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Sparse synaptic connectivity is required for
decorrelation and pattern separation in feedforward
networks
N. Alex Cayco-Gajic1, Claudia Clopath2 & R. Angus Silver 1

Pattern separation is a fundamental function of the brain. The divergent feedforward

networks thought to underlie this computation are widespread, yet exhibit remarkably similar

sparse synaptic connectivity. Marr-Albus theory postulates that such networks separate

overlapping activity patterns by mapping them onto larger numbers of sparsely active

neurons. But spatial correlations in synaptic input and those introduced by network con-

nectivity are likely to compromise performance. To investigate the structural and functional

determinants of pattern separation we built models of the cerebellar input layer with spatially

correlated input patterns, and systematically varied their synaptic connectivity. Performance

was quantified by the learning speed of a classifier trained on either the input or output

patterns. Our results show that sparse synaptic connectivity is essential for separating

spatially correlated input patterns over a wide range of network activity, and that expansion

and correlations, rather than sparse activity, are the major determinants of pattern

separation.
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T
he ability to distinguish similar, yet distinct patterns of
sensory input is a core feature of the nervous system.
Pattern separation underlies such everyday activity as

recognizing faces and distinguishing odors. Early theoretical work
by Marr and Albus1, 2 showed that divergent excitatory feedfor-
ward networks can separate patterns of neuronal activity by
projecting them onto a larger population (called ‘expansion
recoding’) and reducing the fraction of neurons active, forming a
‘sparse’ population code in which the overlap between distinct
neuronal firing patterns is reduced3–7. Divergent feedforward
networks, thought to be involved in pattern separation, are
widespread in the nervous system of both vertebrates and
invertebrates, including the olfactory bulb8, 9, mushroom
body10, 11, dorsal cochlear nucleus12 and hippocampus13, 14. But
perhaps the most well studied example is the input layer of the
cerebellar cortex, which combines many different types of sensory
modalities and motor command signals15. The input layer of
the cerebellar cortex has an evolutionarily conserved network
structure, in which granule cells receive 2–7 synaptic inputs, with
the claw-like ending of each dendrite innervating a different

mossy fibre15. Interestingly, other divergent feedforward net-
works also have relatively few synapses: granule cells in the dorsal
cochlear nucleus have 2–3 dendrites16 while Kenyon cells in the
fly olfactory system have around 7 synaptic inputs17. This raises
the question of why the synaptic connectivity of these networks is
so similar. Recent studies have provided a potential solution,
showing that having few synaptic inputs per granule cell provides
an optimal solution to a trade-off between information trans-
mission and sparsening population activity18, and optimizes
associative learning in feedforward networks with sparse coding
levels19. However, several key questions remain regarding how
the structure of feedforward networks supports pattern
separation.

Marr-Albus theory posits that sparse coding and expansion
recoding together reduce pattern overlap1, 2, 7, while more
recent work highlights the importance of input
decorrelation8, 10, 11, 20–24. However, it is not known how much
each factor separately contributes to pattern separation and
learning, or how they depend on network structure. In addition,
theoretical studies have generally focused on idealized,
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Fig. 1 A simple feedforward model of the cerebellar input layer with sparse, but not dense, synaptic connectivity speeds learning. a Top: Anatomically

constrained 3D model of cerebellar input layer. Positions of Granule Cells (GCs, blue) and Mossy Fibers (MFs, red) within an 80 μm ball. Synaptic

connections are shown in gray. Scale bar indicates 20 μm. Bottom: Distribution of dendritic lengths. Arrow indicates mean. b Example of MF statistics

generated with a correlation radius of σ= 20 μm and average fraction of active MFs (fMF) of 0.3. Left: Histogram of the fraction of active MFs over different

activity patterns. Right: Correlation between MF pairs plotted against distance between them (grey). Black indicates specified fMF (left) or specified spatial

correlations (right). c Schematic of feedforward network (red, MFs; blue, GCs). The downstream perceptron-based decoder classifies either GC patterns

(as shown) or else raw MF patterns without the MF-GC layer. Inset shows the rectified-linear GC transfer function. d Example of root-mean-square error

as a function of the number of training epochs during learning based on MF (red) or GC (blue) activity patterns. Dashed line indicates threshold error. For

this example, fMF= 0.5 and the number of inputs per GC (Nsyn) is 4. e Raw learning speed of perceptron classifier for different correlation radii, for MFs

