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Abstract

We consider the problem of reconstructing a signal from under-determined modulo

observations (or measurements). This observation model is inspired by a relatively new

imaging mechanism called modulo imaging, which can be used to extend the

dynamic range of imaging systems; variations of this model have also been studied

under the category of phase unwrapping. Signal reconstruction in the

under-determined regime with modulo observations is a challenging ill-posed

problem, and existing reconstruction methods cannot be used directly. In this paper,

we propose a novel approach to solving the signal recovery problem under sparsity

constraints for the special case to modulo folding limited to two periods. We show that

given a sufficient number of measurements, our algorithm perfectly recovers the

underlying signal. We also provide experiments validating our approach on toy signal

and image data and demonstrate its promising performance.

Keywords: Sparse recovery, High dynamic range imaging, Modulo sensing

1 Introduction

The problem of reconstructing a signal (or image) from (possibly) nonlinear observations

is a principal challenge in signal acquisition and imaging systems. Our focus in this paper

is the problem of signal reconstruction from modulo measurements, where the mod-

ulo operation with respect to a positive real valued parameter R returns the (fractional)

remainder after division by R. See Fig. 1a for an illustration. Formally, we consider a high-

dimensional signal (or image) x∗ ∈ R
n. We are given modulo measurements of x∗, that is,

for each measurement vector ai ∈ R
n, we observe:

yi = mod
(
〈ai, x

∗〉,R
)
, i = 1, 2, . . . ,m . (1)

The task is to recover x∗ using the modulo measurements y and knowledge of the

measurement matrix A = [a1 a2 . . . am]
⊤.

This specific form of signal recovery is gaining rapid interest in recent times [2–5].

Recently, the use of a novel imaging sensor that wraps the data in a periodical manner

has been shown to overcome certain hardware limitations of typical imaging systems

[6–8]. Several image acquisition systems suffer from the problem of limited dynamic
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Fig. 1 a The modulo transfer function. b The modulo function limited to 2 modulo periods—a specific case

that we consider in this paper

range; however, real-world signals can contain a large range of intensity levels, and if

tuned incorrectly, signal measurements can lie in the saturation region of the sensors,

causing loss of information through signal clipping. The problem gets amplified in the

case of multiplexed linear imaging systems (such as compressive cameras or coded aper-

ture systems), where the required dynamic range is very high because of the fact that each

linear measurement is a weighted aggregation of the original image intensity values.

The standard solution to this issue is to improve the sensor dynamic range via enhanced

hardware; this, of course, can be untenably expensive. An intriguing alternative is to

deploy special digital modulo sensors [2–5]. As the name suggests, such a sensor wraps

each signal measurement around a scalar parameter R that reflects the dynamic range.

However, this also makes the forward model (1) highly nonlinear and the reconstruc-

tion problem highly ill-posed. The approach of [6, 7] resolves this problem by assuming

overcomplete observations, meaning that the number of measurements m is higher than

the ambient dimension n of the signal itself. For the cases where m and n are large, this

requirement puts a heavy burden on computation and storage.

In contrast, our focus is on solving the inverse problem (1) with very few samples, i.e.,

we are interested in the case m ≪ n. While this makes the problem even more ill-posed,

we show that such a barrier can be avoided if we assume that the underlying signal obeys

a certain low-dimensional structure. In this paper, we focus on the special case when the

underlying signal is sparse, but our techniques could be extended to other signal struc-

tures. Further, for simplicity, we assume that our observation model is limited to only two

modulo fold periods, one for positive- and one for negative-valued coefficients. This does

not reflect practice, but we will see that such a variation of the modulo function already

inherits much of the challenging aspects of the original recovery problem. Intuitively, this

simplification requires that the value of dynamic range parameter R should be finite, but

large enough that most of the measurements fall within the interval [−R,R]. We empha-

size that such requirement does not put a hard constraint in our algorithm, and successful

recovery is possible even if some measurements lie outside the interval covered by two

modulo periods.

