist rate.

Bandlimitedness, however, is not necessary as is well known but only rarely taken advan-

tage of [1]. In this broader, nonbandlimited view, the question is: when can we acquire a

signal using a sampling kernel followed by uniform sampling and perfectly reconstruct it?

The Shannon case is a particular example, where any signal from the subspace of

bandlimited signals, denoted by BL, can be acquired through sampling and perfectly
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interpolated from the samples. Using the sinc kernel, or ideal

low-pass filter, nonbandlimited signals will be projected onto

the subspace BL. The question is: can we beat Shannon at this

game, namely, acquire signals from outside of BL and still

perfectly reconstruct? An obvious case is bandpass sampling

and variations thereof. Less obvious are sampling schemes

taking advantage of some sort of sparsity in the signal, and

this is the central theme of this article. That is, instead of

generic bandlimited signals, we consider the sampling of

classes of nonbandlimited parametric signals. This allows us

to circumvent Nyquist and perfectly sample and reconstruct

signals using sparse sampling, at a rate characterized by how

sparse they are per unit of time. In some sense, we sample at

the rate of innovation of the signal by complying with

Occam’s razor principle [known

as Lex Parcimoniæ or Law of

Parsimony: Entia non svnt mvlti-

plicanda præter necessitatem, or,

“Entities should not be multi-

plied beyond necessity” (from

Wikipedia)]. 

Besides Shannon’s sampling

theorem, a second basic result that permeates signal pro-

cessing is certainly Heisenberg’s uncertainty principle,

which suggests that a singular event in the frequency

domain will be necessarily widely spread in the time domain.

A superficial interpretation might lead one to believe that a

perfect frequency localization requires a very long time

observation. That this is not necessary is demonstrated by

high resolution spectral analysis methods, which achieve

very precise frequency localization using finite observation

windows [2], [3]. The way around Heisenberg resides in a

parametric approach, where the prior that the signal is a lin-

ear combination of sinusoids is put to contribution. 

If by now you feel uneasy about slaloming around Nyquist,

Shannon, and Heisenberg, do not worry. Estimation of sparse

data is a classic problem in signal processing and communica-

tions, from estimating sinusoids in noise, to locating errors in

digital transmissions. Thus, there is a wide variety of available

techniques and algorithms. Also, the best possible performance

is given by the Cramér-Rao lower bounds for this parametric

estimation problem, and one can thus check how close to opti-

mal a solution actually is.

We are thus ready to pose the basic questions of this arti-

cle. Assume a sparse signal (be it in continuous or discrete

time) observed through a sampling device that is a smoothing

kernel followed by regular or uniform sampling. What is the

minimum sampling rate (as opposed to Nyquist’s rate, which

is often infinite in cases of interest) that allows to recover the

signal? What classes of sparse signals are possible? What are

good observation kernels, and what are efficient and stable

recovery algorithms? How does observation noise influence

recovery, and what algorithms will approach optimal perform-

ance? How will these new techniques impact practical applica-

tions, from inverse problems to wideband communications?

And finally, what is the relationship between the presented

methods and classic methods as well as the recent advances in

compressed sensing and sampling?

SIGNALS WITH FINITE RATE OF INNOVATION

Using the sinc kernel (defined as sinc(t) = sin π t/π t ), a signal

x(t) bandlimited to [−B/2, B/2] can be expressed as

x(t) =
∑

k∈ Z

xk sinc(Bt − k), (1)

where xk = 〈Bsinc(Bt − k), x(t)〉 = x(k/B) , as stated by

Shannon in his classic 1948 paper [4]. Alternatively, we can say

that x(t) has B degrees of freedom

per second, since x(t) is exactly

defined by a sequence of real num-

bers {xk}k∈ Z , spaced T = 1/B sec-

onds apart. It is natural to call this

the rate of innovation of the ban-

dlimited process, denoted by ρ ,

and equal to B.

A generalization of the space of bandlimited signals is the

space of shift-invariant signals. Given a basis function ϕ(t) that

is orthogonal to its shifts by multiples of T, or

〈ϕ(t − kT), ϕ(t − k ′ T)〉 = δk−k ′ , the space of functions

obtained by replacing sinc with ϕ in (1) defines a shift-invariant

space S . For such functions, the rate of innovation is again

equal to ρ = 1/ T.

