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Sparse Subspace Representation for Spectral Document Clustering

Saha Budhaditya and Dinh Phung and Duc-Son Pham and Svetha Venkatesh

Abstract—We present a novel method for document cluster-
ing using sparse representation of documents in conjunction
with spectral clustering. An l1-norm optimization formulation
is posed to learn the sparse representation of each document,
allowing us to characterize the affinity between documents
by considering the overall information instead of traditional
pairwise similarities. This document affinity is encoded through
a graph on which spectral clustering is performed. The
decomposition into multiple subspaces allows documents to
be part of a sub-group that shares a smaller set of simi-
lar vocabulary, thus allowing for cleaner clusters. Extensive
experimental evaluations on three real-world datasets from
TDT2, Reuters-21578 and 20Newsgroup corpora show that
our proposed method consistently outperforms state-of-the-art
algorithms. Significantly, the performance improvement over
other methods is prominent in more complex datasets.
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I. INTRODUCTION

Document clustering, a long standing problem, aims to

group similar documents to facilitate higher level tasks -

document organization, indexing and search. A common

approach is to use the bag-of-word representation wherein

each document is a vector of size V , the number of distinct

words in the corpus. This representation creates a term-by-

document matrix that lends itself to systematic analysis -

for example, singular value decomposition can be performed

on this matrix, to project the document vector into lower

dimensional space. Subsequent steps such as clustering can

then be performed. Despite its popularity and success, this

class of methods use a single subspace to represent the

data, potentially leading to sub-optimal representations and

inferior performance in challenging datasets.

We propose a novel framework for document clustering,

using multiple subspace representation of documents to

construct a sparse graph on which spectral clustering can be

performed. Sparse representation approach, popular in signal

processing [2], [14], [21], [25],[28], is relatively new for

document representation. Sparse subspace clustering (SSC)

constructs a sparse representation of the data, and its key

advantage is its ability to automatically discover the number

of subspaces as well as their dimensions. In addition, SSC

employs ℓ1-norm regularization solvers, typically polyno-

mial in complexity, allowing it to scale well with data.

Note: This is the author version of the published conference paper in
ICDM 2012.
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Leveraging this formulation to text document modeling,

using the bag-of-word representation, we seek to repre-

sent each document vector xi as a linear combination

of other documents in the corpus xi =
∑

j 6=i cijxj =
∑

j∈Si,j 6=i cijxj +
∑

j /∈Si
cijxj where cji (s) are the co-

efficients, and Si denotes index set (subspace) of docu-

ments that document xi belongs to. In the ideal case, the

coefficients in the second term are zeros, giving rise to a

sparse representation. In addition, under the bag-of-word

representation if two documents xi and xj share the same

subset of distinct vocabulary, then cij is expected to be non-

zero, otherwise it is zero. This process will essentially induce

different subspaces for different subsets of documents, each

of which possess distinct smaller subsets of vocabulary.

This is expected to produce finer grain, reduced dimension

representations as compared with traditional methods such as

LSI, that consider a single subspace, thus improving cluster

quality.

The representation is learned by minimizing the objective

function for reconstruction, using the linear combination

of documents and a ℓ1-norm based optimization method.

Further, we extend it for an affine combination of docu-

ments and in noisy settings. We then construct a sparse

graph whose vertices correspond to documents and the

edge weights are determined from our l1-norm optimization

solution. Using this graph, a spectral clustering algorithm

is then performed to cluster documents . The advantage of

this method is two-fold: we learn the neighborhood and

affinity scores between given data points and neighbors

by considering the overall information in document space

instead of pairwise similarities using euclidean distance.

Property of ℓ1-norm based optimization methods makes the

resultant graph naturally sparse.

We evaluate our proposed method extensively using

three real-world datasets and several state-of-the-art docu-

ment clustering algorithms. Datasets include: Topic detec-

tion and tracking corpus (TDT2), and from news corpus:

Reuters-21578, and 20-Newsgroup. Methods to be com-

pared against are recently proposed document clustering

algorithms, including locality semantic indexing (LSI) [8],

locality preserving indexing (LPI) [16], graph regularized

NMF (GNMF) [5], symmetric NMF [17], Laplacian embed-

ding (LE) [3], and locally consistent concept factorization

(LCCF) [4]. We also evaluate against k-NN or ǫ-ball based

methods [17]. In addition, we compare our results against

semi-supervised algorithm in [23] where supervision is

provided in terms of similarity constraints between the docu-



ments part-based representation. We show that our proposed

method consistently outperforms all these methods. We show

that affine and noisy sparse representations yield even better

results.

