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Sparse signal recovery in MIMO specular meteor

radars with waveform diversity
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Abstract—Since the 1950s, specular meteor radars (SMRs)
have been used to study the mesosphere and lower thermosphere
(MLT) dynamic. Atmospheric parameters derived from SMRs
are highly dependent on the number of detected meteors and
the accuracy of the meteor’s location. Recently, incoherent
and coherent multiple-input-multiple-output (MIMO) radar ap-
proaches combined with waveform diversity have been proposed
to increase the number of detected meteors and to improve
time, altitude, and horizontal resolution. The incoherent MIMO
approach refers to the addition of new transmit sites (widely
separated), whereas the coherent MIMO refers to the addition of
new transmit antennas in the same site (closely separated), in both
cases, transmitting a different pseudorandom sequence from each
antenna element. Unfortunately, the addition of new transmit
antennas with different code sequences degrades the performance
of conventional signal recovery algorithms. This is a consequence
of the cross-interference between the transmitted signals, making
it worse as the number of transmitters increase. In this work,
we propose a signal recovery approach based on Compressed
Sensing, taking advantage of the sparse nature of specular meteor
echoes. The approach allows exact recovery of weak echoes
even in interference environments. Besides the advantage of the
proposed approach to recover the meteor signal, we discuss the
optimal selection of the transmitted waveforms and the minimum
code length required for exact recovery. Additionally, we propose
a modification of the Orthogonal Matching Pursuit algorithm
used in sparse problems to make it applicable in real-time
analysis of large data. The success of the proposed approach is
corroborated using Montecarlo simulations and real data from a
multi-static spread spectrum meteor radar network installed in
northern Germany.

Index Terms—Specular meteor radar, MIMO radar, spread-
spectrum, waveform diversity, sparse recovery, compressed sens-
ing, orthogonal matching pursuit, mesosphere and lower ther-
mosphere.

I. INTRODUCTION

METEOROIDS entering the Earth’s atmosphere heat up

and ablate forming an ionized plasma trail. The plasma

trails drift with the neutral wind. By the aid of radars, one

can measure the trail velocity projected on the radar line-of-

sight. Later, by combining several measurements, these are

used to estimate the background wind. When the radar line-of-

sight is approximately perpendicular to the trail, the scattered

signal is strong and low-power radars can be used. This

J. M. Urco and J. L. Chau are with Leibniz-Institute of Atmospheric Physics
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perpendicular point is also known as the specular point. Since

the 1950s, specular meteor radars (SMRs) have been used to

characterize the atmospheric dynamic in the mesospheric and

lower thermospheric (MLT) region [1]–[3].

Typically, mean wind estimations are done using several

meteor detections within a certain volume and time, assuming

horizontal homogeneity [4], [5]. The fidelity of the estimation

is highly dependent on the number of meteor detections and

the meteor location accuracy. Indeed, there are many thousands

of meteors per minute entering to the Earth’s atmosphere.

However, only a few of them accomplish the specular con-

dition and can be detected by a given SMR. Recently, multi-

static meteor radar networks have been proposed to increase

the number of meteor detections and to improve the time,

altitude, and horizontal resolution of estimated wind fields

[6]–[8]. A multi-static radar network consists of multiple

transmitters (Txs) and multiple receivers (Rxs) placed in the

same or at different locations. As described in [9], these

radars can be classified as coherent and incoherent MIMO

radars, respectively. Figure 1 shows a sketch of a coherent

and an incoherent MIMO radar both with two transmitting

and two receiving antennas. In case of a coherent MIMO, the

Tx antennas are collocated or closely separated. Whereas in

an incoherent MIMO the Tx antennas are widely separated.

In order to separate the contribution of each transmitter

some kind of diversity is required; either time, polarization,

frequency or waveform diversity [9].

Recently, Stober and Chau [6] proposed a meteor radar

network employing two transmit and multiple receive stations

widely separated. The Tx stations work at two different

frequencies and the Rx stations listen both frequencies with

interferometry capability. This radar network can be classified

as an incoherent MIMO radar using frequency diversity. Its

main advantage is that this network can be implemented with

commercial radars working at different frequencies, keeping

the data analysis the same. Nevertheless, the complexity comes

by using a broad spectrum bandwidth as the number of

transmitters increases, complicating also the receiving side.

Similarly, Vierinen et al. [7] proposed a multi-static radar

network using Tx stations transmitting different pseudorandom

code sequences at the same frequency, i.e. spread-spectrum,

leaving the receive side unchanged. This network can also be

classified as an incoherent MIMO radar but using waveform

diversity. In the same way, Chau et al. [8] proposed the use

of a combination of coherent and incoherent MIMO radars

to simplify the deployment of these networks. Among other

advantages, MIMO with waveform diversity allows reusing

the spectrum bandwidth. However, it makes the decoupling
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of scattered signals coming from different transmitters more

complicated.