1.1 Our contributions

In this paper, we propose a recovery algorithm for exact reconstruction of sparse signals

frommodulo measurements of the form (1) with the modulo fold operation being limited

to two periods. We refer to our algorithm as MoRAM, short for Modulo Recovery using
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Alternating Minimization. We observe that the modulo operation with respect to param-

eter R can be seen as the addition or subtraction of an integer multiple of R from the input.

We refer to this integer multiple as the bin-index p. It is not hard to observe that a suc-

cessful recovery of bin-index can lead to successful recovery of the input using standard

sparse recovery methods. Concretely, the forward model in (1) can be written as follows:

yi = 〈ai, x
∗〉 + p∗

i R, i = {1, ..,m}.

As we restrict our modulo operation to only two periods, the bin-index can only take

two values: 0 for non-negative inputs, and 1 for negative inputs.We discuss extending this

to multiple modulo fold periods in Section 4.

As mentioned above, the challenge is to identify the bin-index for each measure-

ment. Estimating the bin-index correctly lets us “unravel” the modulo transfer function,

thereby enabling signal recovery. However, due to the highly nonlinear nature of the for-

ward model, each incorrect bin-index introduces a gross additive error of magnitude R

irrespective of the magnitude of the measurement. Commonly used signal recovery algo-

rithms fail to cope up with such gross corruptions of large magnitudes, and perform

poorly on our problem (both in theory and practice). Thus, it becomes even more impor-

tant to be able to find a good estimate of the bin-index and to employ a robust signal

recovery algorithm that can recover the signal even in the presence of grossly corrupted

measurements.

To this end, our proposed algorithm follows two steps. We first leverage the structure

of the modulo folding operator to obtain a promising initial estimate of the bin-indices.

We then plug this estimate into a robust sparse recovery formulation that gives us the

final signal estimate. We provide analytical correctness proofs for both states and show

that signal recovery can be performed using an (essentially) optimal number of obser-

vations provided certain assumptions are met. To the best of our knowledge, we are the

first to pursue this type of approach for modulo recovery problems with Gaussian linear

measurements, distinguishing us from previous work [6, 7].

1.2 Techniques

Our proposed algorithm (MoRAM) consists of two stages.

In the first stage, we identify a good initial estimated bin-index p0 that is relatively close

to the true bin-index p∗. To obtain this estimate, we employ a simple bin-index estimation

step by comparing our observed measurements with typical density plots of Gaussian

observations. This method is able to recover a large number of bin-indices correctly, and

also provides a provable upper bound on the number of erroneous bin-indices.

In the second stage, we use the initial estimate of the bin-indices of the measurements

to recover the true underlying signal. We follow an alternating minimization (AltMin)

approach inspired from phase retrieval algorithms (such as [9]) that estimates the sig-

nal and the measurement of bin-indices alternatively. However, as mentioned above, any

estimation errors incurred in the first step induces fairly large additive errors (propor-

tional to the dynamic range parameter R.) We resolve this issue by using a robust form of

alternating minimization (specifically, using the Justice Pursuit algorithm [10]). We prove

that given enough number of measurements, our Justice Pursuit-based AltMin approach

succeeds provided the number of wrongly estimated bin-indices in the beginning is a
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sufficiently small fraction of the total number of measurements. This gives us a natu-

ral radius of initialization for the initial bin-index estimate and also leads to provable

sample-complexity upper bounds.

1.3 Prior work

Since signal recovery from nonlinear measurements is a very large and classical area of

study, our review of prior work will unfortunately be incomplete.

1.3.1 Modulo recovery

The modulo recovery problem shares some similarities with the problem of phase

unwrapping from the classical signal processing literature that would allow one to use

apply phase unwarapping methods to modulo recovery; however, these methods do not

provide proven guarantees. For example, the algorithm proposed in [11] is specialized

to images and employs graph cuts for phase unwrapping from a single modulo mea-

surement per pixel. However, the inherent assumption there is that the input image has

very few sharp discontinuities, and this makes it unsuitable for practical situations with

textured images. Our work is motivated by the recent work of [7] on high dynamic

range (HDR) imaging using a modulo camera sensor. For image reconstruction using

multiple measurements, they propose the multi-shot UHDR recovery algorithm, with

follow-ups developed further in [12]. However, the multi-shot approach depends on care-

fully designed camera exposures, while our approach succeeds for non-designed random

Gaussian linear observations; moreover, they do not include sparsity in their model recon-

structions. In our previous work [8], we proposed a different extension based on [7, 13]

for signal recovery from quantized modulo measurements, which can also be adapted for

sparse measurements, but there too the measurements need to be carefully designed.