Addressing the problem of document clustering, our con-

tributions are:

• A novel formulation of document clustering using us-

ing sparse representations, enabling multiple sub-space

decomposition. This enables clustering via the derived

multiple subspaces;

• Extensive validation of the proposed method on three

popular real world data sets, compared against state-

of-art benchmark spectral and non-negative matrix fac-

torization algorithms. The resultant improvement is

significant - on the challenging 20 Newsgroup dataset,

we outperform other methods, on Rand-index by 11-

32%, and on F-measure by 16-40%

The novelty of our work is that it does not require parameter

tuning, for example neighborhood size or distance measures,

to learn the affinity matrix, crucial for other spectral cluster-

ing algorithms. The constructed graph is naturally sparse.

The significance of l1norm based spectral methods for

document clustering is that it offers a systematic approach

to learn the neighborhood structure of data points, followed

by recovery of subspace for each cluster in the corpus. This

not only facilitates representation of clusters, but enables

capture of underlying semantic concepts in sub-groups at

finer levels.

II. RELATED BACKGROUND

Recently, the literature over different disciplines has re-

vealed the usefulness of sparse representation, which is re-

lated to the theory of compressed sensing [7], [13]. Success-

ful applications include robust face recognition [26], motion

segmentation [14], image coding [2], image restoration [18],

and image super-resolution [27]. It is the success of these

methods in related fields that motivates us to explore sparse

representations in the document clustering context. We note

importantly that the sparse representation here is made with

respect to other observed data and it is not the sparse nature

of documents with respect to a large and fixed vocabulary.

There are two main approaches in the document clustering

literature, namely matrix factorization and spectral cluster-

ing. Examples of matrix factorization clustering methods

include graph regularized non-negative matrix factorization

(NMF) [5], [17], symmetric NMF[17], locally consistent

concept factorization (LCCF) [4]. The NMF-variant methods

usually decompose data matrix into two nonnegative matri-

ces consisting of basis and coefficient vectors respectively.

They apply k-means on the coefficient matrix to group

similar documents. The major limitation of NMF methods

is that they only learn the global structure of the document

space and ignore the local structure between documents.

Besides, NMF methods can be computationally expensive.

The second approach which we follow in this work is

spectral clustering. Examples of this category include latent

semantic indexing (LSI) [29], locality preserving indexing

(LPI) [16], co-clustering and its variants [9], graph-cut

methods [12][30] such as normalized cut [10], [22], ratio cut

[11], min-max cut [12], normalized spectral clustering using

Ng, Jordan and Weiss (NJW) method. Spectral methods treat

a corpus as a graph whose vertices represent documents. The

edges of the graph encode the notion of similarity between

documents and is typically summarized by the affinity

matrix. To perform clustering, a spectral method computes

the graph Laplacian L, which is a function of the affinity

matrix S. For effective clustering, spectral methods seek a

transformation on the original high-dimensional document

data X = [x1,x2, . . . ,xN ] to a lower-dimensional space

Y = [y1,y2, . . .yN ] via a linear transformation matrix P,

so that yi = PTxi. This transformation matrix is typically

found from an eigenvalue problem. Define D a diagonal

matrix, whose the ith diagonal entry being Dii =
∑n

j=1
Sij .

Different spectral methods can be distinguished by different

choice of the graph Laplacian, the eigenvalue problem,

and the final partition of the projected data. For example,

locality preserving indexing (LPI) [16] uses L = D − S

and computes P as the matrix of eigenvectors associated

with the smallest eigenvalues of the problem XLXTp =
λXDXTp; latent semantic indexing (LSI) [8] uses L = I

and computes P as the matrix of eigenvectors associated

with the largest eigenvalues of the problem XXTp = λp;

Laplacian embedding (LE) [3] computes P as the matrix of

eigenvectors associated with the smallest eigenvalues of the

problem Lp = λDp. It is noted that LPI, LSI, and LE all

use k-means on the projected data for final clustering. On

contrary to the above methods, graphcut variants perform the

final clustering of the data points slightly differently. For

example, normalized spectral clustering using Shi-Malik’s

method (SM) [22] computes P as the matrix of eigenvectors

associated with the smallest eigenvalues of the problem

Lp = λDp. The cluster assignment is obtained by using

k-means on the rows of the matrix P. Similarly, normalized

spectral clustering using Ng-Jordan-Weiss method (NJW)

[20] chooses L = I − D−1/2SD−1/2 and computes P

as the matrix of eigenvectors associated with the smallest

eigenvalues of L, where each row of P is normalized to

unity, and k-means is used on the rows of P for final

clustering. Ratio Cut [24] finds the second largest eigenvalue

of (D − S)p = λp. For clustering, the entries of the

eigenvector corresponding to second largest eigenvalue, i.e.

p2 is sorted in increasing order and the order list is used to

partition the data into two parts in a manner so that the cut

criterion is minimized over the two partition. This process

continues recursively until the number of desired clusters is

obtained. Min-Max Cut [12], [30] also solves the eigenvalue

problem Sp = λDp, and then use second largest eigenvalue



p2 to partition the data points.