Now, let us turn our attention to a generic sparse source,

namely a Poisson process, which is a set of Dirac pulses,∑
k∈Z

δ(t − tk ), where tk − tk−1 is exponentially distributed

with p.d.f. λe−λt. Here, the innovations are the set of posi-

tions {tk}k∈ Z . Thus, the rate of innovation is the average

number of Diracs per unit of time: ρ = limT→∞ CT/ T, where

CT is the number of Diracs in the interval [−T/2, T/2]. This

parallels the notion of information rate of a source based on

the average entropy per unit of time introduced by Shannon

in the same 1948 paper. In the Poisson case with decay rate

λ, the average delay between two Diracs is 1/λ; thus, the rate

of innovation ρ is equal to λ. A generalization involves

weighted Diracs or

x(t) =
∑

k∈ Z

xkδ(t − tk).

By similar arguments, ρ = 2λ in this case, since both posi-

tions and weights are degrees of freedom. Note that this

class of signals is not a subspace, and its estimation is a non-

linear problem.

Now comes the obvious question: is there a sampling theo-

rem for the type of sparse processes just seen? That is, can we

acquire such a process by taking about ρ samples per unit of

time, and perfectly reconstruct the original process, just as the

Shannon sampling procedure does.

CAN WE BEAT SHANNON AT THIS

GAME, NAMELY, ACQUIRE SIGNALS

FROM OUTSIDE OF BL AND STILL

PERFECTLY RECONSTRUCT? 



The necessary sampling rate is clearly ρ , the rate of

innovation. To show that it is sufficient can be done in a

number of cases of interest. The archetypal sparse signal is

the sum of Diracs, observed through a suitable sampling

kernel. In this case, sampling theorems at the rate of inno-

vation can be proven. Beyond the question of a representa-

tion theorem, we also derive efficient computational

procedures, showing the practicality of the approach. Next

comes the question of robustness to noise and optimal esti-

mation procedures under these conditions. We propose

algorithms to estimate sparse signals in noise that achieve

performance close to optimal. This is done by computing

Cramér-Rao bounds that indicate the best performance of

an unbiased estimation of the innovation parameters. Note

that when the signal-to-noise ratio (SNR) is poor, the algo-

rithms are iterative and thus trade computational complexi-

ty for estimation performance.

To easily navigate through the article, the reader will find the

most frequent notations in Table 1 that will be used in the sequel.

SAMPLING SIGNALS AT THEIR RATE OF INNOVATION

We consider a τ -periodic stream of K Diracs with amplitudes xk

located at times tk ∈ [0, τ [:

x(t) =

K∑

k=1

∑

k ′∈ Z

xkδ(t − tk − k ′τ) . (2)

We assume that the signal x(t)

is convolved with a sinc window

of bandwidth B, where Bτ is an

odd integer and is  uni formly

sampled with sampling period

T = τ/N .  (We wi l l  use  th is

hypothesis throughout the arti-

cle to simplify the expressions

and because it allows conver-

gence of the τ -periodized sum of

sinc kernels.) We therefore want

to  retr ieve  the  innovat ions  xk and tk f rom the

n = 1, 2, . . . , N measurements

yn = 〈 x(t), sinc(B(nT− t))〉 =

K∑

k=1

xkϕ(nT− tk),

(3)

where ϕ(t) =
∑

k ′∈ Z

sinc(B(t − k ′τ)) =
sin(π Bt)

Bτ sin(π t/τ)
(4)

is the τ -periodic sinc function or Dirichlet kernel. Clearly,

x(t) has a rate of innovation ρ = 2K/τ , and we aim to

devise a sampling scheme that is able to retrieve the inno-

vations of x(t) by operating at a sampling rate that is as

close as possible to ρ .

Since x(t) is periodic, we can use the Fourier series to rep-

resent it. By expressing the Fourier series coefficients of x(t)

we thus have

x(t) =
∑

m∈ Z

x̂m e j2π mt/τ , where

x̂m =
1

τ

K∑

k=1

xk e− j2π mtk/τ
︸ ︷︷ ︸

um
k

. (5)

We observe that the signal x(t) is completely determined

by the knowledge of the K amplitudes xk and the K locations

tk, or equivalently, uk. By considering 2K contiguous values

of x̂m in (5), we can build a system of 2K equations in 2K

unknowns that is linear in the weights xk but is highly

nonlinear in the locations tk and therefore cannot be solved

using classical linear algebra. Such a system, however,

admits a unique solution when the Diracs locations are dis-

tinct, which is obtained by using a method known in spec-

tral estimation as Prony’s method [2], [3], [5], [6], and

which we choose to call the annihilating filter method for

the reason clarified below. Call {hk}k=0,1,... ,K the filter coeffi-

cients with z-transform

H(z) =

K∑

k=0

hkz−k =

K∏

k=1

(

1 − ukz−1
)

