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Abstract

Sparse Bundle Adjustment (SBA) is a method for simultaneously optimizing a set of

camera poses and visible points. It exploits the sparse primary structure of the problem,

where connections exist just between points and cameras. In this paper, we implement

an efficient version of SBA for systems where the secondary structure (relations among

cameras) is also sparse. The method, which we call Sparse SBA (sSBA), integrates

an efficient method for setting up the linear subproblem with recent advances in direct

sparse Cholesky solvers. sSBA outperforms the current SBA standard implementation

on datasets with sparse secondary structure by at least an order of magnitude, while also

being more efficient on dense datasets.

1 Introduction

Sparse Bundle Adjustment (SBA) is the standard method for optimizing a structure-from-

motion problem in computer vision. With the success of Photosynth and similar systems

for stitching together large collections of images [16], attention has turned to the problem of

making SBA more efficient. There are two different types of large-scale systems:

• Photosynth-type systems focus on reconstruction from a large number of images con-

centrated in a small area; we call these object-centered.

• Visual mapping systems [1, 3, 9] cover a more extended area with fewer images, and

real-time performance is often important (see Figure 1).

These types are at two ends of a spectrum: object-centered systems produce dense relations

between cameras, while visual mapping systems are much sparser, with cameras in a local

neighborhood sharing common points (Guilbert et al. call these “sparse systems” [8]). In

this paper, we are interested in fast SBA methods for the latter case, where it is possible to

exploit the sparse secondary structure (camera to camera relations) of the problem.

Nonlinear optimization in SBA typically proceeds by iteration: form a linear subproblem

around the current solution, solve it, and repeat until convergence. For large problems, the

computational bottleneck is usually the solution of the linear subproblem, which can grow

as the cube of the number of cameras. The fill-in of the linear problem is directly tied

to the camera-point structure of the problem: if each camera only sees features in a small

neighborhood of other cameras, the number of non-zero elements grows only linearly or

nearly linearly with the number of cameras.
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Figure 1: An overhead view showing of the New College mapping dataset [15], with 2.2k

views (cyan) and 290k points (red). Grid lines are at 10 m. At the end, sSBA computes each

iteration in 6 seconds.

In this paper we present an engineering approach to efficiently solving SBA problems

with sparse linear subproblems. Our approach is to exploit recent fast direct Cholesky de-

composition methods to solve the linear subproblem. These methods use a compressed rep-

resentation of large sparse matrices, and we present a method for efficiently handling the

block data structures of SBA to take advantage of this representation. The end result is a sys-

tem, which we call Sparse SBA or sSBA, that outperforms the current reference system for

SBA from Lourakis and Argyros [11] by an order of magnitude on sparse seconary-structure

problems, and uses far less space on large problems. For example, Figure 1 shows a recon-

struction of a New College dataset [15] that contains 2200 views and 290k points, and is

solved in about 6 seconds per iteration at the end. Interestingly, sSBA also outperforms [11]

on problems with dense secondary structure, where the setup computation often dominates,

although by a lesser margin.

2 Related Work

The standard reference for SBA is the monograph of Triggs et al. [17]. This work explores

many of the mathematical and computational aspects of SBA, including various methods

for solving the nonlinear optimization problem at the heart of SBA. In this paper, we use

Levenberg-Marquardt [14], which is a standard algorithm for solving unconstrained nonlin-

ear optimization. Alternative solvers for SBA include preconditioned conjugate gradient [2]

or Powell’s dog-leg solver [12].

The LM implementation of SBA repeatedly solves a large linear subproblem whose LHS

matrix is positive definite. Recent work in direct sparse Cholesky solvers [4] has yielded

algorithms that are very efficient for large problems, and we use these methods here.

Most current applications that incorporate SBA use an open-source version developed

by Lourakis and Argyros [11], which we call laSBA. For example, the open source Bundler

program originally used for PhotoSynth [16], an application for stitching together tourist

photos, uses laSBA as its optimization engine. An exception is the work of Klein and Murray

[9], which has an SBA engine. We have tested this system and found it slower than laSBA,
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so laSBA will be our reference implementation. In the context of mapping systems, there

are references to using sparse solvers in SBA, e.g., Guilbert et al. [8] mention sparse QR

decomposition and supernodal Cholesky methods. However, there is no explicit algorithm

for setting up the sparse linear problem, which we have found to be an important bottleneck.