Regardless of the choices for L, all spectral methods

depend on the input affinity matrix S. We argue that a

well-designed affinity matrix that characterizes the under-

lying statistics of documents is the key to success. We

note previous works typically use either heuristic or non-

scalable choices for the affinity matrix. For example, [4],

[16], [17] use k-nearest neighbour (NN); [24],[22] use ǫ-
NN for computing the affinity matrix, which necessitates

heuristic tuning for k or ǫ. Other methods, such as [20],[12],

[30], use fully-connected graphs, which are not suitable

for large-scale document clustering. On the contrary, our

method is scale invariant, i.e. it computes S automatically

regardless of varying data scales. The other important aspect

is that our method discovers multiple subspaces having small

vocabulary sets which represent unique categories in the

corpus. This is not possible with other methods that could

only learn a single subspace.

III. PROPOSED DOCUMENT CLUSTERING FRAMEWORK

Our proposed method consists of two stages. In the

first stage, we obtain sparse representations for documents

using either linear subspace, affine subspace, or noisy for-

mulations. In the second stage, we construct the affinity

matrix from the sparse representations and use a version

of normalized spectra clustering with NJW. We detail each

stage as follows.

A. Sparse Subspace Representations

Consider a set of N documents represented by a term-by-

document data matrix X̃ = [x̃1, x̃2, . . . , x̃N ], where x̃i ∈
R

D and D is the number of distinct vocabularies. We first

normalize the data by performing an SVD X̃ = UΣVT and

project each document vector x̃i into a lower r-dimensional

space: xi = UT
r x̃i and transform the original data matrix X̃

into X = {x1, . . . ,xN}.

Our proposed method then seeks a sparse representation

for data points in X. Our goal is represent each document

xi as a linear combination other documents. Intuitively, only

document xj which is closely related to xi will contribute

to the construction of xi and vice versa. For instance, in the

extreme example of a document collection, which consists

of only two non-overlapped sub-categories of documents,

our approach of representation is expected to induce exactly

two subspaces. In practice, there will be some overlapping

between subcategories and our formulation shall quantify

them exactly through the linear combination coefficients

computed from an optimization problem.

For each document vector xi, denote by Si the index set of

the subspace (sub-collection of documents) that xi belongs

to, we rewrite the linear representation for xi as follows:

xi =
∑

j 6=i

cijxi =
∑

i∈Si,j 6=i

cijxi +
∑

j /∈Si

cijxi. (1)

Ideally, when there is no overlapping between the subspaces,

the coefficients in the second summation of the right term in

Equation (1) are zeros, giving rise to a sparse representation.

By collecting the linear representation of all points xi in the

coefficient matrix C = [c1, c2, . . . , cN ], one can express the

representation in the matrix form as follows:

X = XC, diag(C) = 0.

Define the ℓ1-norm of a matrix C as ||C||1=
∑

i,j |cij |. It

follows from compressed sensing that minimizing this ℓ1-

norm naturally promotes sparsity. The above equality con-

straints ensure the solution is consistent with the observed

data. Here, there are several choices that one may need to

impose to recover the sparse coefficients as follows:

1) Linear subspace formulation: Under this formulation,

there are no further constraints on C and the sparse repre-

sent ions of documents are obtained by solving following

optimization problem:

argminC ||C||1 (2)

s.t. X = XC, diag(C) = 0. (3)

Ideally, equation 3 is related to the sparse subspace repre-

sentation of the data points in X which will be explored

in details in later part of this section. This optimization

problem is convex with equality constraints, and hence it is

readily solved with existing convex optimization packages.

In compressed sensing, this is referred to as the basis pursuit

problem.

2) Affine subspace formulation: The linear subspace for-

mulation does not constrain the search space for the coef-

ficient matrix. In certain scenarios, it is observed that con-

straining the parameters by an affine constraints narrows the

search space, and hence may improve numerical stability and

enhance subspace separation. To impose affine constraints

to the case here, we can represent each document xi as an

affine combination of other documents as follows:

xi =
∑

j 6=i cijxj (4)

s.t.
∑N

j=1
cij = 1 (5)

Then the sparse representation of documents are found from

the following problem:

argminci
||ci||1 (6)

s.t. xi = Xc, cTi 1 = 1, cii = 0 . (7)

We show that the machinery for solving the linear subspace

formulation can be readily used here. To simplify the nota-

tion, denote X−i as X with the ith column removed, and

a as ci with the ith entry removed. We can rewrite the

formulation in the following form



argmina ||a||1 (8)

x
′

i = X
′

a. (9)

Here, x
′

i=

[

xi

1

]

and X
′

=

[

X−i

1T

]

. Thus, the affine

formulation has the same form as the linear formulation and

thus efficient sparsity solvers can be readily used.