In the past, the least squares estimator (LSE) has been used

for signal recovery in MIMO communications systems for

its simplicity and tolerable performance. The main limitation

of LSE is that it can only be applied to overdetermined

problems, which is not the case for multi-static SMR networks

employing waveform diversity. In communications, LSE has

mostly been applied to MIMO systems with more receivers

than transmitters [10], [11]. In those works, the algorithm is

called zero forcing linear estimator (ZFE), which yields the

same solution as LSE.

In the multi-static SMR network proposed by [7], the

maximum likelihood estimator (MLE) was used to find the

same solution as the weighted least squares estimator (WLSE).

Therefore, a trick was introduced to make the problem overde-

termined. Recovering the meteor signal for each transmitter at

a time and considering the contribution from other transmitters

as noise. Since the pseudorandom codes are not fully orthog-

onal, this only works as long as the number of transmitters is

small or when the transmitters are located far away from each

other. Otherwise, the noise floor might increase considerably,

hiding the weakest echoes under the cross-interference and

reducing the number of detected meteors. Other approaches,

like minimum mean square error (MMSE) [12], have been

proposed to overcome this issue but at the price of increasing

the computational power and requiring prior knowledge of the

noise variance.

In this work, we introduce an approach based on compressed

sensing (CS) to recover specular meteor echoes from radar

measurements obtained in a multi-static SMR network, either

from a coherent or an incoherent MIMO radar using waveform

diversity. Unlike conventional techniques such as matched

filter [13] or maximum likelihood [7], our approach is able

to recover weak signals in interference environments.

Our paper is organized as follows. First we briefly describe

MIMO radar model and some signal processing background.

In section IV we describe the CS theory and how it is

applied to MIMO SMRs. Then, we support our approach with

simulations and experimental results. Finally we discuss the

results and future improvements.

II. SYSTEM MODEL

As explained in the introduction, winds are estimated by

combining several meteor radial velocities with their corre-

sponding location. The radial velocity can be obtained directly

from one single receiving antenna, however, the meteor lo-

cation has to be determined combining measurements from

several antennas. This is known as radar interferometry [14].

The target backscatter coefficient at one receiving antenna can

be defined as

xi(r) = ai(r) exp (−j
−→
kr

−→
di ) (1)

where xi(r) is the target echo at receiver i for a given range

r, ai(r) ǫ R is the target coefficient amplitude,
−→
kr ǫ R3 is its

Bragg vector, and
−→
di ǫ R

3 represents the receiving antenna

coordinates. When the transmit waveform is coded [7], the

signal model for a coded continuous wave SMR with one

transmitter can be described by

yi = Axi + ηi (2)

where yi ǫ C
M is the measurement vector at the receiver

”i” and xi(r) is the unknown parameter vector, xi ǫ C
R for

simplicity. A ǫ CMxR is the sensing matrix and ηi ∼ NC(0,Σ)
is the receiver noise with a Gaussian distribution, Σ being

the noise covariance matrix. The sensing matrix is a circulant

matrix specified by the waveform vector w ǫ CM , where M
is the waveform length and R is the number of range gates

(M ≥ R).

A =















w[0] w[M−1] w[M−2] . . . w[M−R+1]

w[1] w[0] w[M−1] . . . w[M−R+2]

w[2] w[1] w[0] . . . w[M−R+3]

...
...

...
. . .

...

w[M−1] w[M−2] w[M−3] . . . w[M−R]















(3)

Interferometry can be applied using signals received at

different Rx antennas or signals coming from different Tx

antennas. This is known as a MIMO radar [9]. In a meteor

radar network with several transmitting antennas, i.e. a MIMO

radar, the model becomes

yi =
t

∑

j=1

Ajxij + ηi (4)

where Aj is the sensing matrix due to the transmit waveform

wj , xij is the unknown vector at receiver i from transmitter

j, I is the number of receivers and J is the number of

transmitters using different waveforms. Equation 4 can be

further simplified using

yi = ΦXi + ηi (5)

with Xi =











xi1

xi2

...

xiJ











and Φ =
[

A1 A2 . . . At

]

,

where Xi ǫ C
N , Φ ǫ CMxN , and N is equal to the number

of transmitters times the number of range gates (N = JR).