3 SBA Basics

This section summarizes the basic formulation of Sparse Bundle Adjustment used in the

paper. For the most part it follows the excellent exposition of Engels et al. [5], and the

reader can consult this paper for derivations.

3.1 Error Formulation

Sparse Bundle Adjustment (SBA) is a method of nonlinear optimization among camera

frames (ci) and points (p j). Each camera frame consists of a translation ti and rotation Ri

giving the position and orientation of the frame in global coordinates. For any such pair, the

measured projection of p j on the camera frame is called z̄i j. The calculated feature value

comes from the projection equation:

g(ci, p j)≡ R⊤
i (ti − p j)

h(ci, p j)≡ gx,y(ci, p j)/gz(ci, p j)
(1)

The function g transforms the point p j into ci’s coordinate system, and h projects it to a

normalized image plane.

The error function associated with a projection is the difference between the calculated

and measured projection. The total error is the sum over all projections.

ei j ≡ h(ci, p j)− z̄i j

E(c,p)≡ ∑
i j

e⊤i jΛi jei j
(2)

Λi j is the precision matrix (inverse covariance) of the feature measurement. In the case of

SBA, it is often assumed to be isotropic (diagonal) and on the order of a pixel, making it the

identity matrix. For simplicity we drop it from the rest of the exposition; the system could

be easily modified to accommodate it.

3.2 Levenberg-Marquardt System

The optimal placement of c,p is found by minimizing the total error in Equation 2. A stan-

dard method for solving this problem is to iterate a linearized solution around the current

values of c,p. The linear solution is found by second-order Taylor expansion around c,p,

and an approximation of the second-order derivative matrix (the Hessian) by Jacobian prod-

ucts (the normal or Gauss-Newton approximation).

The resultant linear system is formed by stacking the variables c,p into a vector x, and

the error functions into a vector e. Let

J ≡
∂e

∂x

H ≡ J⊤J

(3)
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The linear system is:

H∆x =−J⊤e (4)

In general, solving this system is not guaranteed to produce a step ∆x that decreases the

error. The Levenberg-Marquardt (LM) method augments H by adding λ diag(H), where λ

is a small positive multiplier. Larger λ produces a gradient descent system that will converge

(but slowly). There are various strategies for manipulating λ , initially using gradient descent

and then the faster Newton-Euler method at the end.

3.3 Primary Structure

The size of the matrix H is dominated by ||p||, which in typical problems is several orders

of magnitude larger than ||c||. But we can take advantage of the structure of the Jacobians

to reduce Equation 4 to just the variables c. If we organize Equation 4 so that cameras and

points are clustered, it has a characteristic structure:

[

J⊤c Jc J⊤c Jp

J⊤p Jc J⊤p Jp

]

[

∆c

∆p

]

=

[

−J⊤c ec

−J⊤p ep

]

(5)

where Jc is the Jacobian with respect to camera variables, and Jp with respect to point vari-

ables. Because all the error functions involve one camera and one point, the Jacobian prod-

ucts J⊤c Jc and J⊤p Jp are block-diagonal. After some manipulation, the reduced system is

[Hcc −HcpH−1
pp Hpc]∆c =−(J⊤c ec −J⊤p HcpH−1

pp ep) (6)

where Hxy refers to the Jacobian products in Equation 5. Note the matrix inversion is simple

because of the block-diagonal structure of Hpp.

Solving this equation produces an increment ∆c that adjusts the camera variables, and

then is used to update the point variables according to

∆p =−H−1
pp (J

⊤
p ep +Hpc∆c) (7)

In forming the left-hand side of Equation 6, the main computational bottleneck is com-

puting the product HcpH−1
pp Hpc. For any given point p, if p projects onto n cameras (its track

length, then this product has n(n−1) additions to the left-hand matrix. If the average point

track length grows linearly with the size of the system, then the effort to set up the system

grow quadratically. On the other hand, if the average track size is constant, it grows only

linearly.

4 Sparse Linear Systems

We are interested in large systems, where the number of camera variables ||c|| can be 10k

or more (the largest real-world dataset we have used is about 3k poses, but we can generate

synthetic datasets of any order). The number of system variables is 6 · ||c||, and the reduced

system matrix of Equation 6 has size 36 · ||c||2, or over 109 elements. Manipulating such large

matrices is expensive. To do it efficiently, we have to take advantage of its sparse structure.