3) Noisy data formulation: In practice, it is more ap-

propriate to account for noise when modeling documents

as being sampled from the subspaces. In such cases, we

can express each document as xi = x̄i + ei, where x̄i

is the true representation of the ith document and ei is

the noise, which is bounded as ||ei ||2 ≤ ε. Extending the

affine subspace formulation to account for noise, we propose

to compute the sparse representation xi by solving the

following optimization problem:

argminC ||ci||1 (10)

s.t. ||xi −Xci||
2
2 ≤ ε,

∑

i

cij = 1, cii = 0. (11)

We next transform the formulation to a familiar form that

can be efficiently solved using existing convex optimization

solvers. To simplify the notation, denote X−i as X with the

ith column removed, and a as ci with the ith entry removed.

The above formulation can be rewritten as

argmin
a

||a||
1

(12)

s.t. ‖xi −X−ia‖22 ≤ ε (13)
∑

i ai = 1. (14)

To solve this problem, we find it more convenient to express

in the Lagrangian form, and our goal is to minimize the

following objective function

L(a, y) = ||a||1 +
µ

2
||xi −X−ia||22

+y(1− 1Ta) +
η

2
(1− 1Ta)2, (15)

with respect to a and the Lagrangian variable y. Here, µ
is the Lagrangian equivalence for the noise bound ε, and η
is a parameter to improve numerical stability, which can be

set to a small number. Following the alternative Lagrangian

multiplier framework [6], we can solve this problem by

alternating between y and a in an iterative fashion. The

complete derivation of minimizing L(a,y) is detailed in the

Appendix.

B. Spectral Document Clustering

1) Affinity Graph Construction: After obtaining the co-

efficient matrix C, we have the sparse representation of

each document as ci where the nonzero coefficients of ci

correspond to documents from the same subspace. The next

step is to group the documents into multiple linear subspaces

where each subspace corresponds to similar documents.

Under the spectral approach, an undirected graph GC is

constructed on X, where each vertex of GC is a document.

The affinity matrix S is constructed as SC = |C| + |C|T .

Specifically in our case, the connected components of GC

correspond to the nonzero coefficients of C. Thus, docu-

ments corresponding to the same subspace are connected,

whilst documents belonging to the different subspace are not

connected. If the data is sorted according to their similarities

and if there are K connected components in graph GC, then

GC will have a block-diagonal matrix as follows

SC =













S1C 0 . . 0
0 S2C . . 0
. . . . .
. . . . .
0 0 0 0 SKC













,

where SkC is the affinity matrix is of data points in sub-

space Sk. In Figures 1 and 2, we give examples of these

affinity matrices obtained from three datasets used in our

experiments.

2) Clustering: Recall that P is a transformation matrix,

which maps data points in X onto a lower dimensional space

Y, where yi = PTxi. In our proposed framework, we

compute P as the matrix of principal eigenvectors of the

NJW Laplacian matrix, which is defined as

L = I−D− 1

2SCD
− 1

2 .

Here, D is a diagonal matrix with diagonal entries being

Dii =
∑

j SC,ij where SC,ij is the entries at the position

(i, j) of SC. To obtain K clusters, we select K+1 principal

eigenvectors to construct P, i.e. P = [p1,p2, .......,pK+1].
This is a N × (K + 1) matrix , where the i-th document

is represented by the coefficients of the i-th row of P. We

normalize each row of P to unity and use k-means on these

rows. If K is unknown, it can be found by counting the

number of smallest eigenvalues of the Laplacian matrix that

are or close to zero.

The overall method for the linear subspace formulation is

summarized in Algorithm 1 (see next page).

IV. EXPERIMENTS

Three real-world benchmark datasets are used: Topic

detection and tracking (TDT2), Reuters-21578 and 20-

Newsgroup corpus. TDT21 was collected from 6 sources, in-

cluding 2 news wires (APW and NYT), two radio programs

(VOA and PRI) and two TV channel (CNN and ABC).

Reuters-215782 contains 21578 documents across 135 cat-

1Available at: http://www.nist.gov/speech/tests/tdt/tdt98/index.html and
detailed description as well as preprocessed data can be found in [1].

2http://www.davidlewis.com/resources/testcollections/reuters21578/.



Algorithm 1 Document Clustering via Sparse Spectral

Graph Partitioning (SSGP)

Input: Documents in lower subspace X = [x1,x2, . . . ,xN ].
Output: K clusters of X

• Compute the sparse coefficients matrix C solving the

optimization problem:

argmin
C

||C||1 s.t. X = XC

• Compute affinity matrix SC = |C|+ |C|T .