In the literature, several authors have attempted to theoretically understand the modulo

recovery problem. Given modulo-transformed time-domain samples of a band-limited

function, [6, 14, 15] provide a stable algorithm for signal recovery and also proves suf-

ficiency conditions that guarantees the recovery. Ordentlich et al. [14] use non-modulo

data for the initialization to exploit the statistical structure in order to undo the effects

of the modulo operation. Cucuringu and Tyagi [16] formulate and solve a QCQP prob-

lem with non-convex constraints for denoising the modulo-1 samples of the unknown

function along with providing a least-square-basedmodulo recovery algorithm. However,

both these methods rely on the smoothness of the band-limited function as a prior struc-

ture on the signal, and as such, it is unclear how to extend their use to more complex

modeling priors (such as sparsity in a given basis). On the contrast, our approach does

not rely on such smoothness assumptions.

In recent works, [17] proposed unlimited sampling algorithm for sparse signals and

images. Similar to [6], it also exploits the band-limitedness by considering the low-pass fil-

tered version of the sparse signal and thus differs from our random measurements setup.

In [18], modulo recovery from Gaussian random measurements is considered. However,

it assumes the true signal to be distributed as a mixed Bernoulli-Gaussian distribution

which is not a standard assumption.

For a qualitative comparison of ourMoRAMmethod with existing approaches, we refer

the reader to Table 1. The table suggests that the previous approaches varied from the

Nyquist-Shannon sampling setup only along the amplitude dimension, as they rely on
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band-limitedness of the signal and uniform sampling grid. We vary the sampling setup

along both the amplitude and time dimensions by incorporating sparsity in our model,

which enables us to work with a non-uniform sampling grid (randommeasurements) and

achieve a provable sub-Nyquist sample complexity.

2 Methods

2.1 Preliminaries

Let us introduce some notation.We denote matrices using bold capital-case letters (A,B),

column vectors using bold-small case letters (x, y, z, etc.), and scalars using non-bold let-

ters (R,m etc.). We use letters C and c to represent constants that are large enough and

small enough respectively. We use x⊤ and A⊤ to denote the transpose of the vector x and

matrixA respectively. The cardinality of set S is denoted by card(S). We define the signum

function as sgn(x) := x
|x| for every x ∈ R, x �= 0, with the convention that sgn(0) = 1.

The ith element of the vector x ∈ R
n is denoted by xi. Similarly, the ith row of the matrix

A ∈ R
m×n is denoted by ai, while the element of A in the ith row and jth column is

denoted as aij.

2.2 Mathematical model

We consider the modulo operation within 2 periods (one in the positive half and one in

the negative half ).We assume that the value of dynamic range parameter R is large enough

so that most of the measurements 〈ai, x
∗〉 are covered within the domain of operation of

modulo function. Rewriting in terms of the signum function, the (variation of) modulo

function under consideration can be defined as:

f (t) := t +

(
1 − sgn(t)

2

)
R.

One can easily notice that the modulo operation in this case is nothing but an addition of

scalar R if the input is negative, while the non-negative inputs remain unaffected by it. If

we divide the number line in these two bins, then the coefficient of R in above equation

can be seen as a bin-index, a binary variable which takes value 0 when sgn(t) = 1, or 1

when sgn(t) = −1. Inserting the definition of f in the measurement model of Eq. 1 gives,

yi = 〈ai, x
∗〉 +

(
1 − sgn(〈ai, x

∗〉)

2

)
R, i = {1, ..,m}. (2)

We can rewrite Eq. 2 using a bin-index vector p ∈ {0, 1}m. Each element of the true

bin-index vector p∗ is given as,

p∗
i =

1 − sgn (〈ai, x
∗〉)

2
, i = {1, ..,m}.