The sparsity pattern of the reduced SBA system is referred to as secondary structure.

The solution of Equation 6 has two computational intensive parts.

1. H matrix construction.
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Figure 2: H matrix non-zero patterns for the Venice dataset (left) and the Intel indoor dataset

(right). Only the first 100 frames (out of 871) of the Venice dataset are diagrammed, because

it would be too dense to show the full structure.

2. H matrix solution.

Note that back-substitution and the construction of the RHS of Equation 6 are only a mi-

nor contribution, and we ignore them for now. For solving the matrix equation, we rely

on available direct Cholesky decomposition for sparse matrices, described below. Matrix

construction involves forming the product HcpH−1
pp Hpc, and in subsequent sections we show

how to do this efficiently, so that the structures necessary for sparse Cholesky decomposition

are easily generated.

4.1 Sparse Secondary Structure

As discussed in the introduction, there are two typical usage patterns for SBA. In one, a

set of images are taken of an object, so most of the images have features in common and

the secondary structure is dense. For example, in the Venice dataset of tourist photos1, the

density of H is 40%, that is, non-zeros account for 40% of the matrix entries.

On the other end of the spectrum are datasets from visual mapping, where usually a

single camera moves around an area, and the images are registered to produce an extended

map. For example, in the Intel Seattle indoor dataset2, the camera motion is mostly along

corridors, and the density is only 1.4%. The difference in the sparsity pattern is shown in

Figure 2. Note that the mapping pattern consists of a fat diagonal band, with some parallel

bands for overlapping trajectories.

There are also scenarios that are in-between these two, for example, the datasets from the

Samantha project [6] show density between 10% and 17%, as they cover extended outside

areas.

1This dataset provided courtesy of Noah Snavely.
2This dataset provided courtesy of Peter Henry.
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4.2 Compressed Column Storage

Many sparse matrix methods use compressed column storage (CCS) format for representing

matrices. The figure below shows the basic idea.









1 0 4 0

0 5 0 2

0 0 0 1

6 8 0 0









⇒

col_ptr 0 2 4 5 7

row_ind 0 3 1 3 0 1 2

val 1 6 5 8 4 2 1

(8)

Each nonzero entry in the array is placed in the val vector. Entries are ordered by column

first, and then by row within the column. col_ptr has one entry for each column, plus a last

entry which is the number of total nonzeros (nnz). The col_ptr entry for a column points to

the start of the column in the row_ind and val variables. Finally, row_ind gives the row index

of each entry within a column.

CCS format is storage-efficient, but is difficult to create incrementally, since each new

nonzero addition to a column causes a shift in all subsequent entries. Trying to create it

directly from the product HcpH−1
pp Hpc would be inefficient. Instead, we first create a parallel

column-oriented block structure, and then transfer this structure to the sparse matrix format.

4.3 Block-oriented Sparse Matrix Creation

The most compute-intensive part of creating H involves an outer product over the projections

in each point track (for details of the whole algorithm, see Engels et al. [5]). Assume the

cameras on the track are ordered. Consider the track of given point p. For each camera c on

the track, do the following:

1. Form the product Tpc = J⊤c Jp(J
⊤
p Jp)

−1.

2. For each camera c′ ≥ c on the track, subtract TpcJ⊤p Jc′ from the 6x6 block (c,c′) of H.

In our version of this algorithm, we create a sparse structure for accessing arbitrary 6x6

blocks i, j of H; since the matrix decomposition only uses the upper triangular part of H, we

have i ≤ j. There are two requirements for this structure: it should have fast random access,

and it should be navigable by column in row order for the creation of the CCS format ma-

trix. These are conflicting requirements – for example, a hash table would give fast random

access, but does not allow navigation by column.

Our approach is to use a C++ std::map container for each column of H. The map

is keyed by row index, and its value is the 6x6 block. Lookup of an arbitrary row element

within a map is order logn in the number of elements in the map, while column lookup is

constant time (simple array access).

An important property of map is that it is ordered by its key, for efficient access to blocks

ordered by row. Once the block data structure is created by running through all the tracks,

we use the ordered nature of the maps to create the sparse CCS format of H by looping over

each map in the order of its keys, first to create the column and row indices, and then to

put in the values. The reason for separating the column/row creation from value insertion is

because the former only has to be done once for any set of iterations of LM.
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4.4 Complexity

The computational complexity for forming the H matrix depends on the average track size.