In a MIMO radar with transmitting antennas widely sepa-

rated, i.e. an incoherent MIMO (see Fig. 1), the signals xij

and xij′ coming from transmitter j and j′ are incoherent since

different transmit-receive links see different targets. On the

contrary, when the transmit antennas are closely separated,

i.e. a coherent MIMO radar, the signals xij and xij′ are

coherent and the target echoes are located at the same range.

Conventional algorithms treat the incoherent and coherent

MIMO measurements the same way. However, in this work

we will take advantage of the radar configuration to further

improve the proposed algorithm.
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III. SIGNAL PROCESSING BACKGROUND

In the past, diverse approaches have been proposed to solve

problems similar to (5). Among all of them, the matched filter

estimator (MFE) [13] is the simplest and fastest algorithm,

which is considered the optimal linear filter for maximizing

the signal-to-noise ratio (SNR). MFE is recommended for

detection of weak signals and its solution can be expressed

as

X̂i
MFE

= ΦHyi, (6)

where .H is the Hermitian transpose operator and X̂MFE
i is

an estimation of Xi. When MFE is applied to a MIMO radar, it

maximizes the SNR but also it enhances the sidelobes and the

cross-interference between waveforms. MFE performance gets

worse as the SNR and number of targets increase. Thus MFE

is not applicable in MIMO systems and a different approach

is required to reduce the interference. When Φ is full column

rank, i.e. M ≥ JR, the ordinary LSE can be applied to recover

Xi from (5). In this case, the problem has a unique LSE

solution.

X̂LSE
i = arg min

Xi

||yi − ΦXi||
2
2 (7)

where the interference is reduced. The solution to (7) is

given by

X̂LSE
i = Φ+yi, (8)

where ||.||2 is the Euclidean norm and Φ+ = (ΦHΦ)−1ΦH

is the Moore-Penrose pseudoinverse. Unfortunately, in most

of the cases, Φ is not full column rank and there may be

infinitely many LSE solutions of Xi which fit yi. For those

cases, additional constraints are required to make the solution

unique. A straight forward solution is to use the generalized

inverse also called the truncated LSE [15], [16], where

Φ+ = V S+UT , (9)

S+ = diag{τk}, τk =

{

1/δk if δk > 0

0 if δk = 0
.

Φ = USV T is the singular value decomposition, and

δk is the k-th singular value. The main idea is to truncate

the small singular values which might introduce high errors

to the solution. In our case, the number of singular values

greater than zero is equal to min(M,N). In this way, even

when the problem is underdetermined, we obtain a solution

where the interference is reduced. In other disciplines, the

truncated LSE is also known as the min-norm estimator,

given that it minimizes the total energy in Xi. This is not

convenient when recovering weak signals but it is good to

reduce the cross-interference between waveforms. In order

to find a balance between MFE and the truncated LSE, an

additional regularization term is added to (7):

X̂RLSE
i = arg min

Xi

||yi − ΦXi||
2
2 + λ||Xi||

2
2. (10)

The solution to (10) is given by

X̂RLSE
i = (ΦHΦ+ λI)−1ΦHyi. (11)

Equation 11 is known as Regularized Least Squares estima-

tor (RLSE) or Ridge regression [17]. Where λ > 0 represents

the trade-off between the minimization of the residual and

the total energy in Xi. Notice that, when λ = 0, the RLSE

solution is the same as the ordinary LSE, minimizing the

total energy in Xi. On the other hand, when λ tends to

infinite, RLSE has a similar solution as MFE, maximizing the

energy in Xi. A crucial point in RLSE is the selection of the

regularization parameter λ, which can be found using cross-

validation algorithms [18], [19]. Unfortunately, this additional

step increases the computational cost of the algorithm and not

always the selected λ is the best. Similar results can be found

using the minimum mean square error estimator (MMSE), for

which λ = 1
SNR [20].

Even using RLSE or MMSE the cross-interference is not

significantly reduced if the matrix Φ is ill-conditioned. In

MIMO communication channels, Successive Interference Can-

cellation (SIC) approaches have been employed to improve

further the performance of linear detectors like ZF or MMSE

[12], [21], [22]. These algorithms can be related to the CLEAN

algorithm used in radio astronomy [23], where a set of point

sources which describes the data well are found through

successive point source cancellation. CLEAN is considered

by several authors as the most basic implementation of the

Orthogonal Matching Pursuit algorithm [24], which is used in

CS to solve sparse problems.

