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Abstract—We present a novel statistically-based discretization
paradigm and derive a class of maximum a posteriori (MAP)
estimators for solving ill-conditioned linear inverse problems.
We are guided by the theory of sparse stochastic processes,
which specifies continuous-domain signals as solutions of linear
stochastic differential equations. Accordingly, we show that the
class of admissible priors for the discretized version of the signal
is confined to the family of infinitely divisible distributions.
Our estimators not only cover the well-studied methods of
Tikhonov and ℓ1-type regularizations as particular cases, but
also open the door to a broader class of sparsity-promoting
regularization schemes that are typically nonconvex. We provide
an algorithm that handles the corresponding nonconvex problems
and illustrate the use of our formalism by applying it to decon-
volution, MRI, and X-ray tomographic reconstruction problems.
Finally, we compare the performance of estimators associated
with models of increasing sparsity.
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I. INTRODUCTION

WE consider linear inverse problems that occur in a

variety of biomedical imaging applications [?], [?], [?].

In this class of problems, the measurements y are obtained

through the forward model

y = Hs+ n, (1)

where s represents the true signal/image. The linear operator

H models the physical response of the acquisition/imaging

device and n is some additive noise. A conventional approach

for reconstructing s is to formulate the reconstructed signal s⋆

as the solution of the optimization problem

s⋆ = argmin
s
D(s;y) + λR(s), (2)

where D(s;y) quantifies the distance separating the recon-

struction from the observed measurements, R(s) measures the

regularity of the reconstruction, and λ > 0 is the regularization

parameter.
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In the classical quadratic (Tikhonov-type) reconstruction

schemes, one utilizes ℓ2-norms for measuring both the data

consistency and the reconstruction regularity [?]. In a general

setting, this leads to a smooth optimization problem of the

form

s⋆ = argmin
s
‖y −Hs‖22 + λ‖Rs‖22, (3)

where R is a linear operator and the formal solution is given

by

s⋆ =
(
HTH+ λRTR

)−1
HTy. (4)

The linear reconstruction framework expressed in (??)-(??)

can also be derived from a statistical perspective. Under the

hypothesis that s follows a multivariate zero-mean Gaussian

distribution with covariance matrix Css = E{ssT}, the opera-

tor C
−1/2
ss whitens s (i.e., renders its components independent).

Moreover, if n is additive white Gaussian noise (AWGN) of

variance σ2, the maximum a posteriori (MAP) formulation of

the reconstruction problem yields

sMAP = (HTH+ σ2C−1
ss

)−1HTy, (5)

which is equal to (??) when C
−1/2
ss = R and σ2 = λ. In the

Gaussian scenario, the MAP estimator is known to yield the

minimum mean square error (MMSE) solution. The equivalent

Wiener solution (??) is also applicable for non-Gaussian

models with known covariance Css and is commonly referred

to as the linear minimum mean square error (LMMSE) [?].

In recent years, the paradigm in variational formulations

for signal reconstruction has shifted from the classical linear

schemes to the sparsity-promoting methods motivated by the

observation that many signals that occur naturally have sparse

or nearly-sparse representations in some transform domain [?].

The promotion of sparsity is achieved by specifying well-

chosen non-quadratic regularization functionals and results in

nonlinear reconstruction. One common choice for the regu-

larization functional is R(v) = ‖v‖1, where v = W−1s

represents the coefficients of a wavelet (or a wavelet-like

multiscale) transform [?]. An alternative choice is R(s) =
‖Ls‖1, where L is the discrete version of the gradient or

Laplacian operator, with the gradient one being known as total-

variation (TV) regularization [?]. Although using the ℓ1 norm

as regularization functional has been around for some time

(for instance, see [?], [?]), it is currently at the heart of sparse

signal reconstruction problems. Consequently, a significant

amount of research is dedicated to the design of efficient

algorithms for nonlinear reconstruction methods [?].
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The current formulations of sparsity-promoting regulariza-

tion are based on solid variational principles and are predomi-

nantly deterministic. They can also be interpreted in statistical

terms as MAP estimators by considering generalized Gaussian

or Laplace priors [?], [?], [?]. These models, however, are

tightly linked to the choice of a given sparsifying transform,

with the downside that they do not provide further insights on

the true nature of the signal.

A. Contributions

In this paper, we revisit the signal reconstruction problem

by specifying upfront a continuous-domain model for the

signal that is independent from the subsequent reconstruc-

tion task/algorithm and apply a proper discretization scheme

to derive the corresponding MAP estimator. Our approach

builds upon the theory of continuous-domain sparse stochastic

processes [?]. In this framework, the stochastic process is

defined through an innovation model that can be driven by

a non-Gaussian excitation 1. The primary advantage of our

continuous-domain formulation is that it lends itself to an

analytical treatment. In particular, it allows for the derivation

of the probability density function (pdf) of the signal in any

transform domain, which is typically much more difficult in a

purely discrete framework. Remarkably, the underlying class

of models also provides us with a strict derivation of the class

of admissible regularization functionals which happen to be

confined to two categories: Gaussian or sparse.

The main contributions of the present work are as follows:

� The introduction of continuous-domain stochastic models

in the formulation of inverse problems. This leads to the

use of non-quadratic reconstruction schemes.

� A general scheme for the proper discretization of these

problems. This scheme specifies feasible statistical esti-

mators.

� The characterization of the complete class of admissi-

ble potential functions (prior log-likelihoods) and the

derivation of the corresponding MAP estimators. The

connections between these estimators and the existing

deterministic methods such as TV and ℓ1 regularizations

are also explained.

� A general reconstruction algorithm, based on variable-

splitting techniques, that handles different estimators,

including the nonconvex ones. The algorithm is applied

to deconvolution and to the reconstruction of MR and

X-ray images.