(red) or GCs with sparse (solid blue, Nsyn= 4) or dense (dashed blue, Nsyn= 16) connectivity. f Normalized learning speed (GC speed/MF speed) shown

for different synaptic connectivities and fractions of active MFs. Blue lines represent double exponential fit of the boundary at which the normalized speed

equals 1 (i.e., when the perceptron learning speed is the same for GC and MF activity patterns). For clarity, only the region in which the normalized speed> 1

is shown. Left: independent MF activity patterns. Right: Correlated MF inputs (σ= 20 μm). g Top: Median normalized learning speed (over different fMF) for

sparse (solid line, Nsyn= 4) and dense (dashed line, Nsyn= 16) synaptic connectivities, plotted against correlation radius. Bottom: Robustness of rapid GC

learning for different correlation radii
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independent mossy fiber firing patterns. But mossy fiber firing
patterns can be remarkably diverse, as they encode both discrete25

and continuous26, 27 stimuli. Furthermore, their receptive fields
are arranged in a large-scale modular structure with a finer
‘fractured map’ topographical organization28, that likely results in
spatially correlated inputs. How can the relatively homogenous
network structure of the cerebellar input layer separate such
a diverse range of input activity patterns? We examined the
relationship between network structure and pattern separation in
the cerebellar input layer by studying how divergent feedforward
networks transform highly overlapping, spatially correlated
input activity patterns. Using a combination of simplified and
biologically detailed models, we disentangled the effects of
correlations from expansion and sparsening of spatially correlated
input patterns. We quantified pattern separation performance by
assaying learning speed using a machine learning algorithm. Our
results show that the granular layer is able to perform robust
pattern separation over a wide range of mossy fiber firing
patterns, but only when the synaptic connectivity of the network
is sparse. The performance of divergent feedforward networks
was primarily determined by expansion and correlations, rather
than sparse coding. Our results establish that the evolutionarily
conserved sparse synaptic connectivity found in divergent
feedforward networks is essential for separating spatially corre-
lated input patterns.

Results
Modeling the cerebellar input layer. The cerebellar input layer
consists of mossy fibers (MFs), which form large en passant
mossy-type presynaptic stuctures called rosettes, granule cells
(GCs) which have ~4 short dendrites, and inhibitory Golgi cells
which form an extensive dense axonal arbor spanning the local
region. To capture the excitatory synaptic connectivity we used an
anatomically accurate 3D model of a local region of the GC layer
(GCL)18. The 80 μm diameter model had experimentally mea-
sured densities of MF rosettes ( ~ 180 in total) and GCs ( ~ 480)

and random connectivity, subject to the constraint that MF-GC
distances were near 15 μm (Fig. 1a). Importantly, this model
reproduced the measured 1:2.9 local expansion ratio between MF
rosettes and GCs, the 1:12 divergence at the rosette-GC synapse
and the sampling of 4 different rosettes by individual GCs.

To capture spatial correlations in the MF activity patterns, we
used a technique to create spike trains with specified firing rates
and spike correlations29. A Gaussian correlation function was
used to describe the distance-dependence of rosette co-activation,
which was parameterized by its standard deviation σ (the
‘correlation radius’; Fig. 1b). To explore how synaptic connectiv-
ity and input correlations affect pattern separation we varied the
number of synaptic connections per GC (Nsyn) in the model and
presented the networks with different activity patterns while
varying the fraction of active MFs (fMF) and σ. We implemented a
simplified high-thresholding rectified-linear model of GCs and
assayed network performance by training a perceptron decoder to
classify either MF or GC population activity patterns into
randomly assigned classes (Fig. 1c).

Sparse connectivity speeds learning and increases robustness.
We first tested whether the evolutionarily conserved connectivity
in the GCL (Nsyn= 4) could separate MF activity patterns and
thus aid learning. Performance was measured by the learning
‘speed’ of a downstream perceptron decoder (see Methods)2. As
little is known about which features of GC patterns are relevant
for Purkinje cells during learning, we used random classification
to assay general pattern separation. Comparison of learning speed
when the perceptron was connected to the MF input (red) or the
GC output (blue) confirmed that the GCL speeds learning
(Fig. 1d). However, network performance depended strongly on
input correlations and the density of connectivity (Fig. 1e).
Indeed, the learning speed for more densely connected networks
(Nsyn= 16, dashed blue line in Fig. 1e) was worse than raw MF
input.
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Fig. 2 Cerebellar input layer sparsens and expands input activity patterns. a Normalized population sparseness (granule cell sparseness/mossy fiber

sparseness) for independent mossy fiber (MF) activity patterns (left) and correlated MF inputs (right, σ= 20 μm). b Top: Median normalized population

sparseness for sparse (solid line, Nsyn= 4) and dense (dashed line, Nsyn= 16) synaptic connectivities, plotted against correlation radius. Bottom:

Robustness of population sparsening for different correlation radii. c, d Same as a, b plotted for normalized total variance
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To quantify the relationship between synaptic connectivity and
learning speed we generated a family of models with different
Nsyn and determined their performance across the full range of
fMF. To compare network performance across different conditions
we normalized the learning speed of the classifier when connected
to the GCs by the speed when connected directly to the MFs. For
independent MF activity patterns (σ= 0 μm) the normalized
learning speed was substantially increased in networks with few
synaptic connections per GC (Fig. 1f, left), especially for high fMF.
Interestingly, the fastest speed up occurred with ~ 4 synapses per
GC. However, as Nsyn increased, the range of fMF over which the
GCL improved learning (i.e., normalized learning speed> 1)
decreased.