IV. COMPRESSED SENSING

Compressed sensing (CS), also known as sparse recovery

[25], [26], is an emerging theory which aims to solve undeter-

mined problems like (5). Traditionally, the Nyquist theorem

held that an arbitrary signal has to be sampled at twice its

bandwidth for exact recovery. In contrast, CS claims that a

signal can be recovered even from a very limited number of

measurements if two conditions are fullfilled: (a) the signal

is K-sparse in some domain, i.e., the number of non-zero

values is less than K; (b) the sensing matrix satisfies the

Restricted Isometry Property (RIP) [27], which requires that

any K columns of Φ are approximately orthogonal. Even

though this may seem impossible, numerous authors have

proven the robustness and efficacy of CS even when the signal

is approximately sparse and noisy [26]–[30].

In case of a MIMO radar using waveform diversity, both

conditions are satisfied. First, the meteor echoes can be con-

sidered as point targets and only a few of them are observed

at a given range and time. Thus most of the values in Xi

are zeros. Indeed meteor echoes are sparse in space, which

includes sparsity in range and angle. However, in this work

we have only exploited the sparsity in range. Secondly, by

selecting the proper waveforms the matrix Φ satisfies the RIP

condition. Further details how to select the waveforms are

described in section IV-B. For now we assume this is the case.

Similar to RLSE, CS adds a constraint to (5) to recover the

sparsest solution under the two conditions described above:
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X̂i
CS

= arg min
Xi

||yi − ΦXi||
2
2,

subject to ||Xi||0 < K, (12)

where ||Xi||0 is the l0-norm, which counts the number of

non-zero values in Xi. Equation 12 recovers the solution X̂i
CS

with the smallest possible number of non-zeros which fit with

the data yi. Unfortunately, this problem is known to be NP-

hard and computationally intractable, i.e., its computational

complexity can be exponential or factorial. Noticeably, [25],

[26] show that the problem in (12) can be relaxed and refor-

mulated using the l1-norm, making it more computationally

attractive. This is also known as Basis Pursuit (BP). Even

though fast algorithms have been introduced to solve the BP

problem and to reduce its complexity to O(N4MK) [31], this

is still not applicable when facing real-time analysis for large

data.

Greedy algorithms have been shown to be practical and

efficient to solve (12). Note that, greedy algorithms are those

that look for the locally optimal solution at each step with

the intent to find the global optimum [32], [33]. Recently, the

reduced complexity of the well-known Orthogonal Matching

Pursuit (OMP) algorithm [24] and its variations [34]–[37] have

attracted great attention for its simplicity and performance.

Although OMP requires more measurements than BP both

have the same accuracy, the low computational cost of OMP

makes it feasible for real-time applications.

A. Sparse recovery

OMP is an iterative greedy algorithm which at each iteration

selects the column of Φ which maximizes the correlation

with the residual, then the index of this column is added

to a list of selected columns, finally the contribution of the

columns are eliminated from the measurements, generating a

new residual for the next iteration. Even though OMP has a

low complexity O(2NMK+3MK2) [35], some studies have

proposed some modifications to improve its computational

efficiency and recovery performance. For example in [35] the

Generalized Orthogonal Matching Pursuit (GOMP) method

is described, where more than one indices are identified in

each iteration. GOMP reduces the algorithm complexity to

O(2NMk), being k the number of iterations. Similarly, in

[34] the Stagewise Orthogonal Matching Pursuit (StOMP) is

proposed, where indices higher than a threshold are selected in

each iteration. In this work we employ a variation of StOMP

since it does not require prior knowledge of the sparsity. The

StOMP algorithm is described in Table I.

In StOMP, the selection of the threshold t and the number

of stages s are directly related, and they both depend on the

orthogonality of Φ and the sparsity of Xi. In order to reduce

the number of stages, a small threshold can be chosen. How-

ever, as a consequence, the number of false detections (false

non-zero values) might increase. This is mainly due to the fact

that the MFE is used in the first step of StOMP. As discussed

before, the MFE does not suppress well the sidelobes due

to the high non-zero values which might be confused as real

TABLE I
STOMP ALGORITHM

Input measurements at receiver i, yi ǫ C
M

sensing matrix Φ ǫ CMxN

threshold t ǫ R

number of stages s ǫ N

Inititalize iteration count k = 0

residual vector r0 = yi

support S0 = ∅

Iteration

While (k < s) Choose the columns Φr of Φ which satisfies

Rs = {r : |X̂k(r)|2 > tσ2
n}

where X̂k = ΦHrk−1

and σ2
n is the noise variance in X̂k .

