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Partial differential equations (PDEs) with random input data, such as ran-
dom loadings and coefficients, are reformulated as parametric, deterministic
PDEs on parameter spaces of high, possibly infinite dimension. Tensorized
operator equations for spatial and temporal k-point correlation functions of
their random solutions are derived. Parametric, deterministic PDEs for the
laws of the random solutions are derived. Representations of the random so-
lutions’ laws on infinite-dimensional parameter spaces in terms of ‘generalized
polynomial chaos’ (GPC) series are established. Recent results on the regu-
larity of solutions of these parametric PDEs are presented. Convergence rates
of best N -term approximations, for adaptive stochastic Galerkin and collo-
cation discretizations of the parametric, deterministic PDEs, are established.
Sparse tensor products of hierarchical (multi-level) discretizations in physical
space (and time), and GPC expansions in parameter space, are shown to con-
verge at rates which are independent of the dimension of the parameter space.
A convergence analysis of multi-level Monte Carlo (MLMC) discretizations
of PDEs with random coefficients is presented. Sufficient conditions on the
random inputs for superiority of sparse tensor discretizations over MLMC dis-
cretizations are established for linear elliptic, parabolic and hyperbolic PDEs
with random coefficients.
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Introduction

The numerical solution of partial differential equation models in science
and engineering has today reached a certain maturity, after several decades
of progress in numerical analysis, mathematical modelling and scientific
computing. While there certainly remain numerous mathematical and al-
gorithmic challenges, for many ‘routine’ problems of engineering interest,
today numerical solution methods exist which are mathematically under-
stood and ‘operational’ in the sense that a number of implementations exist,
both academic and commercial, which realize, in the best case, algorithms
of provably optimal complexity in a wide range of applications. As a rule,
the numerical analysis and the numerical solution methods behind such al-
gorithms suppose that a model of the system of interest is described by a
well-posed (in the sense of Hadamard) partial differential equation (PDE),
and that the PDE is to be solved numerically to prescribed accuracy for

one given set of input data.
With the availability of highly accurate numerical solution algorithms for

a PDE of interest and one prescribed set of exact input data (such as source
terms, constitutive laws and material parameters) there has been increasing
awareness of the limited significance of such single, highly accurate ‘forward’
solves. Assuming, as we will throughout this article, that the PDE model

of the physical system of interest is correct , this trend is due to two rea-
sons: randomness and uncertainty of input data and the need for efficient
prediction of system responses on high-dimensional parameter spaces.
First, the assumption of availability of exact input data is not realistic:

often, the simulation’s input parameters are obtained from measurements
or from sampling a large, but finite number of specimens or system snap-
shots which are incomplete or stochastic. This is of increasing importance
in classical engineering disciplines, but even more so in emerging models in
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Sparse tensor discretizations for sPDEs 293

the life sciences and social sciences. Rather than producing efficiently accu-
rate answers for single instances of exact input data, increasingly the goal
of computation in numerical simulations is to efficiently process statistical

information on uncertain input data for the PDE of interest. While math-
ematical formulations of PDEs with random inputs have been developed
with an eye towards uncorrelated, or white noise inputs (see, e.g., Holden,
Oksendal, Uboe and Zhang (1996), Da Prato and Zabczyk (1992), Da Prato
(2006), Lototsky and Rozovskii (2006), Prévôt and Röckner (2007), Dalang,
Khoshnevisan, Mueller, Nualart and Xiao (2009) and the references therein),
PDEs with random inputs in numerical simulation in science and engineer-
ing are of interest in particular in the case of so-called correlated inputs (or
‘coloured noise’).
Second, in the context of optimization, or of risk and sensitivity anal-

ysis for complex systems with random inputs, the interest is in comput-
ing the systems’ responses efficiently given dependence on several, possibly
countably many parameters, thereby leading to the challenge of numerical

simulation of deterministic PDEs on high-dimensional parameter spaces.
Often, the only feasible approach in numerical simulation towards these

two problems is to solve the forward problem for many instances, or samples,
of the PDE’s input parameters; for random inputs, this amounts to Monte
Carlo-type sampling of the noisy inputs, and for parametric PDEs, responses
of the system are interpolated from forward solves at judiciously chosen
combinations of input parameters.
With the cost of one ‘sample’ being the numerical solution of a PDE,

it is immediate that, in particular for transient problems in three spatial
dimensions with solutions that exhibit multiple spatial and temporal length
scales, the computational cost of uniformly sampling the PDE solution on
the parameter space (resp. the probability space) is prohibitive. Responding
to this by massive parallelism may alleviate this problem, but ultimately,
the low convergence rate 1/2 of Monte Carlo (MC) sampling, respectively
the so-called ‘curse of dimensionality’ of standard interpolation schemes in
high-dimensional parameter spaces, requires advances at the mathemati-
cal core of the numerical PDE solution methods: the development of novel
mathematical formulations of PDEs with random inputs, the study of the
regularity of their solutions is of interest, both with respect to the physi-
cal variables and with respect to parameters, and the development of novel
discretizations and solution methods of these formulations. Importantly,
the parameters may take values in possibly infinite-dimensional parame-
ter spaces: for example, in connection with Karhunen–Loève expansions of
spatially inhomogeneous and correlated inputs.
The present article surveys recent contributions to the above questions.

Our focus is on linear PDEs with random inputs; we present various formu-
lations, new results on the regularity of their solutions and, based on these
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294 C. Schwab and C. J. Gittelson

regularity results, we design, formulate and analyse discretization schemes
which allow one to ‘sweep’ the entire, possibly infinite-dimensional input
parameter space approximately in a single computation. We also establish,
for the algorithms proposed here, bounds on their efficiency (understood as
accuracy versus the number of degrees of freedom) that do not deteriorate
with respect to increasing dimension of the computational parameter do-
main, i.e., that are free from the curse of dimensionality. The algorithms
proposed here are variants and refinements of the recently proposed stochas-
tic Galerkin and stochastic collocation discretizations (see, e.g., Xiu (2009)
and Matthies and Keese (2005) and the references therein for an account
of these developments). We exhibit assumptions on the inputs’ correlations
which ensure an efficiency of these algorithms which is superior to that of
MC sampling. One insight that emerges from the numerical analysis of re-
cently proposed methods is that the numerical resolution in physical space

need not be high uniformly on the entire parameter space. The use of ‘poly-
nomial chaos’ type spectral representations (and their generalizations) of
the laws of input and output random fields allows a theory of regularity
of the random solutions and, based on this, the optimization of numerical
methods for their resolution. Here, we have in mind discretizations in phys-
ical space and time as well as in stochastic or parameter space, aiming at
achieving a prespecified accuracy with minimal computational work. From
this broad view, the recently proposed multi-level Monte Carlo methods can
also be interpreted as sparse tensor discretizations. Accordingly, we present
in this article an error analysis of single- and multi-level MC methods for
elliptic problems with random inputs.

As this article’s title suggests, the notion of sparse tensor products of op-
erators and hierarchical sequences of finite-dimensional subspaces pervades
our view of numerical analysis of high-dimensional problems. Sparsity in
connection with tensorization has become significant in several areas of sci-
entific computing in recent years: in approximation theory as hyperbolic

cross approximations (see, e.g., Temlyakov (1993)) and, in finite element
and finite difference discretizations, the so-called sparse grids (see Bungartz
and Griebel (2004) and the references therein) are particular instances of
this concept. We note in passing that the range of applicability of sparse ten-
sor discretizations extends well beyond stochastic and parametric problems
(see, e.g., Schwab (2002), Hoang and Schwab (2004/05) and Schwab and
Stevenson (2008) for applications to multiscale problems). On the level of
numerical linear algebra, the currently emerging hierarchical low-rank ma-

trix formats , which were inspired by developments in computational chem-
istry, are closely related to some of the techniques developed here.

The present article extends these concepts in several directions. First,
on the level of mathematical formulation of PDEs with random inputs: we
present deterministic tensorized operator equations for two- and k-point
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Sparse tensor discretizations for sPDEs 295

correlation functions of the the random system responses. Such equations
also arise in the context of moment closures of kinetic models in atomistic-
to-continuum transitions. Discretizations for their efficient, deterministic
numerical solution may therefore be of interest in their own right. For the
spectral discretizations, we review the polynomial chaos representation of
random fields and the Wiener–Itô chaos decomposition of probability spaces
and of random fields into tensorized Hermite polynomials of a countable
number of Gaussians. The spectral representation of random outputs of
PDEs allows for a regularity theory of the laws of random fields which goes
substantially beyond the mere existence of moments.
According to the particular application, in this article sparsity in tensor

discretizations appears in roughly three forms. First, we use sparse tensor
products of multi-level finite element spaces in the physical domain D ⊂ Rd

to build efficient schemes for the Galerkin approximation of tensorized equa-
tions for k-point correlation functions. Second, we consider heterogeneous

sparse tensor product discretizations of multi-level finite element, finite vol-

ume and finite difference discretizations in the physical domain with hierar-

chical polynomial chaos bases in the probability space. As we will show, the
use of multi-level discretizations in physical space actually leads to substan-
tial efficiency gains in MC methods; nevertheless, the resulting multi-level
MC methods are of comparable efficiency as sparse tensor discretizations for
random outputs with finite second moments. However, as soon as the out-
puts have additional summability properties (and the examples presented
here suggest that this is so in many cases), adaptive sparse tensor discretiza-
tions outperform MLMC methods.
The outline of the article is as follows. We first derive tensorized oper-

ator equations for deterministic, linear equations with random data. We
establish the well-posedness of these tensorized operator equations, and in-
troduce sparse tensor Galerkin discretizations based on multi-level, wavelet-
type finite element spaces in the physical domain. We prove, in particular,
stability of sparse tensor discretizations in the case of indefinite operators
such as those arising in acoustic or electromagnetic scattering. We also give
an error analysis of MC discretizations which indicates the dependence of
its convergence rate on the degree of summability of the random solution.
Section 2 is devoted to stochastic Galerkin formulations of PDEs with

random coefficients. Using polynomial chaos representations of the random
inputs, for example in a Karhunen–Loève expansion, we give a reformulation
of the random PDEs of interest as deterministic PDEs which are posed on
infinite-dimensional parameter spaces. While the numerical solution of these
PDEs with standard tools from numerical analysis is foiled by the curse of
dimensionality (the raison d’être for the use of sampling methods on the
stochastic formulation), we review recent regularity results for these prob-
lems which indicate that sparse, adaptive tensorization of discretizations
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296 C. Schwab and C. J. Gittelson

in probability and physical space can indeed produce solutions whose accu-
racy, as a function of work, is independent of the dimension of the parameter
space. We cover both affine dependence, as is typical in Karhunen–Loève
representations of the random inputs, as well as log-normal dependence in
inputs. We focus on Gaussian and on uniform measures, where ‘polynomial
chaos’ representations use Hermite and Legendre polynomials, respectively
(other probability measures give rise to other polynomial systems: see, e.g.,
Schoutens (2000) and Xiu and Karniadakis (2002b)). Section 3 addresses
the regularity of the random solutions in these polynomial chaos represen-
tations by an analysis of the associated parametric, deterministic PDE for
their laws. The analysis allows us to deduce best N -term convergence rates
of polynomial chaos semidiscretizations of the random solutions’ laws.
Section 4 combines the results from the preceding sections with space

and time discretizations in the physical domain. The error analysis of fully
discrete algorithms reveals that it is crucial for efficiency that the level of
spatial and temporal resolution be allowed to depend on the stochastic mode
being discretized. Our analysis shows that, in fact, a highly non-uniform
level of resolution in physical space should be adopted in order to achieve
algorithms that scale favourably with respect to the dimension of the space
of stochastic parameters.
As this article and the subject matter draw on tools from numerical anal-

ysis, from functional analysis and from probability theory, we provide some
background reference material on the latter two items in the Appendix. This
is done in order to fix the notation used in the main body of the text, and
to serve as a reference for readers with a numerical analysis background.
Naturally, the selection of the background material is biased towards the
subject matter of the main text. It does not claim to be a reference on
these subjects. For a more thorough introduction to tools from probabil-
ity and stochastic analysis we refer the reader to Bauer (1996), Da Prato
(2006), Da Prato and Zabczyk (1992), Prévôt and Röckner (2007) and the
references therein.

1. Sparse tensor FEM for operator equations with

stochastic data

For the variational setting of linear operator equations with deterministic,
boundedly invertible operators, we assume that X,Y are separable Hilbert
spaces over R with duals X ′ and Y ′, respectively, and A ∈ L(X,Y ′) a lin-
ear, boundedly invertible deterministic operator. We denote its associated
bilinear form by

a(u, v) := Y ′〈Au, v〉X : X × Y → R. (1.1)
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Here, and throughout, for w ∈ Y ′ and v ∈ X the bilinear form Y ′〈w, v〉X de-
notes the Y ′×X duality pairing. As is well known (see, e.g., Theorem C.20)
the operator A from X onto Y ′ is boundedly invertible if and only if a(·, ·)
satisfies the following conditions.

(i) a(·, ·) is continuous: there exists C1 < ∞ such that

∀w ∈ X, v ∈ Y : |a(w, v)| ≤ C1‖w‖X‖v‖Y . (1.2)

(ii) a(·, ·) is coercive: there exists C2 > 0 such that

inf
0�=w∈X

sup
0�=v∈Y

a(w, v)

‖w‖X‖v‖Y
≥ C2 > 0. (1.3)

(iii) a(·, ·) is injective:
∀0 �= v ∈ Y : sup

0�=w∈X
a(w, v) > 0. (1.4)

If (1.2)–(1.4) hold, then for every f ∈ Y ′ the linear operator equation

u ∈ X : a(u, v) = Y ′〈f, v〉X ∀v ∈ Y (1.5)

admits a unique solution u ∈ X such that

‖u‖X ≤ C−1
2 ‖f‖Y ′ . (1.6)

We consider equation (1.5) with stochastic data: to this end, let (Ω,F ,P) be
a probability space and let f : Ω → Y ′ be a random field, i.e., a measurable
map from (Ω,F ,P) into Y ′ which is Gaussian (see Appendix C for the
definition of Gaussian random fields). Analogous to the characterization of
Gaussian random variables by their mean and their (co)variance, a Gaussian
random field f ∈ L2(Ω,F ,P;Y ′) is characterized by its mean af ∈ Y ′ and
its covariance operator Qf ∈ L+

1 (Y
′).

We use the following linear operator equation with Gaussian data: given
f ∈ L2(Ω,F ,P;Y ′), find u ∈ L2(Ω,F ,P;X) such that

Au = f in L2(Ω,F ,P;Y ′) (1.7)

admits a unique solution u ∈ L2(Ω,F ,P;X) if and only if A satisfies (1.2)–
(1.4).
By Theorem C.31, the unique random solution u ∈ L2(Ω,F ,P;X) of (1.7)

is Gaussian with associated Gaussian measure Nau,Qu on X which, in turn,
is characterized by the solution’s mean,

au = mean(u) = A−1af , (1.8)

and the solution’s covariance operator Qu ∈ L+
1 (X), which satisfies the

(deterministic) equation

AQuA
∗ = Qf in L(Y ′, Y ′). (1.9)
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298 C. Schwab and C. J. Gittelson

In the Gaussian case, therefore, solving the stochastic problem (1.7) can be
reduced to solving the two deterministic problems (1.8) and (1.9). Whereas
the mean-field problem (1.8) is one instance of the operator equation (1.7),
the covariance equation (1.8) is an equation for the operator Qu ∈ L+

1 (X).
As we show in Theorem C.31, this operator is characterized by the so-
called covariance kernel Cu, which satisfies, in terms of the corresponding
covariance kernel Cf of the data, the covariance equation (see (C.50))

(A⊗A)Cu = Cf , (1.10)

which is understood to hold in the sense of (Y ⊗ Y )′ ≃ Y ′ ⊗ Y ′. One
approach to the numerical treatment of operator equations Au = f , where
the data f are random fields, i.e., measurable maps from a probability
space (Ω,F ,P) into the set Y ′ of admissible data for the operator A, is via
tensorized equations such as (1.10) for their statistical moments.
The simplest approach to the numerical solution of the linear operator

equation Au = f with random input f is Monte Carlo (MC) simulation,
i.e., generating a large number M of i.i.d. data samples fj and solving, pos-
sibly in parallel, for the corresponding solution ensemble {uj = A−1fj ; j =
1, . . . ,M}. Statistical moments and probabilities of the random solution u
are then estimated from {uj}. As we will prove, convergence of the MC
method as the number M of samples increases is ensured (for suitable sam-
pling) by the central limit theorem. We shall see that the MC method allows
in general only the convergence rate O(M−1/2).
If statistical moments, i.e., mean-field and higher-order moments of the

random solution u, are of interest, one can exploit the linearity of the equa-
tion Au = f to derive a deterministic equation for the kth moment of the
random solution, similar to the second-moment equation (1.10); this deriva-
tion is done in Section 1.1. For the Laplace equation with stochastic data,
this approach is due to I. Babuška (1961). We then address the numerical
computation of the moments of the solution by either Monte Carlo or by
direct, deterministic finite element computation. If the physical problem
is posed in a domain D ⊂ Rd, the kth moment of the random solution is
defined in the domain Dk ⊂ Rkd; standard finite element (FE) approxima-
tions will therefore be inadequate for the efficient numerical approximation
of the kth moments of the random solution.
The efficient deterministic equation and its FE approximation were in-

vestigated in Schwab and Todor (2003a, 2003b) in the case where A is an
elliptic partial differential operator. It was shown that the kth moment
of the solution could be computed in a complexity comparable to that
of an FE solution for the mean-field problem by the use of sparse tensor
products of standard FE spaces for which a hierarchical basis is available.
The use of sparse tensor product approximations is a well-known device in
high-dimensional numerical integration going back to Smolyak (1963), in
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multivariate approximation (Temlyakov 1993), and in complexity theory;
see Wasilkowski and Woźniakowski (1995) and the references therein.
In the present section, we address the case when A is a non-local operator,

such as a strongly elliptic pseudodifferential operator, as arises in the bound-
ary reduction of boundary value problems for strongly elliptic partial differ-
ential equations. In this case, efficient numerical solution methods require,
in addition to Galerkin discretizations of the operator equation, some form
of matrix compression (such as the fast multipole method or wavelet-based
matrix compression) which introduces additional errors into the Galerkin
solution that will also affect the accuracy of second and higher moments.
We briefly present the numerical analysis of the impact of matrix compres-
sions on the efficient computation of second and higher moments of the
random solution. Therefore, the present section will also apply to strongly
elliptic boundary integral equations obtained by reduction to the boundary
manifold D = ∂D of elliptic boundary value problems in a bounded domain
D ⊂ Rd+1, as is frequently done in acoustic and electromagnetic scattering.
For such problems with stochastic data, the boundary integral formulation
leads to an operator equation Au = f , where A is an integral operator
or, more generally, a pseudodifferential operator acting on function spaces
on ∂D. The linearity of the operator equation allows, without any closure
hypothesis, formulation of a deterministic tensor equation for the k-point
correlation function of the random solution u = A−1f . We show that, as
in the case of differential operators, sparse tensor products of standard FE
spaces allow deterministic approximation of the kth moment of the random
solution u with relatively few degrees of freedom. To achieve computational
complexity which scales log-linearly in the number of degrees of freedom in
a Galerkin discretization of the mean-field problem, however, the Galerkin
matrix for the operator A must be compressed.
Accordingly, one purpose of this section is the design and numerical anal-

ysis of deterministic and stochastic solution algorithms to obtain the kth
moment of the random solution of possibly non-local operator equations
with random data in log-linear complexity in the number N of degrees of
freedom for the mean-field problem.
We illustrate the sparse tensor product Galerkin methods for the nu-

merical solution of Dirichlet and Neumann problems for the Laplace or
Helmholtz equation with stochastic data. Using a wavelet Galerkin finite
element discretization allows straightforward construction of sparse tensor
products of the trial spaces, and yields well-conditioned, sparse representa-
tions of stiffness matrices for the operator A as well as for its k-fold tensor
product, which is the operator arising in the kth-moment problem.
We analyse the impact of the operator compression on the accuracy of

functionals of the Galerkin solution, such as far-field evaluations of the ran-
dom potential in a point. For example, means and variances of the potential
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300 C. Schwab and C. J. Gittelson

in a point can be computed with accuracy O(N−p) for any fixed order p, for
random boundary data with known second moments in O(N) complexity,
where N denotes the number of degrees of freedom on the boundary.
The outline of this section is as follows. In Section 1.1, we describe the

operator equations considered here and derive the deterministic problems
for the higher moments, generalizing Schwab and Todor (2003b). We estab-
lish the Fredholm property for the tensor product operator and regularity
estimates for the statistical moments in anisotropic Sobolev spaces with
mixed highest derivative. Section 1.2 addresses the numerical solution of
the moment equations, in particular the impact of various matrix compres-
sions on the accuracy of the approximated moments, the preconditioning of
the product operator and the solution algorithm. In Section 1.4, we discuss
the implementation of the sparse Galerkin and sparse MC methods and
estimate their asymptotic complexity. Section 1.5 contains some examples
from finite and boundary element methods.