In object-centered systems, the track size grows linearly with the number of frames N, so

each track is quadratic in N. The number of tracks stays constant or increases only slowly,

since each new frame is connected to existing tracks; hence the complexity is order N2.

Finally, the cost of insertion grows as logN, hence the total cost is N2 logN.

If the constraints are sparse as in mapping, the track size is bounded, so the computation

for each track is constant. The number of tracks grows linearly with N, since new tracks

appear at a constant rate. Insertion cost is constant, because the average map size is constant.

The total complexity is thus order N, which is lower than for object-centered systems.

4.5 Sparse Linear Systems

For solving (4) in sparse format, we use the CHOLMOD package [4]. This package has a

highly-optimized Cholesky decomposition solver for sparse linear systems. It employs sev-

eral strategies to decompose H efficiently, including a logical ordering and an approximate

minimal degree (AMD) algorithm to reorder variables when H is large.

In general the complexity of decomposition will be O(n3) in the number of variables.

For sparse matrices, the complexity will depend on the density of the Cholesky factor, which

in turn depends on the structure of H and the order of its variables. Mahon et al. [13] have

analyzed the behavior of the Cholesky factorization as a function of the loop closures in the

SLAM system. If the number of loop closures is constant, then the Cholesky factor density

is O(n), and decomposition is O(n). If the number of loop closures grows linearly with the

number of variables, then the Cholesky factor density grows as O(n2) and decomposition is

O(n3).

5 Experiments

To exercise sSBA, we performed experiments on both synthetic and real datasets. With

synthetic datasets, it is possible to perform extensive experiments and to isolate the effect of

variables on performance. Real datasets verify the conclusions of the synthetic datasets, and

show the system functioning in real-world situations.

5.1 Lourakis and Argyros SBA

In the experiments, we compared sSBA against the system of Lourakis and Argyros [11]

(laSBA), which is the standard open-source SBA system in the vision community. laSBA

performs the same operations as sSBA: H-matrix formation, H-matrix solution, and back-

substitution. Like sSBA, it uses unit quaternions and local angle representations. Finally,

similar to sSBA, laSBA stores only non-zero Hi j blocks. The major differences between

laSBA and sSBA are:

1. laSBA uses a compressed row storage (CRS) format for indexing, rather than the map

data structure.

2. laSBA does not use the track-oriented algorithm for decomposing HcpH−1
pp Hpc in

forming H.
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Figure 3: First two plots: time per iteration for different connection densities, over laSBA,

dSBA, and sSBA algorithms. Nc is the average number of connections each camera has to

other cameras. Third plot: relative time of laSBA vs. sSBA for varying H density. Note

Y-axis log scale on all graphs.

3. laSBA constructs a dense matrix H from the Hi j blocks, and uses LAPACK Cholesky

decomposition for its solution.

To make the comparison more fair, we substituted a faster dense Cholesky decomposition,

using Cholesky LLT (non-pivoting) from the Eigen package development branch.3 This

routine is several times faster than LAPACK (with Atlas BLAS) on the tested machines. We

used the fastest version of laSBA, with expert drivers and analytic Jacobians.

In addition to sSBA, we tested a variant, called dSBA, that constructs and solves a dense

H matrix. This variant uses direct access to the H matrix, rather than constructing an inter-

mediate structure for the Hi j blocks.

All experiments were run on the same machine using a single core, an Intel i7 with 8

MB of primary cache and 49 GB of main memory, running at 3.0 GHz. We report time per

iteration of the LM method in the following sections, rather than time to convergence, which

depends on the parameters of the LM iteration.

5.2 Spiral Trajectory

In the synthetic datasets, the camera points and moves forward along a spiral trajectory. By

varying the density of points and the range of the camera, it is possible to create datasets

with different secondary structure. In the first set of experiments, we kept the number of

projections per camera at around 500, while varying connection strength. We used two

measures of connection.

1. Average number of connections per camera (Nc).

2. Density of the H matrix.

The first measure represents typical mapping scenarios, where a camera is connected to

its neighbors in an extended environment (including loop closure neighbors). The second

measure is more appropriate for object-centered datasets, where adding views raises the

number of connections per camera.