If we ignore the presence of the modulo operation in the above formulation, then it

reduces to a standard compressive sensing reconstruction problem. In that case, the com-

pressed measurements yci would just be equal to 〈ai, x
∗〉. While we have access only to the

compressed modulo measurements y, it is useful to write y in terms of true compressed

measurements yc. Thus,

yi = 〈ai, x
∗〉 + p∗

i R

= yci + p∗
i R.
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It is evident that if we can recover p∗ successfully, we can calculate the true compressed

measurements 〈ai, x
∗〉 and use them to reconstruct x∗ with any sparse recovery algorithm

such as CoSaMP [19] or basis pursuit [20–22].

2.3 Signal recovery

The major barrier to signal recovery is that the bin-index vector is unknown. In this

section, we describe our algorithm to recover both x∗ and p∗, given the modulo mea-

surements y, measurement matrix A, sparsity of underlying signal s, and the modulo

parameter R. In this work, we rely on the assumption that our signal is sparse in a known

domain with sparsity being s. Our algorithm MoRAM (Modulo Reconstruction with

Alternating Minimization) comprises two stages: (i) an bin-index initialization stage and

(ii) a descent stage via alternating minimization.

2.3.1 Bin-index initialization

As stated earlier, if we recover true bin-index p∗ successfully, x∗ can be recovered easily

using any sparse recovery algorithm as we can obtain the true compressed measurements

〈ai, x
∗〉 from p∗. Thus, in the absence of p∗, we propose to estimate a fraction of the values

from the p∗ correctly. To understand the rationale for such a procedure, we will first try

to understand the effect of the modulo operation on the linear measurements.

2.3.2 Effect of themodulo transfer function

To provide some intuition, let us first examine the relation between the distributions of

Ax∗ and mod (Ax∗). It is easy to see that the compressed measurements yc follow a

normal distribution.

We can now divide the compressed observations yc into two sets: yc,+, which contains

all the non-negative observations with bin-index= 0, and yc,−, which contains all the neg-

ative observations with bin-index= 1. As shown in Fig. 2, after the modulo operation, the

set yc,− (green) shifts to the right by R and gets concentrated in the right half ([R/2,R]),

while the set yc,+ (orange) remains unaffected and concentrated in the left half ([ 0,R/2]).

Thus, for some of the modulo measurements, their correct bin-index can be identified by

observing their magnitudes relative to the midpoint R/2. This leads us to the following

estimator for bin-indices (p):

p0i =

{
0, if 0 ≤ yi < R/2,

1, if R/2 ≤ yi ≤ R.
(3)

The vector p0 obtained with the above method contains the correct values of bin-

indices for many of the measurements, except for the ones concentrated within the

ambiguous region in the center. We should highlight that the procedure in Eq. 3 will suc-

ceed only for the specific case of modulo fold operations limited to two periods, one for

the positive and one for the negative cycle.

Once we identify the initial values of bin-index for the modulo measurements, we can

calculate corrected measurements as:

y0c = y − p0R. (4)
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Algorithm 1MORAM

Inputs: y, A, R

Output: xT

m, n ← size(A)

Initialization

for i = 0 : m do

Calculate p0i according to Eq. 3

end for

Descent

for t = 0 : T do

ytc ← y − ptR

xt ← JP
(
A, ytc

)

pt+1 ←
1−sgn(Axt)

2

end for

2.3.3 Alternatingminimization

Using Eq. 3, we calculate the initial estimate of the bin-index p0 in which significant frac-

tion of the total values are estimated correctly. Starting with p0, we calculate the estimates

of x and p in an alternating fashion to converge to the original signal x∗ and true bin-index

p∗.

With pt being close to p∗, we would calculate the correct compressed measurements ytc
using pt and use ytc with any popular compressive recovery algorithms (such as CoSaMP,

or basis pursuit) to calculate the signal estimate xt. Therefore:

Fig. 2 Density plot ofmod (Ax∗). Best viewed in color
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ytc = y − ptR, (5)

xt = argmin
x∈Ms

‖Ax − ytc‖
2
2, (6)

where Ms denotes the set of s-sparse vectors in R
n. Note that sparsity is only one of

several signal models that can be used here, and a rather similar formulation would extend

to cases whereM denotes any other structured sparsity model [23, 24].