B. Outline

The paper is organized as follows: In Section ??, we explain

the acquisition model and obtain the corresponding represen-

tation of the signal s and the system matrix H. In Section ??,

we introduce the continuous-domain innovation model that

defines a generalized stochastic process. We then statistically

specify the discrete-domain counterpart of the innovation

model and characterize admissible prior distributions. Based

on this characterization, we derive the MAP estimation as an

1It is noteworthy that the theory includes the stationary Gaussian processes.
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Fig. 1. General form of the linear, continuous-domain measurement model
considered in this paper. The signal s(x) is acquired through linear measure-
ments of the form zm = [Ψs]m = 〈s, ψm〉. The resulting vector z ∈ RM

is corrupted with AWGN. Our goal is to estimate the original signal s from
noisy measurements y by exploiting the knowledge that s is a realization of
a sparse stochastic process that satisfies the innovation model Ls = w, where
w is a non-Gaussian white innovation process.

optimization problem in Section ??. In Section ??, we provide

an efficient algorithm to solve the optimization problem for

a variety of admissible priors. Finally, in Section ??, we

illustrate our discretization procedure by applying it to a series

of deconvolution and of MR and X-ray image-reconstruction

problems. This allows us to compare the effect of different

sparsity priors on the solution.

C. Notations

Throughout the paper, we assume that the measurement

noise is AWGN of variance σ2. The input argument x ∈ R
d

of the continuous-domain signals is written inside parenthesis

(e.g., s(x)) whereas, for discrete-domain signals, we employ

k ∈ Z
d and use brackets (e.g., s[k]). The scalar product is

represented by 〈·, ·〉 and δ(·) denotes the Dirac impulse.

II. MEASUREMENT MODEL

In this section, we develop a discretization scheme that

allows us to obtain a tractable representation of continuously-

defined measurement problem, with minimal loss of informa-

tion. Such discrete representation is crucial since the resulting

reconstruction algorithms are implemented numerically.

A. Discretization of the Signal

To obtain a clean analytical discretization of the problem,

we consider the generalized sampling approach using “shift-

invariant” reconstruction spaces [?]. The advantage of such a

representation is that it offers the same type of error control as

finite-element methods (i.e., the approximation error between

the original signal and its representation in the reconstruction

space can be made arbitrarily small by choosing a sufficiently

fine reconstruction grid, see [?]).
The idea is to represent the signal s by projecting it onto

a reconstruction space. We define our reconstruction space at
resolution T as

VT (ϕint) =







sT (x) =
∑

k∈Zd

s [k]ϕint

(

x

T
− k

)

: s[k] ∈ ℓ∞(Zd)







,

(6)

where s[k] = s(x)|x=Tk, and ϕint is an interpolating basis

function positioned on the reconstruction grid TZd. The

interpolation property is ϕint(k) = δ[k]. For the representation

of s in terms of its samples s[k] to be stable and unambiguous,
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ϕint has to be a valid Riesz basis for VT (ϕint). Moreover, to

guarantee that the approximation error decays as a function

of T , the basis function should satisfy the partition of unity

property [?]
∑

k∈Zd

ϕint(x− k) = 1, ∀x ∈ R
d. (7)

The projection of the signal onto the reconstruction space

VT (ϕint) is given by

PVT
s(x) =

∑

k∈Zd

s(Tk)ϕint

(
x

T
− k

)
, (8)

with the property that PVT
PVT

s(x) = PVT
s(x) (since PVT

is

a projection operator). To simplify the notation, we shall use

a unit sampling T = 1 with the implicit assumption that the

sampling error is negligible. (If the sampling error is large,

one can use a finer sampling and rescale the reconstruction

grid appropriately.) Thus, the resulting discretization is

s1(x) = PV1
s(x) =

∑

k∈Zd

s[k]ϕint(x− k). (9)

To summarize, s1(x) is the discretized version of the original

signal s(x) and it is uniquely described by the samples

s[k] = s(x)|x=k for k ∈ Z
d. The main point is that the

reconstructed signal is represented in terms of samples even

though the problem is still formulated in the continuous-

domain.

B. Discrete Measurement Model

By using the discretization scheme in (??), we are now

ready to formally link the continuous model in Figure ?? and

the corresponding discrete linear inverse problem. Although

the signal representation (??) is an infinite sum, in practice

we restrict ourselves to a subset of N basis functions with

k ∈ Ω, where Ω is a discrete set of integer coordinates in a

region of interest (ROI). Hence, we rewrite (??) as

s1(x) =
∑

k∈Ω

s[k]ϕk(x), (10)

where ϕk(x) corresponds to ϕint(x− k) up to modifications

at the boundaries (periodization or Neumann boundary condi-

tion).

We first consider a noise-free signal acquisition. The general

form of a linear, continuous-domain noise-free measurement

system is

zm =

∫

Rd

s(x)ψm(x)dx, (m = 1, . . . ,M) (11)

where s(x) is the original signal, and the measurement

function ψm(x) represents the spatial response of the mth

detector which is application dependent as we shall explain in

Section ??.

By substituting the signal representation (??) into (??), we

discretize the measurement model and write it in matrix-vector

form as

y = z+ n = Hs+ n, (12)

where y is the M -dimensional measurement vector, s =
(s[k])

k∈Ω is the N -dimensional signal vector, n is the M -

dimensional noise vector, and H is the M ×N system matrix

whose entry (m,k) is given by

[H]m,k = 〈ψm, ϕk〉 =

∫

Rd

ψm(x)ϕk(x)dx. (13)

This allows us to specify the discrete linear forward model

given in (??) which is compatible with the continuous-domain

formulation. The solution of this problem yields the represen-

tation s1(x) of s(x) which is parameterized in terms of the

signal samples s. Having the forward model explained, our

next aim is to obtain the statistical distribution of s.

III. SPARSE STOCHASTIC MODELS

We now proceed by introducing our stochastic framework

which will provide us with a signal prior. For that purpose, we

assume that s(x) is a realization of a stochastic process that

is defined as the solution of a linear stochastic differential

equation (SDE) with a driving term that is not necessarily

Gaussian. Starting from such a continuous-domain model, we

aim at obtaining the statistical distribution of the sampled

version of the process (discrete signal) that will be needed

to formulate estimators for the reconstruction problem.