1.1. Operator equations with stochastic data

Linear operator equations

We specialize the general setting (1.1) to the case X = Y = V , and consider
the operator equation

Au = f, (1.11)

where A is a bounded linear operator from the separable Hilbert space V
into its dual V ′.
The operator A is a differential or pseudodifferential operator of order

̺ on a bounded d-dimensional manifold D, which may be closed or have
a boundary. Here, for a closed manifold and for s ≥ 0, H̃s(D) := Hs(D)
denotes the usual Sobolev space. For s < 0, we define the spaces Hs(D)
and H̃s(D) by duality. For a manifold D with boundary we assume that
this manifold can be extended to a closed manifold D̃, and define

H̃s(D) := {u|D ; u ∈ Hs(D̃), u|D̃\D = 0}

with the induced norm. If D is a bounded domain in Rd we use D̃ := Rd.
We now assume that V = H̺̃/2(D). In the case when A is a second-order
differential operator, this means that we have Dirichlet boundary conditions
(other boundary conditions can be treated in an analogous way).
The manifold D may be smooth, but we also consider the case when D

is a polyhedron in Rd, or the boundary of a polyhedron in Rd+1, or part of
the boundary of a polyhedron.
For the deterministic operator A in (1.11), we assume strong ellipticity in

the sense that there exists α > 0 and a compact operator T : V → V ′ such
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that the G̊arding inequality

∀v ∈ V :
〈
(A+ T ) v, v

〉
≥ α ‖v‖2V (1.12)

holds. For the deterministic algorithm in Section 1.4 we need the slightly
stronger assumption that T ′ is smoothing with respect to a scale of smooth-
ness spaces (see (1.63) below). Here and in what follows, 〈·, ·〉 denotes the
V ′ × V duality pairing. We assume also that A is injective, i.e., that

kerA = {0}, (1.13)

which implies that for every f ∈ V ′, (1.11) admits a unique solution u ∈ V
and, moreover, that A−1 : V ′ → V is continuous, i.e., there exists CA > 0
such that, for all f ∈ V ′,

‖u‖V = ‖A−1f‖V ≤ CA‖f‖V ′ . (1.14)

Here CA = C−1
2 with the constant C2 as in (1.3). We shall consider (1.11)

in particular for data f , which are Gaussian random fields on the data space
V ′. By the linearity of the operator equation (1.11), then the solution v ∈ V
is a Gaussian random field as well. Throughout, we assume that V and V ′

are separable Hilbert spaces.

Random data

A Gaussian random field f with values in a separable Hilbert space X is a
mapping f : Ω → X which maps events E ∈ Σ to Borel sets in X, and such
that the image measure f#P on X is Gaussian. In the following, we allow
more general random fields. Of particular interest will be their summability
properties. We say that a random field u : Ω → X is in the Bochner space
L1(Ω;X) if ω �→ ‖u(ω)‖X is measurable and integrable so that ‖u‖L1(Ω;X) :=∫
Ω ‖u(ω)‖X P(dω) is finite. In particular, then the ‘ensemble average’

Eu :=

∫

Ω
u(ω)P(dω) ∈ X

exists as a Bochner integral of X-valued functions, and it satisfies

‖Eu‖X ≤ ‖u‖L1(Ω;X). (1.15)

Let k ≥ 1. We say that a random field u : Ω → X is in the Bochner
space Lk(Ω;X) if ‖u‖k

Lk(Ω;X)
=
∫
Ω ‖u(ω)‖kXP(dω) is finite. Note that ω �→

‖u(ω)‖kX is measurable due to the measurability of u and the continuity of
the norm ‖·‖X on X. Also, Lk(Ω;X) ⊃ Ll(Ω;X) for k < l.
Let B ∈ L(X,Y ) denote a continuous linear mapping from X to another

separable Hilbert space Y . For a random field u ∈ Lk(Ω;X), this mapping
defines a random variable v(ω) = Bu(ω) taking values in Y . Moreover,
v ∈ Lk(Ω;Y ) and we have

‖Bu‖Lk(Ω;Y ) ≤ C‖u‖Lk(Ω;X), (1.16)
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where the constant C is given by C = ‖B‖L(X,Y ). In addition, we have

B

∫

Ω
uP(dω) =

∫

Ω
BuP(dω). (1.17)

MC estimation of statistical moments

We are interested in statistics of the random solution u of (1.11) and, in
particular, in statistical moments. To define them, for a separable Hilbert
space X and for any k ∈ N we define the k-fold tensor product space

X(k) = X ⊗ · · · ⊗X︸ ︷︷ ︸
k times

,

and equip it with the natural cross-norm ‖ · ‖X(k) . The significance of a
cross-norm was emphasized by Schatten. The cross-norm has the property
that, for every u1, . . . , uk ∈ X,

‖u1 ⊗ · · · ⊗ uk‖X(k) = ‖u1‖X · · · ‖uk‖X (1.18)

(see Light and Cheney (1985) and the references therein for more on cross-
norms on tensor product spaces). The k-fold tensor products of, for ex-
ample, X ′ are denoted analogously by (X ′)(k). For u ∈ Lk(Ω;X) we now
consider the random field u(k) defined by u(ω)⊗· · ·⊗u(ω). By Lemma C.9,
u(k) = u⊗ · · · ⊗ u ∈ L1(Ω;X(k)), and we have the isometry

‖u(k)‖L1(Ω;X(k)) =

∫

Ω
‖u(ω)⊗ · · · ⊗ u(ω)‖X(k)P(dω) (1.19)

=

∫

Ω
‖u(ω)‖X · · · ‖u(ω)‖XP(dω) = ‖u‖kLk(Ω;X).

We define the moment Mku as the expectation of u⊗ · · · ⊗ u.

Definition 1.1. For u ∈ Lk(Ω;X), for some integer k ≥ 1, the kth mo-
ment of u(ω) is defined by

Mku = E

[
u⊗ · · · ⊗ u︸ ︷︷ ︸

k times

]
=

∫

ω∈Ω
u(ω)⊗ · · · ⊗ u(ω)︸ ︷︷ ︸

k times

P(dω) ∈ X(k). (1.20)

Note that (1.15) and (1.18) give, with Jensen’s inequality and the con-
vexity of the norm ‖ · ‖V → R, the bound

‖Mku‖X(k) = ‖Eu(k)‖X(k) ≤ E‖u(k)‖X(k) = E‖u‖kX = ‖u‖kLk(Ω;X). (1.21)

Deterministic equation for statistical moments

We now consider the operator equation Au = f , where f ∈ Lk(Ω;V ′) is
given with k ≥ 1. Since A−1 : V ′ → V is continuous, we obtain, using
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(1.16), (1.14) and (1.21), that u ∈ Lk(Ω;V ), and that we have the a priori

estimate

‖Mku‖V (k) ≤ ‖u‖kLk(Ω;V ) ≤ Ck
A‖f‖kLk(Ω;V ′). (1.22)

Remark 1.2. One example of a probability measure P on X is a Gaussian
measure; we refer to, e.g., Vakhania, Tarieladze and Chobanyan (1987) and
Ledoux and Talagrand (1991) for general probability measures over Banach
spaces X and, in particular, to Bogachev (1998) and Janson (1997) for a
general exposition of Gaussian measures on function spaces.
Since A−1 : V ′ → V in (1.11) is bijective, by (1.12) and (1.13), it induces

a measure P̃ := A−1
# P on the space V of solutions to (1.11). If P is Gaussian

over V ′ and A in (1.11) is linear, then P̃ is Gaussian over V by Theorem C.18.
We recall that a Gaussian measure is completely determined by its mean

and covariance, and hence only Mku for k = 1, 2 are of interest in this case.

We now consider the tensor product operator A(k) = A⊗· · ·⊗A (k times).
This operator maps V (k) to (V ′)(k). For v ∈ V and g := Av, we obtain that
A(k)v⊗ · · · ⊗ v = g⊗ · · · ⊗ g. Consider a random field u ∈ Lk(Ω;V ) and let
f := Au ∈ Lk(Ω;V ′). Then the tensor product u(k) = u⊗ · · · ⊗ u (k times)
belongs to the space L1(Ω;V (k)), and we obtain from (1.17) with B = A(k)

that the k-point correlations u(k) satisfy P-a.s. the tensor equation

A(k)u(k) = f (k),

where f (k) ∈ L1(Ω; (V ′)(k)). Now (1.17) implies for linear and deterministic

operators A that the k-point correlation functions of the random solutions,
i.e., the expectations Mku = E[u(k)], are solutions of the tensorized equa-
tions

A(k)Mku = Mkf. (1.23)

In the case k = 1 this is just the equation AEu = Ef for the mean field.
Note that this equation provides a way to compute the moments Mku
of the random solution in a deterministic fashion, for example by Galerkin
discretization. As mentioned before, with the operator A acting on function
spaces X, Y in the domain D ⊂ Rd, the tensor equation (1.23) will require
discretization in Dk, the k-fold Cartesian product of D with itself. Using
tensor products of, for instance, finite element spaces in D, we find for k > 1
a reduction of efficiency in terms of accuracy versus number of degrees of
freedom due to the ‘curse of dimensionality’. This mandates sparse tensor
product constructions.
We will investigate the numerical approximation of the tensor equation

(1.23) in Section 1.4. The direct approximation of (1.23) by, for example,
Galerkin discretization is an alternative to the Monte Carlo approximation
of the moments which will be considered in Section 1.3.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core
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In the deterministic approach, explicit knowledge of all joint probability
densities of f (i.e., the law of f) with respect to the probability measure P

is not required to determine the order-k statistics of the random solution u
from order-k statistics of f .

Remark 1.3. For nonlinear operator equations, associated systems of mo-
ment equations require a closure hypothesis, which must be additionally
imposed and verified. For the linear operator equation (1.11), however, a
closure hypothesis is not necessary, as (1.23) holds.

For solvability of (1.23), we consider the tensor product operator A1 ⊗
A2 ⊗ · · · ⊗Ak for operators Ai ∈ L(Vi, V

′
i ), i = 1, . . . , k.

Proposition 1.4. For integer k > 1, let Vi, i = 1, . . . , k be Hilbert spaces
with duals V ′

i , and let Ai ∈ L(Vi, V
′
i ) be injective and satisfy a G̊arding

inequality, i.e., there are compact Ti ∈ L(Vi, V
′
i ) and αi > 0 such that

∀v ∈ Vi :
〈
(Ai + Ti) v, v

〉
≥ αi ‖v‖2Vi

, (1.24)

where 〈·, ·〉 denotes the V ′
i × Vi duality pairing.

Then the product operator A = A1 ⊗ A2 ⊗ · · · ⊗ Ak ∈ L(V ,V ′), where
V = V1 ⊗ V2 ⊗ · · · ⊗ Vk and V ′ = (V1 ⊗ V2 ⊗ · · · ⊗ Vk)

′ ∼= V ′
1 ⊗ V ′

2 ⊗ · · · ⊗ V ′
k,

is injective, and for every f ∈ V ′, the problem Au = f admits a unique
solution u with

‖u‖V ≤ C ‖f‖V ′ .

Proof. The injectivity and the G̊arding inequality (1.24) imply the bounded
invertibility of Ai for each i. This implies the bounded invertibility of A on
V ′ → V since we can write

A = (A1 ⊗ Ik−1) ◦ (I ⊗A2 ⊗ I(k−2)) ◦ · · · ◦ (I(k−1) ⊗Ak),

where I(j) denotes the j-fold tensor product of the identity operator on the
appropriate Vi. Note that each factor in the composition is invertible.

To apply this result to (1.23), we require the special case

A(k) := A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k times

∈ L(V (k), (V ′)(k)) = L(V (k), (V (k))′). (1.25)

Theorem 1.5. If A in (1.11) satisfies (1.12) and (1.13), then for every
k > 1 the operator A(k) ∈ L(V (k), (V ′)(k)) is injective on V (k), and for
every f ∈ Lk(Ω;V ′), the equation

A(k)Z = Mkf (1.26)

has a unique solution Z ∈ V (k).
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This solution coincides with the kth moment Mku of the random field in
(1.20):

Z = Mku.

Proof. By (1.21), the assumption f ∈ Lk(Ω;V ′) ensures that Mkf ∈
(V ′)(k). The unique solvability of (1.26) follows immediately from Propo-
sition 1.4 and the assumptions (1.12) and (1.13). The identity Z = Mku
follows from (1.23) and the uniqueness of the solution of (1.26).

Regularity

The numerical analysis of approximation schemes for (1.26) will require a
regularity theory for (1.26). To this end we introduce a smoothness scale
(Ys)s≥0 for the data f with Y0 = V ′ and Ys ⊂ Yt for s > t. We assume
that we have a corresponding scale (Xs)s≥0 of ‘smoothness spaces’ for the
solutions with X0 = V and Xs ⊂ Xt for s > t, so that A−1 : Ys → Xs is
continuous.
When D is a smooth closed manifold of dimension d embedded into Eu-

clidean space Rd+1, we choose Ys = H−̺/2+s(D) and Xs = H̺/2+s(D).
The case of differential operators with smooth coefficients in a manifold D
with smooth boundary is also covered within this framework by the choices
Ys = H−̺/2+s(D) and Xs = H̺̃/2 ∩H̺/2+s(D). Note that in other cases (a
pseudodifferential operator on a manifold with boundary, or a differential
operator on a domain with non-smooth boundary), the spaces Xs can be
chosen as weighted Sobolev spaces which contain functions that are singular
at the boundary.

Theorem 1.6. Assume (1.12) and (1.13), and that there is an s∗ > 0 such
that A−1 : Ys → Xs is continuous for 0 ≤ s ≤ s∗. Then we have for all
k ≥ 1 and for 0 ≤ s ≤ s∗ some constant C(k, s) such that

‖Mku‖
X

(k)
s

≤ C‖Mkf‖
Y

(k)
s

= C‖f‖kLk(Ω;Ys)
. (1.27)

Proof. If (1.12) and (1.13) hold, then the operator A(k) is invertible, and

Mku = (A(k))−1Mkf = (A−1)(k)Mkf.

Since
‖A−1f‖Xs ≤ Cs ‖f‖Ys , 0 ≤ s ≤ s∗,

it follows that

‖Mku‖
X

(k)
s

= ‖(A−1)(k)Mkf‖
X

(k)
s

≤ Ck
s ‖Mkf‖

Y
(k)
s

, 0 ≤ s ≤ s∗.

1.2. Finite element discretization

In order to obtain a finite-dimensional problem, we need to discretize in
both Ω and D. For D we will use a nested family of finite element spaces
Vℓ ⊂ V , ℓ = 0, 1, . . . .
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Nested finite element spaces

The Galerkin approximation of (1.11) is based on a sequence {Vℓ}∞ℓ=0 of
subspaces of V of dimension Nℓ = dimVℓ < ∞ which are dense in V , i.e.,
V =

⋃
ℓ≥0 Vℓ, and nested, i.e.,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vℓ ⊂ Vℓ+1 ⊂ · · · ⊂ V. (1.28)

We assume that for functions u in the smoothness spaces Xs with s ≥ 0
we have the asymptotic approximation rate

inf
v∈Vℓ

‖u− v‖V ≤ CN
−s/d
ℓ ‖u‖Xs . (1.29)

Finite elements with uniform mesh refinement

We will now describe examples for the subspaces Vℓ which satisfy the as-
sumptions of Section 1.2. We briefly sketch the construction of finite element
spaces which are only continuous across element boundaries; see Braess
(2007), Brenner and Scott (2002) and Ciarlet (1978) for presentations of
the mathematical foundations of finite element methods. These elements
are suitable for operators of order ̺ < 3. Throughout, we denote by Pp(K)
the linear space of polynomials of total degree ≤ p on a set K.
Let us first consider the case of a bounded polyhedron D ⊂ Rd. Let T0

be a regular partition of D into simplices K. Let {Tℓ}∞ℓ=0 be the sequence
of regular partitions of D obtained from T0 by uniform subdivision: for
example, if d = 2, we bisect all edges of the triangulation Tℓ and obtain a
new, regular partition of the domain D into possibly curved triangles which
belong to finitely many congruency classes. We set

Vℓ = Sp(D, Tℓ) = {u ∈ C0(D) ; u|K ∈ Pp(K) ∀K ∈ Tℓ}

and let hℓ = max {diam(K) ; K ∈ Tℓ}. Then Nℓ = dimVℓ = O(h−d
ℓ ) as

ℓ → ∞. With V = H̺̃/2(D) and Xs = H̺/2+s(D), standard finite element
approximation results imply that (1.29) holds for s ∈ [0, p+ 1− ̺/2], i.e.,

inf
v∈Vℓ

‖u− v‖V ≤ CN
−s/d
ℓ ‖u‖Xs .

For the case when D is the boundary D = ∂D of a polyhedron D ⊂ Rd+1

we define finite element spaces on D in the same way as above, but now
in local coordinates on D, and obtain the same convergence rates (see,
e.g., Sauter and Schwab (2010)): for a d-dimensional domain D ⊂ Rd with
a smooth boundary we can first divide D into pieces DJ , which can be
mapped to a simplex S by smooth mappings ΦJ : DJ → S (which must be
C0-compatible where two pieces DJ , DJ ′ touch). Then we can define on D
finite element functions which on DJ are of the form g ◦ ΦJ , where g is a
polynomial.
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For a d-dimensional smooth surface D ⊂ Rd+1 we can similarly divide D
into pieces which can be mapped to simplices in Rd, and again define finite
elements using these mappings.

Finite element wavelet basis for Vℓ

To facilitate the accurate numerical approximation of moments of order
k ≥ 2 of the random solution and for the efficient numerical solution of the
partial differential equations, we use a hierarchical basis for the nested finite
element (FE) spaces V0 ⊂ · · · ⊂ VL.
To this end, we start with a basis {ψ0

j }j=1,...,N0 for the finite element
space V0 on the coarsest triangulation. We represent on the finer meshes
Tℓ the corresponding FE spaces Vℓ, with ℓ > 0 as a direct sum Vℓ =
Vℓ−1⊕Wℓ. Since the subspaces are nested and finite-dimensional, this is pos-
sible with a suitable space Wℓ for any hierarchy of FE spaces. We assume,
in addition, that we are explicitly given basis functions {ψℓ

j}j=1,...,Mℓ
of

Wℓ. Iterating with respect to ℓ, we have that VL = V0 ⊕ W1 ⊕ · · · ⊕ WL,
and {ψℓ

j ; ℓ = 0, . . . , L, j = 1, . . . ,Mℓ} is a hierarchical basis for VL, where
M0 := N0.

(W1) Hierarchical basis . VL = span{ψℓ
j ; 1 ≤ j ≤ ML, 0 ≤ ℓ ≤ L}.

Let us define Nℓ := dimVℓ and N−1 := 0; then we have Mℓ := Nℓ − Nℓ−1

for ℓ = 0, 1, 2, . . . , L.
The hierarchical basis property (W1) is in principle sufficient for the for-

mulation and implementation of the sparse MC–Galerkin method and the
deterministic sparse Galerkin method. In order to obtain algorithms of
log-linear complexity for integrodifferential equations, impose on the hier-
archical basis the additional properties (W2)–(W5) of a wavelet basis. This
will allow us to perform matrix compression for non-local operators, and to
obtain optimal preconditioning for the iterative linear system solver.

(W2) Small support . diam supp(ψℓ
j) = O(2−ℓ).

(W3) Energy norm stability . There is a constant CB > 0 independent of
L ∈ N ∪ {∞}, such that, for all L ∈ N ∪ {∞} and all

vL =
L∑

ℓ=0

Mℓ∑

j=1

vℓj ψ
ℓ
j(x) ∈ VL,

we have

C−1
B

L∑

ℓ=0

Mℓ∑

j=1

|vℓj |2 ≤ ‖vL‖2V ≤ CB

L∑

ℓ=0

Mℓ∑

j=1

|vℓj |2. (1.30)

Here, in the case L = ∞ it is understood that VL = V .
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(W4) Wavelets ψℓ
j with ℓ ≥ ℓ0 have vanishing moments up to order p0 ≥

p− ̺
∫

ψℓ
j(x)x

α dx = 0, 0 ≤ |α| ≤ p0, (1.31)

except possibly for wavelets where the closure of the support inter-
sects the boundary ∂D or the boundaries of the coarsest mesh. In
the case of mapped finite elements we require the vanishing moments
for the polynomial function ψℓ

j ◦ Φ−1
J .

(W4) Decay of coefficients for ‘smooth’ functions in Xs. There exists C > 0
independent of L such that, for every u ∈ Xs and every L,

L∑

ℓ=0

Mℓ∑

j=1

|uℓj |2 22ℓs ≤ CLν‖u‖2Xs
, ν =

{
0 for 0 ≤ s < p+ 1− ̺/2,

1 for s = p+ 1− ̺/2.

(1.32)

By property (W3), wavelets constitute Riesz bases: every function u ∈ V

has a unique wavelet expansion u =
∑∞

ℓ=0

∑Mℓ
j=1 uℓj ψ

ℓ
j .