. (6)

That is, the roots of H(z) correspond to the locations

uk = e− j2π tk/τ . It clearly follows that

hm ∗ x̂m =

K∑

k=0

hk x̂m−k =

K∑

k=0

K∑

k ′=1

xk ′

τ
hkum−k

k ′

=

K∑

k ′=1

xk ′

τ
um

k ′

K∑

k=0

hku−k
k ′

︸ ︷︷ ︸

H(uk ′ )=0

= 0. (7)

The filter hm is thus called annihilating filter since it annihilates

the discrete signal x̂m. The zeros of this filter uniquely define

the locations tk of the Diracs. Since h0 = 1, the filter coeffi-

cients hm are found from (7) by involving at least 2K consecu-

tive values of x̂m, leading to a linear system of equations; e.g., if

SYMBOL MEANING
x(t ), τ, x̂m τ -PERIODIC FINITE RATE OF INNOVATION SIGNAL AND ITS FOURIER COEFFICIENTS

K, tk, xk, and ρ INNOVATION PARAMETERS: x(t ) =
∑K

k=1 xK δ(t − tk) FOR tǫ[0, τ [

AND RATE OF INNOVATION OF THE SIGNAL: ρ = 2K/τ

ϕ(t ), B “ANTIALIASING” FILTER, PRIOR TO SAMPLING: TYPICALLY, ϕ(t ) = sinc Bt
NOTE: B × τ IS RESTRICTED TO BE AN ODD INTEGER

yn, ŷm, N, T (NOISY) SAMPLES {yn}n = 1, 2, . . . , N OF (ϕ ∗ x)(t )

AT MULTIPLES OF T = τ/N [SEE (14)] AND THEIR DFT COEFFICIENTS ŷm

A, L RECTANGULAR ANNIHILATION MATRIX WITH L + 1 COLUMNS [SEE (12)]

H(z ), hk AND H ANNIHILATING FILTER: z-TRANSFORM, IMPULSE RESPONSE AND VECTOR 

REPRESENTATION

[TABLE 1]  FREQUENTLY USED NOTATIONS.
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we have x̂m for m = −K,−K + 1, . . . , K − 1, this system can

be written in square Toeplitz matrix form as follows:

⎡

⎢
⎢
⎢
⎣

x̂−1 x̂−2 · · · x̂−K

x̂0 x̂−1 · · · x̂−K+1

.

.

.
.
.
.

. . .
.
.
.

x̂K−2 x̂K−3 · · · x̂−1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

h1

h2
.
.
.

hK

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

x̂0

x̂1
.
.
.

x̂K−1

⎤

⎥
⎥
⎥
⎦

. (8)

If the xk s do not vanish, this K × K system of equations has a

unique solution because any hm satisfying it is also such that

H(uk) = 0 for k = 1, 2, . . . K. Given the filter coefficients hm,

the locations tk are retrieved from the zeros uk of the z-trans-

form in (6). The weights xk are

then obtained by considering, for

instance, K consecutive Fourier-

series coefficients as given in (5).

By writing the expression of these

K coefficients in vector form, we

obtain a Vandermonde system of

equations that yields a unique

solution for the weights xk since

the uk s are distinct. Notice that we

need in total no more than 2K consecutive coefficients x̂m to

solve both the Toeplitz system (8) and the Vandermonde system.

This confirms our original intuition that the knowledge of only

2K Fourier-series coefficients is sufficient to retrieve x(t). 

We are now close to solving our original sampling question;

the only remaining issue is to find a way to relate the Fourier-

series coefficients x̂m to the actual measurements yn. Assume

N ≥ Bτ then, for n = 1, 2, . . . , N, we have that

yn = 〈x(t), sinc(Bt − n)〉 =
∑

|m|≤⌊Bτ/2⌋

T x̂m e j2π mn/N. (9)

Up to a factor NT = τ , this is simply the inverse discrete Fourier

transform (DFT) of a discrete signal bandlimited to

[−⌊Bτ/2⌋, ⌊Bτ/2⌋] and which coincides with x̂m in this band-

width. As a consequence, the discrete Fourier coefficients of yn

provide Bτ consecutive coefficients of the Fourier series of x(t)

according to

ŷm =

N∑

n=1

yne− j2π mn/N

=

{

τ x̂m if |m| ≤ ⌊Bτ/2⌋

0 for other m ∈ [−N/2, N/2].
(10)