• Computing the NJW Laplacian matrix L = I −
D− 1

2SCD
− 1

2 .
• Perform eigenvalue decomposition of L.

• Compute P as the matrix of K + 1 eigenvectors

associated with the smallest eigenvalues.

• Each row of P is normalized to unity.

• The clusters are obtained by applying k-means on the

rows of the normalized P.

egories. 20Newsgroup3 contains approximately 20,000 doc-

uments divided into 20 groups or categories. There is

great overlap among the groups (e.g., comp.graphics,

ibm.pc.hardware, mac.pc.hardware, comp.windows), and

this makes 20Newsgroup a very challenging dataset for

clustering.

In all cases, we remove duplicate documents across cate-

gories and retain only categories containing no less than 10

documents. We also perform a standard pre-preprocessing

step, including removal of stop words and stemming. Each

corpus is then represented by a term-document matrix, where

rows correspond to the vocabulary in the corpus and columns

correspond to the documents. The final statistics used in our

experiment for each of these datasets is summarized in Table

I.

Table I
STATISTICS FOR DATASETS USED

Datasets Size (N ) Vocab size # Categories

TDT2 10021 36771 30

Reuters-21578 8213 18933 25

20Newsgroup 20,000 16437 20

A. Evaluation Metrics

Clustering results are evaluated by comparing the true

labels of the documents against labels obtained from the

algorithms. We used standard evaluation metrics [4], [11],

[15], including: clustering accuracy (AC), normalized mu-

tual information (NMI), rand index (RI) and F-measure Fβ .

We briefly describe them below.

3 http://www.people.csail.mit.edu/jrennie/20Newgroups/

Clustering Accuracy (AC) : AC quantifies the accuracy

of trying to map one-to-one between true class label and

obtained class label as described in [19]. Given document

xi, if ti and oi are true class and obtained class labels, then

AC =

∑N
i=1

δ(ti,map(oi))

N
,

where δ(p, q) = 1 only if p = q or 0 otherwise. The map(oi)
is permutation mapping function that try to map obtained

label oi to the most suitable true class label (see [19] for

further details).

Normalized Mutual Information (NMI): NMI quantifies

the quality of obtained clusters with respect to true clusters.

If T denotes the true clustering result and O the obtained

clustering results, the mutual information is first defined as:

MI(T,O) =
∑

ti∈T

∑

oj∈O

p(ti,oj) log
p(ti,oj)

p(ti)p(oj)
,

where p(ti) =
|ti|

N
, p(oj) =

|oj |

N
, p(ti,oj) =

|ti ∩ oj |

N
,

and |ti| denotes the number of data points in cluster ti and

|ti ∩ oj | is the the number of data points belong to both

clusters ti and oj . Normalized Mutual Information between

T and O is then defined as:

NMI(T,O) =
MI(T,O)

max(H(T ), H(O))
,

where H (T ) and H (O) are the entropies for T and O
respectively. NMI ranges from 0 and 1 and NMI(T,O) = 0
implies T and O are disjoint whereas NMI(T,O) = 1
implies T and O are identical or a perfect clustering result

has obtained.

Rand Index (RI): If a true positive (TP) is scored when two

similar documents in the groundtruth are grouped together

in the obtained results, a true negative (TN) is when two

dissimilar documents are grouped separately, a false positive

(FP) is when two dissimilar documents are grouped together

and a false negative (FN) is when two similar documents are

grouped separately, then the rand index (RI) is defined as

follows:

RI =
TP + TN

TP + FP + FN + TN
.

Precision (P) , Recall (R) and F-measure (Fβ): are also

defined as:

P =
TP

TP + FP
,R =

TP

TP + FN
,

Fβ =
(β2 + 1)P ×R

P +R

B. Results and Comparison

We extensively compare our proposed clustering frame-

work (denoted by SSGP) against recently proposed state-

of-art document clustering algorithms from two main ap-

proaches: spectral and nonnegative matrix factorization.