Merge the new subset with the previous support

Sk = Sk−1
⋃

Rs

Compute a better approximation of Xk supported by Sk

X̂k = (ΦH

Sk
ΦH

Sk
)
−1

ΦH

Sk
yi

Update the residual for the next iteration

rk = yi − ΦH

Sk
X̂k

k = k+1

Output the estimated signal at receiver i, X̂i = X̂k

echoes. Consequently, we propose a modification of StOMP,

employing the truncated LSE in the first iteration instead of

MFE. The truncated LSE allows us to identify correctly the

highest non-zero values in the first iteration which finally

introduce the highest errors. Then we employ the MFE to

maximize the small non-zero values, making them detectable

in the next step. The modified StOMP is resumed in Table

II and it allows to recover the meteor signal using only two

stages, for which we named it as Fast Stagewise Orthogonal

Matching Pursuit (FaStOMP).

FaStOMP helps to identify the high non-zero values in Xi

and reduce the interference between waveforms. However, we

noticed that the non-zero values close to the noise level were

not recovered even using FaStOMP. To help the recovery of

weak echoes, we employed a technique similar to the Joint

and Block Sparsity used in [38], [39]. Basically, it modifies

the identification step in StOMP and FaStOMP, selecting the

columns where the coherently integrated values along the time

are higher than the selected threshold, i.e.

X̂(r) =
1

L

L/2
∑

t=−L/2

X̂(r, t), (13)

this is possible given that the meteor echoes should last

for at least few ms (L samples). Similarly, the signal can

be incoherently integrated along the Rx and Tx channels to

improve the detectability, i.e.

|x̂ij(r)|
2 = |x̂(r)|2 =

1

IJ

I
∑

i=1

J
∑

j=1

|x̂ij(r)|
2. (14)

Hereafter, when we refer StOMP or FaStOMP, they both

include the coherent and incoherent integrations just described.
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TABLE II
FASTOMP ALGORITHM

Input measurements at receiver i, yi ǫ C
M

sensing matrix Φ ǫ CMxN

threshold t ǫ R

number of stages s ǫ N

Inititalize iteration count k = 0

residual vector r0 = yi

support S0 = ∅

Iteration

While (s < k) Choose the columns Φr of Φ which satisfies

Rs = {r : |X̂k(r)|2 > tσ2
n}

where X̂k =

{

Φ† rk−1 for k = 0

ΦHrk−1 for k > 0

and σ2
n is the noise variance in X̂k .

Merge the new subset with the previous support

Sk = Sk−1
⋃

Rs

Compute a better approximation of Xk supported by Sk

X̂k = (ΦH

Sk
ΦH

Sk
)
−1

ΦH

Sk
yi

Update the residual for the next iteration

rk = yi − ΦH

Sk
X̂k

k = k+1

Output the estimated signal at receiver i, X̂i = X̂k

A diagram of the algorithm used to recover specular meteors

from MIMO radar measurements is shown in Fig. 2.

B. Sensing matrix design

Exact recovery of a K-sparse vector Xi requires the sensing

matrix Φ to satisfy certain conditions. In the literature, diverse

approaches have been proposed to guarantee exact recovery:

the RIP [27], the uniform uncertainty principle (UPP) [40],

the exact recovery condition (ERC) [32], and the mutual

incoherence condition (MIC). Except for MIC and ERC, the

rest of them are not feasible to apply in practice. In order to

optimize the design of the sensing matrix, we make use of

mutual coherence introduced in [41]:

µmax = max
p 6=q

|ΦH
p Φq|, (15)

where Φp is the p-th column of Φ and µmax represents the

largest off-diagonal element of the gram matrix G = ΦHΦ. In

some sense, MIC measures how orthogonal are the columns in

Φ. According to [32], in the worst-case scenario, the sparsity

K is bounded by the mutual coherence

Kmax <
1

2

(

1 +
1

µmax

)

, (16)

This means that a signal Xi with more than Kmax non-zero

elements cannot be recovered for a given Φ. For a more relaxed

scenario, other authors suggest to use an average value of the

mutual coherence µavg . This is a more adequate scenario in

our problem given that the distribution of the non-zero values

(meteors) are equally probable along Xi. Finally, the optimal

sensing matrix is the matrix Φ which minimizes µavg .

As described in section II, the matrix Φ is a function of the

waveforms wj . In order to optimize Φ, we have to select a

proper set of waveforms wj which minimize µavg . Similar to

[7], we employ pseudorandom binary phase-coded sequences

as waveforms. Although they are not fully orthogonal, they

maximize the transmit energy, are easy to be generated,

and have good orthogonality properties [42]. Similarly, other

authors suggest the use of quasi-orthogonal codes [43], [44].

In our case, the waveform amplitude is a constant equal to

1, i.e., |wj[m] = 1|, and the phase can only be 0 or π. The

phase sequence for each waveform is selected randomly from

a given seed number. Thus, the problem reduces to a selection

of a number of seeds equal to the number of transmitters which

minimizes µavg .