Let us now analyze the complete retrieval scheme more pre-

cisely and draw some conclusions. First of all, since we need at

least 2K consecutive coefficients x̂m to use the annihilating fil-

ter method, this means that Bτ ≥ 2K. Thus, the bandwidth of

the sinc kernel, B, is always larger than 2K/τ = ρ, the rate of

innovation. However, since Bτ is odd, the minimum number of

samples per period is actually one sample larger,

N ≥ Bminτ = 2K + 1, which is the next best thing to critical

sampling. Moreover, the reconstruction algorithm is fast and

does not involve any iterative procedures. Typically, the only

step that depends on the number of samples, N, is the computa-

tion of the DFT coefficients of the samples yn, which can of

course be implemented in O(N log2 N) elementary operations

using the fast Fourier transform algorithm. All the other steps

of the algorithm (in particular, polynomial rooting) depend on

K only, i.e., on the rate of innovation ρ.

MORE ON ANNIHILATION

A closer look at (7) indicates that any nontrivial filter

{hk}k=0,1,... ,L where L ≥ K that has uk = e− j2π tk/τ as zeros

will annihilate the Fourier series

coefficients of x(t). The converse

is true: any filter with transfer

function H(z) that annihilates the

x̂m is automatically such that

H(uk) = 0 for k = 1, 2, . . . , K.

Taking (10) into account, this

means that for such filters

L∑

k=0

hk ŷm−k = 0, for all |m| ≤ ⌊Bτ/2⌋. (11)

These linear equations can be expressed using a matrix formal-

ism: let A be the Toeplitz matrix

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

L+ 1 columns
︷ ︸︸ ︷
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ−M+L ŷ−M+L−1 · · · ŷ−M

ŷ−M+L+1 ŷ−M+L · · · ŷ−M+1

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

ŷM ŷM−1 · · · ŷM−L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where M = ⌊Bτ/2⌋, (12)

and H = [h0, h1, . . . , hL]T the vector containing the coeffi-

cients of the annihilating filter, then (11) is equivalent to 

AH = 0, (13)

which can be seen as a rectangular extension of (8). Note that,

unlike (6), H is not restricted to satisfy h0 = 1. Now, if we

choose L > K, there are L − K + 1 independent polynomials of

degree L with zeros at {uk}k=1,2,... ,K , which means that there

are L − K + 1 independent vectors H which satisfy (13). As a

consequence, the rank of the matrix A does never exceed K. This

provides a simple way to determine K when it is not known a

priori: find the smallest L such that the matrix A built according

to (12) is singular, then K = L − 1.
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BESIDES SHANNON’S SAMPLING

THEOREM, A SECOND BASIC

RESULT THAT PERMEATES

SIGNAL PROCESSING IS

CERTAINLY HEISENBERG’S

UNCERTAINTY PRINCIPLE.
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The annihilation property (11) satisfied by the DFT coeffi-

cients ŷm is narrowly linked to the periodized sinc-Dirichlet

window used prior to sampling. Importantly, this approach can

be generalized to other kernels such as the (nonperiodized) sinc,

the Gaussian windows [7], and more recently any window that

satisfies a Strang-Fix like condition [8].

FRI SIGNALS WITH NOISE

“Noise,” or more generally model mismatch are unfortunately

omnipresent in data acquisition, mak-

ing the solution presented in the previ-

ous section only ideal. Schematically,

perturbations to the finite rate of inno-

vation (FRI) model may arise both in

the analog domain during, e.g., a trans-

mission procedure, and in the digital

domain after sampling (see Figure 1)—

in this respect, quantization is a source

of corruption as well. There is then no

other option but to increase the sam-

pling rate in order to achieve robust-

ness against noise. 

Thus, we consider the signal resulting from the convolution of

the τ -periodic FRI signal (2) and a sinc-window of bandwidth B,

where Bτ is an odd integer. Due to noise corruption, (3) becomes

yn =

K∑

k=1

xkϕ(nT− tk) + εn for n = 1, 2, . . . , N, (14)

where T = τ/N and ϕ(t) is the Dirichlet kernel (4). Given that

the rate of innovation of the signal is ρ , we will consider

N > ρτ samples to fight the perturbation εn, making the data

redundant by a factor of N/(ρτ). At this point, we do not make

specific assumptions—in particular, of statistical nature—on εn.

What kind of algorithms can be applied to efficiently exploit this

extra redundancy and what is their performance?