Table II
PERFORMANCE ON TDT2 DATA SETS

K
Accuracy (%) Normalized Mutual Information (NMI)

LSI LE LPI LPI-b SSGP LSI LE LPI LPI-b SSGP

2 0.992 0.998 0.998 0.998 0.998 0.965 0.981 0.981 0.981 0.981

3 0.985 0.996 0.996 0.996 0.996 0.962 0.976 0.976 0.977 0.978

4 0.970 0.996 0.996 0.996 0.995 0.942 0.979 0.979 0.979 0.978

5 0.961 0.993 0.993 0.993 0.995 0.942 0.973 0.973 0.975 0.970

6 0.954 0.992 0.992 0.993 0.990 0.939 0.974 0.974 0.975 0.968

7 0.903 0.988 0.987 0.990 0.989 0.892 0.966 0.968 0.969 0.967

8 0.890 0.987 0.988 0.989 0.988 0.895 0.967 0.967 0.970 0.968

9 0.870 0.983 0.984 0.987 0.988 0.878 0.967 0.966 0.970 0.968

10 0.850 0.978 0.979 0.982 0.980 0.869 0.958 0.959 0.962 0.972

15 0.825 0.958 0.958 0.970 0.971 0.844 0.942 0.946 0.961 0.961

20 0.810 0.924 0.923 0.954 0.954 0.832 0.925 0.933 0.944 0.945

30 0.789 0.910 0.911 0.930 0.932 0.822 0.915 0.916 0.926 0.928

Average 0.899 0.975 0.975 0.981 0.9813 0.898 0.96 0.961 0.965 0.964

(a) SkNN (b) SǫNN (c) SC

Figure 1. Affinity matrices obtained for TDT2.

• Methods from spectral approach include Laplacian

embedding (LE) proposed in [3], latent semantic in-

dexing (LSI) [8] and locality preserving indexing (LPI)

[16]. LPI and LE construct a graph on the documents

where the number of nearest neighbor is set to 15

as suggested in [16]. Two parameters are required for

these algorithms: the dimension of the lower subspace r
and number of clusters K. For In LPI, r is chosen as the

number of nonzero singular values of data matrix X and

K is determined from the principal subspace spanned

by first K − 1 eigenvectors of graph laplacian L. For

LSI, we use the largest K eigenvectors the covariance

of the data matrix X.

• Methods based on nonnegative matrix factorization

(NMF) include graph regularized NMF (GNMF) [5],

symmetric NMF [17] and locally consistent concept

factorization (LCCF) [4]. We also compare our method

with constrained semi-supervised method CITCC [23],

a recent method that takes into account the constraints

derived from a name identity extraction process (see

[23] for details).

In our experiment, K ranges from 2 to 30 for TDT2, 2

to 25 for Reuters and 2 to 20 for 20Newsgroup data sets

respectively. For a given K, we extracted 50 random subset

form K permutations of all possible sets and conducted

20 tests on each subset as suggested by [16] to test the

generalization of the performance.

Table II presents the clustering results obtained for TDT2

dataset comparing against various spectral approaches de-

scribed earlier. This is a relatively easy dataset and, except

for LSI, all methods perform well, achieving almost perfect

clustering results. Our results are consistent with various

performances reported earlier in [16], [5]. Though there is

not much room to improve upon, on average across K, our

proposed SSGP still achieves the best performance. Figure

1 further illustrates the affinity matrices obtained for this



dataset. Despite having up to 30 categories, the data is well

separated in the affinity matrix representation, especially the

proposed method has resulted in a strong evidences of the

existence of multiple subspaces in the data.

Table III and IV presents the results for Reuters dataset

compared against spectral and NMF based methods. This

is a more challenging dataset and our rival algorithms

start to degrade in performance. Our results consistently

outperform all of them in both accuracy and NMI scores.

On average, our accuracy improves by 17% with respect

to (w.r.t) LPI-b, 23% w.r.t LPI and LE and 30% w.r.t LSI.

The NMI scores are also improved by a similar factor. For

NMF-based algorithms, our proposed method improves the

accuracy by 29%, 23% and 21% compared with GNMF,

SymNMF and LCCF respectively. A similar improvement

is recorded for NMI.

Table V reports the results for 20newsgroup dataset.

This is the most challenging dataset and we compare our

performance against LPI (as the best in spectral-based ap-

proach), SymNMF (as the best in NMF-based approach) and

CITCC (recent state-of-the-art with extra semi-supervised

information). For this dataset we use the rand index (RI)

and F-measures as the performance metrics as they are

often used for this dataset in the literature. Again, our

method has resulted in a superior performance against

its rivals. On average, RI and Fβ are respectively improved

by 11% and 16% with respect to LPI (spectral approach); by

13% and 25% w.r.t SymNMF (NMF-based approach); and

overwhelmingly by 32% and 40% w.r.t the semi-supervised

method CITCC. To further illustrate how well the data

is separated into subspaces, Figure 2 shows the affinity

matrices. Visually, the data are well separated under our

representation.

To sum up, across all datasets our proposed method has

consistently resulted in better clustering performance as

compared against several existing methods using different

evaluation metrics. In less complex datasets (e.g., TDT2) we

achieve a comparable performance,but as the data becomes

more complex, the strength of our method starts to emerge

and this is clearly demonstrated in Reuters and 20Newsgroup

data.