However, the bin-index estimation error, dt = pt − p∗, even if small, would significantly

impact the correction step that constructs ytc since each incorrect bin-index would add a

noise of the magnitude R in ytc. Our experiments suggest that the typical sparse recovery

algorithms are not robust enough to cope up with such large errors in ytc. To tackle this

issue, we employ an outlier-robust sparse recovery method known as Justice Pursuit [10].

At a high level, Justice Pursuit tackles the problem of sparse signal recovery from the

measurements that are corrupted by a sparse but large (unbounded) corruptions. Justice

Pursuit leverages the fact that the corruptions are also sparse, and reformulates the prob-

lem to recover both the sparse signal and sparse corruptions together in the form of a

concatenated sparse vector. In our case, the error dt is sparse with sparsity sdt = ‖dt‖0,

and each erroneous element of p adds a corruption of magnitude R in ytc. Following [10],

we augment the measurement matrix A with an identity matrix Im×m and introduce an

intermediate vector u ∈ R
n+m to represent our measurements at iteration t as:

Ax∗ + RImd
t =

[
A RI

] [
x∗

dt

]
=

[
A RI

]
u, (7)

and solve for the (s + sdt)−sparse estimate û:

[
x̂t

d̂t

]
= û = argmin

u
‖u‖1 s.t.

[
A RI

]
u = ytc (8)

Here, the signal estimate x̂t is obtained by selecting the first n elements of û, while an

estimate of the corruptions can be obtained by selecting the last m elements of û. The

problem in Eq. 8 can be solved by any stable sparse recovery algorithm such as CoSaMP

or IHT; however, note that the sparsity of dt is unknown, suggesting that greedy sparse

recovery methods cannot be directly used without an additional hyper-parameter. There-

fore, we employ basis pursuit [25] which does not heavily depend on a priori knowledge

of the sparsity level.

We refer to the routine that solves the program in Eq. 8 using basis pursuit as JP. Given

A, ytc, JP returns xt. Thus,

xt+1 = JP
(
A, ytc

)
. (9)

Once the signal estimate xt is obtained at each iteration of alternating minimization, we

use it to calculate the value of the bin-index vector pt+1 as follows:

pt+1 =
1 − sgn

(
Axt

)

2
. (10)

Proceeding this way, we repeat the steps of sparse recovery (Eq. 8) and bin-index calcu-

lation (Eq. 10) in alternating fashion for T iterations. Under certain conditions (described

in Section 2.4 below), our algorithm is able to achieve convergence to the true underlying

signal.
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2.4 Mathematical analysis

In this section, we provide correctness proofs for both steps of Algorithm 1. For the first

stage, we derive an upper bound on the number of incorrect estimations in p0 obtained in

the bin-index initialization step. This upper bound essentially provides an upper bound

on the permissible sparsity of d0. For the second stage, we calculate a sufficient number

of measurements required such that the augmented matrix used in the Justice Pursuit

formulation in (8) satisfies the Restricted Isometry Property (RIP), which would in turn

enable a recovery guarantee.

2.5 Bin-index initialization

In this step, we initialize the bin-index vector p0 according to Eq. 3. We can also quan-

tify the number of correctly estimated bin-indices by calculating the area under the curve

of the density plots of the measurements before and after the modulo operation. An

illustration is provided in Fig. 3.

In this analysis, our goal is to characterize the distribution of total number of measure-

ments for which we can estimate the correct bin-index through Eq. 3. Such a random

variable is denoted byMc. FromMc, we can calculate the sparsity of d
0 as ‖d0‖0 = m−Mc.

The following lemma presents a bound on the sparsity of d0.

Lemma 1 Let the entries of the measurement matrix be generated as Aij ∼ N (0, 1/m),

and y be the modulo measurements obtained as per Eq. 1. Let Mc the random variable

denoting the number of measurements for which the correct bin-indices are identified in

the initialization method provided in Eq. 3. Then, with probability at least 1 − e−O(mδ2):

Mc > (1 − δ)m

(
1 − 2

σ 2φ(R/2)

(R/2)

)
.