When spatial correlations were introduced in the MF input, the
ranges of fMF and Nsyn over which the GCL sped learning

increased. However, optimal performance (up to an 8-fold
increase) occurred when synaptic connectivity was sparse
(Nsyn= 2–5; Fig. 1f, right) and fMF was high, as for the case
with spatially independent input. Normalized learning speed
increased with σ but saturated around 15 μm (Fig. 1g, top).
Moreover, the fraction of the parameter space in which GC
learning outperformed MF learning (referred to as ‘Robustness’ of
GC learning; Supplementary Methods) also saturated around 15
μm (Fig. 1g, bottom). These results suggest that to improve
learning performance in downstream classifiers, cerebellar-like
feedforward networks require sparse synaptic connectivity.

Population sparsening and expansion in coding space. To
understand why sparsely connected feedforward networks
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Fig. 3 Correlations in activity increase with the extent of excitatory synaptic connectivity in feedforward networks. a Top: Illustration depicting a
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improve learning, while densely connected networks do not,
we analyzed how these networks transform activity patterns.
Marr-Albus theory posits that two factors underlie pattern
separation in cerebellar cortex: population sparsening and
expansion recoding. We first tested whether sparse coding could
explain the dependence of learning speed on network con-
nectivity (Fig. 1f) by measuring the population (i.e., spatial)
sparseness of GC and MF activity patterns30. To compare across
parameters we normalized the GC population sparseness by the
MF population sparseness. Because of the high GC activation
threshold, GC activity was generally sparser than MF activity
(Fig. 2a). The normalized population sparseness increased with
fMF, but was on average similar in magnitude for sparse and dense
synaptic connectivities (Fig. 2b, top). Furthermore, increasing
σ had no effect on the robustness of population sparsening, and
actually decreased the normalized population sparseness, contrary
to the increase expected from the normalized learning speed
(cf. Fig. 2b and Fig. 1g, bottom). Therefore the change in nor-
malized population sparseness was unable to account for the
effect of network connectivity and MF correlations on learning
speed. This suggests that another mechanism (that counters the
loss of population sparsening) is responsible for the increase in
pattern separation performance for more spatially correlated
inputs.

We next considered whether expansion in coding space
could explain the trends in pattern separation that we
observed. Expansion recoding is thought to speed learning
by increasing the distance between patterns in coding space.
A key property of such expansion is the size of the distribution
of activity patterns, which can be quantified by calculating
the total variance in activity of the GC population normalized by
the total variance of the MF population (see Methods). The
normalized total variance captures both the expansion in
dimensionality (due to the 1:2.9 expansion ratio) and any change
in the overall size of the population coding space. As the
expansion ratio is fixed in our study (except Supplementary
Fig. 1), we use the terms “expansion in coding space” and
“normalized total variance” interchangeably. Like population
sparsening, the normalized total variance increased with fMF.
However, the normalized total variance better predicted the
change in learning speed than the normalized population
sparseness (left panels of Figs. 1f and 2c). Still, the total variance
tended to underestimate performance of sparsely connected
networks and overestimate performance of densely connected
ones, particularly for correlated MFs (right panels of Figs. 1f and
2c). Moreover, the magnitude and robustness of the normalized
total variance increased approximately linearly with MF correla-
tions (Fig. 2d), unlike the saturation observed for learning speed
(Fig. 1g). Qualitatively, this implies that population sparsening

and expansion are not the only factors determining pattern
separation performance.

Decorrelation of MF activity patterns. We next considered the
impact of correlated activity on pattern separation. The presence
of spatial correlations in MF inputs is expected to reduce
the dimensionality of activity patterns and slow learning due
to increased pattern overlap. Mathematically, the shape of the
distribution of activity patterns is described by the covariance
matrix, since the square roots of its eigenvalues correspond to the
lengths of the principal directions of activity space (illustrated
in Fig. 3a, top). Independent MF activity results in more uni-
form eigenvalues (e.g. a sphere in 3 dimensions), whereas more
correlated distributions have a more heterogeneous spread of
eigenvalues and hence an elongated distribution (Fig. 3a).

To assay neural co-variability we introduced a population-
based measure of correlation, calculated using the eigenvalues of
the covariance matrix, which captured the elongation of the
distribution of activity patterns (see Methods). This “population
correlation” varied from 0 for an uncorrelated Gaussian with
identical variances (see Supplementary Methods for a discussion
on heterogeneous variances) to 1 (e.g., if all neurons have
identical activity). Networks with dense synaptic connectivity
exhibited considerably higher normalized population correlation
(GC population correlation/MF population correlation) than
networks with sparse synaptic connectivity irrespective of
σ (Fig. 3b). This occurred because networks with higher Nsyn

receive a larger number of shared inputs from MFs. In the limit of
full connectivity, each GC would be identical, rendering learning
impossible. Sparse synaptic connectivity minimizes unwanted GC
correlations being introduced by the network structure.