We define the projection PL : V → VL by truncating this wavelet expan-
sion of u at level L, i.e.,

PLu :=
L∑

ℓ=0

Mℓ∑

j=1

uℓj ψ
ℓ
j . (1.33)

Because of the stability (W3) and the approximation property (1.29), we
obtain immediately that the wavelet projection PL is quasi-optimal: with
(1.29), for 0 ≤ s ≤ s∗ and u ∈ Xs,

‖u− PLu‖V � N
−s/d
L ‖u‖Xs . (1.34)

We remark in passing that the appearance of the factor 1/d in the conver-
gence rate s/d in (1.34), when expressed in terms of NL, the total number
of degrees of freedom, indicates a reduction of the convergence rate as the
dimension d of the computational domain increases. This reduction of the
convergence rate with increasing dimension is commonly referred to as the
‘curse of dimensionality’; as long as d = 1, 2, 3, this is not severe and, in
fact, shared by almost all discretizations. If the dimension of the computa-
tional domain increases, however, this reduction becomes a severe obstacle
to the construction of efficient discretizations. In the context of stochastic
and parametric PDEs, the dimension of the computational domain can, in
principle, become arbitrarily large, as we shall next explain.
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Full and sparse tensor product spaces

To compute an approximation for

Mku ∈ V (k) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

we need a suitable finite-dimensional subspace of V (k). The simplest choice

is the tensor product space VL ⊗ · · · ⊗ VL = V
(k)
L . However, this full tensor

product space has dimension

dim(V
(k)
L ) = Nk

L = (dim(VL))
k, (1.35)

which is not practical for k > 1. A reduction in cost is possible by sparse

tensor products of VL. The k-fold sparse tensor product space V̂
(k)
L is defined

by

V̂
(k)
L =

∑

ℓ∈Nk
0

|ℓ|≤L

Vℓ1 ⊗ · · · ⊗ Vℓk , (1.36)

where we denote by ℓ the vector (ℓ1, . . . , ℓk) ∈ Nk
0 and its length by |ℓ| =

ℓ1 + · · ·+ ℓk. The sum in (1.36) is not direct in general. However, since the

Vℓ are finite-dimensional, we can write V̂
(k)
L as a direct sum in terms of the

complement spaces Wl:

V̂
(k)
L =

⊕

ℓ∈Nk
0

|ℓ|≤L

Wℓ1 ⊗ · · · ⊗Wℓk . (1.37)

If a hierarchical basis of the subspaces Vℓ (i.e., satisfying hypothesis
(W1)) is available, we can define a sparse tensor quasi-interpolation op-

erator P̂
(k)
L : V (k) → V̂

(k)
L by a suitable truncation of the tensor product

wavelet expansion: for every x1, . . . , xk ∈ D,

(P̂
(k)
L v)(x) :=

∑

0≤ℓ1+···+ℓk≤L
1≤jν≤Mℓν ,ν=1,...,k

vℓ1···ℓkj1···jk ψℓ1
j1
(x1) · · ·ψℓk

jk
(xk). (1.38)

If a hierarchical basis is not explicitly available, we can still express P̂
(k)
L

in terms of the projections Qℓ := Pℓ − Pℓ−1 for ℓ = 0, 1, . . . , and with the
convention P−1 := 0 as

P̂
(k)
L =

∑

0≤ℓ1+···+ℓk≤L

Qℓ1 ⊗ · · · ⊗Qℓk . (1.39)

We also note that the dimension of V̂
(k)
L is

N̂L = dim(V̂
(k)
L ) = O(NL(log2NL)

k−1), (1.40)
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310 C. Schwab and C. J. Gittelson

that is, it is a log-linear function of the number NL of the degrees of free-
dom used for approximation of the first moment. Given that the sparse

tensor product space V̂
(k)
L is substantially coarser, one wonders whether its

approximation properties are substantially worse than that of the full ten-

sor product space V
(k)
L . The basis for the use of the sparse tensor product

spaces V̂
(k)
L is the next result, which indicates that V̂

(k)
L achieves, up to loga-

rithmic terms, the same asymptotic rate of convergence, in terms of powers
of the mesh width, as the full tensor product space. The approximation

property of sparse grid spaces V̂
(k)
L was established, for example, in Schwab

and Todor (2003b, Proposition 4.2), Griebel, Oswald and Schiekofer (1999),
von Petersdorff and Schwab (2004) and Todor (2009).

Proposition 1.7.

inf
v∈V̂ (k)

L

‖U − v‖V (k) ≤ C(k)

{
N

−s/d
L ‖U‖

X
(k)
s

if 0 ≤ s < p+ 1− ̺/2,

N
−s/d
L Lν(k)‖U‖

X
(k)
s

if s = p+ 1− ̺/2.

(1.41)
Here, the exponent ν(k) = (k − 1)/2 is best possible on account of the
V -orthogonality of the V best approximation.

Remark 1.8. The exponent ν(k) of the logarithmic terms in the sparse
tensor approximation rates stated in Proposition 1.7 is best possible for the
approximation in the sparse tensor product spaces V (k) given the regularity

U ∈ X
(k)
s . In general, these logarithmic terms in the convergence estimate

are unavoidable. Removal of all logarithmic terms in the convergence rate

estimate as well as in the dimension estimate of V̂
(k)
L is possible only if either

(a) the norm ‖◦‖V (k) on the left-hand side of (1.41) is weakened, or if (b) the

norm X
(k)
s on the right-hand side of (1.41) is strengthened. For example, in

the context of sparse tensor FEM for the Laplacian in (0, 1)d, it was shown
by von Petersdorff and Schwab (2004) and Bungartz and Griebel (2004) that
all logarithmic terms can be removed; this is due to the observation that the
H1((0, 1)d) norm is strictly weaker than the corresponding tensorized norm
H1(0, 1)(d) which appears in the error bound (1.41) in the case of d-point
correlations of a random field taking values in H1

0 (0, 1).
The same effect allows us to slightly coarsen the sparse tensor product

space V̂
(k)
L . This was exploited, for example, by Bungartz and Griebel (2004)

and Todor (2009).

The error bound (1.41) is for the best approximation of U ∈ X
(k)
s from

V̂
(k)
L . To achieve the exponent ν(k) = (k − 1)/2 in (1.41) for a sparse

tensor quasi-interpolant such as (1.38), the multi-level basis ψℓ
j of V must

be V -orthogonal between successive levels ℓ. This V -orthogonality of the
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multi-level basis can be achieved in V ⊂ H1(D), for example, by using
so-called spline prewavelets.
Let us also remark that it is even possible to construct L2(D) orthonor-

mal piecewise polynomial wavelet bases satisfying (W1)–(W5). We refer to
Donovan, Geronimo and Hardin (1996) for details.

The stability property (W3) implies the following result (see, e.g., von
Petersdorff and Schwab (2004)).

Lemma 1.9. (on the sparse tensor quasi-interpolant P̂
(k)
L ) Assume

(W1)–(W5) and that the component spaces Vℓ of V̂
(k)
L are V -orthogonal be-

tween scales and have the approximation property (1.29). Then the sparse

tensor projection P̂
(k)
L is stable: there exists C > 0 (depending on k but

independent of L) such that, for all for U ∈ V (k),

‖P̂ (k)
L U‖V (k) ≤ C ‖U‖V (k) . (1.42)

For U ∈ X
(k)
s and 0 ≤ s ≤ s∗, if the basis functions ψℓ

j satisfy (W1)–(W5)
and are V -orthogonal between different levels of mesh refinement , we obtain

quasi-optimal convergence of the sparse tensor quasi-interpolant P̂
(k)
L U in

(1.38):

‖U − P̂
(k)
L U‖V (k) ≤ C(k)N

−s/d
L (logNL)

(k−1)/2‖U‖
X

(k)
s

. (1.43)

Remark 1.10. The convergence rate (1.43) of the approximation P̂
(k)
L U

from the sparse tensor subspace is, up to logarithmic terms, equal to the
rate obtained for the best approximation of the mean field, i.e., in the
case k = 1. We observe, however, that the regularity of U required to

achieve this convergence rate is quite high: the function U must belong

to an anisotropic smoothness class X
(k)
s which, in the context of ordinary

Sobolev spaces, is a space of functions whose (weak) mixed derivatives of

order s belong to V . Evidently, thismixed smoothness regularity requirement

becomes stronger as the number k of moments increases. By Theorem 1.6,
the k-point correlations Mku of the random solution u naturally satisfy
such regularity.

Galerkin discretization

We first consider the discretization of the problem Au(ω) = f(ω) for a single
realization ω, bearing in mind that in the Monte Carlo method this problem
will have to be approximately solved for many realizations of ω ∈ Ω.
The Galerkin discretization of (1.11) reads: find uL(ω) ∈ VL such that

〈vL, AuL(ω)〉 = 〈vL, f(ω)〉 ∀vL ∈ VL, P-a.e. ω ∈ Ω, (1.44)

where ‘P-a.e.’ stands for ‘P almost everywhere’. It is well known that the
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312 C. Schwab and C. J. Gittelson

injectivity (1.13) of A, the G̊arding inequality (1.12) and the density in V of
the subspace sequence {Vℓ}∞ℓ=0 imply that there exists L0 > 0 such that, for
L ≥ L0, problem (1.44) admits a unique solution uL(ω). Furthermore, we
have the uniform inf-sup condition (see, e.g., Hildebrandt and Wienholtz
(1964)): there exists a discretization level L0 and a stability constant γ > 0
such that, for all L ≥ L0,

inf
0�=u∈VL

sup
0�=v∈VL

〈Au, v〉
‖u‖V ‖v‖V

≥ 1

γ
> 0. (1.45)

The inf-sup condition (1.45) implies quasi-optimality of the approximations
uL(ω) for L ≥ L0 (see, e.g., Babuška (1970/71)): there exist C > 0 and
L0 > 0 such that

∀L ≥ L0 : ‖u(ω)− uL(ω)‖V ≤ C inf
v∈VL

‖u(ω)− v‖V P-a.e. ω ∈ Ω. (1.46)

From (1.46) and (1.29), we obtain the asymptotic error estimate: define
σ := min{s∗, p+1− ̺/2}. Then there exists C > 0 such that for 0 < s ≤ σ

∀L ≥ L0 : ‖u(ω)− uL(ω)‖V ≤ CN
−s/d
L ‖u‖Xs P-a.e. ω ∈ Ω. (1.47)

1.3. Sparse tensor Monte Carlo Galerkin FEM

We next review basic convergence results of the Monte Carlo method for
the approximation of expectations of random variables taking values in a
separable Hilbert space. As our exposition aims at the solution of opera-
tor equations with stochastic data, we shall first consider the MC method
without discretization of the operator equation, and show convergence esti-
mates of the statistical error incurred by the MC sampling. Subsequently,
we turn to the Galerkin approximation of the operator equation and, in par-
ticular, the sparse tensor approximation of the two- and k-point correlation
functions of the random solution.

Monte Carlo error for continuous problems

For a random variable Y , let Y1(ω), . . . , YM (ω) denote M ∈ N copies of Y ,
i.e., the Yi are random variables which are mutually independent and iden-
tically distributed to Y (ω) on the same common probability space (Ω,Σ,P).

Then the arithmetic average Y
M
(ω),

Y
M
(ω) :=

1

M

(
Y1(ω) + · · ·+ YM (ω)

)
,

is a random variable on (Ω,Σ,P) as well.
The simplest approach to the numerical solution of (1.11) for f ∈L1(Ω;V ′)

is MC simulation. Let us first consider the situation without discretization
of V . We generate M draws f(ωj), j = 1, 2, . . . ,M , of f(ω) and find the
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solutions u(ωj) ∈ V of the problems

Au(ωj) = f(ωj), j = 1, . . . ,M. (1.48)

We then approximate the kth moment Mku with the sample mean ĒM [u(k)]
of u(ωj)⊗ · · · ⊗ u(ωj):

ĒM [u(k)] := u⊗ · · · ⊗ uM =
1

M

M∑

j=1

u(ωj)⊗ · · · ⊗ u(ωj). (1.49)

It is well known that the Monte Carlo error decreases as M−1/2 in a proba-
bilistic sense provided the variance of u(k) exists. By (1.18), this is the case
for u ∈ L2k(Ω;V ). We have the following convergence estimate.

Theorem 1.11. Let k ≥ 1 and assume that in the operator equation
(1.11) f ∈ L2k(Ω;V ′). Then, for anyM ∈ N of samples for the MC estimator
(1.49), we have the error bound

‖Mku− ĒM [u(k)]‖L2(Ω;V (k)) ≤ M−1/2
(
CA‖f‖L2k(Ω;V ′)

)k
. (1.50)

Proof. We observe that f ∈ L2k(Ω;V ′) implies with (1.22) that u(k) ∈
L2(Ω;V (k)). For i = 1, . . . ,M we denote by ûi(ω) the M i.i.d. copies of the
random variable u(ω) = A−1f(ω), which corresponds to the M many MC

samples ûi = A−1f̂i.
Using that the ûi are independent and identically distributed, we infer

that, for each value of i, ûi(ω) ∈ L2k(Ω;V ). Therefore

‖E[u(k)]− ĒM [u(k)]‖2
L2(Ω;V (k))

= E
[
‖E[u(k)]− ĒM [u(k)]‖2

V (k)

]

= E

[∥∥∥∥E[u
(k)]− 1

M

M∑

i=1

û
(k)
i

∥∥∥∥
2

V (k)

]

= E

[〈
E[u(k)]− 1

M

M∑

i=1

û
(k)
i ,E[u(k)]− 1

M

M∑

j=1

û
(k)
j

〉]

=
1

M2

M∑

i,j=1

E
[〈
E[u(k)]− û

(k)
i ,E[u(k)]− û

(k)
j

〉]

=
1

M2

M∑

i=1

E
[
‖E[u(k)]− û

(k)
i ‖2

V (k)

]
(ûi(ω) independent)

=
1

M
E
[
‖u(k) − E[u(k)]‖2

V (k)

]
(ûi(ω) identically distributed)

=
1

M
E
[〈
u(k) − E[u(k)], u(k) − E[u(k)]

〉]
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=
1

M

{
E
[〈
u(k) − E[u(k)],E[u(k)]

〉]
+ E

[〈
u(k) − E[u(k)], u(k)

〉]}

=
1

M
E
[
‖u(k)‖2

V (k)

]
− 1

M
‖E[u(k)]‖2

V (k)

≤ M−1‖u(k)‖2
L2(Ω;V (k))

= M−1‖u‖2kL2k(Ω;V ).

Taking square roots on both sides completes the proof.

The previous theorem required that u(k) ∈ L2(Ω;V (k)) or (equivalently
by (1.18)) that u ∈ L2k(Ω;V ) (resp. f ∈ L2k(Ω;V ′)) in order to obtain the
convergence rate M−1/2 of the MC estimates (1.49), in L2(Ω; v).
In the case of weaker summability of u, the next estimate shows that the

MC method converges in L1(Ω;V (k)) and at a rate that is possibly lower
than 1/2, as determined by the summability of u. We only state the result
here and refer to von Petersdorff and Schwab (2006) for the proof.

Theorem 1.12. Let k ≥ 1. Assume that f ∈ Lαk(Ω;V ′) for some α ∈
(1, 2]. For M ≥ 1 samples we define the sample mean ĒM [u(k)] as in (1.49).
Then there exists C such that, for every M ≥ 1 and every 0 < ǫ < 1,

P

(
‖Mku− ĒM [u(k)]‖V (k) ≤ C

‖f‖k
Lαk(Ω;V ′)

ǫ1/αM1−1/α

)
≥ 1− ǫ. (1.51)

The previous results show that one can obtain a rate of up to M−1/2 in a
probabilistic sense for the Monte Carlo method. Convergence rates beyond
1/2 are not possible, in general, by the MC method, as is shown by the
central limit theorem; in this sense, the rate 1/2 is sharp.
So far, we have obtained the convergence rate 1/2 of the MC method

essentially in L1(Ω, V (k)) and in L2(Ω, V (k)). A P-a.s convergence estimate
of the MC method can be obtained using the separability of the Hilbert
space of realizations and the law of the iterated logarithm; see, e.g., Strassen
(1964) and Ledoux and Talagrand (1991, Chapter 8) and the references
therein for the vector-valued case.

Lemma 1.13. Assume that H is a separable Hilbert space and that X ∈
L2(Ω;H). Then, with probability 1,

lim sup
M→∞

‖XM − E(X)‖H
(2M−1 log logM)1/2

≤ ‖X − E(X)‖L2(Ω;H). (1.52)

For the proof, we refer to von Petersdorff and Schwab (2006). Applying
Lemma 1.13 toX = u(k) = u⊗· · ·⊗u and with V (k) in place ofH gives (with
CA as in (1.14)) ‖u ⊗ · · · ⊗ u‖L2(Ω;V (k)) = ‖u‖k

L2k(Ω;V )
≤ C2k

A ‖f‖k
L2k(Ω;V ′)

,

whence the following result.
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Theorem 1.14. Let f ∈ L2k(Ω;V ′). Then, with probability 1,

lim sup
M→∞

‖Mku− ĒM [u(k)]‖V (k)

(2M−1 log logM)1/2
≤ C(k)‖f‖kL2k(Ω;V ′). (1.53)

Sparse Monte Carlo Galerkin moment estimation

We now use Galerkin discretization with the subspaces VL⊂V to solve (1.48)
approximately and to obtain, for each draw of the load function, Galerkin
approximations uL(ωj). The resulting sample mean approximation of the
kth moment Mku equals

ĒM [u
(k)
L ] :=

1

M

M∑

j=1

uL(ωj)⊗ · · · ⊗ uL(ωj). (1.54)

This yields a first MC estimation for the k-point correlation function of
Mku. The complexity of forming (1.54) is, however, prohibitive: to form in
(1.54) the k-fold tensor product of the Galerkin approximations for the M
data samples, one needs O(Nk

L) memory and O(MNk
L) operations to com-

pute this mean, which implies loss of linear complexity for k > 1. Therefore
we propose using the sparse approximation

ÊM [u(k)] := P̂
(k)
L ĒM [u(k)] = ĒM [P̂

(k)
L u(k)], (1.55)

which requires O(NL(logNL)
k−1) memory and operations.

To compute ĒM,L[P̂
(k)
L Mku] we proceed as follows. First, we generate M

data samples f(ωj), j = 1, . . . ,M and the corresponding Galerkin approxi-
mations uL(ωj) ∈ VL as in (1.44).
Choosing a wavelet basis of VL that satisfies (W1) ((W2)–(W5) are not

required at this stage), by (1.33), uL(ωj) can then be represented as

uL(ωj) =
L∑

ℓ=0

Mℓ∑

k=1

uℓk(ωj)ψ
ℓ
k, (1.56)

with uℓk(ωj) = 〈uL(ωj), ψ̃
ℓ
k〉, where {ψ̃ℓ

k}ℓ,k denotes the dual wavelet basis to

{ψℓ
k}ℓ,k (Cohen 2003). Based on the representation (1.56), we can compute

the sparse tensor product MC estimate ofMku with the projection operators

P̂
(k)
L in (1.38) as follows:

ÊM [u
(k)
L ] =

1

M

M∑

j=1

P̂
(k)
L

[
uL(ωj)⊗ · · · ⊗ uL(ωj)

]
∈ V̂

(k)
L . (1.57)

This quantity can be computed in O(MNL(logNL)
k−1) operations since,

for each data sample f(ωj), j = 1, . . . ,M , the projection P̂L onto the

sparse tensor product space V̂
(k)
L of the Galerkin approximation uL(ωj) is
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given by P̂
(k)
L [uL(ωj) ⊗ · · · ⊗ uL(ωj)]. This projection can be computed

in O(NL(log2NL)
k−1) operations as follows. For each j we first compute

uL(ωj) in the wavelet basis and then form P̂
(k)
L [uL(ωj)⊗· · ·⊗uL(ωj)] using

the formula

P̂
(k)
L (v ⊗ · · · ⊗ v) =

∑

0≤ℓ1+···+ℓk≤L
1≤jν≤Mℓν ,ν=1,...,k

vl1j1 · · · v
lk
jk
ψl1
j1

· · ·ψlk
jk
. (1.58)

The following result addresses the convergence of the sparse MC–Galerkin
approximation of Mku. Recall σ := min{s∗, p + 1 − ̺/2} with s∗ as in
Theorem 1.6.

Theorem 1.15. Assume that f ∈ Lk(Ω;Ys) ∩ Lαk(Ω;V ′) for some α ∈
(1, 2] and some s ∈ (0, σ]. Then there exists C(k) > 0 such that, for all
M ≥ 1, L ≥ L0 and all 0 < ǫ < 1,

P
(
‖Mku− ÊM,L[Mku]‖V (k) < λ

)
≥ 1− ǫ

with

λ = C(k)
[
N

−s/d
L (logNL)

(k−1)/2‖f‖kLk(Ω;Ys)
+ ǫ−1/αM−(1−α−1)‖f‖kLαk(Ω;V ′)

]
.

Proof. We estimate

‖ÊM,L[Mku]− Mku‖V (k)

=

∥∥∥∥∥
1

M

M∑

j=1

P̂
(k)
L [uL(ωj)⊗ · · · ⊗ uL(ωj)]− E(u⊗ · · · ⊗ u)

∥∥∥∥∥
V (k)

≤ ‖P̂ (k)
L [uL(ωj)⊗ · · · ⊗ uL(ωj)− u(ωj)⊗ · · · ⊗ u(ωj)]‖V (k)

+

∥∥∥∥∥
1

M

M∑

j=1

P̂
(k)
L [u(ωj)⊗ · · · ⊗ u(ωj)]− E(P̂

(k)
L [u⊗ · · · ⊗ u])

∥∥∥∥∥
V (k)

+ ‖(I − P̂
(k)
L )Mku‖V (k) .

The last term is estimated with (1.43), Theorem 1.6, for 0 ≤ s ≤ s∗ by

‖(I − P̂
(k)
L )Mku‖V (k) ≤ C(k)N

−s/d
L (logNL)

(k−1)/2‖Mkf‖
Y

(k)
s

.

For the first term, we use (1.42) and (1.47) with a tensor product argument.
For the second term, the statistical error, by (1.42) it suffices to bound
∥∥∥∥∥E([u⊗· · ·⊗u])− 1

M

M∑

j=1

[u(ωj)⊗· · ·⊗u(ωj)]

∥∥∥∥∥
V (k)

= ‖Mku−ĒM [u(k)]‖V (k) ,

which was estimated in Theorem 1.12.
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Remark 1.16. All results in this section also hold in the case of a stochas-
tic operator A(ω). Specifically, letX now denote the space of bounded linear
mappings V → V ′. Assume that A : Ω → X is measurable (with respect
to Borel sets of X) and that there exists C, α > 0 and a compact T : V → V ′

such that

‖A(ω)‖V ≤ C almost everywhere, (1.59)

〈(A(ω) + T )u, u〉 ≥ α‖u‖2V almost everywhere. (1.60)

Let k ≥ 1. Then f ∈ Lk(Ω;V ′) implies u = A−1f ∈ Lk(Ω;V ) and Mku ∈
V (k). Also f ∈ Lk(Ω;Ys) implies u = A−1f ∈ Lk(Ω;Xs) and Mku ∈ X

(k)
s .

All proofs on the convergence of MC methods in this section still apply to
that case. However, as we shall explain below, substantial computational
efficiency for MCM can be gained by coupling the multi-level structure (1.28)
of the Galerkin discretizations with a level-dependent sample size.