A. Continuous-Domain Innovation Model

As mentioned in Section ??, we specify our relevant class

of signals as the solution of an SDE in which the process s
is assumed to be whitened by a linear operator. This model

takes the form

Ls = w, (14)

where w is a continuous-domain white innovation process (the

driving term), and L is a (multidimensional) differential oper-

ator. The right-hand side of (??) represents the unpredictable

part of the process, while L is called the whitening operator.

Such models are standard in the classical theory of stationary

Gaussian processes [?]. The twist here is that the driving

term w is not necessarily Gaussian. Moreover, the underlying

differential system is potentially unstable to allow for self-

similar models.

In the present model, the process s is characterized by the

formal solution s = L−1w, where L−1 is an appropriate right

inverse of L. The operator L−1 amounts to some generalized

“integration” of the innovation w. The implication is that the

correlation structure of the stochastic process s is determined

by the shaping operator L−1, whereas its statistical properties

and sparsity structure is determined by the driving term w.

As an example in the one-dimensional setting, the operator L
can be chosen as the first-order continuous-domain derivative

operator L = D. For multidimensional signals, an attractive

class of operators is the fractional Laplacian (−∆)
γ
2 which is

invariant to translation, dilation, and rotation in R
d [?]. This

operator gives rise to “1/‖ω‖γ”-type power spectrum and is

frequently used to model certain types of images [?], [?].

The mathematical difficulty is that the innovation w cannot

be interpreted as an ordinary function because it is highly
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singular. The proper framework for handling such singular ob-

jects is Gelfand and Vilenkin’s theory of generalized stochastic

processes [?]. In this framework, the stochastic process s is

observed by means of scalar-products 〈s, ϕ〉 with ϕ ∈ S(Rd),
where S(Rd) denotes the Schwartz class of rapidly decreasing

test functions. Intuitively, this is analogous to measuring an

intensity value at a pixel after integration through a CCD

detector.

A fundamental aspect of the theory is that the driving term

w of the innovation model (??) is uniquely specified in terms

of its Lévy exponent f(·).

Definition 1. A complex-valued function f : R→ C is a valid

Lévy exponent iff. it satisfies the three following conditions:

1) it is continuous;

2) it vanishes at the origin;

3) it is conditionally positive-definite of order one in the

sense that

N∑

m=1

N∑

n=1

f(ωm − ωn)ξmξn ≥ 0

under the condition
∑N

m=1 ξm = 0 for every possible

choice of ω1, . . . , ωN ∈ R, ξ1, . . . , ξN ∈ C, and N ∈
N \ {0}.

An important subset of Lévy exponents are the p-admissible

ones, which are central to our formulation.

Definition 2. A Lévy exponent f with derivative f ′ is called

p-admissible if it satisfies the inequality

|f(ω)|+ |ω||f ′(ω)| ≤ C|ω|p

for some constant C > 0 and 0 < p ≤ 2.

A typical example of a p-admissible Lévy exponent is

f(ω) = −s0|ω|
α with s0 > 0. The simplest case is

fGauss(ω) = − 1
2 |ω|

2; it will be used to specify Gaussian

processes.

Gelfand and Vilenkin have characterized the whole class of

continuous-domain white innovation and have shown that they

are fully specified by the generic characteristic form

P̂w(ϕ) = E

{
ej〈w,ϕ〉

}

= exp

(∫

Rd

f(ϕ(x))dx

)
, (15)

where f is the corresponding Lévy exponent of the innovation

process w. The powerful aspect of this characterization is that

P̂w is indexed by a test function ϕ ∈ S rather than by a

scalar (or vector) Fourier variable ω. As such, it constitutes

the infinite-dimensional generalization of the characteristic

function of a conventional random variable.

Recently, Unser et al. characterized the class of stochastic

processes that are solutions of (??) where L is a linear shift-

invariant (LSI) operator and w is a member of the class of

so-called Lévy noises [?, Theorem 3].

Theorem 1. Let w be a Lévy noise as specified by (??) and

L−1∗ be a left inverse of the adjoint operator L∗ such that

either one of the conditions below is met:

1) L−1∗ is a continuous linear map from S(Rd) into itself;

2) f is p-admissible and L−1∗ is a continuous linear map

from S(Rd) into Lp(R
d); that is,

‖L−1∗ϕ‖Lp
< C‖ϕ‖Lp

, ∀ϕ ∈ S(Rd)

for some constant C and some p ≥ 1.

Then, s = L−1w is a well-defined generalized stochastic

process over the space of tempered distributions S ′(Rd) and

is uniquely characterized by its characteristic form

P̂s(ϕ) = E

{
ej〈s,ϕ〉

}
= exp

(∫

Rd

f
(
L−1∗ϕ(x)

)
dx

)
. (16)

It is a (weak) solution of the stochastic differential equation

Ls = w in the sense that 〈Ls, ϕ〉 = 〈w,ϕ〉 for all ϕ ∈ S(Rd).

Before we move on, it is important to emphasize that Lévy

exponents are in one-to-one correspondence with the so-called

infinitely divisible (i.d.) distributions [?].

Definition 3. A generic pdf pX is infinitely divisible if, for

any positive integer n, it can be represented as the n-fold

convolution (p ∗ · · · ∗ p) where p is a valid pdf.

Theorem 2 (Lévy-Schoenberg). Let p̂X(ω) = E{ejωX} =∫
R
ejωxpX(x) dx be the characteristic function of an infinitely

divisible random variable X . Then,

f(ω) = log p̂X(ω)

is a Lévy exponent in the sense of Definition ??. Conversely, if

f(ω) is a valid Lévy exponent, then the inverse Fourier integral

pX(x) =

∫

R

ef(ω)e−jωx dω

2π

yields the pdf of an i.d. random variable.

Another important theoretical result is that it is possible to

specify the complete family of i.d. distributions thanks to the

celebrated Lévy-Khintchine representation [?] which provides

a constructive method for defining Lévy exponents. This tight

connection will be essential for our formulation and limits us

to a certain family of prior distributions.