Network structure was not the only factor governing the GC
population correlation. Surprisingly, when MF activity patterns
were spatially correlated, the population correlation of GCs in
sparsely connected networks was often lower than that of the
MFs, as revealed by plotting the log of the normalized population
correlation (Fig. 3c, right). Such decorrelation of input patterns
(normalized population correlation< 1; equivalently, log normal-
ized population correlation< 0) has been shown to arise from
thresholding, which attenuates subthreshold input correlations31.
Contrary to population sparsening and expansion in coding
space, the strongest decorrelation occurred for low to inter-
mediate fMF. The robustness of pattern decorrelation in our
networks saturated when the correlation radius reached σ ~ 15
μm, potentially explaining the saturation in learning observed
previously (Fig. 3b, bottom, cf. Fig. 1g). Moreover, varying the
expansion ratio (Supplementary Fig. 1) and including adaptive
thresholding to model feedforward inhibition (Supplementary
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Fig. 2) produced qualitatively similar results. These results suggest
that changes in GC correlations arising from MF input patterns,
thresholding, and network structure all play a key role in pattern
separation.

When GC correlations were instead assayed with the average
Pearson correlation coefficient, rather than population correla-
tion, decorrelation was no longer visible (Fig. 3d). Importantly,
the inconsistency between these measurements was not due to
insufficient sampling (Supplementary Fig. 3). Instead, this reveals
a fundamental property of the decorrelation performed
by sparsely connected feedforward networks: the population
correlation takes into account the shape of the distribution at the
full population-level, while the Pearson correlation only considers
the marginal distributions of cell pairs, missing how they may
work together to shape the full distribution (see Methods). This
has important implications for measuring coordinated activity in
these networks, as a large fraction of cells were required to
observe decorrelation (e.g. > 50% of the population for strong
input correlations; Fig. 3e). Therefore, a substantial proportion of
MFs and GCs must be analyzed at the population level in order to
accurately measure the extent of decorrelation in the input layer
of the cerebellar cortex.

Determinants of expansion and decorrelation. To understand
how synaptic connectivity and thresholding separately contribute
to pattern separation, we next analyzed networks of GCs with
linear transfer functions (i.e. in the absence of a threshold),
since under these conditions the changes in total variance and
population correlation arise solely from network structure. The
total variance of linear GCs was larger than that of the MFs over
the full range of parameters; however, as Nsyn increased,
the normalized total variance decreased (Fig. 4a) due to GCs
averaging the signals across more MFs. Comparison of these

results with those from networks with nonlinear GCs (Fig. 2c,
right) shows that thresholding reduces both the magnitude of the
expansion of coding space and its robustness (Supplementary
Fig. 4). Thus, expansion of coding space is maximal for linear
networks (Nsyn= 1), but this is reduced by increasing network
connectivity and by GC thresholding.

Linear GC networks also revealed that the network structure
introduces considerable population correlation (Fig. 4b).
However, this was markedly reduced in networks of nonlinear
neurons due to threshold-induced decorrelation (Fig. 3c, right).
Previous work has shown that input correlations can be quenched
by the presence of intrinsic nonlinearities31. Our results show that
for feedforward networks, threshold-induced decorrelation of MF
input patterns was most pronounced in sparsely connected
networks (Nsyn ~ 2–9). Indeed, increasing the threshold increased
the region of decorrelation in our networks (Fig. 4c, top;
Supplementary Fig. 4), consistent with previous work showing
that population sparsening decorrelates inputs20, 30. In contrast,
the decorrelating effect of thresholding weakened with increasing
Nsyn, due to the presence of network-induced correlations in the
summed input to each GC. Moreover, decorrelation was not
observed for linear networks. Thus GC thresholding enables
decorrelation of spatially correlated input patterns only when the
synaptic connectivity of the network is sparse and Nsyn> 1.

This reveals a trade-off between expansion of coding space and
a reduction of input correlations that depends on both network
structure and thresholding. Networks with dense connectivity
perform pattern separation poorly because they quench coding
space and introduce strong correlations in the output. By
contrast, the sparse synaptic connectivity found in many
feedforward networks, including the GCL, minimizes output
correlations introduced by the network, thereby enabling both
expansion of coding space and threshold-induced decorrelation
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of input patterns. Moreover, sparsening GC population activity
by increasing threshold alters the trade-off between decorrelation
and expansion (Fig. 4c, top). This suggests that extremely sparse
codes are inefficient for pattern separation and learning due to the
quenching of coding space (Fig. 4c, bottom).