A related problem has already been encountered decades

ago by researchers in spectral analysis where the problem of

finding sinusoids in noise is classic [9]. Thus we will not try to

propose new approaches regarding the algorithms. One of the

difficulties is that there is as yet no unanimously agreed opti-

mal algorithm for retrieving sinusoids in noise, although

there has been numerous evaluations of the different methods

(see, e.g., [10]). For this reason, our choice falls on the the

simplest approach, the total least-squares approximation

(implemented using a singular value decomposition (SVD), an

approach initiated by Pisarenko in [11]), possibly enhanced by

an initial “denoising” (more exactly, model matching) step

provided by what we call Cadzow’s iterated algorithm [12].

The full algorithm, depicted in Figure 2, is also detailed in its

two main components in “Annihilating Filter: Total Least-

Squares Method” and “Cadzow’s Iterative Denoising.”

By computing the theoretical minimal uncertainties known

as Cramér-Rao bounds on the innovation parameters, we will

see that these algorithms exhibit a quasi-optimal behavior down

to noise levels of the order of 5 dB (depending on the number of

samples). In particular, these bounds tell us how to choose the

bandwidth of the sampling filter. 

TOTAL LEAST-SQUARES APPROACH

In the presence of noise, the annihilation equation (13) is not

satisfied exactly, yet it is still reasonable to expect that the mini-

mization of the Euclidian norm ‖AH‖2 under the constraint

that ‖H‖2 = 1 may yield an interesting estimate of H. Of partic-

ular interest is the solution for L = K—annihilating filter of

minimal size—because the K zeros of the resulting filter pro-

vide a unique estimation of the K locations tk. It is known that

this minimization can be solved by performing an SVD of A as

[FIG2] Schematical view of the FRI retrieval algorithm. The data are considered “too noisy”
until they satisfy (11) almost exactly.
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An algorithm for retrieving the innovations xk and tk from the

noisy samples of (14).

1) Compute the N-DFT coefficients of the samples

ŷm =
∑N

n=1 yne−j2πnm/N .

2) Choose L = K and build the rectangular Toeplitz

matrix A according to (12).

3) Perform the SVD of A and choose the eigenvector

[h0, h1, . . . , hK]T corresponding to the smallest eigen-

value—i.e., the annihilating filter coefficients.

4) Compute the roots e−j2πtk/τ of the z-transform

H(z) =
∑K

k=0 hkz−k and deduce {tk}k=1,... ,K .

5) Compute the least mean square solution xk of the N

equations {yn −
∑

k xkϕ(nT − tk)}n=1,2,...N .

When the measures yn are very noisy, it is necessary to

first denoise them by performing a few iterations of

Cadzow’s algorithm (see “Cadzow’s Iterative Denoising”),

before applying the above procedure.

[FIG1] Block diagram representation of the sampling of an FRI
signal, with indications of potential noise perturbations in the
analog, and in the digital part.

∑kxkδ(t−tk)
Sampling Kernel

Analog Noise

y (t) T

Digital Noise

ynϕ(t )

ANNIHILATING FILTER: TOTAL LEAST-SQUARES METHOD
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defined by (12)—more exactly: an eigenvalue decomposition of

the matrix ATA—and choosing for H the eigenvector correspon-

ding to the smallest eigenvalue. More specifically, if A = USV T

where U is a (Bτ − K) × (K + 1) unitary matrix, S is a

(K + 1) × (K + 1) diagonal matrix with decreasing positive ele-

ments, and V is a (K + 1) × (K + 1) unitary matrix, then H is

the last column of V. Once the tk are retrieved, the xk follow

from a least mean square minimization of the difference

between the samples yn and the FRI model (14).

This approach, summarized in “Annihilating Filter: Total

Least-Squares Method,” is closely related to Pisarenko’s method

[11]. Although its cost is much larger than the simple solution

presented earlier, it is still essentially linear with N (excluding

the cost of the initial DFT).

EXTRA DENOISING: CADZOW

The previous algorithm works quite well for moderate values of the

noise—a level that depends on the number of Diracs. However, for

a small SNR, the results may become unreliable and it is advisable

to apply a robust procedure that “projects” the noisy samples onto

the sampled FRI model of (14). This iterative procedure was already

suggested by Tufts and Kumaresan in [13] and analyzed in [12]. 

As noticed earlier, the noiseless matrix A in (12) is of

rank K whenever L ≥ K. The idea consists thus in perform-

ing the SVD of A, say A = USVT , and forcing to zero the

L + 1 − K smallest diagonal coefficients of the matrix S to

yield S′ . The resulting matrix A′ = US′VT is not Toeplitz any-

more but its best Toeplitz approximation is obtained by aver-

aging the diagonals of A′ . This leads to a new “denoised”

sequence ŷ ′
n that matches the noiseless FRI sample model

better than the original ŷn ’s. A few of these iterations lead to

samples that can be expressed almost exactly as bandlimited

samples of an FRI signal. Our observation is that this FRI

signal is all the closest to the noiseless one as A is closer to a

square matrix, i.e., L = ⌊Bτ/2⌋.