B. Statistical Distribution of Discrete Signal Model

The interest is now to statistically characterize the dis-

cretized signal described in Section ??. To that end, the first

step is to formulate a discrete version of the continuous-

domain innovation model (??). Since, in practical applications,

we are only given the samples s[k]k∈Ω of the signal, we

obtain the discrete-domain innovation model by applying to

them the discrete counterpart Ld of the whitening operator L.

The fundamental requirement for our formulation is that the

composition of Ld and L−1 results in a stable, shift-invariant

operator whose impulse response is well localized [?]
(
LdL

−1δ
)
(x) = βL(x) ∈ L1(R

d). (17)

The function βL is the generalized B-spline associated with the

operator L. Ideally, we would like it to be maximally localized.

A necessary requirement for Ld is that its null space includes

the one of L (see [?]).
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To give more insight, let us consider L = D and Ld = Dd

(the finite-difference operator associated to D). Then, the as-

sociated B-spline is βD(x) = Dd1+(x) = 1+(x)−1+(x−1)
where 1+(x) is the unit step (Heaviside) function. Hence,

βD(x) = rect(x − 1
2 ) is a causal rectangle function (poly-

nomial B-spline of degree 0).

The practical consequence of (??) is

u = Lds = LdL
−1w = βL ∗ w. (18)

Since (βL ∗w)(x) = 〈w, β
∨
L (· −x)〉 where β∨

L (x) = βL(−x)
is the space-reversed version of βL, it can be inferred from (??)

that the evaluation of the samples of Lds is equivalent to the

observation of the innovation through a B-spline window.

From a system-theoretic point of view, Ld is understood as

a finite impulse response (FIR) filter. This impulse response

is of the form
∑

k∈Ω d[k]δ(· − k) with some appropriate

weights d[k]. Therefore, we write the discrete counterpart of

the continuous-domain innovation variable as

u[k] = Lds(x)|x=k =
∑

k′∈Ω

d[k′]s(k − k
′).

This allows us to write in matrix-vector notation the discrete-

domain version of the innovation model (??) as

u = Ls, (19)

where s = (s[k])
k∈Ω represents the discretization of the

stochastic model with s[k] = s(x)|x=k for k ∈ Ω, L : RN →
R

N is the matrix representation of Ld, and u = (u[k])
k∈Ω is

the discrete innovation vector.

We shall now rely on (??) to derive the pdf of the discrete

innovation variable, which is one of the key results of this

paper.

Theorem 3. Let s be a stochastic process whose characteristic

form is given by (??) where f is a p-admissible Lévy exponent,

and βL = LdL
−1δ ∈ Lp(R

d) for some p ∈ (0, 2]. Then,

u = Lds is stationary and infinitely divisible. Its first-order

pdf is given by

pU (u) =

∫

R

exp
(
fβ∨

L
(ω)
)
ejωu dω

2π
, (20)

with Lévy exponent

fβ∨

L
(ω) = log p̂U (ω) =

∫

Rd

f
(
ωβ∨

L (x)
)
dx, (21)

which is p-admissible as well.

Proof: Taking (??) into account, we derive the character-

istic form of u which is given by

P̂u(ϕ) = E{ej〈u,ϕ〉} = E{ej〈βL∗w,ϕ〉} = E{ej〈w,β∨

L
∗ϕ〉}

= P̂w(β
∨
L ∗ ϕ)

= exp

(∫

Rd

f
(
β∨
L ∗ ϕ(x)

)
dx

)
. (22)

The fact that u is stationary is equivalent to P̂u(ϕ) =

P̂u

(
ϕ(· − x0)

)
for any x0 ∈ R

d, which is established by a

simple change of variable in (??). We now consider the random

variable U = 〈u, δ〉 = 〈w, β∨
L 〉. Its characteristic function is

obtained as

p̂U (ω) = E{ejωU} = E{ej〈w,ωβ∨

L
〉}

= P̂w(ωβ
∨
L )

= exp
(
fβ∨

L
(ω)
)

where the substitution ϕ = ωβ∨
L in P̂w(ϕ) is valid since

P̂w is a continuous functional on Lp(R
d) as a consequence

of the p-admissibility condition. To prove that fβ∨

L
(ω) is a p-

admissible Lévy exponent, we start by establishing the bound

C‖ϕ‖pLp
|ω|p ≥

∫

Rd

∣∣f
(
ωβ∨

L (x)
)∣∣ dx

+ |ω|

∫

Rd

∣∣f ′
(
ωβ∨

L (x)
)
ϕ(x)

∣∣ dx

≥
∣∣fβ∨

L
(ω)
∣∣+ |ω|

∣∣∣f ′β∨

L

(ω)
∣∣∣ , (23)

which follows from the p-admissibility of f . We are also

relying on Lebesgue’s dominated convergence theorem to

move the derivative with respect to ω inside the integral

that defines fβ∨

L
(ω). In particular, (??) implies that fβ∨

L
is

continuous and vanishes at the origin. The last step is to

establish its conditional positive definiteness which is achieved

by interchanging the order of summation. We write

N∑

m=1

N∑

n=1

fβ∨

L
(ωm − ωn)ξmξn = (24)

∫

Rd

N∑

m=1

N∑

n=1

f
(
ωmβ

∨
L (x)− ωnβ

∨
L (x)

)
ξmξn

︸ ︷︷ ︸
≥0

dx ≥ 0

under the condition
∑N

m=1 ξm = 0 for every possible choice

of ω1, . . . , ωN ∈ R, ξ1, . . . , ξN ∈ C, and N ∈ N \ {0}.
The direct consequence of Theorem ?? is that the primary

statistical features of u is directly related to the continuous-

domain innovation process w via the Lévy exponent. This

implies that the sparsity structure (tail behavior of the pdf

and/or presence of a mass distribution at the origin) is pri-

marily dependent upon f . The important conceptual aspect,

which follows from the Lévy-Schoenberg theorem, is that the

class of admissible pdfs is restricted to the family of i.d. laws

since fβ∨

L
(ω), as given by (??), is a valid Lévy exponent. We

emphasize that this result is attained by taking advantage of

considerations in the continuous-domain.