Here, φ(·) is a Gaussian density with mean μ = 0 and variance σ 2 = ‖x∗‖22.

Fig. 3 Analysis of the density plot ofmod (Ax∗). Best viewed in color. Notice that the area of green and

orange regions indicate the number of measurements for which the bin-indices are identified correctly using

Eq. 3
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Proof Observe that each element of A is i.i.d. standard normal, i.e., μAij = 0 and σ 2
Aij

=

1. Recall that

yc,i = 〈ai, x
∗〉 =

n∑

j=1

Aijx
∗
j .

Therefore, we have

yc,i ∼ N

⎛
⎝μ =

n∑

j=1

x∗μAij = 0, σ 2 =

n∑

j=1

x∗2
j σ 2

Aij

⎞
⎠ .

Thus, each element of yc follows a zero-mean Gaussian distribution with variance σ 2. Let

Ei be the event that the random variable yc,i lies in the interval [−R/2,R/2]; this event

indicates that the corresponding measurement is appropriately corrected using Eq. 4

Clearly, Ei is a Bernoulli random variable with probability q = P[−R/2 ≤ yc,i ≤ R/2].

Elementary probability calculations give us:

q = 1 − 2Q0,σ 2(R/2),

where Q0,σ 2(·) is the usual Q-function. This is not calculable in closed form; however, it

can be lower bounded using the following identity (where φ0,σ 2(·) is a Gaussian density

function with mean zero and variance σ 2:

Q0,σ 2(t) < σ 2 φ0,σ 2(t)

t
.

The random variableMc =
∑m

i=1 Ei denotes the number of corrected measurements. By

an application of the Chernoff bound,

P
(
Mc ≤ (1 − δ)μ′

)
≤ e−μ′δ2/2,

for any δ ∈ (0, 1),where μ′ is the mean of Mc. Plugging in μ′ = mq gives the desired

result.

We now perform a theoretical analysis of the descent stage of our algorithm.We assume

the availability of an initial estimate of bin-index vector p0 that is close to p∗. In our case,

our initialization step (in Alg. 1) provides such p0.

We perform alternating minimization (AltMin) as described in 1, starting with p0 cal-

culated using Eq. 3. For simplicity, we limit our analysis of the convergence to only one

AltMin iteration. In fact, according to our theoretical analysis, if initialized well enough,

one iteration of AltMin suffices for exact signal recovery with sufficiently many measure-

ments; however, in practice, we have observed that our algorithm performs better with

multiple AltMin iterations.

Theorem 2 Given the initial estimate of bin-index p0 obtained using Eq. 3, if the number

of modulo measurements m satisfies:

m ≥ C1

(
‖x∗‖0 + m(1 − U + δU)

)
log

(
n + m

‖x∗‖0 + m (1 − U + δU)

)
,

then the first iteration of Algorithm 1 returns the true signal x0 with probability exceeding

1−e−O(mδ2) with small δ > 0. Here, C1 depends only on the RIP constant for the augmented

measurement matrix [A I], q = 1 − 2Q0,σ 2(R/2), and U = 1 − 2σ 2 φ(R/2)
(R/2) .
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Proof In the estimation step, Algorithm 1 recasts the problem of recovering the true

signal x∗ as a special case of sparse signal recovery from sparsely corrupted compressive

measurements. The presence of modulo operation modifies the compressive measure-

ments by adding a constant noise of the value R in fraction of total measurements.

However, once we identify correct bin-index for some of the measurements using Eq. 3,

the remaining noise can bemodeled as sparse corruptions d according to the formulation:

y0c = Ax∗ + ImR
(
p0 − p∗

)
= Ax∗ + d0.

Here, the ℓ0-norm of d0 gives us the number of noisy measurements in y0c .