The computational cost of this algorithm, summarized in

“Cadzow’s Iterative Denoising,” is higher than the annihilating

filter method since it requires performing the SVD of a square

matrix of large size, typically half the number of samples.

However, using modern computers we can expect to perform

the SVD of a square matrix with a few hundred columns in less

than a second. We show in Figure 3 an example of FRI signal

reconstruction having seven Diracs whose 71 samples are

buried in a noise with 5 dB SNR power (redundancy ≈ 5): the
[FIG3] Retrieval of an FRI signal with (a) seven Diracs from (b) 71
noisy (SNR = 5 dB) samples.
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Algorithm for “denoising” the samples yn of ”Annihilating Filter:

Total Least-Squares Method.”

1) Compute the N-DFT coefficients of the samples

ŷm =
∑N

n=1 yne−j2πnm/N .

2) Choose an integer L in [K, Bτ/2] and build the rectangu-

lar Toeplitz matrix A according to (12).

3) Perform the SVD of A = USV T where U is a (2M − L + 1)×

(L + 1) unitary matrix, S is a diagonal (L + 1) × (L + 1) matrix,

and V is a (L + 1) × (L + 1) unitary matrix.

4) Build the diagonal matrix S ′ from S by keeping only the K

most significant diagonal elements, and deduce the total

least-squares approximation of A by A′ = US ′VT.

5) Build a denoised approximation ŷ ′
n of ŷn by averaging the

diagonals of the matrix A′.

6) Iterate step 2 until, e.g., the (K + 1)th largest diagonal

element of S is smaller than the K th largest diagonal ele-

ment by some pre-requisite factor.

The number of iterations needed is usually small (less than

ten). Note that, experimentally, the best choice for L in step 2

is L = M.

CADZOW’S ITERATIVE DENOISING



total computation time is 0.9 s on a PowerMacintosh G5 at 1.8

GHz. Another more striking example is shown in Figure 4

where we use 1,001 noisy (SNR = 20 dB) samples to recon-

struct 100 Diracs (redundancy ≈ 5): the total computation

time is 61 s. Although it is not easy to check on a crowded

graph, all the Dirac locations have been retrieved very precise-

ly, while a few amplitudes are wrong. The fact that the Diracs

are sufficiently far apart (≥ 2/N) ensures the stability of the

retrieval of the Dirac locations.

CRAMÉR-RAO BOUNDS

The sensitivity of the FRI model to noise can be evaluated theo-

retically by choosing a statistical model for this perturbation.

The result is that any unbiased algorithm able to retrieve the

innovations of the FRI signal from its noisy samples exhibits a

covariance matrix that is lower bounded by Cramér-Rao Bounds

(see “Cramér-Rao Lower Bounds”). As can be seen in Figure 5,

the retrieval of an FRI signal made of two Diracs is almost opti-

mal for SNR levels above 5 dB since the uncertainty on these

We are considering noisy real measurements Y = [y1, y2, . . . yN] of the form

yn =
K

∑

k=1

xkϕ(nT − tk) + εn

where εn is a zero-mean Gaussian noise of covariance R; usually the noise is assumed to be stationary: [R]n,n ′ = rn−n ′ where

rn = E{εn ′+nεn ′}. Then any unbiased estimate �(Y) of the unknown parameters [x1, x2, . . . , xK]T and [t1, t2, . . . tK]T has a covariance

matrix that is lower bounded by the inverse of the Fisher information matrix (adaptation of [21, (6)])

cov{�} ≥ (�TR−1�)−1,

where � =

⎡

⎢

⎢

⎣

ϕ(T − t1) · · · ϕ(T − tK) − x1ϕ
′(T − t1) · · · −xKϕ ′(T − tK)

ϕ(2T − t1) · · · ϕ(2T − tK) −x1ϕ
′(2T − t1) · · · −xKϕ ′(2T − tK)

...
...

...
...

ϕ(NT − t1) · · · ϕ(NT − tK) −x1ϕ
′(NT − t1) · · · −xKϕ ′(NT − tK)

⎤

⎥

⎥

⎦

.

Note that this expression holds quite in general: it does not require that ϕ(t ) be periodic or bandlimited, and the noise does not need

to be stationary.