Quantifying the contributions of correlations and decorrela-
tion. To quantify the contribution of spatial correlations to pat-
tern separation, it was necessary to isolate their effect on learning
speed from those arising from population sparsening and
expansion of coding space. This required ‘clamping’ the GC
population correlation to the value of the MF population corre-
lation. This constraint necessitated the removal or addition of GC
correlations without changing the single-cell statistics (firing rates
and variances). To achieve this we extended methods that use
random “shuffling” of the timing of activity patterns to remove all
correlations32 by developing an algorithm that shuffled activity
patterns to a pre-specified (but nonzero) level of population
correlation. The shuffled GC activity distributions had the same
population correlation as the MFs (Fig. 5a) while the normalized
total variance and firing rates remained unchanged (Fig. 5b).

Importantly, this procedure also maintained the GC population
sparseness (Fig. 5c), thereby isolating the effect of correlations
from expansion and population sparsening.

Shuffling GC activity patterns to match the MF population
correlation had a strong influence on learning speed when
compared to the unshuffled control networks, especially for dense
synaptic connectivity (Fig. 5d). Unlike the true GC responses,
shuffled patterns maintained rapid learning across the full range
of Nsyn examined. These results confirm that the correlations in
GC activity induced by network connectivity counteract the
positive effects of expansion of coding space, population
sparsening, and decorrelation on pattern separation and learning.

We next normalized the GC learning speed by the learning
speed using shuffled GC patterns. This enabled us to quantify the
effect that GC correlations have on network performance after
controlling for expansion and population sparsening. There was a
strong negative correlation between the normalized population
correlation and learning (Fig. 5e), showing that population
correlation reduces the normalized learning speed to as low as
0.05 (corresponding to a 20-fold reduction). In contrast, learning
speed was enhanced (up to a 4-fold increase; see Fig. 5e) in
sparsely connected networks where the relatively weak network-
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dependent correlations in the summed inputs were quenched by
threshold-mediated decorrelation. Thus in networks with sparse
synaptic connectivity, expansion of coding space and active
decorrelation combined for faster, more robust pattern separation
and learning.

Pattern separation performed by a detailed spiking model. To
test the validity of the predictions from our noise-free simplified
models, we performed simulations with biologically detailed
spiking models of the GCL (Fig. 6a). MFs were modeled as rate
coded Poisson spike trains as observed in vivo25–27 and GC
integration was modeled with integrate-and-fire dynamics with
experimentally determined input resistance and capacitance, as
well as AMPA and NMDA receptor-type excitatory synaptic
conductances that included spillover components and short-term
plasticity18. The tonic GABAA receptor-mediated inhibitory
conductance present in GCs was also included33. This level of
description reproduces the measured GC input-output
relationship34, 35. The synaptic connectivity of the detailed
model was identical to the rectified-linear model. A downstream
decoder was trained to classify MF, GC, or shuffled GC
spike counts in a 30 ms window, corresponding to the effective
integration time of GCs18, 35. Despite the stochastic noise
introduced by the Poisson input trains, networks with the sparse
level of synaptic connectivity found in the GCL sped learning by
up to 4-fold. Detailed models also exhibited the same general
trends for pattern separation and learning that were present in
the simplified model: learning was fastest for sparsely connected
networks, while densely connected networks performed worse
than MFs (Fig. 6b). Moreover, the robustness of the normalized
learning speed increased with input correlations for sparsely
connected networks, but did not significantly increase for densely
connected networks.

To examine how population sparsening and expansion of
coding space contributed to the speed up in learning in detailed
spiking models we first examined the normalized population
sparseness of the spike count patterns. The increase in the
normalized population sparseness with the number of synaptic
inputs was more pronounced than for the simplified model
(Fig. 6c, left). This is likely caused by the fact that the GC input-
output nonlinearity sharpens as Nsyn increases, as shown by
previous modeling18. However, while the normalized learning
speed increased with input correlations in sparsely connected
networks (Fig. 6d), the normalized population sparseness
decreased (Fig. 6e). Therefore, sparse encoding could not explain
the dependence of learning on MF correlations. In contrast, the
normalized total variance had a similar dependence on Nsyn and
fMF as the normalized learning speed (Fig. 6c, center). Moreover,
like the normalized learning speed, the normalized total variance
in sparsely connected networks increased with MF correlations,
while densely connected networks exhibited little change (Fig. 6f).
However, the normalized total variance did not capture the full
magnitude of the speedup for sparsely connected networks.
Interestingly, decorrelation was more robust in the detailed
spiking model than for the simplified model (Fig. 6c, right).
Like the normalized population sparseness, this likely arises from
the change in the nonlinearity of the GC input-output relation-
ship with increasing Nsyn. In line with predictions from our
simplified model, as σ increased, the normalized population
correlation decreased (Fig. 6g). Finally, upon shuffling GC spike
count patterns, we found a strong negative relationship between
the population correlation and its impact on learning, with
decorrelation speeding learning beyond the effects of expansion,
as predicted by our simplified model (Fig. 6h c.f. Fig. 5e).
These results show that the network connectivity and biophysical

mechanisms present in the GCL can implement effective pattern
separation in the presence of noise. Moreover they confirm the
predictions from our simplified models, which show that sparse
connectivity and nonlinear thresholding is essential for effective
pattern separation and decorrelation in feedforward excitatory
networks.