Further optimization can be done in case a coherent MIMO

radar is employed. As described, the MIC condition measures

how large the off-diagonal elements of the gram matrix G
are, which can be seen as a measure of how strong the cross-

interference between two columns of Φ is, where a column of

Φ represents a shifted version wj(τ) of the waveform wj .

In general, we are interested in minimizing every possible

combination of (wj(τ1), wj′(τ2)) for j 6= j′, given that they

are equally probable. This is not the case in a coherent MIMO

radar. When a target echo is detected at a given range in one

Tx channel, i.e., xi1(τ) 6= 0, it also appear at the same range in

the other Tx channels, i.e. xij(τ) 6= 0 for j = [2, ...J ]. Hence

the probability of having the combination (wj(τ), wj′(τ)) is

100%, which must be further minimized. The interference

between waveforms at lag τ is the same as at lag 0 and

it can defined as µjj′ = wH
j wj′ . For the experiments and

simulations presented in this work, we have used µavg and µjj′

as conditions to select the set of waveforms, i.e. the different

seeds.

The value of the mutual coherence µavg was selected

using (16) based on the maximum number of meteor echoes

expected in a SMR. Considering a MIMO radar with 5

transmitters and an average of 5 echoes per unit time we

get K = 25 and µavg = 2e−2. Similarly, we selected

µjj′ = 2e−3. Once the two parameters are defined we use

a exhaustive or iterative search to find the proper seeds which

accomplish the conditions.

V. RESULTS

Preliminary results using the proposed approach in a multi-

static meteor radar system deployed in northern Germany have

been published in [8]. The network consisted of one Tx station

with five transmitting antennas and one receiving station with

five receiving antennas, i.e., a MIMO link. Given that CS is

defined based on probabilities and unstable conditions, it is

very difficult to prove the success of the approach only based

on one campaign. Thus we conducted simulations to support

our proposal and define the limits of this. The simulated

network is similar to the MIMO link used in [8].

A. Simulations

Here, we consider a coherent MIMO radar consisting of five

transmitting and five receiving antennas, where each Tx an-

tenna transmits a different waveform. The waveforms were op-

timal selected using the conditions described in section IV-B,

resulting in the following seeds = [1, 97, 173, 1885, 8928].
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In order to evaluate the performance of the recovery al-

gorithms, we conducted a Montecarlo simulation with 500

runs using (5) under three different scenarios (a) variable SNR

(b) variable sparsity and (c) variable waveform length. In the

three cases, the noise variance σ2
n was set to 1 and the signal

power of the simulated meteors σ2
s was relative to the noise

(SNR = σ2
s/σ

2
n). Given that we are simulating a coherent

MIMO radar, the meteor range gates were randomly selected

but they were kept the same along the Rx and Tx channels,

i.e. |xij(r)| = |xij′(r)| for j, j′ = [1, .., J ].
In our simulations, once Xi was defined, ergo yi was known,

so we could estimate X̂i from yi using different algorithms. In

all the cases, the sparsity K defined as the number of simulated

meteors times the number of transmitters was only used to

corroborate the success of the recovery algorithms.

Figure 3 shows a comparison of the recovery error as a

function of SNR for three algorithms (a) MFE, (b) truncated

LSE, (c) StOMP. For simplicity, only two meteor echoes, i.e.

K=10, were considered in this simulation. Figure 3(a) shows

the results when the two meteor echoes have the same SNR

but they are located randomly in range. Clearly, under these

conditions, most of the algorithms work properly when the

SNR is greater than -15dB. Therefore, it is clear that MFE

has a good performance for low SNR targets. However, StOMP

improves even further the recovery of weak signals. This is due

to the ability of our StOMP implementation to reduce the noise

rms level after integrating the signal. When no integration is

used in the StOMP implementation, MFE and StOMP have

similar performance. FaStOMP was not included in this case

given that it had the same performance as StOMP for these

conditions. Figure 3(b) shows a similar simulation than Fig

3(a) but for which the two meteors have a SNR difference.

One of them was fixed to -5dB and the other one fluctuated

from -5dB to 30dB. As expected, we observe that as soon as

the SNR difference is larger than 10dB, the truncated LSE has

a better performance than MFE. This indicates that when two

signals coexist within Xi and they have a high SNR difference

the truncated LSE is able to minimize the interference between

transmitted signals.