1.4. Deterministic Galerkin approximation of moments

Sparse Galerkin approximation of Mku

We now describe and analyse the deterministic computation of the k-point
correlation function Mku of the random solution u by Galerkin discretiza-
tion (1.26). If we use in the Galerkin discretization the full tensor product

space V
(k)
L , the inf-sup condition of the discrete operator on V

(k)
L follows

directly for L ≥ L0 from the discrete inf-sup condition (1.45) of the ‘mean-
field’ operator A by a tensor product argument.
The (anisotropic) regularity estimate for the kth moment Mku,

‖Mku‖
X

(k)
s

≤ Ck,s ‖Mkf‖
Y

(k)
s

, 0 ≤ s ≤ s∗, k ≥ 1, (1.61)

which was shown in Theorem 1.6, then allows us to obtain convergence
rates. However, this ‘full tensor product Galerkin’ approach is prohibitively
expensive: with NL degrees of freedom in the physical domain D, it requires
the set-up and solution of a linear system with Nk

L unknowns. We reduce

this complexity by using in place of V
(k)
L the sparse tensor product space

V̂
(k)
L . The sparse Galerkin approximation ẐL of Mku is then obtained as

follows:

find ẐL ∈ V̂
(k)
L such that 〈A(k) ẐL, v〉 = 〈Mkf, v〉 ∀v ∈ V̂

(k)
L . (1.62)

We first consider the case where the operator A is coercive, i.e., (1.12)
holds with T = 0. Then A(k) : V (k) → (V ′)(k) is also coercive, and the

stability of the Galerkin method with V̂
(k)
L follows directly from V̂

(k)
L ⊂ V (k).

In the case of T �= 0 the stability of the Galerkin FEM on the sparse tensor

product space V̂
(k)
L is not obvious: we know that (A + T ) ⊗ · · · ⊗ (A + T )
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is coercive for sufficiently fine meshes (i.e., for sufficiently large L), but
(A+ T )⊗ · · · ⊗ (A+ T )−A⊗ · · · ⊗A is not compact. Therefore we require
some additional assumptions.
We assume that (1.12) holds with the additional requirement that T ′:V →

V ′ is smoothing with respect to the scale of spaces Xs, Ys, and we also
assume that the adjoint operator A′ : V → V ′ satisfies a regularity property:
we assume that there exists δ > 0 such that

T ′ : V = X0 → Yδ is continuous, (1.63)

(A′)−1 : Yδ → Xδ is continuous. (1.64)

Due to the indefiniteness of A we have to modify the sparse grid space: Let

L0 ≥ 0 and L ≥ L0. We define a space V̂
(k)
L,L0

with V̂
(k)
L ⊂ V̂

(k)
L,L0

⊂ V̂
(k)
L+(k−1)L0

as follows.

Definition 1.17. Let S1
L,L0

:= {0, . . . , L}. For k ≥ 2, let Sk
L,L0

be the set

of indices l ∈ Nk
0 satisfying the following conditions:

l1 + · · ·+ lk ≤ L+ (k − 1)L0, (1.65)

(li1 , . . . , lik−1
) ∈ Sk−1

L,L0
if i1, . . . , ik−1 are different indices in {1, . . . , k}.

(1.66)

Then we define

V̂
(k)
L,L0

:=
∑

l∈Sk
L,L0

W l1 ⊗ · · · ⊗W lk . (1.67)

Let JL0 := {0, 1, . . . , L0}. Then the index set Sk
L,L0

has the following
subsets:

Jk
L0
, Jk−1

L0
× S1

L,L0
, Jk−2

L0
× S2

L,L0
, . . . , JL0 × Sk−1

L,L0
.

Therefore, V̂
(k)
L,L0

contains the following subspaces:

V
(k)
L0

, V
(k−1)
L0

⊗ V̂
(1)
L,L0

, V
(k−2)
L0

⊗ V̂
(2)
L,L0

, . . . , VL0 ⊗ V̂
(k−1)
L,L0

. (1.68)

To achieve stability of sparse tensor discretizations in the presence of pos-
sible indefiniteness of the operator A(ω) in (1.12), we introduce a certain

fixed L0 > 0 of mesh refinement and consider the sequence of spaces V̂
(k)
L,L0

with L tending to infinity. Since

V̂
(k)
L ⊂ V̂

(k)
L,L0

⊂ V̂
(k)
L+(k−1)L0

,

we see that dim V̂
(k)
L,L0

grows with the same rate as dim V̂
(k)
L as L → ∞. We

then have the following discrete stability property.
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Theorem 1.18. Assume that A and T satisfy (1.12), (1.63) and (1.64).
Then there exists L0 ∈ N and γ > 0 such that, for all L ≥ L0,

inf
0�=u∈V̂ (k)

L,L0

sup
0�=v∈V̂ (k)

L,L0

〈A(k)u, v〉
‖u‖V (k) ‖v‖V (k)

≥ 1

γ
> 0. (1.69)

In the positive definite case T = 0, this holds with L0 = 0, whereas in the
indefinite case, L0 > 0 is necessary in general.

For the proof, we refer to von Petersdorff and Schwab (2006). As is
by now classical (e.g., Babuška (1970/71)), the discrete inf-sup condition
(1.69) implies quasi-optimal convergence and therefore the convergence rate
is given by the rate of best approximation. The following result from von
Petersdorff and Schwab (2006) makes this precise.

Theorem 1.19. Assume (1.12) and (1.13).

(a) Let f ∈ Lk(Ω;V ′). Then with L0 ≥ 0 as in Theorem 1.18 (in particular,
L0 = 0 is admissible when T = 0 in (1.12)) such that, for all L ≥ L0,

the sparse Galerkin approximation ẐL ∈ V̂
(k)
L,L0

of Mku is uniquely
defined and converges quasi-optimally, i.e., there exists C > 0 such
that, for all L ≥ L0,

‖Mku− ẐL‖V (k) ≤ C inf
v∈V̂ (k)

L,L0

‖Mku− v‖V (k) → 0 as L → ∞.

(b) Assume that f ∈ Lk(Ω;Ys) and the approximation property (1.29).
Then, for 0 ≤ s ≤ σ := min{s∗, p+ 1− ̺/2},

‖Mku− ẐL‖V (k) ≤ C(k)N
−s/d
L (logNL)

(k−1)/2‖f‖kYs
. (1.70)

Matrix compression

When A is a differential operator, the number of non-zero entries in the stiff-
ness matrix for the standard FEM basis is O(N) due to the local support as-
sumption (W2) on the basis ψℓ

j . This implies that we can compute a matrix–
vector product arising typically in iterative solvers with O(N) operations.
In the case of an integral or pseudodifferential equation, the operator A is
non-local and all entries of the stiffness matrix are non-vanishing, in general.
Then the cost of a matrix–vector product is O(N2), which implies a loss of
linear complexity of the algorithm. For boundary integral operators, it is
well known that one can improve the complexity to O(N(logN)c) by using
matrix compression techniques. Several approaches to this end are avail-
able: either fast multipole methods (e.g., Beatson and Greengard (1997)
and the references therein), multiresolution methods (such as wavelets; see,
e.g., Schneider (1998), Harbrecht (2001), Dahmen, Harbrecht and Schnei-
der (2006), Dahmen (1997)), or low-rank matrix approximation techniques
(e.g., Bebendorf and Hackbusch (2003)).
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These matrix compression methods have in common that they reduce
complexity of the matrix–vector multiplication fromO(N2) toO(N(logN)b)
for some (small) non-negative number b. This complexity reduction comes,
however, at the expense of being realized only approximately. We will elab-
orate on the effect of matrix compression on the accuracy of sparse tensor
Galerkin approximations in this and in the following section.
In the compression step, we replace most of the entries AJJ ′ of the stiffness

matrix AL with zeros, yielding an approximate stiffness matrix ÃL. The
stiffness matrix AL and its compressed variant ÃL induce mappings from
VL to (VL)

′, which we denote by AL and ÃL, respectively. We will require

AL and ÃL to be close in the following sense: for certain values s, s′ ∈ [0, σ]
with σ = p+ 1− ̺/2 and for u ∈ Xs, v ∈ Xs′ , we have
∣∣〈(AL − ÃL)PLu, PLv

〉∣∣ ≤ c(s, s′)N−(s+s′)/d
L (logNL)

q(s,s′) ‖u‖Xs ‖v‖Xs′

(1.71)
with c(s, s′) > 0 and q(s, s′) ≥ 0 independent of L. The following result
collects some properties of the corresponding approximate solutions.

Proposition 1.20. Assume (1.12) and (1.13).

(a) If (1.71) holds for (s, s′) = (0, 0) with q(0, 0) = 0 and c(0, 0) sufficiently

small, then there is an L0 > 0 such that, for every L ≥ L0, (ÃL)−1

exists and is uniformly bounded, i.e.

∀L ≥ L0 : ‖(ÃL)
−1‖(VL)′→VL

≤ C (1.72)

for some C independent of L.

(b) If, in addition to the assumptions in (a), (1.71) holds with (s, s′) =
(σ, 0), then

‖(A−1 − (ÃL)
−1) f‖V ≤ CN

−σ/d
L (logNL)

q(σ,0)‖f‖Yσ . (1.73)

(c) Let g ∈ V ′ be such that the solution ϕ ∈ V of A′ϕ = g belongs to Xσ.
If, in addition to the assumptions in (a) and (b), (1.71) also holds for
(s, s′) = (0, σ) and for (s, s′) = (σ, σ), then
∣∣〈g, (A−1 − (ÃL)

−1) f
〉∣∣ ≤ CN

−2σ/d
L · (logNL)

max{q(0,σ)+q(σ,0),q(σ,σ)}

(1.74)
where C = C(f, g).

Proof. (a) The G̊arding inequality (1.12), the injectivity (1.13) and the
density in V of the subspace sequence {V L}L imply the discrete inf-sup
condition (1.45).
Using (1.71) with vL ∈ VL and (s, s′) = (0, 0), we obtain with (1.45)

‖ÃL vL‖(VL)′ ≥ ‖AvL‖(VL)′−‖(A−ÃL)vL‖(VL)′ ≥ c−1
s ‖vL‖V −Cc(0, 0)‖vL‖V .
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This implies that for c(0, 0) < 1/(2Cγ) there is an L0 > 0 such that, for all
L ≥ L0,

‖vL‖V ≤ cs
2

‖ ÃL vL‖(VL)′ ∀vL ∈ VL, (1.75)

whence we obtain (1.72).

(b) Let f ∈ Yσ and u = A−1 f , ũL = (ÃL)
−1 f for L ≥ L0. We have

‖u− ũL‖V ≤ ‖u− PLu‖V + ‖PLu− ũL‖V .
Using (1.45) and

〈
ÃL uL, vL

〉
=
〈
Au, vL

〉
for all vL ∈ VL, we get

‖PLu− ũL‖V ≤ C ‖ÃL(PLu− ũL)‖(VL)′ = C‖ÃL PLu−Au‖(VL)′ ,

which yields the error estimate

‖u− ũL‖V ≤ ‖u− PLu‖V + C ‖A(u− PLu)‖(VL)′ + C ‖(A− ÃL)PLu‖(VL)′ .
(1.76)

Here, the first two terms are estimated using the V -stability (W3) and (1.33)
of the wavelet basis, which imply

‖u− PLu‖V ≤ C inf
v∈VL

‖u− v‖V ≤ C(NL)
−σ/d‖u‖Xσ , (1.77)

and the continuity A : V → V ′. The third term in (1.76) is estimated with
(1.71) for (s, s′) = (σ, 0) and PLvL = vL for all vL ∈ VL:
∣∣〈(A− ÃL)PLu, vL

〉∣∣ � c(σ, 0)N
−σ/d
L (logNL)

q(σ,0)‖u‖Xσ ‖v‖V . (1.78)

(c) To show (1.74), we let ϕL := PLϕ for ϕ = (A′)−1g ∈ Xσ and u = A−1f ,

ũL = (ÃL)
−1f for L ≥ L0. Then

∣∣〈g, u− ũL
〉∣∣ =

∣∣〈ϕ,A(u− ũL)
〉∣∣ ≤

∣∣〈A(u− ũL), ϕ−ϕL
〉∣∣+

∣∣〈A(u− ũL), ϕ
L
〉∣∣.

We estimate the first term by C‖u − ũL‖V ‖ϕ − PLϕ‖V , which implies
the bound (1.74) using (1.73) and (1.77). The second term is bounded as
follows:
〈
A(u− ũL), ϕ

L
〉
=
〈
(ÃL −A) ũL, ϕ

L
〉

=
〈
(ÃL −A)(ũL − PLu), PLϕ

〉
+
〈
(ÃL −A)PLu, PLϕ

〉
.

Here we estimate the second term by (1.71) with (s, s′) = (σ, σ). For the
first term, we use (1.71) with (s, s′) = (0, σ) to obtain

∣∣〈(ÃL −A)PL(ũL − PLu), PLϕ
〉∣∣

� N
−σ/d
L (logNL)

q(0,σ)‖ũL − PLu‖V ‖ϕ‖Xσ

� N
−σ/d
L (logNL)

q(0,σ)(‖ũL − u‖V + ‖u− PLu‖V ) ‖ϕ‖Xσ .

Using (1.73) and (1.77), we complete the proof.
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Wavelet compression

We next describe how to obtain an approximate stiffness matrix ÃL, which
on the one hand has O(NL(logNL)

a) non-zero entries (out of N2
L), and on

the other hand satisfies the consistency condition (1.71). Here we assume
that the operator A is given in terms of its Schwartz kernel k(x, y) by

(Aϕ)(x) =

∫

y∈Γ
k(x, y)ϕ(y) dS(y) (1.79)

for ϕ ∈ C∞
0 (Γ), where Γ = ∂D and k(x, z) satisfies the Calderón–Zygmund

estimates

|Dα
x Dβ

y k(x, y)| ≤ Cαβ |x− y|−(d+̺+|α|+|β|), x �= y ∈ Γ. (1.80)

In the following, we combine the indices (ℓ, j) into a multi-index J = (ℓ, j)
to simplify notation, and write ψJ , ψJ ′ , etc.

Due to the vanishing moment property (1.31) of the basis {ψJ}, the entries
AL

JJ ′ =
〈
AψJ , ψJ ′

〉
of the moment matrix AL with respect to the basis {ψJ}

show fast decay (Schneider 1998, Dahmen et al. 2006). Let SJ = supp(ψJ),
SJ ′ = supp(ψJ ′). Then we have the following decay estimate for the matrix
entries AJJ ′ (see Schneider (1998, Lemma 8.2.1) and Dahmen et al. (2006)).

Proposition 1.21. If the wavelets ψJ , ψJ ′ satisfy the moment condition
(1.31) and A satisfies (1.79) and (1.80), then

∣∣〈AψJ , ψJ ′

〉∣∣ ≤ C dist(SJ , SJ ′)−γ 2−γ(ℓ+ℓ′)/2, (1.81)

where γ := ̺+ d+ 2 + 2(p∗ + 1) > 0.

This can be exploited to truncate AL to obtain a sparse matrix ÃL with
at most O(NL(logNL)

2) non-zero entries and such that (1.71) is true with
c(0, 0) as small as desired, independent of L, q(0, 0) = 0, and q(0, σ) =
q(σ, 0) ≤ 3

2 , q(σ, σ) ≤ 3; see von Petersdorff and Schwab (1996), Schnei-
der (1998), Harbrecht (2001) and Dahmen et al. (2006), for example. The

number of non-zero entries, nnz((ÃL
ℓ,ℓ′), in the block ÃL

ℓ,ℓ′ of the compressed

Galerkin stiffness matrix ÃL is bounded by

nnz(ÃL
ℓ,ℓ′) ≤ C(min(ℓ, ℓ′) + 1)d 2dmax(ℓ,ℓ′). (1.82)

Remark 1.22. For integral operators A an alternative approach for the
efficient computation of matrix–vector products with the stiffness matrixAL

is given by the cluster of fast multipole approximation. For these approx-
imations, one additionally assumes for the operator (1.79) that the kernel
k(x, z) is analytic for x �= y, and the size of its domain of analyticity is
proportional to |x − y|. Then one can replace k(x, y) in (1.79) for |x − y|
sufficiently large by a cluster of fast multipole approximation with degen-
erate kernels which are obtained by either truncated multipole expansions
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or polynomial interpolants of order logNL, allowing us to apply the block
ÃL

ℓ,ℓ′ to a vector in at most

C(logNL)
d 2dmax(ℓ,ℓ′), 0 ≤ ℓ, ℓ′ ≤ L, (1.83)

operations. See Schmidlin, Lage and Schwab (2003) for details on this work
estimate.

Error analysis for sparse Galerkin with matrix compression

Based on the compressed stiffness matrix ÃL and the corresponding oper-
ator ÃL : VL → (VL)

′ induced by it, we define the sparse tensor product
approximation of Mku with matrix compression analogous to (1.62) as fol-

lows: find Z̃k
L ∈ V̂

(k)
L,L0

such that, for all v ∈ V̂
(k)
L,L0

,

〈Ã(k)
L Z̃k

L, v〉 = 〈Mkf, v〉. (1.84)

We prove bounds for the error Z̃k
L − Mku.

Lemma 1.23. Assume (1.12) and (1.13), and that the spaces VL as in
Example 1.2 admit a hierarchical basis {ψℓ

j}ℓ≥0 satisfying (W1)–(W5). As-

sume further that the operator ÃL in (1.84) satisfies the consistency estimate
(1.71) for s = s′ = 0, q(0, 0) = 0, and with sufficiently small c(0, 0).

Then there exists L0 > 0 such that, for all L ≥ L0, the kth-moment
problem with matrix compression, (1.84), admits a unique solution and we
have the error estimate

∥∥Mku− Z̃k
L ‖V (k) (1.85)

≤ C inf
v∈V̂ (k)

L

{
‖Mku− v‖V (k) + sup

0�=w∈V̂ (k)
L

|〈(A(k)
L − Ã(k)

L )v, w〉|
‖w‖V (k)

}
.

Proof. We show unique solvability of (1.84) for sufficiently large L. By
Theorem 1.18 we have that (1.69) holds. To show unique solvability of
(1.84), we write for k ≥ 3

A(k) − Ã(k)
L = (A− ÃL)⊗A(k−1) + ÃL ⊗

(
A(k−1) − Ã(k−1)

L

)

= (A− ÃL)⊗A(k−1) + ÃL ⊗ (A− ÃL)⊗A(k−2)

+ Ã(2)
L ⊗

(
A(k−2) − Ã(k−2)

L

)
,

and obtain, after iteration,

A(k) − Ã(k)
L = (A− ÃL)⊗A(k−1) +

k−2∑

ν=1

Ã(ν)
L ⊗ (A− ÃL)⊗A(k−ν−1)

+ Ã(k−1)
L ⊗ (A− ÃL) (1.86)
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(where the sum is omitted if k = 2). We get from (1.69) that for any

u ∈ V̂
(k)
L there exists v ∈ V̂

(k)
L such that

〈
Ã(k)

L u, v
〉
=
〈
A(k)u, v

〉
+
〈
(Ã(k)

L −A(k))u, v
〉

(1.87)

≥
[
γ−1 − sup

w∈V̂ (k)
L

sup
w̃∈V̂ (k)

L

〈(Ã(k)
L −A(k))w, w̃〉

〈‖w‖V (k)‖w̃‖V (k)

]
‖u‖V (k) ‖v‖V (k) .

To obtain an upper bound for the supremum, we admit w, w̃ ∈ V
(k)
L,L0

⊇ V̂
(k)
L ,

use (1.86) and (1.71) with s = s′ = 0 and q(0, 0) = 0 to get

‖ÃL‖VL→(VL)′ ≤ ‖A‖V→V ′︸ ︷︷ ︸
cA

+c(0, 0),

and therefore estimate for any w, w̃ ∈ V
(k)
L,L0

∣∣〈Ã(k)
L −A(k))w, w̃

〉∣∣c(0, 0)
[
ck−1
A +

(
k−2∑

ν=1

(
cA + c(0, 0)

)ν
ck−ν−1
A

)

+
(
cA + c(0, 0)

)k−1

]
‖w‖V (k)‖w̃‖V (k)

� c(0, 0) ‖w‖V (k) ‖w̃‖V (k) . (1.88)

If c(0, 0) is sufficiently small, this implies with (1.85) the stability of Ã(k)
L

on V̂
(k)
L,L0

: there exists L0 > 0 such that

inf
0�=u∈V̂ (k)

L,L0

sup
0�=v∈V̂ (k)

L,L0

〈Ã(k)
L u, v〉

‖u‖V (k) ‖v‖V (k)

≥ 1

2γ
> 0, (1.89)

for all L ≥ L0, and hence the unique solvability of (1.84) for these L follows.
To prove (1.85), we follow the proof of the first lemma of Strang (e.g.,

Ciarlet (1978)).

We now use this lemma to obtain the following convergence result.

Theorem 1.24. Assume (1.12) and (1.13), V = H̺/2(Γ), and that the
subspaces {Vℓ}∞ℓ=0 are as in Example 1.2, and that in the smoothness spaces

Xs = H̺/2+s(Γ), s ≥ 0, the operator A : Xs → Ys is bijective for 0 ≤
s ≤ s∗ with some s∗ > 0. Assume further that a compression strategy
for the matrix AL in the hierarchical basis {ψℓ

j} satisfying (W1)–(W5) is

available with (1.71) for s′ = 0, 0 ≤ s ≤ σ = p + 1 − ̺/2, q(0, 0) = 0 and
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Sparse tensor discretizations for sPDEs 325

with c(0, 0) sufficiently small, independent of L for L ≥ L0. Then, with
δ = min{p+ 1− ̺/2, s}/d, 0 ≤ s ≤ s∗, we have the error estimate

‖Mku− Z̃k
L ‖V (k) ≤ C(logNL)

min{(k−1)/2,q(s,0)}N−δ
L ‖Mkf‖

Y
(k)
s

. (1.90)

Proof. We use (1.85) with the choice v = P̂
(k)
L,L0

and, for ‖Mku − v‖V (k) ,

apply the approximation result (1.6). We express the difference A
(k)
L − Ã(k)

L
using (1.86). Then we obtain a sum of terms, each of which can be bounded

using (1.71) and the continuity of A
(k)
L and Ã(k)

L . This yields the following
error bound:

‖Mku− Z̃k
L ‖V (k) ≤ C

[
(logNL)

(k−1)/2N−δ
L

+ c(s, 0)(logNL)
q(s,0)N

−s/d
L

]
‖Mku‖

X
(k)
s

.