Discussion
We have explored the relationship between the structure of
excitatory feedforward networks and their ability to perform
pattern separation. To do this we examined how simplified and
biologically detailed network models with varying synaptic con-
nectivity transform spatially correlated activity patterns, and how
this transformation affects the learning speed of a downstream
classifier. Our results reveal that the structure of divergent feed-
forward networks governs pattern separation performance
because increasing synaptic connectivity increases correlations in
the output, counteracting the beneficial effects of expansion of
coding space. Moreover, only in networks with few synaptic
connections per neuron, as found in the cerebellar GCL, can spike
thresholding actively decorrelate input activity patterns. The
pattern separation performance of sparsely connected networks
was robust to a wide range of MF statistics and to both sparse and
dense regimes of GC firing. Our work suggests that sparse
synaptic connectivity is essential for separating spatially corre-
lated input patterns and enabling faster learning in downstream
circuits.

The idea that divergent feedforward networks separate over-
lapping patterns by expanding them into a high-dimensional
space has a long history. In the cerebellum, pioneering work by
Marr and Albus linked the structure of the GCL to expansion
recoding of activity patterns1, 2. Subsequent theoretical work has
broadened our understanding of how pattern separation, infor-
mation transfer, and learning arise in cerebellar-like feedforward
networks3, 6, 7, 18, 19, 36, 37. Our work extends these findings in
several ways. First, we gained new insight into pattern separation
by isolating the effects of input decorrelation, expansion of coding
space, and population sparsening. While these mechanisms have
been identified previously as factors supporting pattern learning
in cerebellar-like systems, the contribution of each factor has not
been clear. Through our analyses, we identified expansion and
decorrelation, rather than sparse coding, as the key mechanisms
underlying pattern separation. Second, previous work analyzed
idealized, uncorrelated input patterns, raising the question of
whether efficient pattern separation extends to more realistic
inputs. We investigated MF patterns with a wide range of activity
levels and spatial correlations, finding that the performance of
sparsely connected networks is robust to diverse input properties.
Finally, we showed that biologically detailed spiking models with
the sparse synaptic connectivity present in the GCL can decorr-
elate spatially correlated synaptic inputs, perform pattern
separation, and speed learning by a downstream classifier.

Classical studies have highlighted the importance of sparse
coding for pattern separation1, 2, 4, 7, 37. Moreover, our previous
work showed that the sparse synaptic connectivity in the GCL is
well suited for performing lossless sparse encoding18. However,
recent in vivo imaging suggests that GC population activity is
denser (50–66% of GCs active) than previously believed38, 39.
Although these population coding levels were determined over
longer timescales than the physiologically relevant GC integration
window (due to the slow kinetics of genetically encoded indicator
GCaMP6), their high levels potentially cast doubt on Marr-Albus
theory of pattern separation in the cerebellum. Our findings show
that sparse coding is less important for pattern separation than
previously thought. Indeed, the GCL could improve learning both
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in sparse and in dense regimes of GC activity (Supplementary
Fig. 5), and did not require the extreme sparse coding regimes
(i.e.,< 5% of GCs active) envisioned by Marr and Albus1, 2. In
fact, excessive population sparsening quenches the coding space
(Fig. 4c), resulting in a loss of information18. Thus, we found that,
while population sparsening contributes to pattern
separation4, 6, 7, 37, the main determinants are expansion of
coding space and correlations.

MFs arise from multiple precerebellar nuclei in the brainstem
and often project to specific regions in the cerebellar cortex,
resulting in a large-scale modular structure40. Within an indivi-
dual module, the MF receptive fields form a ‘fractured map’28,
which is likely to lead to spatially correlated activity at the local
level. While single GC recordings suggest multimodal integra-
tion41, in forelimb regions synaptic inputs can convey highly
related information42, 43. Moreover, because MFs encode both
discrete and continuous sensory variables, some cerebellar
regions, such as the whisker system in Crus I/II, are likely to
experience bouts of intense high frequency MF excitatory drive
(100–1000 Hz) interspersed by quiescence25, 44, while others (e.g.,
vestibular and limb areas) may experience more slowly modu-
lated input (10–100 Hz)26, 27. Our findings suggest that the same
optimal network structure can perform decorrelation and pattern
separation for a wide range of MF correlations and excitatory
drive. Expansion of the coding space and population sparsening
were strongest for independent input patterns with many active
MFs, while active decorrelation boosted learning for spatially
correlated input patterns with fewer active MFs. Although there
are likely to be region-specific specializations in synaptic prop-
erties and inhibition, the uniformity of GCL structure suggests
that it acts as a generic preprocessing unit that decorrelates and
separates dense MF activity patterns, enabling faster associative
learning in the molecular layer.