C. Specific Examples

We now would like to illustrate our formalism by presenting

some examples. If we choose L = D, then the solution of (??)

with the boundary condition s(0) = 0 is given by

s(x) =

∫ x

0

w(x′)dx′

and is a Lévy process. It is noteworthy that the Lévy

processes—a fundamental and well-studied family of stochas-

tic processes—include Brownian motion and Poisson pro-

cesses which are commonly used to model random physical
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phenomena [?]. In this case, βD(x) = rect(x − 1
2 ) and the

discrete innovation vector u is obtained by

u[k] = 〈w, rect(·+ 1
2 − k)〉

= s(k)− s(k − 1).

Since the B-splines are non-overlapping, we can deduce that

the increments (u[k])k∈Ω are i.i.d., which is the defining

property of a Lévy process [?]. Evaluating (??) together with

f(0) = 0 (see Definition ??), we obtain

fβ∨

D
(ω) =

∫ 0

−1

f(ω)dx = f(ω).

In particular, we generate Lévy processes with Laplace-

distributed increments by choosing f(ω) = log( τ2

τ2+ω2 )
with the scale parameter τ > 0. To see that, we write

exp(fβ∨

D
(ω)) = p̂U (ω) =

τ2

τ2+ω2 via (??). The inverse Fourier

transform of this rational function is known to be

pU (u) =
τ

2
e−τ |u|.

Also, we rely on Theorem ?? in a more general aspect. For

instance, a special case of interest is the Gaussian (nonsparse)

scenario where fGauss(ω) = − 1
2 |ω|

2. Therefore, one gets

fβ∨

L
(ω) = log p̂U (ω) = − 1

2ω
2‖βL‖

2
2 from (??). Plugging

this into (??), we deduce that the discrete innovation vector

is zero-mean Gaussian with variance ‖βL‖
2
2 (i.e., pU (u) =

N (0, ‖βL‖
2
2)).

Additionally, when f(ω) = −|ω|α

2 with α ∈ [1, 2], one finds

that fβ∨

L
(ω) = log p̂U (ω) = − |ω|α

2 ‖βL‖
α
Lα

. This indicates

that u is a symmetric α-stable (SαS) distribution with scale

parameter s0 = ‖βL‖
α
Lα

. For α = 1, we have the Cauchy

distribution (or Student’s with r = 1/2). For other i.d. laws,

the inverse Fourier transformation (??) is often harder to

compute analytically, but it can still be performed numerically

to determine pU (u) (or its corresponding potential function

ΦU = −log pU ). In general, pU will be i.d. and will typically

imply heavy tails. Note that heavy-tailed distributions are

compressible [?].

IV. BAYESIAN ESTIMATION

We now use the results of Section ?? to derive solutions

to the reconstruction problem in some well-defined statistical

sense. To that end, we concentrate on the MAP solutions

that are presently derived under the decoupling assumption

that the components of u are independent and identically

distributed (i.i.d.). This assumption is exact when L is a first-

order differential operator (such as the derivative) in which

case the B-spline is of unit support. For higher-order operators,

the decoupling has local dependencies over the support of

βL that can be worked out explicitly [?]. However, taking

these into account results in more complicated estimation

algorithms.

In order to reconstruct the signal, we seek an estimate of s

that maximizes the posterior distribution pS|Y which depends

upon the prior distribution pS , assumed to be proportional to

pU (since u = Ls). The direct application of Bayes’ rule is

pS|Y (s | y) ∝ pN (y −Hs)pU (u)

∝ exp

(
−
‖y −Hs‖2

2σ2

) ∏

k∈Ω

pU
(
[Ls]k

)
.

Then, we write the MAP estimation for s as

sMAP = argmax
s

pS|Y (s | y)

= argmin
s

(
1
2‖Hs− y‖22 + σ2

∑

k∈Ω

ΦU

(
[Ls]k

)
)

,

(25)

where ΦU (x) = −log pU (x) is called the potential function

corresponding to pU . Note that (??) is compatible with the

standard form of the variational reconstruction formulation

given in (??). In the next section, we focus on the potential

functions.

A. Potential Functions

Recall that, in the current Bayesian formulation, the po-

tential function ΦU (x) = −log pU (x) is specified by the

Lévy exponent fβ∨

L
which is itself in direct relation with the

continuous-domain innovation w via (??). For illustration pur-

poses, we consider three members of the i.d. family: Gaussian,

Laplace, and Student’s (or, equivalently, Cauchy) distributions.

We provide the potential functions for these priors in Table ??.

The exact values of the constants C1, C2, and C3 and the

positive scaling factors M1, M2, and M3 have been omitted

since they are irrelevant to the optimization problem. On

one hand, we already know that the Gaussian prior does not

correspond to a sparse reconstruction. On the other hand,

the Student’s prior has a slower tail decay and promotes

sparser solutions than the Laplace prior. Also, to provide a

geometrical intuition of how the Student’s prior increases the

sparsity of the solution, we plot the potential functions for

Gaussian, Laplacian, and Student’s (with ǫ = 10−2) estimators

in Figure ??. By looking at Figure ??, we see that the Student’s

estimator penalizes small values more than the Laplacian or

Gaussian counterparts do. Conversely, it penalizes the large

values less.

Let us point out some connections between the general

estimator (??) and the standard variational methods. The

first quadratic potential function (Gaussian estimator) yields

the classical Tikhonov-type regularizer and produces a stabi-

lized linear solution, as explained in Section ??. The second

potential function (Laplace estimator) provides the ℓ1-type

regularizer. Moreover, the well-known TV regularizer [?] is

obtained if the operator L is a first-order derivative oper-

ator. Interestingly, the third log-based potential (Student’s

estimator) is linked to the limit case of the ℓp relaxation

scheme as p → 0 [?]. To see the relation, we note

that minimizing limp→0

∑
i |xi|

p is equivalent to minimizing
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TABLE I
FOUR MEMBERS OF THE FAMILY OF INFINITELY DIVISIBLE DISTRIBUTIONS AND THE CORRESPONDING POTENTIAL FUNCTIONS.