Theorem 1.24 addressed only the convergence of Z̃k
L in the ‘energy’ norm

V (k). In the applications which we have in mind, however, functionals of
the solution Mku are also of interest, which we assume are given in the
form

〈
G,Mku

〉
for some G ∈ (V (k))′. We approximate such functionals

by
〈
G, Z̃k

L

〉
.

Theorem 1.25. With all assumptions as in Theorem 1.24, and in addition
that the adjoint problem

(A(k))′Ψ = G (1.91)

admits a solution Ψ ∈ X
(k)
s′ for some 0 < s′ ≤ σ, and that the compression

ÃL of the stiffness matrix AL satisfies (1.71) with s = s′ = σ, we have
∣∣〈G,Mku

〉
−
〈
G, Z̃k

L

〉∣∣ ≤ C(logNL)
min{k−1,q(s,s′)}N−(δ+δ′)

L ‖Mkf‖
Y

(k)
s

,

where δ = min{p+ 1− ̺/2, s}/d, δ′ = min{p+ 1− ̺/2, s′}/d.
The proof is analogous to that of Proposition 1.20(c), using the sparse

approximation property (1.41) in place of (1.29).

Iterative solution of the linear system

We solve the linear system (1.84) using iterative solvers and denote the

matrix of this system by
̂̃
A

(k)
L . We will consider three different methods.

(M1) If A is self-adjoint and (1.12) holds with T = 0, then the matrix
̂̃
A

(k)
L

is Hermitian positive definite, and we use the conjugate gradient algo-
rithm which requires one matrix–vector multiplication by the matrix
̂̃
A

(k)
L per iteration.
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326 C. Schwab and C. J. Gittelson

(M2) If A is not necessarily self-adjoint, but satisfies (1.12) with T = 0, then
we can use the GMRES algorithm with restarts every µ iterations.

In this case
̂̃
A

(k)
L + (

̂̃
A

(k)
L )H is positive definite. This requires two

matrix–vector multiplications per iteration, one with
̂̃
A

(k)
L and one

with (
̂̃
A

(k)
L )H .

(M3) In the general case where (1.12) is satisfied with some operator T , we

multiply the linear system by the matrix (
̂̃
A

(k)
L )H and can then apply

the conjugate gradient algorithm. This requires one matrix–vector

multiplication with
̂̃
A

(k)
L and one matrix–vector multiplication with

(
̂̃
A

(k)
L )H per iteration.

In order to achieve log-linear complexity, it is essential that we never ex-

plicitly form the matrix
̂̃
A

(k)
L . Instead, we only store the matrix ÃL for

the mean-field problem. We can then compute a matrix–vector product

with
̂̃
A

(k)
L (or (

̂̃
A

(k)
L )H) by an algorithm which multiplies parts of the coef-

ficient vector with submatrices of ÃL: see Algorithm 5.10 in Schwab and
Todor (2003b). This requires O

(
(logNL)

kd+2k−2NL

)
operations (Schwab

and Todor 2003b, Theorem 5.12).
Let us explain the algorithm in the case k = 2 and L0 = 0. In this case

a coefficient vector u has components ulj
l′

j′ , where l, l′ are the levels used for

V̂
(2)
L (i.e., l, l′ ∈ {0, . . . , L} such that l + l′ ≤ L+ L0) and

j ∈ {1, . . . ,Ml}, j′ ∈ {1, . . . ,Ml′}.

Let ÃL1 denote the submatrix of ÃL corresponding to levels l, l′ ≤ L1. We

can then compute the coefficients of the vector
̂̃
A

(k)
L u as follows, where we

overwrite at each step the current components with the result of a matrix–
vector product.

• For l = 0, . . . , L, j = 1, . . . ,Ml: multiply the column vector with

components (ulj
l′

j′)l′=0···L−l
j′=0···Ml′

by the matrix ÃL−l.

• For l′ = 0, . . . , L, j′ = 1, . . . ,Ml: multiply the column vector with

components (ulj
l′

j′)l=0···L−l
j=0···Ml

by the matrix ÃL−l′ .

We now analyse the convergence of the iterative solvers. The stability
assumptions for the wavelet basis, the continuous and discrete operators

imply the following results about the approximate stiffness matrix
̂̃
A

(k)
L .

Proposition 1.26. Assume the basis {ψℓ
j} satisfies (1.30) with cB inde-

pendent of L.
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(a) Assume that ÃL satisfies (1.71) for q(0, 0) = 0 with sufficiently small
c(0, 0). Then there are constants C1, C2 such that, for all L, the matrix
̂̃
A

(k)
L of the problem (1.84) satisfies

∥∥ ̂̃A (k)
L

∥∥
2
≤ C2 < ∞. (1.92)

(b) Assume, in addition to the assumptions of (a), that (1.12) holds with
T = 0. Then

λmin

(( ̂̃
A

(k)
L +

( ̂̃
A

(k)
L

)H)
/2
)
≥ C1 > 0. (1.93)

(c) Assume the discrete inf-sup condition (1.69) holds, and that we have
for some constant C independent of L

‖( ̂̃A(k)
L )−1‖2 ≤ Cγ. (1.94)

Proof. Because of (1.30) the norm ‖vL‖V (k) of vL ∈ V̂
(k)
L,L0

is equivalent

to the 2-vector norm ‖v‖2 of the coefficient vector v. For (a) we obtain an
arbitrarily small upper bound for the bilinear form with the operator A−ÃL

with respect to the norm ‖vL‖V (k) . Since A is continuous we get an upper

bound for the norm of Ã and therefore for the corresponding 2-matrix-norm.
In (b), the bilinear form 〈Av, v〉 corresponds to the symmetric part of the

matrix, and the lower bound corresponds to the smallest eigenvalue of the
matrix. Since the norm of A − Ã is arbitrarily small we also get the lower
bound for the compressed matrix.
In (c), the inf-sup condition (1.69) states that for L ≥ L0, the solution

operator mapping (V̂
(k)
L,L0

)′ to V̂
(k)
L,L0

is bounded by γ. Because of the norm

equivalence (1.30), this implies

‖( ̂̃A(k)
L )−1‖2 ≤ Cγ.

For method (M1) with a self-adjoint positive definite operator A, we have
that λmax/λmin ≤ C2/C1 =: κ is bounded independently of L, and obtain
for the conjugate gradient iterates error estimates

‖u(m) − u‖2 ≤ c

(
1− 2

κ1/2 + 1

)m

.

For method (M2) we obtain

‖u(m) − u‖2 ≤ c

(
1− 1

κ

)m

for the GMRES from Eisenstat, Elman and Schultz (1983) for the restarted
GMRES method (e.g., with restart µ = 1).
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For method (M3) we use the conjugate gradient method with the matrix

B := (
̂̃
A

(k)
L )H

̂̃
A

(k)
L

and need the largest and smallest eigenvalue of this matrix. Now (1.94)
states that λmin(B) ≥ (Cγ)−2 > 0. Therefore we have with κ̃ := C2

2 (Cγ)2

that

‖u(m) − u‖2 ≤ c

(
1− 2

κ̃1/2 + 1

)m

.

Note that the 2-vector norm ‖u‖2 of the coefficient vector is equivalent to
the norm ‖u‖V (k) of the corresponding function on D × · · · × D. If we
start with initial guess zero we therefore need a number M of iterations
proportional to L to have an iteration error which is less than the Galerkin
error. However, if we start on the coarsest mesh with initial guess zero,
perform M iterations, use this as the starting value on the next-finer mesh,
use M iterations, etc., we can avoid this additional factor L.
Therefore we have the following complexity result.

Proposition 1.27. We can compute an approximation Zk
L for Mku using

a fixed number m0 of iterations such that

‖Zk
L − Mk‖V (k) ≤ CN

−s/d
L Lβ

where β = (k − 1)/2 for a differential operator, β = min{(k − 1)/2, q(s, 0)}
with q(s, 0) from (1.90). The total number of operations is O(N(logN)k−1)
in the case of a differential operator. In the case of an integral operator we
need at most O(N(logN)k+1) operations.

1.5. Examples: FEM and BEM for the Helmholtz equation

To illustrate the above concepts for an indefinite elliptic operator equation,
we now consider the Helmholtz equation in a domainG ⊂ Rn with n ≥ 2 and
Lipschitz boundary Γ := ∂G. We discuss two ways to solve this equation
with stochastic data. First we use the finite element approximation of the
differential equation and apply our results for D = G, which is of dimension
d = n.
Secondly, we consider the boundary integral formulation, which is an

integral equation on the boundary Γ. We discretize this equation and then
apply our results for D = Γ, which is of dimension d = n − 1. In this case
we can also allow exterior domains G as the computation is done on the
bounded manifold Γ.
To keep the presentation simple we will just consider smooth boundaries

and one type of boundary condition (Dirichlet condition for finite elements,
Neumann condition for boundary elements). Other boundary conditions
and operators can be treated in a similar way.
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Finite element methods

Let G ⊂ Rn be a bounded domain with smooth boundary. We consider the
boundary value problem

(−∆− κ2)u(ω) = f(ω) in G, u|Γ = 0.

Here we have V = H1(G), V ′ = H−1(G), and the operator A : V → V ′ is
defined by

〈Au, v〉 =
∫

G

(
∇u · ∇v − κ2uv

)
dx,

and obviously satisfies the G̊arding inequality

〈Au, u〉 ≥ ‖u‖2V − (κ2 + 1)‖u‖2L2(G).

The operator −∆: V → V ′ has eigenvalues 0 < λ1 < λ2 < · · · which
converge to ∞. We need to assume that κ2 is not one of the eigenvalues λj ,
so that condition (1.13) is satisfied.
The spaces for smooth data for s > 0 are Ys = H−1+s(G); the corre-

sponding solution spaces are Xs = H1+s(G). We assume that the stochastic
right-hand side function f(ω) satisfies f ∈ Lk(Ω;Ys) = Lk(Ω;H−1+s(G)) for
some s > 0.
The space VL has NL = O(h−d

L ) = O(2Ld) degrees of freedom and the

sparse tensor product space V̂
(k)
L,L0

has O(NL(logNL)
(k−1)) degrees of free-

dom. For k ≥ 1 the sparse grid Galerkin approximation Zk
L ∈ V̂

(k)
L,L0

for

Mku using V -orthogonal wavelets, using a total of O(NL(logNL)
(k−1)) op-

erations, satisfies the error estimate (see Remark 1.8 regarding the exponent
of the logarithmic terms)

‖Zk
L − Mku‖V (k) ≤ chpL| log hL|(k−1)/2‖f‖kLk(Ω;Yp)

provided that f ∈ Lk(Ω;Yp).

Boundary element methods

We illustrate the preceding abstract results with the boundary reduction
of the stochastic Neumann problem to a boundary integral equation of the
first kind.
In a bounded domain D ⊂ Rd with Lipschitz boundary Γ = ∂D, we

consider

(∆ + κ2)U = 0 in D (1.95a)

with wave number κ ∈ C subject to Neumann boundary conditions

γ1U = n · (∇U)|Γ = σ on Γ, (1.95b)

where σ ∈ Lk(Ω;H− 1
2 (Γ)) with integer k ≥ 1 are given random boundary
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330 C. Schwab and C. J. Gittelson

data, n is the exterior unit normal to Γ, and Hs(Γ), |s| ≤ 1, denotes the
usual Sobolev spaces on Γ: see, e.g., McLean (2000). We assume in (1.95b)
that P-a.s.

〈σ, 1〉 = 0 (1.96)

and, if d = 2, in (1.95a) that

diam(D) < 1. (1.97)

Then problem (1.95) admits a unique solution U ∈ Lk(Ω;H1(D)) (Schwab
and Todor 2003a, 2003b). For the boundary reduction, we define for v ∈
H1/2(Γ) the boundary integral operator

(Wv)(x) = − ∂

∂nx

∫

Γ

∂

∂ny
e(x, y) v(y) dsy (1.98)

with e(x, y) denoting the fundamental solution of −∆ − κ2. The integral
operator W is continuous (e.g., McLean (2000)):

W : H
1
2 (Γ) → H− 1

2 (Γ). (1.99)

To reduce the stochastic Neumann problem (1.95) to a boundary integral

equation with σ ∈ Lk(Ω;H− 1
2 (Γ)) satisfying (1.96) a.s., we use a represen-

tation as double-layer potential R2:

U(x, ω) = (R2ϑ)(x, ω) := −
∫

y∈Γ

∂

∂ny
e(x, y)ϑ(y, ω) dsy, (1.100)

where Eϑ satisfies the BIE

W1Eϑ = Eσ, (1.101)

with the hypersingular boundary integral operator W1u := Wu+ 〈u, 1〉.
We see that the mean field M1U can be obtained by solving the de-

terministic boundary integral equation (1.101). Based on the compression
error analysis in Section 1.4, we obtain an approximate solution EL

ϑ ∈ V L

in O(NL(logNL)
2) operations and memory with error bound

‖Eϑ − EL
ϑ ‖H1/2(Γ) � N

−(p+1/2)
L (logNL)

3/2‖σ‖L1(Ω;Hp+1(Γ)).

To determine the variance of the random solution U , second moments of ϑ
are required. To derive boundary integral equations for them, we use that
by Fubini’s theorem, the operator M2 and the layer potential R2 commute.

For (1.95) with σ ∈ L2(Ω;H− 1
2 (Γ)), we obtain that Cϑ satisfies the BIE

(W1 ⊗W1)Cϑ = Cσ in H
1
2
, 1
2 (Γ× Γ). (1.102)

Here, the ‘energy’ space V equals H1/2(Γ) and A = W1.
The unique solvability of the BIE (1.102) is ensured by the following

result.
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Proposition 1.28. If k = 0, the integral operator W1 ⊗ W1 is coercive,
i.e., there exists γ > 0 such that

∀Cϑ ∈ H
1
2
, 1
2 (Γ× Γ) : 〈(W1 ⊗W1)Cϑ, Cϑ〉 ≥ γ‖Cϑ‖2

H
1
2 , 12 (Γ×Γ)

. (1.103)

Proof. We prove (1.103). The operator W1 is self-adjoint and coercive in
H1/2(Γ) (e.g., Nédélec and Planchard (1973), Hsiao and Wendland (1977),
McLean (2000)). Let {ui}∞i=1 denote an H1/2(Γ)-orthonormal base in

H1/2(Γ) consisting of eigenfunctions of W1. Then, {ui ⊗ uj}∞i,j=1 is an or-

thonormal base in H
1
2
, 1
2 (Γ×Γ) and we may represent any Cϑ ∈ H

1
2
, 1
2 (Γ×Γ)

in the form Cϑ =
∑∞

i,j=1 cijui ⊗ uj . For any M < ∞, consider CM
ϑ =∑M

i,j=1 cijui ⊗ uj . Then we calculate

〈(W1 ⊗W1)C
M
ϑ , CM

ϑ 〉 =
〈
(W1 ⊗W1)

M∑

i,j=1

cijui ⊗ uj ,
M∑

i′,j′=1

ci′j′ui′ ⊗ uj′

〉

=
M∑

i,j=1

λiλjc
2
ij ≥ λ2

1

M∑

i,j=1

c2ij = λ2
1‖CM

ϑ ‖2
H1/2,1/2(Γ×Γ)

.

Passing to the limit M → ∞, we obtain (1.103) with γ = λ2
1.

We remark that the preceding proof shows that the continuity constant
Ck
A in the a priori estimate (1.22) is sharp: in general the conditioning of

the tensorized operator A(k) increases exponentially with k.
In the case κ �= 0, we use that the integral operator W satisfies a G̊arding

inequality in H1/2(Γ) and obtain the unique solvability of the BIE (1.102)
for Cϑ from Theorem 1.4, provided that W is injective, i.e., that κ is not a
resonance frequency of the interior Dirichlet problem.
To compute the second moments of the random solution U(x, ω) at an

interior point x ∈ D, we tensorize the representation formula (1.100) to
yield

(M2U)(x, x) = M2(R2ϑ) = (R2 ⊗R2)(M2ϑ). (1.104)

Then we obtain from Theorem 1.25 and from the sparse tensor Galerkin
approximation (with spline wavelets which are V -orthogonal between lev-

els) Z̃2
L of M2ϑ in O(NL(logNL)

3) operations and memory an approxi-
mation of (M2U)(x, x) which satisfies, for smooth boundary Γ and data
σ ∈ L2(Ω;Yp+1/2) = L2(Ω;Hp+1(Γ)), at any interior point x ∈ D the error
bound
∣∣(M2U)(x, x)− 〈R2 ⊗R2, Z̃

2
L〉
∣∣ ≤ c(x)(logNL)

3N
−2(p+1/2)
L ‖σ‖2L2(Ω;Hp+1(Γ)).

So far, we have considered the discretization of the boundary integral equa-
tion (1.102) by multi-level finite elements on the boundary surface Γ where
convergence was achieved by mesh refinement.
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We conclude this section with remarks on further developments in the
analysis of sparse tensor discretizations of operator equations with random
inputs. The results presented in this section are all based on hierarchies
of subspaces {Vℓ}∞ℓ=0 of V consisting of piecewise polynomial functions of
a fixed polynomial degree on a sequence {Tℓ}∞ℓ=0 of triangulations of the
physical domain. Alternatively, spectral Galerkin discretizations based on
sequences of polynomial or trigonometric functions of increasing order can
also be considered. For such spaces there are analogous sparse tensor con-
structions known as ‘hyperbolic cross’ spaces: see, e.g., Temlyakov (1993)
for the approximation theory of such spaces and Chernov and Schwab (2009)
for an application to Galerkin approximations of boundary integral equa-
tions. Also, in the above presentation, we did not consider adaptive refine-

ments in the sparse tensor discretizations. There is, however, a theory of
sparse, adaptive tensor discretizations for subspace families satisfying ax-
ioms (W1)–(W5) of the present section available in Schwab and Stevenson
(2008). As indicated at the beginning of this section, efficient discretiza-
tion schemes for the tensorized equations (1.23) are also of interest in their
own right, as such equations also arise in other models such as turbulence
and transport equations. There is, however, one essential difference from
(1.23): the equations (1.23) are exact , whereas in the two mentioned appli-
cations such equations can only be derived from additional moment closure

hypotheses. For example, for PDEs with random operators, a suitable clo-
sure hypothesis could be smallness of fluctuations about the inputs’ mean,
and neglecting solution fluctuations beyond first order in the inputs’ pertur-
bation amplitude. This so-called first-order second-moment approach was
first proposed in Dettinger and Wilson (1981) and was developed, in the
context of random domains, in Harbrecht, Schneider and Schwab (2008).
The use of quasi-Monte Carlo (QMC) methods for the discretization of

stochastic PDEs promises a rate of convergence higher than M−1/2, which
we proved here for MC methods. The numerical analysis of QMC for such
problems is currently emerging. We refer to Graham, Kuo, Nuyens, Scheichl
and Sloan (2010) and the references therein for algorithms and numerical
experiments, as well as for references on QMC.

2. Stochastic Galerkin discretization

In Section 1 we considered Galerkin discretizations of k-point correlations
of random fields in finite-dimensional spaces which were constructed from
sparse tensor products of hierarchies of subspaces used for the approxima-
tions of single draws of u. The significance of this approach is twofold. First,
for linear operator equations with stochastic data, we showed that k-point
correlation functions of the random solutions are in fact solutions of high-
dimensional deterministic equations for tensorized operators. We showed
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that these tensorized operator equations naturally afford anistropic regu-
larity results in scales of smoothness spaces of Sobolev or Besov–Triebel–
Lizorkin type, so that the efficiency of sparse tensor approximations of kth
moments will not incur the curse of dimensionality. In effect, with the for-
mulation of deterministic equations for two- and k-point correlation func-
tions of random solutions, we trade randomness for high-dimensionality.
The observation that k-point correlations of random fields satisfy deter-

ministic tensorized operator equations is not new: it has been used fre-
quently, for example in the derivation of moment closures in turbulence
modelling or in the transition from atomistic-to-continuum models. For
such nonlinear problems, however, there are generally no exact determinis-
tic equations for the k-point correlation functions of the random solution:
in general, a ‘closure hypothesis’ in some form is required. Due to the linear
dependence of the random solution u on the random input f in (1.11), no
closure hypothesis was required in the previous section.
While efficient computation of moments of order k ≥ 2 of random solu-

tions may be useful (e.g., if the unknown random field is known a priori to
be Gaussian), it is well known that even the knowledge of all k-point corre-
lations will not characterize the law of the random solution if the moment
problem is not solvable.
In the present section, we therefore address a second approach to the

deterministic computation of random fields. It is based on parametrizing
the random solution of a PDE with random data in terms of polynomials
in a suitable coordinate representation of the random input. After having
been pioneered by N. Wiener (1938), who established the representation
of functionals of Wiener processes in terms of Hermite polynomials of a
countable number of standard normal random variables, this ‘spectral’ view
of random fields was shown to be generally applicable to any random field
with finite second moments by Cameron and Martin (1947). Its use as a
computational tool was pioneered in engineering applications in the 1990s.
We mention only the book by Ghanem and Spanos (2007) and the series of
papers by Xiu and Karniadakis (2002a), Xiu and Hesthaven (2005), Oden,
Babuška, Nobile, Feng and Tempone (2005), Babuška, Nobile and Tempone
(2005, 2007a, 2007b), Nobile, Tempone and Webster (2008a, 2008b), Nobile
and Tempone (2009) and the references therein.
In these works, it was in particular observed that the expansion in Her-

mite polynomials of Gaussians originally proposed by Wiener (1938) and
by Cameron and Martin (1947) is not always best suited for efficient com-
putations. Often, other (bi)orthogonal function systems are better suited
to the law of the random inputs, and are preferable in terms of computa-
tional efficiency. This has led to a formal generalization of Wiener’s original
polynomial chaos representations for computational purposes by G. E. Kar-
niadakis and collaborators. We refer to Xiu and Karniadakis (2002a) and
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to the survey by Xiu (2009) for further references on various applications of
such ‘generalized polynomial chaos’ (GPC) methods.
The GPC approaches have received substantial attention in the past few

years, both among numerical analysts and among computational scientists
and engineers. From a computational point of view, the spectral repre-
sentation once more renders the stochastic problem deterministic: rather
than focusing on computation of spatiotemporal two- and k-point correla-
tion functions, the law of the unknown random solution is approximated
and computed in a parametric form. As we shall see shortly, in this context
questions of approximation and computation of deterministic quantities in

infinite dimensions arise naturally.
In this section, we present the mathematical formulation of generalized

polynomial chaos representations of the laws of random solutions, starting
with expansions into Hermite polynomials of Gaussians. Since the above-
mentioned pioneering works of Wiener and of Cameron and Martin, these
expansions have found numerous applications in stochastic analysis.
We then focus on elliptic problems with random diffusion coefficients,

where expansions into polynomials of countably many non-Gaussian random
variables are of interest.
We present several particular instances of such generalized polynomials

chaos expansions, in particular the Wiener–Itô decomposition of random
fields, and the Karhunen–Loève expansions, and review recent work on
the regularity of solutions of infinite-dimensional parametric, deterministic

equations in Section 3. Despite the formally infinite-dimensional setting, we
review recent results that indicate that solutions of the infinite-dimensional
parametric, deterministic equations for the laws of solutions of sPDEs ex-
hibit regularity properties that allow finite-dimensional approximations free
from the curse of dimensionality. We then address several adaptive strate-
gies for the concrete construction of numerical approximations of such finite-
dimensional approximations. We exhibit in particular sufficient conditions
for convergence rates which are larger than the rate 1/2 proved in Theo-
rem 1.11 above for MC methods.