Inhibition has been shown to sparsen and decorrelate neural
activity patterns11, 18, 45–47. Inhibition in the GCL consists of a
large fixed tonic GABAA receptor-mediated inhibition of GCs
that is complemented by a weaker activity-dependent component
mediated by phasic release and GABA spillover from Golgi
cells33, 48–50. When network-activity dependent thresholding was
included to approximate feedforward Golgi cell inhibition of
GCs18, 51, we observed greater decorrelation (Supplementary
Fig. 2) because the increasing threshold filters out a substantial
proportion of the correlated input. However, the qualitative
dependence of pattern separation on network connectivity was
preserved.

Because pattern separation is essential for a wide range of
sensorimotor processing, it is not surprising that divergent
feedforward excitatory networks are found throughout the brain
of both vertebrates and invertebrates. Interestingly, the synaptic
connectivity in many of these networks is sparse16, 17, 52.
Furthermore, the characteristic 2-7 synaptic connections found in
the GCL has been evolutionarily conserved since the appearance
of fish53. Our results indicate that such sparse connectivity is
optimized for decorrelation and pattern separation, regardless of
the precise expansion ratio (Supplementary Fig. 1). These results
agree with recent analytical modeling, which predicts that the
levels of sparse connectivity observed for GCs (and Kenyon cells
in fly) are optimal for learning associations19. This suggests
that the advantage of improved pattern separation and learning
that sparse synaptic connectivity confers has been sufficient to
conserve the structure of the GCL for 300–400 million years.

A core function of the cerebellar cortex is to learn the sensory
consequences of motor actions, allowing it to refine motor action
and to enable sensory processing during active movement54–56. In
Purkinje cells, learning is achieved by altering synaptic strength
depending on the timing between GC activity and feedback error

via climbing fiber input57. We used perceptron-based learning to
assay pattern separation performance, since theoretical work has
recognized analogies between supervised learning in Purkinje
cells and perceptrons2, 58, 59. However, important functional
differences with Purkinje cells limit finer-grained insights into
cerebellar learning. Moreover, we tested random pattern learning
because it is a general and challenging task. Once more is
known about which features of GC activity are relevant for
motor learning, it will be interesting to see whether structured
connectivity makes expansion recoding more effective by redu-
cing the variance between functionally similar activity patterns6.
Regardless of the precise classification task, our results reveal the
essential role sparse synaptic connectivity plays in minimizing
correlations. It will also be interesting to investigate whether
sparse synaptic connectivity confers comparable improvements in
temporal pattern learning, since temporal expansion will increase
the dimensionality of the system further10, 60–62.

Our results are consistent with several existing experimental
manipulations in the cerebellar cortex. Reducing the number of
functional GCs by 90% using a genetic manipulation that blocked
their output resulted in deficits in the consolidation of motor
learning63. Our findings suggest that this phenotype arose from
the reduced coding space. Another prediction is that decreasing
GC threshold will affect the expansion-correlation tradeoff,
reducing pattern separation performance. Interestingly, lowering
the spike threshold by specifically deleting the KCC2
chloride transporter in cerebellar GCs resulted in impaired
learning consolidation64. Similarly, inhibiting a negative feedback
circuit in the drosophila olfactory system increased correlations in
odor-evoked activity patterns and impaired odor discrimina-
tion11. These findings are consistent with our prediction that
lowering threshold increases output correlations in feedforward
networks and impairs pattern separation and learning.

The most direct experimental test of this work is to compare
the total variance and population correlation of GC and MF
spiking patterns. However, our results show that pairwise corre-
lations may not capture active decorrelation, consistent with
previous work that showed pairwise measurements can under-
estimate collective population activity65. Our analysis indicates
that dense recordings from a large fraction of the neurons in the
local network are required to measure population correlation in
MFs and GCs (Fig. 3e). Recent developments in high speed
random access 3D two-photon imaging66, 67 and genetically
encoded Ca2+ indicators68 potentially make this type of challen-
ging measurement feasible for the first time. Application of these
new technologies would provide direct experimental tests of our
findings, thereby improving our understanding of how spatially
correlated activity patterns are transformed and separated in the
cerebellar cortex.

Methods
Anatomical network model. Both the simplified and biophysical models used an
experimentally constrained anatomically realistic network connectivity model of an
80 μm diameter ball within the granular layer18. MF rosettes and GCs were posi-
tioned according to their observed densities. GCs were connected to a fixed number
(Nsyn) of MFs, which were chosen randomly while constraining the MF-GC dis-
tance to be as close as possible to 15 μm, the average dendritic length.