pU (x) ΦU (x) Property

Gaussian 1
σ0

√
2π
e−x2/2σ2

0 M1x
2 + C1 smooth, convex

Laplace τ
2
e−τ |x| M2|x|+ C2 nonsmooth, convex

Student’s 1
ǫB(r, 1

2
)

(

1
(x/ǫ)2+1

)r+ 1

2
M3log

(

x2+ǫ2

ǫ2

)

+ C3 smooth, nonconvex

Cauchy 1
πs0

1
(x/s0)2+1

log(
x2+s2

0

s2
0

) + C4 smooth, nonconvex
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Fig. 2. Potential functions (a) and the corresponding proximity operators (b) of different estimators: Gaussian estimator (dash-dotted), Laplacian estimator
(dashed), and Student’s estimator with ǫ = 10−2 (solid). The multiplication factors are set such that ΦU (1) = 1 for all potential functions.

limp→0

∑
i
|xi|

p−1
p . As pointed out in [?], it holds that

lim
p→0

∑

i

|xi|
p − 1

p
=
∑

i

log|xi| =
∑

i

1
2 log|xi|

2

≤
1

2

∑

i

log(x2i + κ) (26)

for any κ ≥ 0. The key observation is that the upper-

bounding log-based potential function in (??) is interpretable

as a Student’s prior. This kind of regularization has been

considered by different authors (see [?], [?], [?] and also [?]

where the authors consider a similar log-based potential).

V. RECONSTRUCTION ALGORITHM

We have now the necessary elements to derive the general

MAP solution of our reconstruction problem. By using the

discrete innovation vector u as an auxiliary variable, we recast

the MAP estimation as the constrained optimization problem

sMAP = arg min
s∈RK

(
1

2
‖Hs− y‖22 + σ2

∑

k∈Ω

ΦU (u[k])

)

subject to u = Ls. (27)

This representation of the solution naturally suggests using

the type of splitting-based techniques that have been em-

ployed by various authors for solving similar optimization

problems [?], [?], [?]. Rather than dealing with a constrained

optimization problem directly, we prefer to formulate an

equivalent unconstrained problem. To that purpose, we rely

on the augmented-Lagrangian method [?] and introduce the

corresponding augmented Lagrangian (AL) functional of (??)

given by

LA(s,u,α) =
1

2
‖Hs− y‖22 + σ2

∑

k∈Ω

ΦU (u[k])

+α
T(Ls− u) +

µ

2
‖Ls− u‖22,

where α ∈ R
K denotes the Lagrange-multiplier vector and

µ ∈ R is called the penalty parameter. The resulting opti-

mization problem takes of the form

min
(s∈RK , u∈RK)

LA(s,u,α). (28)

Unlike the quadratic penalty approach [?], (??) does not

require µ to be taken to infinity to guarantee convergence

to the solution of (??). To obtain the solution, we apply the

alternating-direction method of multipliers (ADMM) [?] that

replaces the joint minimization of the AL functional over

(s,u) by the partial minimization of LA(s,u,α) with respect

to each independent variable in turn, while keeping the other

variable fixed. These independent minimizations are followed

by an update of the Lagrange multiplier. In summary, the

algorithm results in the following scheme at iteration t:

ut+1 ← argmin
u

LA(s
t,u,αt) (29a)

st+1 ← argmin
s

LA(s,u
t+1,αt) (29b)

α
t+1 = α

t + µ(Lst+1 − ut+1). (29c)

From the Lagrangian duality point of view, (??) can be

interpreted as the maximization of the dual functional so that,

as the above scheme proceeds, feasibility is imposed [?].
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Now, we focus on the sub–problem (??). In effect, we see

that the minimization is separable, which implies that (??)

reduces to performing K scalar minimizations of the form

min
u[k]∈R

(
σ2ΦU (u[k]) +

µ

2
(u[k]− z[k])2

)
, ∀k ∈ Ω, (30)

where z = Ls + α/µ. One sees that (??) is nothing but the

proximity operator of ΦU (·) that is defined below.

Definition 4. The proximity operator associated to the func-

tion λΦU (·) with λ ∈ R+ is defined as

proxΦU
(y;λ) = argmin

x∈R

1

2
(y − x)2 + λΦU (x). (31)

Consequently, (??) is obtained by applying proxΦU
(z; σ2

µ )

in a component-wise fashion to z = Lst +α
t/µ. The closed-

form solutions for the proximity operator are well-known for

the Gaussian and Laplace priors. They are given by

prox(·)2 (z;λ) = z(1 + 2λ)−1, (32a)

prox|·| (z;λ) = max(|z| − λ, 0)sgn(z), (32b)

respectively. The proximity operator has no closed-form so-

lution for the Student’s potential. For this case, we propose

to precompute and store it in a lookup table (LUT) (cf.

Figure ??). This idea suggests a very fast implementation of

the proximal step which is applicable to the entire class of i.d.

potentials.

We now consider the second minimization problem (??),

which amounts to the minimization of a quadratic problem

for which the solution is given by

st+1 = (HTH+ µLTL)−1

(
HTy + µLT

(
ut+1 −

α
t

µ

))
.

(33)

Interestingly, this part of the reconstruction algorithm is equiv-

alent to the Gaussian solution given in (??) and (??). In

general, this problem can be solved iteratively using a linear

solver such as the conjugate-gradient (CG) method. Also in

some cases, the direct inversion is possible. For instance, when

HTH has a convolution structure, as in some of our series of

experiments, the direct solution can be obtained by using the

FFT [?].

We conclude this section with some remarks regarding

the optimization algorithm. We note that the computational

complexity of the shrinkage step is O(N). Therefore, the

dominating part of the computation of applying H and HT .

We also note that the method remains applicable when

ΦU (x) is nonconvex, with the following caveat: The conver-

gence is not guaranteed. However, when the ADMM converges

and ΦU is nonconvex, it converges to a local minimum,

including the case where the sub-minimization problems are

solved exactly [?]. As the potential functions considered in

the present context are closed and proper, we stress the fact

that if ΦU : R → R+ is convex and the unaugmented

Lagrangian functional has a saddle point, then the constraint

in (??) is satisfied and the objective functional reaches the

optimal value as t → ∞ [?]. Meanwhile, in the case of a

nonconvex problems, the algorithm can converge to different

local minimums depending on the initial point. It is therefore

recommended to apply a deterministic continuation method or

to consider a warm start that can be obtained by solving the

problem first with Gaussian or Laplace priors. We have opted

for the latter solution as an effective remedy for obtaining

sparser solutions.