One-Dirac periodized sinc case—If we make the hypothesis that εn is N-periodic and ϕ(t ) is the Dirichlet kernel (4), then

the 2 × 2 Fisher matrix becomes diagonal. The minimal uncertainties on the location of one Dirac, �t1, and on its ampli-

tude, �x1, are then given by:

�t1

τ
≥ Bτ

2π |x1|
√

N

(

∑

|m|≤⌊Bτ/2⌋

m2

r̂m

)−1/2

and �x1 ≥ Bτ√
N

(

∑

|m|≤⌊Bτ/2⌋

1

r̂m

)−1/2

.

[FIG4] Retrieval of an FRI signal with (a) 100 Diracs from (b) 1,001 noisy (SNR = 20 dB) samples.
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CRAMÉR-RAO LOWER BOUNDS



locations reaches the (unbiased) theoretical minimum given by

Cramér-Rao bounds. Such a property has already been observed

for high-resolution spectral algorithms (and notably those using

a maximum likelihood approach)

by Tufts and Kumaresan [13].

It is particularly instructive to

make the explicit computation for

signals that have exactly two inno-

vations per period τ and where the

samples are corrupted with a white

Gaussian noise. The results, which

involve the same arguments as in

[14], are given in “Uncertainty

Relation for the One-Dirac Case” and essentially state that the

uncertainty on the location of the Dirac is proportional to

1/
√

NBτ when the sampling noise is dominant (white noise

case), and to 1/(Bτ) when the transmission noise is dominant

(ϕ(t)-filtered white noise). In both cases, it appears that it is bet-

ter to maximize the bandwidth B of

the sinc-kernel in order to minimize

the uncertainty on the location of

the Dirac. A closer inspection of the

white noise case shows that the

improved time resolution is obtained

at the cost of a loss of amplitude

accuracy by a 
√

Bτ factor.

When K ≥ 2, the Cramér-Rao

formula for one Dirac still holds

approximately when the locations are sufficiently far apart.

Empirically, if the minimal difference (modulo τ ) between two

of the Dirac locations is larger than, say, 2/N, then the maxi-

mal (Cramér-Rao) uncertainty on the retrieval of these loca-

tions is obtained using the formula given in “Uncertainty

Relation for the One-Dirac Case.”

DISCUSSION

APPLICATIONS

Let us turn to applications of the methods developed so far.

The key feature to look for is sparsity together with a good

model of the acquisition process and of the noise present in the

system. For a real application, this means a thorough under-

standing of the setup and of the physics involved (remember

that we assume a continuous-time problem, and we do not start

from a set of samples or a finite vector). 

One main application to use the theory presented in this arti-

cle is ultra-wide band (UWB) communications. This communica-

tion method uses pulse position modulation (PPM) with very

wideband pulses (up to several gigahertz of bandwidth).

Designing a digital receiver using conventional sampling theory

would require analog-to-digital conversion (ADC) running at over

5 GHz, which would be very expensive and power consumption

intensive. A simple model of an UWB pulse is a Dirac convolved

with a wideband, zero mean pulse. At the receiver, the signal is

the convolution of the original pulse with the channel impulse

response, which includes many reflections, and all this buried in

high levels of noise. Initial work on UWB using an FRI framework

was presented in [15]. The technology described in the present

article is currently being transferred to Qualcomm Inc.

The other applications that we would like to mention,

namely electroencephalography (EEG) and optical coherence

tomography (OCT), use other kernels than the Dirichlet win-

dow, and as such require a slight adaptation to what has been

presented here.

EEG measurements during neuronal events like epileptic

seizures can be modeled reasonably well by an FRI excitation to

a Poisson equation, and it turns out that these measurements

satisfy an annihilation property [16]. Obviously, accurate local-

ization of the activation loci is important for the surgical treat-

ment of such impairment.

[FIG5] Retrieval of the locations of a FRI signal. (a) Scatterplot of
the locations; (b) standard deviation (averages over 10,000
realizations) compared to Cramér-Rao lower bounds.
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In OCT, the measured signal can be expressed as a convolu-

tion between the (low-)coherence function of the sensing laser

beam (typically, a Gabor function which satisfies an annihila-

tion property) and an FRI signal

whose innovations are the locations

of refractive index changes and

their range, within the object

imaged [17]. Depending on the

noise level and the model adequacy,

the annihilation technique allows to

reach a resolution that is potentially

well-below the “physical” resolution implied by the coherence

length of the laser beam.