2.1. Hermite chaos

Let H be a separable Hilbert space over R and let µ = NQ be a non-
degenerate centred Gaussian measure on H. For convenience, we assume
that H is infinite-dimensional; all of the following also applies in the finite-
dimensional setting.

Product structure of Gaussian measures

Let (em)m∈N be an orthonormal basis of H such that

Qem = λmem, m ∈ N, (2.1)
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for a positive decreasing sequence (λm)m∈N. Note that (2.1) implies em ∈
Q1/2(H). We define a sequence of random variables on (H,µ) by

Ym(x) := Wem(x) = 〈x,Q−1/2em〉H = λ−1/2
m 〈x, em〉H , m ∈ N. (2.2)

Lemma 2.1. The random variables (Ym)m∈N on (H,µ) are independent
and identically distributed. The distribution of each Ym is the standard
Gaussian measure N1 on R.

Proof. This is a consequence of Proposition C.36. We give, in addition, a
direct proof. Let I be an arbitrary finite subset of N with n := #I, and

YI : H → Rn, x �→ (Ym(x))m∈I .

By the change of variables formula for Gaussian measures, the distribution
of YI is the centred Gaussian measure

(YI)#µ = NYIQY ∗
I

on Rn, where Y ∗
I : Rn → H is the adjoint of YI given by

Y ∗
I (ξ) =

∑

m∈I
ξmQ−1/2em, ξ = (ξm)m∈I ∈ Rn.

Since (em)m∈N is an orthonormal basis of H, for all ξ = (ξm)m∈I ∈ Rn,

YIQY ∗
I (ξ) = YI

(
Q
∑

m∈I
ξmQ−1/2em

)
= YI

(
∑

m∈I
ξmQ1/2em

)

=

(
∑

m∈I
〈ξmQ1/2em, Q−1/2em′〉H

)

m′∈I
= ξ.

Therefore,

(YI)#µ = NIn =
⊗

m∈I
N1,

where In is the identity matrix on Rn.

By Lemma 2.1, the distribution of the injective map

Y : H → R∞, x �→ (Ym(x))m∈N (2.3)

is the countable product measure

γ := Y#µ =
⊗

m∈N
N1 (2.4)

on the Borel σ-algebra B(R∞).

Proposition 2.2. The pullback

Y ∗ : L2(R∞,B(R∞), γ) → L2(H,µ), f �→ Y ∗f = f ◦ Y (2.5)
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is an isometric isomorphism of Hilbert spaces.

Proof. Since γ = Y#µ, for all f ∈ L2(R∞,B(R∞), γ),

‖Y ∗f‖2L2(H,µ) =

∫

H
f(Y (x))2µ(dx) =

∫

R∞

f(y)γ(dy) = ‖f‖2L2(R∞,B(R∞),γ),

so Y ∗ is an isometry. To show surjectivity, note that the Borel σ-algebra
B(H) is generated by Y since H is separable and the topology of H is
generated by Y . Therefore, the Doob–Dynkin lemma implies that any g ∈
L2(H,µ) is of the form g = f ◦ Y for a B(R∞)-measurable function f on
R∞. The above computation implies f ∈ L2(R∞,B(R∞), γ).

The Hermite polynomial basis

Consider the analytic function

F (t, ξ) := e−
1
2
t2+tξ, t, ξ ∈ R. (2.6)

We define the Hermite polynomials (Hn)n∈N0 through the power series rep-
resentation of F (·, ξ) around t = 0,

F (t, ξ) =
∞∑

n=0

tn√
n!
Hn(ξ), t, ξ ∈ R. (2.7)

Lemma 2.3. For all n ∈ N0 and ξ ∈ R, if H−1(ξ) := 0,

Hn(ξ) =
(−1)n√

n!
e

1
2
ξ2Dn

ξ e
− 1

2
ξ2 , (2.8)

ξHn(ξ) =
√
n+ 1Hn+1(ξ) +

√
nHn−1(ξ), (2.9)

DξHn(ξ) =
√
nHn−1(ξ), (2.10)

−D2
ξHn(ξ) + ξDξHn(ξ) = nHn(ξ). (2.11)

Proof. Equation (2.8) follows by Taylor expansion,

F (t, ξ) = e
1
2
ξ2e−

1
2
(t−ξ)2 = e

1
2
ξ2

∞∑

n=0

tn

n!
Dn

t |t=0e
− 1

2
(t−ξ)2

= e
1
2
ξ2

∞∑

n=0

tn

n!
(−1)nDn

ξ e
− 1

2
ξ2 ,

and comparison with (2.7).
To show (2.9), we note that

DtF (t, ξ) =

∞∑

n=1

√
n tn−1

√
(n− 1)!

Hn(ξ) =

∞∑

n=0

tn√
n!

√
n+ 1Hn+1(ξ).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core


Sparse tensor discretizations for sPDEs 337

Also, by (2.6),

DtF (t, ξ) = (ξ − t)F (t, ξ) =
∞∑

n=0

tn√
n!
ξHn(ξ)−

∞∑

n=0

tn√
n!

√
nHn−1(ξ).

Similarly, (2.10) follows by comparing two representations of DξF (t, ξ),

∞∑

n=0

tn√
n!
DξHn(ξ) = DξF (t, ξ) = tF (t, ξ) =

∞∑

n=0

tn√
n!

√
nHn−1(ξ).

Finally, (2.11) is a consequence of (2.9) and (2.10),

D2
ξHn(ξ)− ξDξHn(ξ) =

√
n(DξHn−1(ξ)− ξHn−1(ξ)) = −nHn(ξ).

In particular, Hn is a polynomial of degree n. The first few Hermite
polynomials are

H0(ξ) = 1, H1(ξ) = ξ, H2(ξ) =
1√
2
(ξ2 − 1). (2.12)

Proposition 2.4. (Hn)n∈N0 is an orthonormal basis of L2(R, N1).

Proof. We first show orthonormality. Note that for ξ, s, t ∈ R,

e−
1
2
(t2+s2)+ξ(t+s) = F (t, ξ)F (s, ξ) =

∞∑

n,m=0

tn√
n!

sm√
m!

Hn(ξ)Hm(ξ).

Integrating over R with respect to N1, we have
∫

R

F (t, ξ)F (s, ξ)N1(dξ) =
∞∑

n,m=0

tn√
n!

sm√
m!

∫

R

Hn(ξ)Hm(ξ)N1(dξ),

and also
∫

R

F (t, ξ)F (s, ξ)N1(dξ) =
ets√
2π

∫ ∞

−∞
e−

1
2
(ξ−t−s)2 dξ = ets =

∞∑

n=0

tnsn

n!
.

Therefore, ∫

R

Hn(ξ)Hm(ξ)N1(dξ) = δnm.

To show completeness, let f ∈ L2(R, N1) be orthogonal to Hn for all

n ∈ N0. Then g(ξ) := f(ξ)e−ξ2/4 is in L2(R), and for all t ∈ R,

0 =

∫

R

f(ξ)F (t, ξ)N1(dξ) =
1√
2π

∫ ∞

−∞
g(ξ)e−

1
2
t2+tξ− 1

4
ξ2 dξ.

Since −1
2 t

2+ tξ− 1
4ξ

2 = −1
4(2t− ξ)2+ 1

2 t
2, this implies that the convolution

g ∗ϕ = 0 for ϕ(ξ) := e−ξ2/4. Taking the Fourier transform, we have ĝϕ̂ = 0,
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and since ϕ̂ is non-zero everywhere, ĝ = 0 in L2(R). This implies g = 0
almost everywhere, and therefore f = 0 almost everywhere.

Using Theorem 2.12 below and Proposition 2.2, we construct an orthonor-
mal basis of L2(H,µ). Define the index set of finitely supported sequences
in N,

F := {ν ∈ NN
0 ; # supp ν < ∞}, (2.13)

where

supp ν := {m ∈ N ; νm �= 0}, ν ∈ NN
0 . (2.14)

For all ν ∈ F, we define the tensor product Hermite polynomial

Hν :=
⊗

m∈N
Hνm , (2.15)

i.e., for all y ∈ R∞, since H0(ξ) = 1,

Hν(y) =
∏

m∈N
Hνm(ym) =

∏

m∈supp ν

Hνm(ym). (2.16)

The degree of the polynomial Hν for ν ∈ F is given by

|ν| :=
∑

m∈N
νm =

∑

m∈supp ν

νm. (2.17)

We use the pullback Y ∗ from (2.5) to define Hν on H. For all x ∈ H and
ν ∈ F,

Hν(x) := (Y ∗Hν)(x) = Hν(Y (x)) =
∏

m∈N
Hνm(Wem(x)). (2.18)

As in (2.16), the product in (2.18) is finite, since all but finitely many factors
are one by definition of F and H0(ξ) = 1.

Theorem 2.5. (Hν)ν∈F is an orthonormal basis of L2(H,µ).

Proof. By Proposition 2.4 and Theorem 2.12 below, (Hν)ν∈F from (2.15) is
an orthonormal basis of L2(R∞,B(R∞), γ). Since the pullback Y ∗ is an iso-
metric isomorphism from L2(R∞,B(R∞), γ) to L2(H,µ) by Proposition 2.2,
(Hν)ν∈F from (2.18) is an orthonormal basis of L2(H,µ).

We call (Hν)ν∈F the Hermite chaos basis of L2(H,µ).

Wiener–Itô decomposition

For all n ∈ N0, we define the Wiener chaos of order n as the closed subspace

L2
n(H,µ) := span {Hn(Wf (x)) ; f ∈ H, ‖f‖H = 1} ⊂ L2(H,µ), (2.19)
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where the white noise mapWf is defined by (C.52) and continuous extension
to H. We recall the identity

∫

H
eWf (x)µ(dx) = e

1
2
‖f‖2H ∀f ∈ H (2.20)

from Proposition C.36.

Lemma 2.6. For all f, g ∈ H with ‖f‖H = ‖g‖H = 1 and all n,m ∈ N0,
∫

H
Hn(Wf (x))Hm(Wg(x))µ(dx) = δnm〈f, g〉nH . (2.21)

Proof. As in the proof of Proposition 2.4, for t, s ∈ R,
∫

H
F (t,Wf )F (s,Wg) dµ =

∞∑

n,m=0

tn√
n!

sm√
m!

∫

H
Hn(Wf )Hm(Wg) dµ,

and also, using (2.20) and F (t,Wf )F (s,Wg) = e−
1
2
(t2+s2)+tWf+sWg ,

∫

H
F (t,Wf )F (s,Wg) dµ = e−

1
2
(t2+s2)

∫

H
eWtf+sg dµ = e−

1
2
(t2+s2)e

1
2
‖tf+sg‖2H

= ets〈f,g〉H =

∞∑

n=0

tnsn

n!
〈f, g〉nH .

Theorem 2.7. (Wiener–Itô decomposition)

L2(H,µ) =
⊕

n∈N0

L2
n(H,µ). (2.22)

Proof. Orthogonality of the spaces L2
n(H,µ) follows from Lemma 2.6. It

remains to be shown that these spaces span L2(H,µ). Let g ∈ L2(H,µ) be
orthogonal to Hn(Wf ) for all n ∈ N0 and all f ∈ H with ‖f‖H = 1. Then,
for all t ∈ R and any f ∈ H with ‖f‖H = 1,

0 =

∫

H
F (t,Wf )g dµ = e−

1
2
t2
∫

H
etWf g dµ.

Consequently, the entire function

ϕ(t) :=

∫

H
etWf g dµ

vanishes on R, and thus is equal to 0 on C. Let ϑ be the signed measure
dϑ = g dµ. An arbitrary element h ∈ H is of the form h = tQ−1/2f for an
f ∈ Q1/2(H) with ‖f‖H = 1 and some t ∈ R. The Fourier transform of ϑ
evaluated at h is

ϑ̂(h) =

∫

H
ei〈x,tQ

−1/2f〉Hg(x)µ(dx) =
∫

H
eitWf g dµ = ϕ(it) = 0.
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Therefore, ϑ = 0 and it follows that g = 0 almost everywhere.

The following proposition describes the connection between the Wiener–
Itô decomposition (2.22) and the Hermite chaos basis (Hν)ν∈F of L2(H,µ)
from Theorem 2.5.

Proposition 2.8. For all n ∈ N0,

L2
n(H,µ) = span {Hν(x) ; ν ∈ F, |ν| = n}. (2.23)

Proof. It suffices to show that for n ∈ N0 and ν ∈ F with |ν| �= n,
∫

H
Hν(x)Hn(Wf (x))µ(dx) = 0 ∀f ∈ H : ‖f‖H = 1. (2.24)

Then the inclusions ‘⊂’ and ‘⊃’ follow from Theorem 2.5 and Theorem 2.7,
respectively.
Let f ∈ H with ‖f‖H = 1. Since supp ν is finite for ν ∈ F, there is an

N ∈ N0 with νi = 0 for all i ≥ N + 1. In particular,

Hν(x) = Hν1(We1(x))Hν2(We2(x)) · · ·HνN (WeN (x)), x ∈ H.

For t1, . . . , tN+1 ∈ R, we compute

I :=

∫

H
F (t1,We1) · · ·F (tN ,WeN )F (tN+1,Wf ) dµ

twice. Using (2.6), linearity of W and (2.20), we have

I = e−
1
2
(t21+···+t2N+1)

∫

H
eWt1e1+···+tNeN+tN+1f dµ

= e−
1
2
(t21+···+t2N+1)e

1
2
‖t1e1+···+tNeN+tN+1f‖2H .

Abbreviating fi := 〈f, ei〉H , i ∈ N, since f2
1 + f2

2 + · · · = ‖f‖2H = 1,

‖t1e1 + · · ·+ tNeN + tN+1f‖2H
= (t1 + tN+1f1)

2 + · · ·+ (tN + tN+1fN )2 + t2N+1(f
2
N+1 + f2

N+2 + · · · )
= t21 + · · ·+ t2N + 2tN+1(t1f1 + · · ·+ tNfN ) + t2N+1.

Since the quadratic terms cancel, we are left with

I = etN+1(t1f1+···+tNfN ) =

∞∑

n=0

tnN+1(t1f1 + · · ·+ tNfN )n

n!
.

Also, (2.7) implies

I =
∞∑

k1,...,kN+1=0

tk11 · · · tkN+1

N+1√
k1! · · · kN+1!

∫

H
Hk1(We1) · · ·HkN (WeN )HkN+1

(Wf ) dµ.

Comparing the last two equations leads to (2.24).
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2.2. Generalized polynomial chaos

The construction of an orthonormal basis in Section 2.1 is not specific to
Gaussian measures or Hermite polynomials. The important ingredient is
the countable product structure of the probability space (H,µ), which we
illustrated by the measure-preserving map Y into the product measure space
(R∞,B(R∞), γ). We generalize the construction of the chaos basis to count-
able products of arbitrary probability spaces. Again, all of the following also
holds for finite products with the obvious modifications; to simplify nota-
tion, we consider only the countable case. We refer to Gittelson (2011a) for
further details and a more general construction.

Countable products of probability spaces

For all m ∈ N, let Γm be an arbitrary non-empty set, endowed with a σ-
algebra Σm. Let (Ym)m∈N be independent random variables on a probability
space (Ω,Σ,P), such that Ym maps into (Γm,Σm). This sequence constitutes
a map

Y : Ω → Γ :=
∏

m∈N
Γm, ω �→ (Ym(ω))m∈N, (2.25)

which is measurable with respect to the product σ-algebra Σ :=
⊗

m∈NΣm

on Γ. By the independence of (Ym)m∈N, the distribution of Y is the count-
able product probability measure

µ :=
⊗

m∈N
µm (2.26)

on (Γ,Σ), where µm = (Ym)#(P) is the distribution of Ym on (Γm,Σm).

Countable product bases

For all m ∈ N, let (ϕm,i)i∈N0 be an orthonormal basis of L2(Γm,Σm, µm)
such that ϕm,0 = 1; the constant 1 is normalized in L2(Γm,Σm, µm) since
µm is a probability measure. As in Section 2.1, we define the index set

F := {ν ∈ NN
0 ; # supp ν < ∞}. (2.27)

If L2(Γm,Σm, µm) is finite-dimensional for some m, then of course its ortho-
normal basis (ϕm,i)

N
i=0 is finite, and we restrict νm to the values 0, 1, . . . , N

in the definition of F.
For all ν ∈ F, define the tensor product

ϕν :=
⊗

m∈N
ϕm,νm , (2.28)

i.e., for all y = (ym)m∈N ∈ Γ, since ϕm,0 = 1 for all m ∈ N,

ϕν(y) =
∏

m∈N
ϕm,νm(ym) =

∏

m∈supp ν

ϕm,νm(ym). (2.29)
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342 C. Schwab and C. J. Gittelson

Let F(N) denote the set of all finite subsets of N. For I ∈ F(N), define
the finite product σ-algebra

ΣI :=
⊗

m∈I
Σm = σ(ym ; m ∈ I) ⊂ Σ. (2.30)

A function is ΣI -measurable if it is Σ-measurable and only depends on
(ym)m∈I . Also, let FI := {ν ∈ F ; supp ν ⊂ I}.
Lemma 2.9. For all I ∈ F(N), the set (ϕν)ν∈FI

is an orthonormal basis
of L2(Γ,ΣI , µ).

Proof. Since ϕm,0 = 1 for all m ∈ N, if supp ν ⊂ I, then

ϕν(y) =
∏

m∈N
ϕm,νm(ym) =

∏

m∈I
ϕm,νm(ym), y ∈ Γ.

Due to the assumption that I is finite,

L2(Γ,ΣI , µ) ∼=
⊗

m∈I
L2(Γm,Σm, µm).

As (ϕm,i)i∈N is an orthonormal basis of L2(Γm,Σm, µm) for each m ∈ I by
assumption, the claim follows since finite tensor products of orthonormal
bases form an orthonormal basis in the product space.

The monotone class theorem implies that any function in L2(Γ,Σ, µ) can
be approximated by ΣI -measurable functions with I ∈ F(N). We recall that
a set M of real-valued functions on Γ is multiplicative if vw ∈ M whenever
v, w ∈ M. A monotone vector space over Γ is a real vector space H of
bounded, real-valued functions on Γ such that all constants are in H, and if
(vn)n∈N is a sequence in H with 0 ≤ vn ≤ vn+1 for all n ∈ N and v := supn vn
is a bounded function on Γ, then v ∈ H.

Theorem 2.10. (monotone class theorem) Let M be a multiplicative
class of bounded, real-valued functions on Γ and let H be a monotone vec-
tor space containing M. Then H contains all bounded σ(M)-measurable
functions.

We refer to Protter (2005, Theorem I.8) for a proof of Theorem 2.10.

Proposition 2.11.
⋃

I∈F(N) L
2(Γ,ΣI , µ) is dense in L2(Γ,Σ, µ).

Proof. Let V :=
⋃

I∈F(N) L
2(Γ,ΣI , µ) ⊂ L2(Γ,Σ, µ) and define H := V ∩

L∞(Γ,Σ, µ) as the vector space of bounded functions in V. Let M be the
set of indicator functions in L2(Γ,ΣI , µ) for any I ∈ F(N). Then M ⊂ H,
1 ∈ H, and M is closed under multiplication. Let 0 ≤ v1 ≤ v2 ≤ · · ·
be a pointwise monotonic sequence in H and v := supn vn its pointwise
supremum. If v ∈ L∞(Γ,Σ, µ) ⊂ L2(Γ,Σ, µ), then (vn)n converges to v
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Sparse tensor discretizations for sPDEs 343

in L2(Γ,Σ, µ) by dominated convergence. Since V is closed in L2(Γ,Σ, µ),
it follows that v ∈ V and therefore v ∈ H. Thus H is a monotone vector
space and, using that Σ = σ(M) is the σ-algebra generated by M, the
monotone class theorem implies H = L∞(Γ,Σ, µ).

If v ∈ L2(Γ,Σ, µ), then for any N ∈ N, v1{|v|≤N} ∈ L∞(Γ,Σ, µ) = H ⊂ V

and v ∈ V by dominated convergence.

Theorem 2.12. (ϕν)ν∈F is an orthonormal basis of L2(Γ,Σ, µ).

Proof. Orthonormality follows from Lemma 2.9 since, for any ν, ν̃ ∈ F,

I := supp ν ∪ supp ν̃ ∈ F(N).