The relative error used in the plots was defined as

∆e =

k=K
∑

k=1

|Xi(k)− X̂i(k)|
2

|Xi(k)|2
, (17)

where Xi(k) is the k-th non-zero value of Xi. We decide not

to use the typical mean-square-error given that this is always

minimized by CS. Instead, we weighted it by the power of

Xi(k) since we are interested in the total error independent of

the signal magnitude. The final error is averaged along the 500

runs. Since we are not taking into account the error coming

from the zero elements, we have added to the plots the number

of non-zero elements in X̂i for which the power is higher than

a threshold. Being conservative we have selected a threshold

of 5σ2, where σ2 is the estimated variance from the decoded

data.

Another important question in recovery problems is: how

sparse our problem is, i.e., what is the maximum K for

which exact recovery is guaranteed? According to (16) for the

selected waveforms, the maximum K is 26. Figure 4 shows

the performance of the algorithms as a function of sparsity for

(a) MFE, (b) truncated LSE, (c) StOMP, and (d) FaStOMP.

For this simulation, the range location of the meteors and the

SNR was randomly selected. Clearly, MFE and the truncated

LSE starts to fail when K is greater than 50. The number of

false echoes were not included for MFE and LSE given that

they were too high. On the other hand, the CS results prove

that the proposed method works successfully, even when the

sparsity is about 250. When the sparsity is less than 200 there

is no difference between StOMP and FaStOMP. If we consider

a relative error of 5% as acceptable, the maximum sparsity

for StOMP and FaStOMP are 255 and 340, respectively. The

improvement from StOMP to FaStOMP proves that using

LSE instead of MFE in the first OMP iteration helps a lot

to properly select the highest non-zero values, which finally

introduce the highest errors. The number of false echoes for

both cases are below 5, which is a good indicator that the

algorithms are working correctly.

A similar analysis was done to test the minimum code length

required for exact recovery. Here we assume a maximum

number of meteors at a given time equal to 20 and a maximum

number of ranges equal to 300. The results are shown in Fig.

5. Using the same relative error of 5%, the sparsity for StOMP

and FaStOMP are 395 and 350, respectively, meaning that we

can recover exactly up to 20 meteors in a MIMO radar with

5 Txs and 5 Rxs, even when using a short waveform, i.e., for

a typical SMR network a waveform length of 400 bits would

be good enough.

B. Multi-static specular meteor radar campaign

In addition, we present the results from a multi-static

spread-spectrum meteor radar system deployed in northern

Germany. Similar to our simulations, the system consists of

one Tx station with five antennas located in Kühlungsborn,

Germany (54.11◦E, 11.76◦N ) and one Rx station with five

antennas located in Neutrelitz, Germany (53.33◦E, 13.07◦N ).

Each antenna transmitted a continuous waveform with a trans-

mit power of 400W. The waveform length and the number

of range gates used were 1000 and 350, respectively. Further

details of this network can be found in [8].

Figure 6 shows the range time intensity (RTI) plot of

specular meteor echoes after applying three different algo-

rithms to recover the meteor signal (a) MFE, (b) truncated

LSE, and (c) FaStOMP. As expected, MFE allows to detect

weak echoes but it fails in the presence of strong airplane or

meteor echoes, given that OMP enhances the sidelobes and

cross-interference between waveforms. This does not allow to

distinguish between real echoes and artifacts. On the other

hand, the truncated LSE reduces the cross-interference for the

strong echoes but as a consequence, the weak echoes are

missing. Therefore, in case of very strong echoes, we can

still see some sidelobes. This is due to the sensing matrix is

ill-conditioned. Finally, Fig 6(c) shows the results by using

FaStOMP. In this case, the strong and weak echoes were

perfectly recovered, and the sidelobes were eliminated. Since

the FaStOMP approach only recovers the non-zero values, the
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noise level was estimated from the residual and added to the

data synthetically.

VI. DISCUSSION AND CONCLUDING REMARKS

This work introduces a new approach based on compressed

sensing (CS) to recover meteor signal echoes from a MIMO

radar network using waveform diversity. In a MIMO radar,

the recovery problem becomes undetermined and some regu-

larization is required to retrieve the meteor signals. Common

approaches like MFE or LSE do not decouple well the signals

coming from different transmitters. The approach proposed

here takes advantage of the sparse nature of the meteor echoes

to regularize the problem by choosing the sparsest solution

which matches the measurements.

The algorithm selected to find the sparsest solution was a

variation of the Orthogonal Matching Pursuit algorithm (OMP)

given its great performance and simplicity, which is more

recommended than its counterpart Basis Pursuit (BP). Even

though it is known that OMP requires a larger number of

measurements than BP to recover a signal with the same

accuracy, its computational cost makes it much more attractive

for real-time applications.