VI. NUMERICAL RESULTS

In the sequel, we illustrate our method with some con-

crete examples. We concentrate on three different imaging

modalities and consider the problems of deconvolution, MR

image reconstruction from partial Fourier coefficients, and

image reconstruction from X-ray tomograms. For each of

these problems, we present how the discretization paradigm

is applied. In addition, our aim is to show that the adequacy

of a given potential function is dependent upon the type of

image being considered. Thus, for a fixed imaging modality,

we perform model-based image reconstruction, where we

highlight images that suit well to a particular estimator. For all

the experiments, we choose L to be the discrete-gradient op-

erator that is implemented by using forward finite-differences.

In all the experiments, the signals extended using periodic

boundary conditions. As a result, we update the proximal

operators in Section ?? to their vectorial counterparts. The

regularization parameters are optimized via an oracle to obtain

the highest-possible SNR. The reconstruction is initialized in

a systematic fashion: The solution of the Gaussian estimator

is used as initial solution for the Laplace estimator and the

solution of the Laplace estimator is used as initial solution for

Student’s estimator. The ǫ parameter for Student’s estimator

is set to 10−2. The penalty parameter µ is set to 10λ for

convex problems and 5×103λ for the nonconvex ones. These

heuristics are found to provide a good convergence speed.

A. Image Deconvolution

The first problem we consider is the deconvolution of

microscopy images. In deconvolution, the measurement func-

tion in (??) corresponds to the shifted version of the point-

spread function (PSF) of the microscope on the sampling grid:

ψD
m(x) = ψD(x − xm) where ψD represents the PSF. We

discretize the model by choosing ϕint(x) = sinc(x) with

ϕk(x) = ϕint(x − xk). The entries of the resulting system

matrix H are given by

[H]m,k = 〈ψD
m(·), sinc(· − xk)〉, (34)

In effect, (??) corresponds to the samples of the band-limited

version of the PSF.

We perform controlled experiments, where the blurring of

the microscope is simulated by a Gaussian PSF kernel of

support 9 × 9 and standard deviation σb = 4, on three

microscopic images of size 512 × 512 that are displayed

in Figure ??. In Figure ??, we show stem cells surrounded

by numerous goblet cells. In Figure ??, we illustrate nerve

cells growing along fibers, and we show in Figure ?? bovine

pulmonary artery cells.

For deconvolution, the algorithm is run for a maximum of

500 iterations, or until the relative error between the successive

iterates is less than 5 × 10−6. Since H is block-Toeplitz, it
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(a) (b) (c)

Fig. 3. Images used in deconvolution experiments: (a) stem cells surrounded by goblet cells; (b) nerve cells growing around fibers; (c) artery cells.

TABLE II
DECONVOLUTION PERFORMANCE OF MAP ESTIMATORS BASED ON DIFFERENT PRIOR DISTRIBUTIONS.

Estimation Performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
Stem cells 30 15.92 15.77 13.15
Stem cells 40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
Nerve cells 30 15.89 18.18 15.81
Nerve cells 40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
Artery cells 30 16.59 17.21 14.92
Artery cells 40 18.68 19.61 15.94

can be diagonalized by a Fourier transform. Therefore, we

use a direct FFT-based solver for (??). The measurements are

degraded with different levels of AWGN. The noise variance

σ2 is determined through blurred SNR (BSNR) that is defined

as BSNR = var(Hs)/σ2. The results are summarized in

Table ??.

We conclude from the results of Table ?? that the MAP

estimator based on a Laplace prior yields the best performance

for images having sharp edges with a moderate amount of

texture, such as those in Figures ??-??. This confirms the

observation that, by promoting solutions with sparse gradient,

it is possible to improve the deconvolution performance.

However, enforcing sparsity too heavily, as is the case for

Student’s priors, results in a degradation of the deconvolution

performance for the biological images considered. Finally, for

a heavily textured image like the one found in Figure ??,

image deconvolution based on Gaussian priors yields the

best performance. We note that the derived algorithms are

compatible with the methods commonly used in the field (e.g.,

Tikhonov regularization [?] and TV regularization [?]).

B. MRI Reconstruction

We consider the problem of reconstructing MR images from

undersampled k-space trajectories. The measurement function

represents a complex exponential at some fixed frequencies

and is defined as ψM
m(x) = e2πj〈km,x〉 where km represents

the sample point in k-space. As in Section ??, we choose

ϕint(x) = sinc(x) for the discretization of the forward model,

which results in a system matrix with the entries

[H]m,k = 〈ψM
m(x), sinc(· − xk)〉

= e−j2π〈km,xk〉 if |km|∞ ≤
1
2 . (35)

The effect of choosing a sinc function is that the system

matrix reduces to the discrete version of complex Fourier

exponentials.

We study the reconstruction of the two MR images of size

256× 256 illustrated Figure ??—a cross-section of a wrist is

displayed in the first image, followed by an MR angiography

image—and consider a radial sampling pattern in k-space (cf.

Figure ??).

The reconstruction algorithm is run with the stopping cri-

teria set as in Section ?? and an FFT-based solver is used

for (??). We show in Table ?? the reconstruction performance

of our estimators for different number of radial lines.

On one hand, the estimator based on Laplace priors yield

the best solution in the case of the wrist image, which has

sharp edges and some amount of texture. Meanwhile, the

reconstructions using Student’s priors are suboptimal because

they are too sparse. This is similar to what was observed

with microscopic images. On the other hand, Student’s priors

are quite suitable for reconstructing the angiogram, which is

mostly composed of piecewise-smooth components. We also

observe that the performance of Gaussian estimators is not

competitive for the images considered. Our reconstruction

algorithms are tightly linked with the deterministic approaches

used for MRI reconstruction including TV [?] and log-based

reconstructions [?].
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(a) (b) (c)

Fig. 4. Data used in MR reconstruction experiments: (a) cross section of a wrist; (b) angiography image; (c) k-space sampling pattern along 40 radial lines.