RELATION WITH COMPRESSED SENSING

One may wonder whether the approach described here could

be addressed using compressed sensing tools developed in

[18] and [19]. Obviously, FRI signals can be seen as “sparse”

in the time domain. However, differently from the com-

pressed sensing framework, this domain is not discrete: the

innovation times may assume arbitrary real values. Yet,

assuming that these innovations fall on some discrete grid

{θn ′}n ′=0,1,... ,(N ′−1) known a priori, one may try to address

our FRI interpolation problem as

min
x ′

0
,x ′

1
,... ,x ′

N ′−1

N ′−1
∑

n ′=0

|x ′
n ′ | under the constraint

N
∑

n=1

∣

∣

∣

∣

yn

−
N ′−1
∑

n ′=0

x ′
n ′ϕ(nT− θn ′)

∣

∣

∣

∣

2

≤ Nσ 2 , (15)

where σ 2 is an estimate of the noise power.

In the absence of noise, it has been shown that this mini-

mization provides the parameters of the innovation, with

“overwhelming” probability [19] using O(K log N ′) measure-

ments. Yet this method is not as direct as the annihilating fil-

ter method that does not require any iteration. Moreover, the

compressed-sensing approach does not reach the critical sam-

pling rate, unlike the method proposed here which almost

achieves this goal (2K + 1 samples for 2K innovations). On the

other hand, compressed sensing is not limited to uniform

measurements of the form (14) and could potentially accom-

modate arbitrary sampling kernels—and not only the few ones

that satisfy an annihilation property. This flexibility is certainly

an attractive feature of compressed sensing.

In the presence of noise, the beneficial contribution of the

ℓ1 norm is less obvious since the quadratic program (15)

does not provide an exactly K-sparse solution anymore,

although ℓ1/ℓ2 stable recovery of the x ′
k ′ is statistically guar-

anteed [20]. Moreover, unlike the method we are proposing

here which is able to reach the Cramér-Rao lower bounds

(computed in “Cramér-Rao Lower Bounds”), there is no evi-

dence that the ℓ1 strategy may share this optimal behavior.

In particular, it is of interest to note that, in practice, the

compressed sensing strategy involves random measurement

selection, whereas arguments obtained from Cramér-Rao

bounds computation, namely, on the optimal bandwidth of

the sinc-kernel, indicate that, on

the contrary, it might be worth

optimizing the sensing matrix.

CONCLUSIONS

Sparse sampling of continuous-

t ime sparse  s ignals  has  been

addressed. In particular, it was

shown that sampling at the rate of innovation is possible,

in some sense applying Occam’s razor to the sampling of

sparse signals. The noisy case has been analyzed and

solved, proposing methods reaching the optimal perform-

ance given by the Cramér-Rao bounds. Finally, a number

of applications have been discussed where sparsity can be

taken advantage of. The comprehensive coverage given in

this article should lead to further research in sparse sam-

pling, as well as new applications.

We consider the FRI problem of finding [x1, t1] from the N

noisy measurements [y1, y2, . . . , yN]

yn = μn + εn with μn = x1ϕ(nτ/N − t1)

where ϕ(t ) is the τ -periodic, B-bandlimited Dirichlet kernel

and εn is a stationary Gaussian noise. Any unbiased algorithm

that estimates t1 and x1 will do so up to an error quantified

by their standard deviation �t1 and �x1, lower bounded by

Cramér-Rao formulas (see “Cramér-Rao Lower Bounds”).

Denoting the noise power by σ 2 and the peak SNR by

PSNR = |x1|2/σ 2, two cases are especially interesting:

• The noise is white, i.e., its power spectrum density is con-

stant and equals σ 2. Then we find

�t1

τ
≥

1

π

√

3Bτ

N(B 2τ 2 − 1)
· PSNR−1/2 and

�x1

|x1|
≥

√

Bτ

N
· PSNR−1/2.

• The noise is a white noise filtered by ϕ(t ), then we find

�t1

τ
≥

1

π

√

3

B 2τ 2 − 1
· PSNR−1/2 and

�x1

|x1|
≥ PSNR−1/2.

In both configurations, we conclude that, in order to mini-

mize the uncertainty on t1, it is better to maximize the band-

width of the Dirichlet kernel, i.e., choose B such that Bτ = N if

N is odd, or such that Bτ = N − 1 if N is even. Since Bτ ≤ N

we always have the following uncertainty relation

N · PSNR1/2 ·
�t1

τ
≥

√
3

π
,

involving the number of measurements, N, the end noise

level and the uncertainty on the position.
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UNCERTAINTY RELATION FOR THE ONE-DIRAC CASE

ONE MAIN APPLICATION TO USE

THE THEORY PRESENTED IN THIS

ARTICLE IS ULTRA-WIDE BAND

(UWB) COMMUNICATIONS.
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