C. Computational Cost Analysis

Table VI presents the computational cost in our proposed

SSPG and LPI and SymNMF. The mean and standard

deviation computed over 50 random subsets for a given K
of Reuters data is presented. As shown, Symmetric NMF

(SymNMF) is quickest; SSPG is little more expensive than

SymNMF, whereas LPI is the slowest among the three

methods. Interestingly, Table III and Table IV show that

the LPI was the best in terms of accuracy and NMI w.r.t

all other benchmark methods and specifically, SymNMF is

worse than LPI by a margin of 7% in AC and 17% in NMI.

SymNMF may be quickest but the performance is not on

par with the current benchmark methods. While SSPG is 41-

60% faster than LPI, the accuracy improves by a margin of

17% and NMI by 29%.

D. Additional Experimental Results

To further illustrate and understand the behaviour of the

proposed framework, we conduct two further experiments.

The first experiment is to evaluate the affine and noisy

variant of our proposed method presented in Section III-A2

and Section III-A3 respectively. The second experiment is

designed to test the performance our method under different

graph-cut algorithms.

Table VII presents the performance on 20Newsgroup

datasets for the affine and noisy data models mentioned in

Sections III-A2 and III-A3 respectively. The performance

is further improved for affine subspaces (SSPG-A) where

the improvement in RI and F-measure is almost 2% with

respect to SSPG. A similar trend is also observed for the

noise model (SSPGA-N) where RI and F-measure improves

by a margin of 3.6% and 5.4% .

Recall from Section II graph-cut methods (e.g., SM, ratio

cut, min-max cut and NJW) are formulated on the affinity

matrix S. In following experiment, we demonstrate the

performance of the graph cut methods under settings in

which S are computed by k-NN (SkNN ), ǫ-NN (SǫNN ) and

our proposed SC respectively. Figure 2 shows the affinity

matrices computed on 20Newsgroup data sets for K = 10.

Nonzero points lying outside the diagonal block of S de-

teriorates the accuracy of the clustering method. As shown

in Figure 2, SkNN and SǫNN has a noisy block structures

whereas SC has minimum number of nonzero points lying

outside the diagonal block. Table VIII shows that the graph

cut methods achieve a high performance using SC with

respect to SkNN and SǫNN respectively. On average, the

improvement in accuracy is close to
0.796− 0.442

0.442
≈ 80%

with respect to SkNN and SǫNN .

V. CONCLUSION

We have proposed a novel document clustering method

that represents a document as a linear sparse combination

of the remaining documents in the corpus. The sparse coef-

ficients are learned by optimizing a l1-regularized objective

function on documents, and then a spectral algorithm is

applied to group the documents into clusters. We argue

that the subspaces discovered through this process naturally

correspond to categories in the corpus. The novel aspect of

the proposed method is the ability to learn the neighborhood

structure automatically, i.e. local correlations between the

documents. Unlike previous methods which compute the

affinity matrix from heuristic parameter tuning, such as k-

NN and ǫ-NN, our method generates an affinity matrix

that automatically adapts to varying data scales. We have

also extended our method for sparse representations of

documents to the affine and noisy formulation, which are



Table III
PERFORMANCE ON REUTERS COMPARED AGAINST SPECTRAL-BASED APPROACHES.

K
Accuracy (%) Normalized Mutual Information (%)

LSI LE LPI LPI-b SSGP LSI LE LPI LPI-b SSGP

2 0.864 0.923 0.923 0.963 0.975 0.569 0.697 0.697 0.793 0.793

3 0.768 0.816 0.816 0.884 0.890 0.536 0.601 0.601 0.660 0.700

4 0.715 0.793 0.793 0.843 0.900 0.573 0.635 0.635 0.671 0.720

5 0.654 0.737 0.737 0.780 0.870 0.538 0.603 0.603 0.633 0.660

6 0.642 0.719 0.719 0.760 0.881 0.552 0.615 0.615 0.636 0.713

7 0.610 0.694 0.694 0.724 0.804 0.547 0.617 0.617 0.629 0.650

8 0.572 0.650 0.650 0.693 0.861 0.530 0.587 0.587 0.615 0.672

9 0.549 0.625 0.625 0.661 0.832 0.532 0.586 0.586 0.605 0.650

10 0.540 0.615 0.615 0.646 0.800 0.528 0.586 0.586 0.607 0.650

15 0.468 0.554 0.555 0.590 0.750 0.492 0.548 0.549 0.560 0.630

20 0.461 0.475 0.474 0.511 0.700 0.466 0.482 0.484 0.503 0.610

25 0.366 0.412 0.414 0.456 0.680 0.356 0.417 0.416 0.454 0.600

Average 0.600 0.667 0.667 0.709 0.830 0.518 0.581 0.5813 0.613 0.670

Table IV
PERFORMANCE ON REUTERS COMPARED AGAINST NMF-BASED APPROACHES.