Density follows from Proposition 2.11 since (ϕν)ν∈FI
spans L2(Γ,ΣI , µ) for

all I ∈ F(N).

Let (ϕm,i)i∈N0 be a graded basis of L2(Γm,Σm, µm) for each m ∈ N, i.e.,
there is a map ℓm : N0 → N0 assigning to each index i ∈ N0 a level ℓ(i). This
might be the degree of a polynomial, or the level of a wavelet, depending
on (ϕm,i)i∈N0 . We assume that ℓm(0) = 0 for all m ∈ N. This allows us to
define a grading function for the orthonormal basis (ϕν)ν∈F of L2(Γ,Σ, µ)
by

ℓ(ν) :=
∑

m∈N
ℓm(νm) =

∑

m∈suppν
ℓm(νm), ν ∈ F. (2.31)

This function induces a decomposition of L2(Γ,Σ, µ) into the closed sub-
spaces

L2
n(Γ,Σ, µ) := span {ϕν ; ν ∈ F, ℓ(ν) = n} ⊂ L2(Γ,Σ, µ), n ∈ N0. (2.32)

Corollary 2.13.

L2(Γ,Σ, µ) =
⊕

n∈N0

L2
n(Γ,Σ, µ). (2.33)

Proof. By Theorem 2.12 and (2.32),

L2(Γ,Σ, µ) =
⊕

ν∈F
spanϕν =

⊕

n∈N0

⊕

ℓ(ν)=n

spanϕν =
⊕

n∈N0

L2
n(Γ,Σ, µ).

We note that other choices of ℓ are possible. For example, the dimensions
m ∈ N can be weighted differently, leading to an anisotropic decomposition.
Also, the ℓ1-norm in (2.32) can be generalized to an arbitrary ℓp-quasi-norm
for any p > 0. Rounding the final value ensures that ℓ maps into N0.

Orthogonal polynomials

We assume that Γm is a Borel subset of R and that µm has finite moments

Mn :=

∫

Γm

ξnµm(dξ), n ∈ N0. (2.34)
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344 C. Schwab and C. J. Gittelson

Orthonormal polynomials with respect to µm can be constructed by the
well-known three-term recursion

βn+1Pn+1(ξ) = (ξ − αn)Pn(ξ)− βnPn−1(ξ), n ∈ N0, (2.35)

with the initialization P−1(ξ) = 0 and P0(ξ) = 1. The coefficients are

αn :=

∫

Γm

ξPn(ξ)
2µm(dξ) and βn :=

cn−1

cn
, (2.36)

where cn is the leading coefficient of Pn, and β0 := 1. The values of (αn)n∈N0

and (βn)n∈N0 are tabulated for many common distributions µm (Gautschi
2004). Formula (2.35) can be derived by Gram–Schmidt orthogonalization
of the monomials (ξn)n∈N0 . Note that βn+1 depends on Pn+1, and can be
computed by normalizing the right-hand side of (2.35) in L2(Γm,Σm, µm).

Lemma 2.14. For all n ∈ N0, Pn is a polynomial of degree n if n <
N := dimL2(Γm,Σm, µm) and zero otherwise. The sequence (Pn)n∈N0 (resp.
(Pn)

N−1
n=0 if N is finite) is orthonormal in L2(Γm,Σm, µm).

Proof. By the Gram–Schmidt orthogonalization process applied to the
monomials (ξn)n∈N0 , µm-orthonormal polynomials (Pn)n∈N exist. If N is
finite, then (ξn)N−1

n=0 is a basis of L2(Γm,Σm, µm), and thus Pn = 0 for all
n ≥ N . We show that the orthonormal polynomials constructed by Gram–
Schmidt orthogonalization satisfy (2.35).
Note that βn+1Pn+1(ξ) − ξPn(ξ) is a polynomial of degree at most n.

Therefore, and since (Pk)
n+1
k=0 are orthonormal,

βn+1Pn+1(ξ)− ξPn(ξ) = γnPn(ξ) + γn−1Pn−1(ξ) + · · ·+ γ0

with

γk =

∫

Γm

(βn+1Pn+1(ξ)− ξPn(ξ))Pk(ξ)µm(dξ) = −
∫

Γm

ξPn(ξ)Pk(ξ)µm(dξ)

for k = 0, 1, . . . , n. In particular, γn = −αn, and γk = 0 for k ≤ n− 2 since
ξPk(ξ) is a polynomial of degree at most n − 1. We note that ξPn−1(ξ) =
βnPn(ξ) + q(ξ) for a polynomial q of degree at most n − 1. This implies
γn−1 = −βn.

If N = dimL2(Γm,Σm, µm) is finite, then it follows from Lemma 2.14
that (Pn)

N−1
n=0 is an orthonormal basis of L2(Γm,Σm, µm). In general, this

requires an additional assumption. We consider the case N = ∞ in the
following.
The measure µm is called determinate if it is uniquely characterized by its

moments (Mn)n∈N0 ⊂ R. We note that µm is always determinate if Γm ⊂ R

is bounded (Gautschi 2004, Theorem 1.41). The following result was shown
by F. Riesz in 1923 (see, e.g., Szegő (1975) for a proof).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core


Sparse tensor discretizations for sPDEs 345

Proposition 2.15. If µm is determinate, then (Pn)n∈N0 is an orthonormal
basis of L2(Γm,Σm, µm).

Examples of generalized polynomial chaos bases

We combine Theorem 2.12 with Proposition 2.15 to construct a countable
tensor product basis of L2(Γ,Σ, µ). Again, we assume for simplicity that
L2(Γm,Σm, µm) is infinite-dimensional for all m ∈ N. Analogous results
hold in the general setting.
For all m ∈ N, let (Pm

n )n∈N0 be the orthonormal polynomial basis of
L2(Γm,Σm, µm) from Proposition 2.15. Then, by Theorem 2.12, the tensor
product polynomials

Pν :=
⊗

m∈N
Pm
νm , ν ∈ F, (2.37)

form an orthonormal basis of L2(Γ,Σ, µ), which we call the generalized poly-

nomial chaos basis.
If µm = N1 for all m ∈ N, then (Pm

n )n∈N0 are the Hermite polynomi-
als (2.8) and (Pν)ν∈F is the Hermite chaos basis, interpreted as a basis of
L2(R∞,B(R∞), γ) instead of L2(H,µ). In this case, Corollary 2.13 reduces
to the Wiener–Itô decomposition, Theorem 2.7, due to Proposition 2.8.
We consider as another example the case when µm is the uniform distribu-

tion on Γm := [−1, 1] for all m ∈ N, i.e., µm(dξ) = 1
2 dξ. The corresponding

orthonormal polynomials are the Legendre polynomials, which are defined
by the three-term recursion

n+ 1√
2n+ 3

√
2n+ 1

Ln+1(ξ) = ξLn(ξ)−
n√

2n+ 1
√
2n− 1

Ln−1(ξ), n ∈ N0,

(2.38)
with L−1(ξ) = 0 and L0(ξ) = 1. The Legendre polynomials satisfy Ro-
drigues’ formula

Ln(ξ) =

√
2n+ 1

2nn!

dn

dξn
(ξ2 − 1)n, n ∈ N0. (2.39)

The first few Legendre polynomials are

L0(ξ) = 1, L1(ξ) =
√
3 ξ, L2(ξ) =

√
5

2
(3ξ2 − 1). (2.40)

The tensor product Legendre polynomials Lν are defined as in (2.37) for
ν ∈ F.
In this case, the measure space (Γ,Σ, µ) is a countable product of identical

factors ([−1, 1],B([−1, 1]), 12 dξ),

Γ = [−1, 1]∞, Σ = B([−1, 1])∞ = B([−1, 1]∞), µ =
⊗

m∈N
µm, (2.41)
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with µm(dξ) = 1
2 dξ for all m ∈ N. Note that even though each µm is

absolutely continuous with respect to the Lebesgue measure, i.e., it has a
density, the product of these densities is zero. Also, the countable product
of the Lebesgue measure on [−1, 1] is not well-defined since the factors are
not normalized. Thus µ cannot be defined via a density function.

Corollary 2.16. The tensor product Legendre polynomials (Lν)ν∈F form
an orthonormal basis of L2([−1, 1]∞,B([−1, 1]∞), µ).

Proof. The claim follows from Theorem 2.12 and Proposition 2.15.

We shall refer to (Lν)ν∈F as the Legendre chaos basis.

2.3. PDEs with uniform stochastic parameters

Parametric and stochastic operators

Let V be a separable real Hilbert space with dual V ′, and let 〈·, ·〉 denote
the (V ′, V )-duality pairing. We consider operator equations of the form

Au = f, (2.42)

with f ∈ V ′ and A ∈ L(V, V ′) a bounded linear operator from V to V ′. If
A is boundedly invertible, then (2.42) has the unique solution u = A−1f .

Let Γ be a topological space. A parametric operator from V to V ′ is given
by a continuous map

A : Γ → L(V, V ′). (2.43)

We assume that A(y) is boundedly invertible for all y ∈ Γ, and consider the
parametric operator equation

A(y)u(y) = f(y) ∀y ∈ Γ (2.44)

for a map f : Γ → V ′.

Proposition 2.17. Equation (2.44) has a unique solution u : Γ → V . It
is continuous if and only if f : Γ → V ′ is continuous.

Proof. Since A(y) is boundedly invertible for all y ∈ Γ, (2.44) has the
unique solution u(y) = A(y)−1f(y). If u is continuous in y, then f(y) =
A(y)u(y) is also continuous in y, since A is continuous by definition and ap-
plication of an operator to a vector is continuous on L(V, V ′)×V . Further-
more, the map y �→ A(y)−1 is continuous as a consequence of the abstract
property (Kadison and Ringrose 1997, Proposition 3.1.6) of Banach alge-
bras, so continuity of u follows from continuity of f by the same argument
as above.

We derive a weak formulation of (2.44) in the parameter y under the
additional assumptions that A(y) is symmetric positive definite for all y ∈ Γ,
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and there exist constants ĉ and č such that

‖A(y)‖V→V ′ ≤ ĉ, ‖A(y)−1‖V ′→V ≤ č ∀y ∈ Γ, (2.45)

i.e., the bilinear form V ′〈A(y)·, ·〉V is a scalar product on V that induces a
norm equivalent to ‖·‖V . The estimates (2.45) always hold if Γ is compact.
Let µ be a probability measure on the Borel-measurable space (Γ,B(Γ)).

Then the operator A(y) becomes stochastic in the sense that it depends on
a parameter y in a probability space (Γ,B(Γ), µ). Similarly, f is a random
variable on Γ with values in V ′. We assume

f ∈ L2(Γ, µ;V ′). (2.46)

Multiplying (2.44) by a test function v : Γ → V and integrating over Γ, we
formally derive the linear variational problem

∫

Γ
〈A(y)u(y), v(y)〉µ(dy) =

∫

Γ
〈f(y), v(y)〉µ(dy) (2.47)

as the weak formulation of (2.44). By (2.45) and (2.46), both integrals are
well-defined if v ∈ L2(Γ, µ;V ).

Theorem 2.18. Under the conditions (2.45) and (2.46), the solution u
of (2.44) is the unique element of L2(Γ, µ;V ) satisfying (2.47) for all v ∈
L2(Γ, µ;V ). Furthermore,

‖u‖L2(Γ,µ;V ) ≤ č‖f‖L2(Γ,µ;V ′). (2.48)

Proof. We first show that there is a unique ũ ∈ L2(Γ, µ;V ) such that
∫

Γ
〈A(y)ũ(y), v(y)〉µ(dy) =

∫

Γ
〈f(y), v(y)〉µ(dy) ∀v ∈ L2(Γ, µ;V ). (∗)

By Cauchy–Schwarz and (2.45), for all v, w ∈ L2(Γ, µ;V ),
∣∣∣∣
∫

Γ
〈A(y)w(y), v(y)〉µ(dy)

∣∣∣∣ ≤
∫

Γ
ĉ‖w(y)‖V ‖v(y)‖V µ(dy)

≤ ĉ‖v‖L2(Γ,µ;V )‖w‖L2(Γ,µ;V ).

Let R : V → V ′ denote the Riesz isomorphism. By positivity of A(y),
there is a unique positive S(y) ∈ L(V ) such that A(y) = RS(y)S(y) for all

y ∈ Γ, and ‖S(y)‖ ≤
√
ĉ. Furthermore, S(y) is invertible for all y ∈ Γ and

‖S(y)−1‖ ≤
√
č. Consequently, for all v ∈ L2(Γ, µ;V ),

∫

Γ
〈A(y)v(y), v(y)〉µ(dy) =

∫

Γ
‖S(y)v(y)‖2V µ(dy) ≥ č−1‖v‖2L2(Γ,µ;V ).

Similarly, by Cauchy–Schwarz,
∫

Γ
〈f(y), v(y)〉µ(dy) ≤ ‖f‖L2(Γ,µ;V ′)‖v‖L2(Γ,µ;V )
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for all v ∈ L2(Γ, µ;V ). The Lax–Milgram lemma implies existence and
uniqueness of the solution ũ of (∗), and (2.48) for ũ. By (∗) with v(y) =
v01E(y) for v0 ∈ V and E ∈ B(Γ),

∫

E
〈A(y)ũ(y)− f(y), v0〉µ(dy) = 0.

Since this holds for all measurable sets E, the integrand is 0 a.e. in Γ for
any v0 ∈ V , and therefore ũ satisfies (2.44) for µ-a.e. y ∈ Γ. This implies
ũ = u in L2(Γ, µ;V ).

Remark 2.19. (tensor product structure) For any separable Hilbert
space X, the Lebesgue–Bochner space L2(Γ, µ;X) is isometrically isomor-
phic to the Hilbert tensor product L2(Γ, µ)⊗X. In particular, the solution
u of (2.45) can be interpreted as an element of L2(Γ, µ) ⊗ V , and f can
be seen as an element of L2(Γ, µ) ⊗ V ′. Theorem 2.18 implies that the
stochastic operator A induces an isomorphism between L2(Γ, µ) ⊗ V and
L2(Γ, µ)⊗ V ′, whose inverse maps f onto u.

The diffusion equation with a stochastic diffusion coefficient

Let D be a bounded Lipschitz domain in Rd, and (Ω,Σ,P) a probability
space. We consider as a model problem the isotropic diffusion equation on
D with a stochastic diffusion coefficient and, for simplicity, homogeneous
Dirichlet boundary conditions,

−∇ ·
(
a(ω, x)∇U(ω, x)

)
= f(x), x ∈ D, ω ∈ Ω,

U(ω, x) = 0, x ∈ ∂D, ω ∈ Ω.
(2.49)

The differential operators in (2.49) are understood with respect to the phys-
ical variable x ∈ D. We assume there are constants a− and a+ such that

0 < a− ≤ a(ω, x) ≤ a+ < ∞ ∀x ∈ D, ∀ω ∈ Ω. (2.50)

Furthermore, we select some deterministic approximation ā ∈ L∞(D) to
the stochastic diffusion coefficient a(·, ·). For example, ā could be the mean
field,

ā(x) :=

∫

Ω
a(ω, x)P(dω), x ∈ D, (2.51)

or simply a constant such as ā := (a+ + a−)/2, ā :=
√
a+a− or ā := 1.

We consider a series expansion of the difference a(ω, x) − ā(x). Let
(ϕm)m∈N ⊂ L∞(D) be a biorthogonal basis of L2(D) with associated dual
basis (ϕ̃m)m∈N ⊂ L2(D), i.e.,

〈ϕm, ϕ̃n〉L2(D) = δmn ∀m,n ∈ N, (2.52)
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and

v =
∞∑

m=1

〈v, ϕ̃m〉L2(D)ϕm ∀v ∈ L2(D), (2.53)

with unconditional convergence in L2(D). For a positive sequence (αm)m∈N,
to be determined below, we define the random variables

Ym(ω) :=
1

αm

∫

D
(a(ω, x)− ā(x))ϕ̃m(x) dx, m ∈ N. (2.54)

By (2.53), for all ω ∈ Ω,

a(ω, x) = ā(x) +
∞∑

m=1

Ym(ω)αmϕm(x), (2.55)

with unconditional convergence in L2(D).

Lemma 2.20. There is a positive sequence (αm)m∈N such that Ym(ω) ∈
[−1, 1] for all ω ∈ Ω and all m ∈ N.

Proof. By Hölder’s inequality,
∣∣∣∣
∫

D
(a(ω, x)− ā(x))ϕ̃m(x) dx

∣∣∣∣ ≤ ‖a(ω, ·)− ā‖L∞(D)‖ϕ̃m‖L1(D).

Due to (2.50), the first term is bounded independently of ω, and we can
choose

αm := sup
ω∈Ω

‖a(ω, ·)− ā‖L∞(D)‖ϕ̃m‖L1(D).

Motivated by Lemma 2.20, we define as a parameter domain the compact
topological space

Γ := [−1, 1]∞ =
∞∏

m=1

[−1, 1]. (2.56)

Let (αm)m∈N be a sequence as in Lemma 2.20. We assume that the series

∞∑

m=1

αm|ϕm(x)| (2.57)

converges in L∞(D), i.e.,

lim
M→∞

ess sup
x∈D

∞∑

m=M

αm|ϕm(x)| = 0. (2.58)

Then

aϕ(y, x) := ā(x) +

∞∑

m=1

ymαmϕm(x), y = (ym)m∈N ∈ Γ, x ∈ D, (2.59)
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converges uniformly in L∞(D), and the stochastic diffusion coefficient sat-
isfies

a(ω, x) = aϕ(Y (ω), x) ∀x ∈ D, ∀ω ∈ Ω, (2.60)

where Y (ω) := (Ym(ω))m∈N ∈ Γ.
We define the operators A(y), Ā, Am : H1

0 (D) → H−1(D) by

H−1〈A(y)v, w〉H1
0
:=

∫

D
aϕ(y, x)∇v(x) · ∇w(x) dx, y ∈ Γ, (2.61)

H−1〈Āv, w〉H1
0
:=

∫

D
ā(x)∇v(x) · ∇w(x) dx, (2.62)

H−1〈Amv, w〉H1
0
:=

∫

D
αmϕm(x)∇v(x) · ∇w(x) dx, m ∈ N, (2.63)

for all v, w ∈ H1
0 (D). By (2.60), A(y) is the operator associated to (2.49)

for all ω ∈ Ω. Therefore,

U(ω) = u(Y (ω)) ∀ω ∈ Ω, (2.64)

for the solution u of (2.44) for (2.61), provided it exists.

Lemma 2.21. Under condition (2.58),

A(y) = Ā+

∞∑

m=1

ymAm, y ∈ Γ, (2.65)

with convergence in L(H1
0 (D), H−1(D)) uniformly in y. Furthermore, A(y)

depends continuously on y ∈ Γ.

Proof. Let y ∈ Γ and v, w ∈ H1
0 (D). By (2.59) and Fubini’s theorem,

using (2.58),

〈A(y)v, w〉 = 〈Āv, w〉 +
∞∑

m=1

ym〈Amv, w〉.

Similarly, for all M ∈ N, using |ym| ≤ 1 for all m ∈ N,
∣∣∣∣∣

∞∑

m=M

ym〈Amv, w〉
∣∣∣∣∣ =

∣∣∣∣∣

∫

D

( ∞∑

m=M

ymαmϕm(x)

)
∇v(x) · ∇w(x) dx

∣∣∣∣∣

≤ ess sup
x∈D

( ∞∑

m=M

αm|ϕm(x)|
)
‖v‖H1

0
‖w‖H1

0
.

Convergence of the series in L(H1
0 (D), H−1(D)) follows with (2.58).
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A sequence (yn)n∈N ⊂ Γ converges to y ∈ Γ if ynm → ym for all m ∈ N.
In this case, A(yn) → A(y) in L(H1

0 (D), H−1(D)) since, as above, using
|ynm − ym| ≤ 2,

∥∥∥∥∥

∞∑

m=M

(ynm − ym)Am

∥∥∥∥∥
H1

0 (D)→H−1(D)

≤ 2 ess sup
x∈D

( ∞∑

m=M

αm|ϕm(x)|
)
.

The right-hand side is independent of n, and can be made smaller than ǫ
for sufficiently large M ∈ N. Then

‖A(yn)−A(y)‖H1
0 (D)→H−1(D) ≤ ǫ+

M−1∑

m=1

|ynm − ym|‖Am‖H1
0 (D)→H−1(D),

which is less than 2ǫ for sufficiently large n ∈ N.

We assume that the bilinear form associated to the operator Ā is coercive
on H1

0 (D), or equivalently, that

∃ā− : ess inf
x∈D

ā(x) ≥ ā− > 0. (2.66)

Proposition 2.22. If

γ :=
1

ā−
ess sup
x∈D

∞∑

m=1

αm|ϕm(x)| < 1, (2.67)

then A(y) : H1
0 (D) → H−1(D) is boundedly invertible for all y ∈ Γ, and

sup
y∈Γ

‖A(y)−1‖H−1(D)→H1
0 (D) ≤

ā−1
−

1− γ
. (2.68)

Furthermore, A(y) is bounded with

sup
y∈Γ

‖A(y)‖H1
0 (D)→H−1(D) ≤ ‖ā‖L∞(D)(1 + γ). (2.69)

Proof. The operator Ā : H1
0 (D) → H−1(D) is invertible due to (2.66) and

the Lax–Milgram lemma. The norm of its inverse is bounded by 1/ā−. By
(2.67), as in the proof of Lemma 2.21,

‖Ā−1(Ā−A(y))‖H1
0 (D)→H1

0 (D) ≤
1

ā−
ess sup
x∈D

∞∑

m=1

αm|ϕm(x)| = γ < 1.