Spatially correlated input patterns. MF activity patterns were created using a
method based on Dichotomized Gaussian models that generates binary vectors
with specified average values and correlations29. The average value of the binary
vector represented the fraction of active MFs (fMF). The correlation coefficient
between two MF patterns was chosen to be a Gaussian function of distance with the
correlation radius parameterized by its standard deviation σ. For the simplified
model, these binary patterns were used directly. For the detailed model, activated
MFs fired at 50 Hz while inactivated MFs were silent. Note that this method is
distinct from recent papers studying patterns that are arranged into clusters in state
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space representing e.g. specific odorants6, 19, as they lack the correlated structure in
physical space that impede learning (Supplementary Fig. 6).

Simplified network model. GC activity was given by:

xGCi ¼ f þ
X

j

4

Nsyn
Cijx

MF
j � θ

 !

where Nsyn is the number of synaptic inputs per GC, Cij is the binary connectivity
matrix determined by the anatomical network model, and f + is a rectified-linear
function, i.e., f +(x) =max(0,x). Unless otherwise specified, the threshold was set to
θ= 3, in line with experimental evidence that three MFs on average are required to
generate a spike in GC34, 69.

Biologically detailed network model. MFs were modeled as modified Poisson
processes with a 2 ms refractory period and firing rate determined by the generated
binary activity patterns described above (50 Hz if the MF was activated, silent
otherwise). GCs were based on a previously published model of integrate-and-fire
neurons with experimentally measured passive properties and experimentally
constrained AMPA and NMDA conductances, short-term plasticity and spillover
components as well as constant GABA conductance representing tonic inhibition18

(see Supplementary Methods). The model was written in NeuroML2 and simulated
in jLEMS70. For learning and population-level analysis, activity patterns were
defined as the vector of spike counts in a 30 ms window (after discarding an initial
150 ms period to reach steady state).

Implementation of perceptron learning. A perceptron decoder was trained to
classify 640 input patterns into 10 random classes. Random classification was
chosen to ensure maximal overlap between patterns. The number of classes was
chosen to be slightly under the memory capacity for a wide range of parameters,
allowing comparison of learning in different networks for a relatively complex task.
Online learning was implemented with backpropagation learning on a single layer
neural network with sigmoidal nodes and a small fixed learning rate of 0.01. The
inputs consisted of either the raw MF or the GC activity patterns. Learning took
place over 5000 epochs, each of which consisted of presentations of all 640 patterns
in a random order. Learning speed was defined as 1/NE, where NE is the number of
training epochs until the root-mean-square error reached a threshold of 0.2. Other
error thresholds gave qualitatively similar results.

Analysis of activity patterns. Population sparseness was measured as30:

N �
P

i
xið Þ2

P

i
xi2

N�1

where N is the number of neurons and xi is the ith neuron’s activity (simplified
model) or spike count (detailed model). The above quantity was averaged over all
activity patterns. To quantify expansion of coding space, we use the total variance,
i.e. the sum of all variances:

X

i

var xið Þ

We defined the population correlation as:

N

N�1
max

ffiffiffiffi

λi

p� �

P

i

ffiffiffiffi

λi

p � 1

N

� �

where λi are the eigenvalues of the covariance matrix of the activity patterns. The
first term in this expression describes how elongated the distribution is in its
principal direction. The second term subtracts the value 1/N so that an
uncorrelated homogenous Gaussian would have a value of zero. A modified version
of the population correlation to control for heterogeneous variances did not affect
the results (see Supplementary Methods). Finally, the scaling factor of N

N�1
normalizes the expression so that its maximum value is 1. Both the population
correlation and the correlation coefficient describe covariability between pairs of
cells. However, the population correlation contains additional information about
how those pairs constrain the shape of the full distribution.

Partial shuffling of spiking activity. We developed a shuffling technique to
increase or decrease the population correlation to a desired level, while keeping the
mean and variance of each neuron fixed. First, to shuffle GC patterns to a lower
level of correlation, for each neuron we took two random GC patterns and
exchanged the value of that neuron’s spike count in one pattern with its spike count
in the other pattern. This step was iterated over the full population and over
random pattern pairs until the resulting activity patterns had the desired popula-
tion correlation. Conversely, to shuffle activity patterns in a way that would
increase correlations, we took random pairs of patterns and swapped the activity so

that each cell had a lower spike count for the first pattern and higher activity for the
second pattern. This procedure modifies the activity patterns so that the population
overall tends to be more active together. We then tested perceptron learning based
on the new shuffled activity patterns. See Supplementary Methods for additional
details.

Data availability. Models and scripts for running and analyzing simulations are
available at https://github.com/SilverLabUCL/MF-GC-network-backprop-public.
All scripts necessary for simulation data are included, as well as pre-simulated
data from the biologically detailed spiking model necessary to reproduce Fig. 6
(see above).
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