K
Accuracy (%) Normalized Mutual Information (%)

GNMF SymNMF LCCF SSGP GNMF SymNMF LCCF SSGP

4 0.780 0.786 0.752 0.900 0.620 0.533 0.556 0.720

6 0.690 0.701 0.677 0.881 0.580 0.556 0.567 0.713

10 0.605 0.658 0.679 0.800 0.541 0.510 0.506 0.650

20 0.456 0.509 0.601 0.701 0.458 0.489 0.455 0.610

Average 0.632 0.663 0.677 0.820 0.549 0.522 0.521 0.670

Table V
CLUSTERING RESULTS FOR 20NEWSGROUP.

K
RI Fβ=1

CITCC SymNMF LPI SSGP CITCC SymNMF LPI SSGP

4 0.70 0.81 0.761 0.89 0.65 0.74 0.77 0.82

6 0.69 0.86 0.87 0.96 0.623 0.72 0.75 0.88

12 0.65 0.76 0.81 0.91 0.611 0.66 0.71 0.93

20 0.58 0.68 0.67 0.80 0.545 0.58 0.65 0.86

Average 0.655 0.77 0.78 0.89 0.60 0.67 0.72 0.87

(a) SkNN (b) SǫNN (c) SC

Figure 2. Affinity matrices obtained for 20Newsgroup for K = 10.



Table VI
COMPUTATIONAL TIME IN SECONDS: ON REUTERS DATA

K
SymNMF LPI SSPG

Mean Median Mean Median Mean Median

4 4.61 0.13 67 4.39 39 9

8 39 5.85 1079 1011 82 39

10 5 5.70 1248 963 144 34

Table VII
PERFORMANCE ON 20NEWSGROUP USING A VARIANT OF OUR METHOD IN WHICH AFFINE SUBSPACES AND HANDLING DATA NOISES PRESENTED IN

SECTION III-A2 AND SECTION III-A3 IS USED.

K
RI Fβ

SSPG SSPG-A SSPG-N SSPG SSPG-A SSPG-N

4 0.885 0.897 0.900 0.820 0.849 0.870

6 0.956 0.968 0.971 0.880 0.900 0.941

12 0.910 0.927 0.941 0.930 0.941 0.965

20 0.800 0.842 0.860 0.860 0.881 0.901

Average 0.887 0.900 0.918 0.872 0.885 0.919

Table VIII
GRAPH CUT METHODS: PERFORMANCE ON 20 NEWSGROUP DATA

Methods
Accuracy (%)

SkNN SǫNN SC

SM method [22] 0.340 0.344 0.767

Ratio Cut [11] 0.330 0.331 0.756

Min-max Cut [12] 0.450 0.480 0.761

NJW method [20] 0.650 0.640 0.900

Average 0.442 0.448 0.796

demonstrated to even provide better results. We validated

our results by conducting intensive experiments on three

real-world news datasets and showed that its performance

is clearly superior to current state-of-the-arts, including

LSI[8], LPI[16], NMF[17] and semi-supervised algorithm

CITCC[23].

APPENDIX

ALM UPDATES FOR NOISY FORMULATION

In what follows, we derive the iterative updates for a and

y in (15). The principle of the alternating method is to fix

one set of variables and solve for the others, and repeat until

convergence is found. When we fix a and solve for y, the

ALM update is standard as follows

yk+1 = yk + η(1− 1Tak).

Here, the superscript denotes the iteration number. Next,

we fix y and solve for a. The objective function with respect

to a is

L(a) = ‖a‖1 +
µ

2
‖xi −X−ia‖22

+y(1− 1Ta) +
η

2
(1− 1Ta)2

= ‖a‖1 +
µ

2
‖xi −X−ia‖22

+
η

2
aT11Ta− ηaT1+ const. (16)

We show that it is possible to convert this objective function

to a Lasso form. In fact, expanding the objective function

we obtain

L(a) = ‖a‖1 + const

+
µ

2

(

aTX−iTX−ia+
η

µ
aT11Ta

)

−
µ

2

(

2aT
(

X−iTxi +
(η + y)1

µ

))

. (17)



To simplify the notation, we define

Z =

[

Y

(η/µ)1T

]

, (18)

c = X−iTxi +
(η + y)1

µ
. (19)

Then the objective function is written as

L(a) = ‖a‖1 +
µ

2

(

aTZTZa− 2aT c
)

+ const. (20)

Let m be a vector such that ZTm = c, then we can write

L(a) = ‖a‖1 +
µ

2
‖m− Za‖22 + const. (21)

This is the Lasso form and thus can be solved with many

efficient Lasso-type optimization packages.
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