TABLE III
MR IMAGE RECONSTRUCTION PERFORMANCE OF MAP ESTIMATORS BASED ON DIFFERENT PRIOR DISTRIBUTIONS.

Estimation Performance (SNR in dB)
Gaussian Laplace Student’s

Wrist (20 radial lines) 8.82 11.8 5.97
Wrist (40 radial lines) 11.30 14.69 13.81

Angiogram (20 radial lines) 4.30 9.01 9.40

Angiogram (40 radial lines) 6.31 14.48 14.97

C. X-Ray Tomographic Reconstruction

X-ray computed tomography (CT) aims at reconstructing

an object from its projections taken along different directions.

The mathematical model of a conventional CT is based on the

Radon transform

gθm(tm) = Rθm{s(x)}(tm)

=

∫

R2

s(x)δ(tm − 〈x,θm〉)dx ,

where s(x) is the absorption coefficient distribution of the

underlying object, tm is the sampling point and θm =
(cos(θm), sin(θm)) is the angular parameter. Therefore, the

measurement function ψX
m(x) = δ(tm − 〈x,θm〉) denotes an

idealized line in R
2 perpendicular to θm. In our formulation,

we represent the absorption distribution in the space spanned

by the tensor product of two B-splines

s(x) =
∑

k

s[k]ϕint(x− k) ,

where ϕint(x) = tri(x1)tri(x2), with tri(x) = (1− |x|)
denoting the linear B-spline function. The entries of the

system matrix are then determined explicitly using the B-

spline calculus described in [?], which leads to

[H]m,k = 〈δ(tm − 〈x,θm〉), ϕint(x− k)〉

=
△2

| cos θm|△
2
| sin θm|

3!
(tm − 〈k,θm〉)

3
+,

where △hf(t) =
f(t)−f(t−h)

h is the finite-difference operator,

△n
hf(t) is its n-fold iteration, and t+ = max(0, t). This

approach provides an accurate modeling, as demonstrated

in [?] where further details regarding the system matrix, its

implementation and execution time are provided.

We consider the two images shown in Figure ??. The Shepp-

Logan (SL) phantom has size 256 × 256, while the cross

section of the lung has size 750 × 750. In the simulations

of the forward model, the Radon transform is computed along

180 and 360 directions for the lung image and along 120 and

180 directions for the SL phantom. The measurements are

degraded with the Gaussian noise such that the signal-to-noise

ratio is 20 dB.

For the reconstruction, we solve the quadratic minimization

problem (??) iteratively by using 50 CG iterations. The

reconstruction results are reported in Table ??.

The SL phantom is a piecewise-smooth image with sparse

gradient. We observe that the imposition of more sparsity

brought by Student’s priors significantly improves the recon-

struction quality for this particular image. On the other hand,

we find that the Gaussian priors for the lung image outperform

the other priors. Like the deconvolution and MRI problems,

our algorithms are in line with Tikhonov-type [?] and TV [?]

reconstructions used for X-ray CT.

D. Discussion

As our experiments on different types of imaging modalities

have revealed, sparsity-promoting reconstructions are pow-

erful methods for solving biomedical image reconstruction

problems. However, encouraging sparser solutions does not

always give the best reconstruction performance and non-

sparse solutions provided by Gaussian priors still yields better

reconstructions for certain images. The efficiency of a potential

function is primarily dependent upon the type of image being

considered. In our model, this is related to the Lévy exponent

of the underlying continuous-domain innovation process w
which is in direct relationship with the signal prior. The

implicit assumption in this type of formulation is that the

gradient of the image is independent from one location to
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(a) (b)

Fig. 5. Images used in X-ray tomographic reconstruction experiments: (a) the Shepp-Logan (SL) phantom; (b) cross section of the lung.

TABLE IV
RECONSTRUCTION RESULTS OF X-RAY COMPUTED TOMOGRAPHY USING DIFFERENT ESTIMATORS.

Estimation Performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom (120 direction) 16.8 17.53 18.76

SL Phantom (180 direction) 18.13 18.75 20.34

Lung (180 direction) 22.49 21.52 21.45
Lung (360 direction) 24.38 22.47 22.37

the next, which is quite likely to be an oversimplification [?].

While the results obtained with this assumption are very

promising, there is interest in investigating higher-order levels

of dependencies.

VII. CONCLUSION

The purpose of this paper has been to develop a practical

scheme for linear inverse problems by combining a proper

discretization method and the theory of continuous-domain

sparse stochastic processes. On the theoretical side, an impor-

tant implication of our approach is that the potential functions

cannot be selected arbitrarily as they are necessarily linked

to infinitely divisible distributions. The latter puts restrictions

but also constitutes the largest family of distributions that is

closed under linear combinations of random variables. On the

practical side, we have shown that the MAP estimators based

on these prior distributions cover the current state-of-the-art

methods in the field including ℓ1-type regularizers. The class

of said estimators is sufficiently large to reconstruct different

types of images.

Another interesting observation is that we face an optimiza-

tion problem for MAP estimation that is generally noncon-

vex, with the exception of the Gaussian and the Laplacian

priors. We have proposed a computational solution, based

on alternating-direction method of multipliers, that applies

to arbitrary potential functions by suitable adaptation of the

proximity operator.

In particular, we have applied our framework to deconvo-

lution, MRI, and X-ray tomographic reconstruction problems

and have compared the reconstruction performance of different

estimators corresponding to models of increasing sparsity.

In basic terms, our model is composed of two fundamental

concepts: the whitening operator L, which is in connection

with the regularization operator, and the Lévy exponent f ,

which is related to the prior distribution. A further advantage

of continuous-domain stochastic modeling is that it enables us

to investigate the statistical characterization of the signal in any

transform domain. This observation designates key research

directions: (1) the identification of the optimal whitening

operators and (2) the proper fitting of the Lévy exponent of

the continuous-domain innovation process w to the class of

images of interest.
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