Including the truncated LSE to OMP, i.e. FaStOMP, we

could recover the meteor signal from the radar measurements

using two iterations only. The reduced complexity of the

proposed sparse recovery approach makes it applicable even

for large data sets. In order to have a rough idea of the com-

putational time we tested our implementation in two different

scenarios: (a) a MIMO link consisting of 5 Tx channels and 1

Rx channel, and (b) a MIMO link consisting of 5 Tx channels

and 5 Rx channels, i.e. 25 channels in total. For the first case

we used a Core i5 PC with 8GB of RAM to process the MIMO

radar data, for which the processing time was around 2 s for

60 s of data. In the second case we used a Core i7 PC with

16GB of RAM, getting 12 s to process 60 s of data. In both

cases the radar data was acquired continuously at a sample rate

of 100kHz and the algorithm was implemented in Python using

the Intel’s optimized version of numpy and scipy libraries [45].

Even though the new python libraries allow us to use more

than one core, our implementation made use only of one core

at a time.

Aditionally, the CS approach can help to reduce or compress

the meteor radar data. Since FaStOMP only recovers echoes

above a threshold, most of the data contains zeros and can

be compressed using conventional compression filters. In our

application we used the HDF5 file format with gzip com-

pression to save the decoded data. By doing this, the hard

drive space required for decoded data was reduced almost

60 times compared with data obtained applying conventional

algorithms. Furthermore, standard meteor analysis involves

decoding and meteor detection, however, by employing CS

we could join the two steps in one.

In this work, we postulate the recovery problem assuming

the presence of specular meteors only. However, distinct

atmospheric targets like non-specular meteors, E-region irreg-

ularities, airplanes, ground clutter, etc. might be included in

the radar data. In those cases, the echo is not concentrated in

Fig. 1. A sketch representing two kind of meteor radar networks: (a) a
coherent MIMO radar (b) an incoherent MIMO radar. Only one receiver
station is drawn for simplicity.

one range only and, instead, it might be spread in several

ranges. As the simulations show, even in those cases, the

recovery algorithm works successfully as long as the number

of non-zero values is less than one-third of the number of

measurements. Figure 7 shows an example of a strong non-

specular meteor echo detected by the proposed algorithm

where the target is spread along 50 ranges, perhaps associated

to a fireball. A transform domain, where these non-point-

targets are more sparse can be added to (5) in the future to

further improve the recovery of these type of echoes.

Another future task is to additionally consider the wave-

form errors in the problem. Along with this work, we have

considered an ideal transmitted waveform, which is not the

case in the real world. The synthesized signal passes through

bandwidth limited filters, amplifiers, and antennas before being

irradiated. This introduces imperfections to the transmitted

signal which were not taken into account in our model, i.e.,

the matrix Φ in (5). It could be problematic in the presence of

high SNR echoes given that the imperfections might also be

high. We experienced this problem in a quasi-monostatic link

where the transmitter and the receiver station were only 5km

apart, observing a strong ground clutter with an SNR of 60dB.

In the future, errors in the matrix Φ can be considered in the

equation and the total least squares estimator algorithm [46]

can be applied instead of the ordinary LSE in our FaStOMP

implementation.

Finally, as suggested by [8], the proposed approach can

be extended to a network formed by pulse radars using a

relatively long coded pulses combined with time diversity. As

it was done in [9]. Even though the cross-interference between

waveforms is higher when pulse radars are used, the problem

might be still solvable if the signal is sparse enough.
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Fig. 2. A resumed flow chart describing the sparse algorithm used to recover
specular meteor echoes. The red, yellow and green boxes represent the
estimation and detection of the strong, medium and weak meteor echoes,
respectively.
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Fig. 3. Performance comparison of recovery techniques as a function of
SNR. Every simulation run contain two meteor targets with (a) both having
the same SNR and (b) having a SNR difference indicated in the plot, with the
weakest one fixed to -5dB. The colored bars indicate the average number of
false echoes detected by each algorithm. During the simulation M , N , and
K were set to 1000, 2000, and 10 respectively (see text for details).
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Fig. 4. Same as Fig. 3. Recovery performance as a function of sparsity.
In every simulation run, the simulated meteors had random SNR and were
randomly located in range. Only colored bars for the last two techniques are
included. M , N , and SNRmax were set to 1000, 2000, and 25 respectively.
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Fig. 5. Same as Fig. 4. Recovery performance as a function of waveform
length. N , K, and SNRmax were set to 1500, 100, and 25 respectively.

Fig. 6. Performance comparison of recovery techniques with data acquired
in a meteor radar network in northern Germany. (a) Matched filter estimator
(b) Least squares estimator (c) Sparse recovery using FaStOMP
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Fig. 7. An example of a target spread along several ranges recovered by the
sparse approach.
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