If the initial bin-index vector p0 is close to the true bin-index vector p∗, then ‖d0‖0 is

small enough with respect to total number of measurements m; thus, d0 can be treated

as sparse corruption. If we model this corruption as a sparse noise, then we can employ

JP for a guaranteed recovery of the true signal given sufficiently large number of mea-

surements are available. Denote ‖d0‖0 = m − Mc as number of measurements for which

the bin-index estimates were incorrect. Then, using Lemma 1, with probability at least

1 − e−O(mδ2):

‖d0‖0 ≤ m − (1 − δ)mU

≤ m (1 − U + δU) , with U =

(
1 − 2σ 2φ(R/2)

(R/2)

)
.

Algorithm 1 is essentially the Justice Pursuit (JP) formulation as described in [10].

Exact signal recovery from sparsely corrupted measurements is a well-studied prob-

lem with uniform recovery guarantees available in the existing literature. We use

the guarantee proved in [10] for Gaussian observations, which states that provided

enough measurements, the augmented matrix [A I] satisfies the Restricted Isometry

Property. As stated in [26], one can recover a sparse signal exactly by tractable ℓ1-

minimization if the measurement matrix is known to satisfy the RIP. Thus, provided

m ≥ C
(
‖x∗‖0 + ‖d0‖0

)
log

(
(n + m)/

(
‖x∗‖0 + ‖d0‖0

))
, we invoke Theorem 1.1 from

[10] and replace ‖d0‖0 withm (1 − U + δU) as stated above to complete the proof.

From the theorem, we see that the number of measurements required for guaranteed

recovery depends on the ratio of σ (standard deviation of the measurements) and R. In

practical applications, choosing a sufficiently large R such that the interval [−R,R] covers

multiple standard deviations on both sides of origin enables successful recovery.

3 Experiments

In this section, we present the results of simulations of signal reconstruction using our

algorithm. All numerical experiments were conducted using MATLAB R2020b on a

Windows system with an Intel CPU and 16GB RAM. Our experiments explores the

performance of the MoRAM algorithm on both synthetic data and real images.

We perform experiments on a synthetic sparse signal x∗ ∈ R
n with n = 1000. The spar-

sity level of the signal is chosen in steps of 6 starting from 6 with a maximum value of

24. The non-zero elements of the test signal x∗ are generated using a zero-mean Gaussian

distribution N (0, 1) and normalized such that ‖x∗‖ = 1. The elements of the Gaussian
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Fig. 4 Mean relative reconstruction error vs no. of measurements (m) for MoRAM with ‖x∗‖2 = 1, n = 1000,

and a R = 3.2 and b R = 3.6

measurement matrix A ∈ R
m×n, aij are also generated using the standard normal distri-

butionN (0, 1/m). The number of measurementsm is varied fromm = 100 tom = 1000

in steps of 100.

Using A, x∗, and R, we first obtain the compressed modulo measurements y by passing

the signal through forward model described by Eq. 2. For reconstruction, algorithm 1 is

employed. We plot the variation of the relative reconstruction error
(

‖x∗−xT‖
‖x∗‖

)
with the

number of measurementsm for our AltMin-based sparse recovery algorithmMoRAM.

For each combination of R,m, and s, we run 10 independent Monte Carlo trials and

calculate mean of the relative reconstruction error over these trials. Figure 4a and b

illustrate the performance of our algorithm for two values of R respectively. Addition-

ally, in Fig. 5, we also show reconstruction performance results for higher sparsity values

s = 20, 30, 40, 50 as they vary with the number of measurements. It is evident that for

each combination of R and s, our algorithm recovers the true signal (with zero relative

error) provided enough measurements. In all such cases, the minimum number of mea-

surements required for exact recovery is well below the ambient dimension (n) of the

underlying signal.

Fig. 5 Mean relative reconstruction error vs no. of measurements (m) for MoRAM with ‖x∗‖2 = 1, n = 1000,

and a R = 3.2; with higher sparsity (s) values
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From the analysis provided in the previous section, it is clear that the success of our

algorithm depends on the ratio of the standard deviation σ of the Gaussianmeasurements

and modulo period R. When the matrix A is correctly normalized, σ directly depends

on the Euclidean norm of the signal, which in turn depends on the sparsity. Thus, as

discussed earlier, if R is chosen to be large enough, success of our algorithm is guaranteed.