Examing the first two plots for mapping in Figure 3, the trend of sSBA vs. laSBA timings

is clear. For sparse connections (Nc = 25 per camera, average), sSBA is about 7 times faster

for small number of views, and over 100 times faster at 6000 views. Beyond this, laSBA

3http://eigen.tuxfamily.org
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Figure 4: Left: setup time of sSBA vs. laSBA, with fixed camera connections but varying

projections. The curves show setup time for 500, 1000, 1500, and 3000 point projections per

camera. Right: relative timing for laSBA and sSBA on the New College dataset.

runs out of memory. Note that sSBA trends linearly for large number of views, as expected

from the constant number of camera connections in the H matrix. An interesting effect is

that dSBA out-performs laSBA for smaller datasets. Since they both use the same Cholesky

decomposition, the difference arises from the setup of the H matrix. Note that this difference

can be quite significant, with dSBA being 4 times as fast for 225 views.

For denser connections, that advantage of sSBA diminishes, although it is still substan-

tial. In the middle plot, Nc = 138, sSBA is faster than laSBA by about 4 times for the

smallest dataset, up to 60 times at 6000 views. In both these datasets, dense H systems ran

out of memory for the largest graphs.

The third figure shows the relative timing of sSBA vs. laSBA for different densities of

H. For low densities, there is an obvious advantage to using sparse decomposition. For

higher densities, it is surprising that sSBA performs as well as laSBA, since the overhead

in manipulating the sparse matrix format grows as it fills up – with 64-bit integers, a sparse

matrix in CCS format uses as more space then a dense matrix. One reason sSBA performs so

well is that the matrix construction step is more efficient that laSBA (recall they use different

block-oriented sparse representations in the construction phase). For a constant Nc = 138

(moderate density), track lengths are constant over problem size, and setup times should

be linear. But in Figure 4, laSBA has a quadratic trend with problem size, while sSBA is

nearly linear. This trend holds for different average projection count per camera, and is an

inefficiency in the laSBA algorithm independent of the density of H.

5.3 Real-World Datasets

We examined three different real-world datasets: Venice, a Photosynth collection4; Saman-

tha, a set of three single-camera collections from the University of Verona5, and an indoor

dataset from Intel Seattle mentioned earlier. Table 1 has timings for sSBA and laSBA. Venice

is an object-centered dataset with 40% H fill. Because of its sparse block construction, sSBA

is slower in solving H, but much faster at constructing it; overal sSBA is 4 times faster. The

Samantha datasets are intermediate between object-centered and mapping types; here sSBA

does much better in solving H. Finally, the Intel dataset is an indoor mapping sequence with

only 1.4% density, and sSBA is much faster than laSBA, by a factor of 80.

4Courtesy of Noah Snavely.
5http://profs.sci.univr.it/ fusiello/demo/samantha/
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Name # cams projs/cam H fill setup solve total

Venice 871 3259 40%

sSBA 12.15 6.09 18.24

laSBA 79.58 5.30 84.88

Samantha Erbe 184 705 17%

sSBA 0.13 0.017 0.15

laSBA 1.0 0.8 1.1

Samantha Bra 320 1222 10%

sSBA 0.40 0.028 0.43

laSBA 4.47 0.38 4.8

Intel 851 133 1.4%

sSBA 0.079 0.023 0.10

laSBA 1.91 6.10 8.01

Table 1: Time per iteration (in seconds) for several real-world datasets.

sSBA is used as the back end of a full VSLAM system available in ROS [10]. Figure

1 shows the result of performing several iterations every 10 keyframes on the New College

dataset [15]. sSBA runs in a separate process; it is efficient enough to perform full bundle

adjustment through about 2k frames in real time, with complex cross-connections (Figure 4.

5.4 Limitations of sSBA

Currently we have implementations of sSBA for both stereo and monocular pinhole cameras

that are calibrated. We intend to add a robust cost measure, and the ability to estimate

camera focal length and distortion. laSBA already incorporates the latter feature, and is a

more general system, allowing user-define “drivers” for different camera types. Another

proposed addition is the use of “smoothing priors” [7], which help with stability, especially

in monocular systems.

6 Conclusions

sSBA is a system that takes advantage of sparse secondary structure in the SBA problem to

perform efficient optimization. It constructs a sparse Hessian matrix using sparse ordered

storage for its sub-blocks. sSBA outperforms the standard SBA implementation (laSBA)

by over an order of magnitude on typical mapping datasets, which have sparse secondary

structure. It is also faster than laSBA on more dense datasets, up to 50% fill-in on the

Hessian. The code will be available open-source with a BSD license.
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