To put this into perspective, we provide additional results where we fix the number of

measurements m and sparsity s, and vary the modulo parameter R. These values suggest

that even when the R becomes small and the ratio of σ and R increases, our algorithm is

able to recover the underlying signal perfectly as shown in Fig. 6. As R increases, recovery

becomes easier to achieve for our algorithm. It also shows that the performance of our

algorithm decays gracefully when varying R.

In practical scenarios, we may encounter cases where a few measurements exceed the

modulo period R. If we define γ as max (|〈A, x∗〉|), then the value of γ would vary across

each Monte Carlo run of our experiment (due to the randomness in the measurement

matrix A), and we may encounter cases with γ > R as well. To analyze such cases, we

provide an additional experiment where we fix the number of measurements m to 400,

sparsity s to 12, and modulo parameter R to 3.2 and run our recovery algorithm mul-

tiple times with different realizations of A. We note down the values of γ during these

experiments and note summary statistics asmeanγ = 3.45, varianceγ = 0.2065,maxγ =

4.41,minγ = 2.82 across 50 random trials. In all these 50 cases, our algorithm

recovered the true signal perfectly, i.e., resulting in zero relative error in each case. As

the γ varies widely and also takes values higher than R, perfect recovery achieved in

all cases shows that our algorithm is robust to measurements with magnitudes exceed-

ing R, as far as such measurements are low in number (as guaranteed by Gaussian tail

bounds on 〈A, x∗〉). In this sense, our algorithm follows a “graceful decay” with respect to

the assumption that most of the measurements are contained in the interval [−R,R] in

this sense.

We also evaluated the performance of our algorithm on a real image. We obtain sparse

representation of the real image by transforming the original image in the wavelet basis

(db1). The image used in our experiment is a 128 × 128 (n = 16384) image (Fig. 7a),

Fig. 6 Mean relative reconstruction error vs R for MoRAM with ‖x∗‖2 = 1, n = 1000,m = 400
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Fig. 7 Real image recovery results. a (top) Original Lovett Hall image, (bottom) sparse groundtruth image

with s = 800; sparse reconstructions usingm = 3000 (top),m = 4000 (middle), andm = 6000 (bottom)

measurements for b R = 3.2 and c R = 3.6. The SNR values are with respect to the sparse groundtruth image

and we use a wavelet transform (with Haar wavelets) to sparsify this image with s = 800.

We reconstruct the image with MoRAM using m = 4000 and m = 6000 compressed

modulo measurements, for 3 different values of R, 4, 4.25, and 4.5. As expected, the

reconstruction performance increases with increasing value of R. As shown in Fig. 7 (bot-

tom), for m = 6000, the algorithm produces near-perfect recovery for all 3 values of R

with high PSNR. Here, let us note that the blocky artifacts appearing in the recovered

image are actually due to sparsification of the original image using the Haar wavelet trans-

form. Since we use s = 800 to obtain the ground truth image, the ground truth itself

contains some compression artifacts as depicted in Fig. 7 (a, bottom). The PSNR val-

ues are calculated with respect to the sparse ground truth image and not with respect

to the original image as our algorithm aims to recover only the former. We expect the

effect of compression artifacts to decrease with a better choice of sparsity basis for the

underlying image.
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4 Conclusions

In this paper, we presented a novel algorithmic approach for sparse signal recovery from

compressed modulo measurements, inspired by techniques from phase retrieval. We

also support our proposed algorithm via mathematical analysis and several experimen-

tal results. Our work points the way to a few directions for further research. While in

this paper we considered only two modulo periods, extending the proposed approach

for more periods (up to a theoretically infinite number) is a significant and interesting

research direction. Also, instead of relying on a sparsity prior for compressed recovery,

employing richer priors such as GANs [27–29] is an additional direction. Moreover, our

analysis is limited to the case of Gaussian measurements schemes, which may or may not

be physically realizable. Extending our results to more practical measurement schemes

such as Fourier-based sampling or ptychography [30] can be an interesting problem for

future study.
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