Therefore,

I − Ā−1(Ā−A(y)) = Ā−1A(y)

is invertible by a Neumann series and has norm less than (1 − γ)−1. The
claim follows by multiplying from the left by Ā.
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Discretization by the Legendre chaos basis

For a separable Hilbert space V , we consider a parametric operator in
L(V, V ′) of the form

A(y) = Ā+
∞∑

m=1

ymAm, y ∈ Γ = [−1, 1]∞, (2.70)

with Ā, Am ∈ L(V, V ′) and convergence in L(V, V ′) uniformly in y ∈ Γ. As
in Section 2.3, we assume that A(y) is positive and boundedly invertible
for all y, depends continuously on y ∈ Γ, and satisfies (2.45). By Propo-
sition 2.22, this holds for (2.61) under the assumptions of Section 2.3. We
make the additional assumption

∞∑

m=1

‖Am‖V→V ′ < ∞, (2.71)

which is stronger than (2.58) in the setting of Section 2.3.
Let the measure µ on (Γ,B(Γ)) be the countable product of uniform

measures on [−1, 1] as in (2.41). Then, by Corollary 2.16, the tensor product
Legendre polynomials (Lν)ν∈F form an orthonormal basis of L2(Γ, µ), called
the Legendre chaos basis. We use it to discretize the parameter domain Γ,
i.e., to reformulate (2.44) and (2.47) as an equation on a space of sequences
in V .
By Remark 2.19, the parametric operator A(y) induces a boundedly in-

vertible operator between the Hilbert tensor product spaces L2(Γ, µ) ⊗ V
and L2(Γ, µ)⊗V ′. The structure of (2.70) carries over to this operator. For
all m ∈ N, we define the multiplication operator

Mym : L2(Γ, µ) → L2(Γ, µ), g(y) �→ ymg(y). (2.72)

It follows from ym ∈ [−1, 1] that Mym is self-adjoint and

‖Mym‖L2(Γ,µ)→L2(Γ,µ) = 1, m ∈ N. (2.73)

Proposition 2.23. The operator in L(L2(Γ, µ)⊗V, L2(Γ, µ)⊗V ′) induced
by A(y) via (2.47), as in Remark 2.19, is

A = I ⊗ Ā+
∞∑

m=1

Mym ⊗Am, (2.74)

where I is the identity on L2(Γ, µ). The sum in (2.74) converges uncondi-
tionally in L(L2(Γ, µ)⊗ V, L2(Γ, µ)⊗ V ′).

Proof. The operator A is well-defined by (2.74) since, by (2.73),
∥∥∥∥∥

N∑

m=M

Mym ⊗Am

∥∥∥∥∥ ≤
N∑

m=M

‖Mym‖‖Am‖ =
N∑

m=M

‖Am‖,
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which can be made arbitrarily small for sufficiently large M by (2.71). The
convergence is unconditional since the convergence of (2.71) is uncondi-
tional.
Let g ∈ L2(Γ, µ) and v ∈ V . Then using (2.72),

A(g ⊗ v)(y) = g(y)Āv +
∞∑

m=1

ymg(y)Amv = A(y)(g(y)v), y ∈ Γ.

Therefore, A is the operator induced by A(y).

Since the tensor product Legendre polynomials (Lν)ν∈F form an orthonor-
mal basis of L2(Γ, µ), the map

TL : ℓ2(F) → L2(Γ, µ), (cν)ν∈F �→
∑

ν∈F
cνLν , (2.75)

is a unitary isomorphism by Parseval’s identity. Tensorizing with the iden-
tity IV on V , we get the isometric isomorphism

TL ⊗ IV : ℓ2(F)⊗ V → L2(Γ, µ)⊗ V (2.76)

with adjoint

(TL ⊗ IV )
′ = T ′

L ⊗ IV ′ : L2(Γ, µ)⊗ V ′ → ℓ2(F)⊗ V ′. (2.77)

We define the semidiscrete operator

A := (TL ⊗ IV )
′A(TL ⊗ IV ) : ℓ

2(F)⊗ V → ℓ2(F)⊗ V ′. (2.78)

Similarly, interpreting f ∈ L2(Γ, µ;V ′) as an element of L2(Γ, µ) ⊗ V ′, we
define

f := (TL ⊗ IV )
′f =

(∫

Γ
f(y)Lν(y)µ(dy)

)

ν∈F
, (2.79)

which is simply the sequence of Legendre coefficients of f . This leads to the
semidiscrete operator equation

Au = f. (2.80)

Theorem 2.24. The operator A from (2.78) has the form

A = I ⊗ Ā+
∞∑

m=1

Km ⊗Am, (2.81)

with convergence in L(ℓ2(F) ⊗ V, ℓ2(F) ⊗ V ′), where I is the identity on
ℓ2(F) and Km := T ′

LMymTL. Furthermore, A is boundedly invertible, and
the solutions of (2.44) and (2.80) are related by

u = (TL ⊗ IV )u. (2.82)
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354 C. Schwab and C. J. Gittelson

Proof. Equation (2.81) follows from (2.74) since T ′
L = T−1

L . The operator
A is boundedly invertible since A is boundedly invertible by Remark 2.19
and (TL ⊗ IV )

′ and (TL ⊗ IV ) are isomorphisms by definition. Applying the
inverse of (TL⊗IV )

′ to (2.80) and inserting (2.78) and (2.79), it follows that

A(TL ⊗ IV )u = f,

which characterizes u by Theorem 2.18.

Lemma 2.25. For all m ∈ N, the operator

Km := T ′
LMymTL : ℓ2(F) → ℓ2(F) (2.83)

has the form

Km(cν)ν∈F = (βνm+1cν+ǫm + βνmcν−ǫm)ν∈F, (2.84)

where β0 := 0, and

βn :=
n√

2n+ 1
√
2n− 1

=
1√

4− n−2
∈
(
1

2
,
1√
3

]
, n ∈ N. (2.85)

Here, ǫm is the Kronecker sequence (ǫm)n := δmn, and if νm = 0, the term
cν−ǫm is irrelevant in (2.84) since it is multiplied by β0 = 0. Furthermore,
Km is self-adjoint and

‖Km‖ℓ2(F)→ℓ2(F) = 1, m ∈ N. (2.86)

Proof. By definition, since T−1
L = T ′

L,

TLKm(cν)ν∈F = MymTL(cν)ν∈F =
∑

ν∈F
cνymLν(y).

Therefore, (2.84) is equivalent to

ymLν(y) = βνm+1Lν+ǫm(y) + βνmLν−ǫm(y).

By (2.38),

ξLn(ξ) = βn+1Ln+1(ξ) + βnLn−1(ξ), ξ ∈ [−1, 1], n ∈ N0.

Then the claim follows from (2.29). Note that (βn)n∈N is decreasing in n,
β1 = 1/

√
3, and βn → 1/2.

Corollary 2.26. The solution u of (2.44) is

u(y) =
∑

ν∈F
uνLν(y) ∈ V, y ∈ Γ, (2.87)

with convergence in L2(Γ, µ;V ), where the coefficients (uν)ν∈F ∈ V are
determined uniquely by the equations

Āuν +

∞∑

m=1

Am(βνm+1uν+ǫm + βνmuν−ǫm) = fν , ν ∈ F, (2.88)
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for (βn)n∈N0 and (ǫm)m∈N as in Lemma 2.25, and

fν :=

∫

Γ
f(y)Lν(y)µ(dy) ∈ V ′, ν ∈ F. (2.89)

Proof. The claim follows from Theorem 2.24 using the definitions (2.75),
(2.76), (2.78), (2.79), Lemma 2.25, and the identification of Lebesgue–
Bochner spaces with Hilbert tensor product spaces as in Remark 2.19.

Finite element approximation

The discretization from Section 2.3 does not include any approximations.
The infinite system of equations in Corollary 2.26 determines the Legendre
coefficients (uν)ν∈F ∈ V of the exact solution u of (2.44). However, this
system of equations lends itself to discretization by standard finite elements.
For all ν ∈ F, let VN,ν ⊂ V be a finite-dimensional space. We assume that

VN,ν = {0} for all but finitely many ν ∈ F and define the finite-dimensional
space

VN := {v ∈ L2(Γ;V ) ; vν ∈ VN,ν ∀ν ∈ F}, (2.90)

where vν ∈ V is the νth coefficient in the expansion of v ∈ L2(Γ;V ) with
respect to the tensor product Legendre polynomials (Lν)ν∈F. This space
can be interpreted as a subspace of L2(Γ;V ), as in (2.90), or as the space
of sequences (vν)ν∈F in V with vν ∈ VN,ν for all ν ∈ F, which is a subspace
of ℓ2(F;V ). By Parseval’s identity, the norms induced by these two spaces
coincide.
Accordingly, the Galerkin projection of u onto VN can be characterized

in two equivalent ways. We define the Galerkin approximation uN of u on
VN as the unique element of VN satisfying
∫

Γ
〈A(y)uN (y), vN (y)〉µ(dy) =

∫

Γ
〈f(y), vN (y)〉µ(dy) ∀vN ∈ VN . (2.91)

As in Corollary 2.26, the Legendre coefficients of uN satisfy a system of
equations

〈ĀuN,ν , vN 〉+
∞∑

m=1

〈Am(βνm+1uN,ν+ǫm+βνmuN,ν−ǫm), vN 〉 = 〈fν , vN 〉 (2.92)

for all vN ∈ VN,ν and all ν ∈ F. Since VN,ν = {0} for all but finitely many
ν ∈ F, there are only finitely many non-trivial equations (2.92). Also, for
the same reason, the sum in each equation is finite. Therefore, without any
explicit truncation, the infinite system of equations (2.88) becomes a finite
system when considered on a finite-dimensional space.

Proposition 2.27. The Galerkin projection uN of u onto VN is well-
defined by (2.91), and satisfies

‖uN‖L2(Γ,µ;V ) ≤ č‖f‖L2(Γ,µ;V ′). (2.93)
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Its Legendre coefficients (uN,µ)µ∈F are uniquely characterized by (2.92) for
ν ∈ F. Furthermore,

‖u− uN‖L2(Γ,µ;V ) ≤
√
ĉč inf

vN∈VN

‖u− vN‖L2(Γ,µ;V ). (2.94)

Proof. As shown in the proof of Theorem 2.18, the bilinear form in (2.91)
is continuous with constant ĉ and coercive with constant č−1. Existence
and uniqueness of uN as well as (2.93) follow from the Lax–Milgram lemma
applied to the space VN . The equivalence of (2.91) and (2.92) is a conse-
quence of Theorem 2.24, using Lemma 2.25. The quasi-optimality property
(2.94) holds since the bilinear form in (2.91) is a scalar product, and the
norm induced by it on L2(Γ, µ;V ) is equivalent to the standard norm with

constants
√
ĉ and

√
č.

Given a space VN , the Galerkin projection uN of u onto VN can be com-
puted iteratively, for example by a conjugate gradient iteration; see Gittel-
son (2011b). The inverse of the deterministic operator Ā can be used as a
preconditioner.
The sparse tensor product construction of VN , which amounts to a prob-

lem-adapted selection of finite element spaces VN,ν , is discussed in Sec-
tion 4.1. Approximation results are presented in Section 3.1.

2.4. PDEs with Gaussian parameters

The log-normal diffusion equation

We consider again the diffusion equation (2.49) with a stochastic diffusion
coefficient a(·, ·) on a bounded Lipschitz domain D ⊂ Rd. However, instead
of expanding a(·, ·) in a series, we expand its logarithm. More precisely, we
take a series expansion of log(a− a∗), where a∗ is a bounded function on D
with a∗(x) ≥ 0 for all x ∈ D. Then, instead of (2.59), we have a diffusion
coefficient of the form

a(y, x) = a∗(x) + a0(x) exp

( ∞∑

m=1

ymam(x)

)
, x ∈ D, (2.95)

for y = (ym)m∈N ∈ R∞. We assume that the coefficients (ym)m∈N are
independent standard Gaussian random variables. This is the case, for
instance, if log(a−a∗) is Gaussian and we expand it in its Karhunen–Loève
series, or more generally if (am)m∈N are orthonormal in the Cameron–Martin
space of the distribution of log(a−a∗): see Section 2.1 and Gittelson (2010b).
The diffusion equation with the stochastic coefficient (2.95) and, for sim-

plicity, homogeneous Dirichlet boundary conditions, is

−∇ ·
(
a(y, x)∇u(y, x)

)
= f(y, x), x ∈ D,

u(y, x) = 0, x ∈ ∂D.
(2.96)
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By the above assumptions, the parameter y is in the probability space
(R∞,B(R∞), γ), where

γ =
∞⊗

m=1

N1, (2.97)

as in (2.4). For the sake of generality, we allow the forcing term f in (2.96)
to depend on y ∈ R∞.
The series in (2.95) may not converge for all y ∈ R∞. We assume that

am ∈ L∞(D) for all m ∈ N0, a0(x) ≥ ǎ0 > 0 for all x ∈ D, and

∞∑

m=1

‖am‖L∞(D) < ∞, (2.98)

i.e., the sequence αm := ‖am‖L∞(D), m ∈ N, is in ℓ1(N). Then the series in
(2.95) converges in L∞(D), at least for all y in the set

Γ :=

{
y ∈ R∞ ;

∞∑

m=1

αm|ym| < ∞
}
. (2.99)

Lemma 2.28. Γ ∈ B(R∞) and γ(Γ) = 1.

Proof. Borel-measurability of Γ follows from

Γ =
∞⋃

N=1

∞⋂

M=1

{
y ∈ R∞ ;

M∑

m=1

αm|ym| ≤ N

}
.

By the monotone convergence theorem, using

∫

R∞

|ym|γ(dy) = 2√
2π

∫ ∞

0
ξ exp

(
−ξ2

2

)
dξ =

√
2

π
,

it follows that

∫

R∞

∞∑

m=1

αm|ym|γ(dy) =
∞∑

m=1

αm

∫

R∞

|ym|γ(dy) =
√

2

π

∞∑

m=1

αm < ∞,

which implies that the sum converges γ-a.e. on R∞, and thus γ(Γ) = 1 by
(2.99).

Lemma 2.29. For all y ∈ Γ, the diffusion coefficient (2.95) is well-defined
and satisfies

0 < ǎ(y) := ess inf
x∈D

a(y, x) ≤ ess sup
x∈D

a(y, x) =: â(y) < ∞ (2.100)
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with

â(y) ≤ ‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

( ∞∑

m=1

αm|ym|
)
,

ǎ(y) ≥ ess inf
x∈D

a∗(x) + ǎ0 exp

(
−

∞∑

m=1

αm|ym|
)
.

Proof. Let y ∈ Γ and x ∈ D with |a(x)| ≤ αm for all m ∈ N. Then
∞∑

m=1

|am(x)||ym| ≤
∞∑

m=1

αm|ym| < ∞.

By continuity and positivity of exp(·),

exp

( ∞∑

m=1

am(x)ym

)
=

∏

m=1∞

exp(am(x)ym) ∈ (0,∞). (2.101)

Then the claim follows from (2.95).

Due to Lemmas 2.28 and 2.29, we consider Γ as the parameter space of
(2.96) instead of R∞. Even though Γ is not a product domain, we can define
product measures such as γ on Γ by restriction.
For each y ∈ Γ, we consider the weak formulation of (2.96) on V := H1

0 (D)
with norm

‖v‖V :=

(∫

D
|∇v(x)|2 dx

)1/2

. (2.102)

We define the bilinear form

b(y;w, v) :=

∫

D
a(y, x)∇w(x) · ∇v(x) dx, w, v ∈ V, (2.103)

and reinterpret the forcing term f as a map into the dual space V ′ by

f(y; v) :=

∫

D
f(y, x)v(x) dx, v ∈ V, (2.104)

for all y ∈ Γ. Then the weak formulation on V of the diffusion equation
(2.96) is given by the linear variational problem of determining u(y) ∈ V
such that

b(y;u(y), v) = f(y; v) ∀v ∈ V. (2.105)

Theorem 2.30. For all y ∈ Γ, (2.105) has a unique solution u(y) ∈ V . It
satisfies

‖u(y)‖V ≤ 1

ǎ(y)
‖f(y; ·)‖V ′ ∀y ∈ Γ. (2.106)

Proof. By Lemma 2.29 and (2.102), the bilinear form b(y; ·, ·) is continuous
and coercive on V with coercivity constant ǎ(y) for all y ∈ Γ. Therefore,
the claim follows by the Lax–Milgram lemma.
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Auxiliary Gaussian measures

For any sequence σ = (σm)m∈N ∈ exp(ℓ1(N)), i.e., σm = exp(sm) with
(sm)m ∈ ℓ1(N), we define the product measure

γσ :=
∞⊗

m=1

Nσ2
m

(2.107)

on (R∞,B(R∞)), where Nσ2
m

is the centred Gaussian measure on R with
standard deviation σm. In particular, the standard Gaussian measure on
R∞ is γ = γ1.

Proposition 2.31. For all σ = (σm)m∈N ∈ exp(ℓ1(N)), the measure γσ is
equivalent to γ. The density of γσ with respect to γ is

ζσ(y) =

( ∞∏

m=1

1

σm

)
exp

(
−1

2

∞∑

m=1

(σ−2
m − 1)y2m

)
. (2.108)

Proof. Note that dNσ2
m
= ζσ,m dN1 for

ζσ,m(ym) =
1

σm
exp

(
−1

2
(σ−2

m − 1)y2m

)
.

We compute
∫

R

√
ζσ,m(ym)N1(dym) =

1√
2πσm

∫ ∞

−∞
exp

(
−1

4
(σ−2

m + 1)y2m

)
dym

=

√
2

σm + σ−1
= exp

(
1

2
βm

)

for some βm with |βm| ≤ log σm. Therefore,

∞∏

m=1

∫

R

√
ζσ,m(ym)N1(dym) = exp

(
1

2

∞∑

m=1

βm

)
,

which converges since (log σm)m ∈ ℓ1(N). Then the claim follows by Theo-
rem C.44.

In particular, Proposition 2.31 implies that γσ(Γ) = 1 for any σ ∈
exp(ℓ1(N)). Therefore, the restriction of γσ to Γ is a probability measure.

We consider sequences σ that depend exponentially on α = (αm)m∈N,

σm(χ) := exp(χαm), m ∈ N, χ ∈ R. (2.109)

We abbreviate γχ := γσ(χ) and ζχ := ζσ(χ). In particular, γ = γ1 = γ0.

Lemma 2.32. Let η < χ and k ≥ 0. Then for all y ∈ Γ,

ζη(y)

ζχ(y)
exp

(
k

∞∑

m=1

αm|ym|
)

≤ exp

((
k2e2χ‖α‖ℓ∞

4(χ− η)
+ χ− η

)
‖α‖ℓ1

)
. (2.110)
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Proof. Let y ∈ Γ and abbreviate σm := eαm . By (2.108),

ζη(y)

ζχ(y)
=

( ∞∏

m=1

σχ−η
m

)
exp

(
1

2

∞∑

m=1

(σ−2(χ−η)
m − 1)σ−2η

m y2m

)
.

Using the estimate

(σ−2(χ−η)
m − 1)σ−2η

m = (e−2(χ−η)αm − 1)e−2ηαm

= e−2χαm(1− e2(χ−η)αm)

≤ e−2χαm(−(χ− η)αm),

we have

log

(
ζη(y)

ζχ(y)
exp

(
k

∞∑

m=1

αm|ym|
))

= k

∞∑

m=1

αm|ym| + 1

2

∞∑

m=1

(σ−2(χ−η)
m − 1)σ−2η

m y2m + (χ− η)

∞∑

m=1

log σm

≤ k
∞∑

m=1

αm|ym| − (χ− η)
∞∑

m=1

αme−2χαmy2m + (χ− η)
∞∑

m=1

αm

= −
∞∑

m=1

αm

(√
χ− η e−χαm |ym| − k eχαm

2
√
χ− η

)2

+
∞∑

m=1

αmk2e2χαm

4(χ− η)
+ (χ− η)

∞∑

m=1

αm

≤
∞∑

m=1

(
k2e2χαm

4(χ− η)
+ (χ− η)

)
αm.

In particular, if k = 0, then (2.110) reads

ζη(y)

ζχ(y)
≤ exp

(
(χ− η)‖α‖ℓ1

)
. (2.111)

Proposition 2.33. Let 0 < p < ∞ and η < χ. Then

Lp(Γ, γχ) ⊂ Lp(Γ, γη) (2.112)

and

‖v‖Lp(Γ,γη) ≤ exp

(
χ− η

p
‖α‖ℓ1

)
‖v‖Lp(Γ,γχ) ∀v ∈ Lp(Γ, γχ). (2.113)
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Proof. Let v ∈ Lp(Γ, γχ). Then

‖v‖pLp(Γ,γη)
=

∫

Γ
vp dγη =

∫

Γ
vp

ζη
ζχ

dγχ ≤ sup
y∈Γ

ζη(y)

ζχ(y)
‖v‖pLp(Γ,γχ)

.

The claim follows from Lemma 2.32 with k = 0: see (2.111).

Of course, Proposition 2.33 also applies to Lebesgue–Bochner spaces of
functions mapping, for example, into V or V ′. We will use it with η = 0,
such that γη = γ.

Integrability of the solution

We consider integrability properties of the solution u of (2.105). Borel-
measurability of the map R∞ ∋ y �→ u(y) ∈ V is shown in Gittelson (2010a,
Lemma 3.4) under the assumption that f is Borel-measurable as a map from
R∞ to V ′. Under stronger assumptions, measurability of u also follows from
Theorem 2.44 below.

Proposition 2.34. Let 0 < p < ∞ and ̺ > 0. If f ∈ Lp(Γ, γ̺;V
′), then

the solution u of (2.105) is in Lp(Γ, γ;V ) and satisfies

‖u‖Lp(Γ,γ;V ) ≤ c̺̄,p‖f‖Lp(Γ,γ̺;V ′)

with

c̺̄,p = min

{
exp
(̺
p‖α‖ℓ1

)

ess infy∈Γ a∗(y)
,

1

ǎ0
exp

((
p e2̺‖α‖ℓ∞

4̺
+

̺

p

)
‖α‖ℓ1

)}
.

Proof. By (2.106),
∫

Γ
‖u(y)‖pV γ(dy) ≤

∫

Γ
ζ̺(y)

−1ǎ(y)−p‖f(y; ·)‖pV ′γ̺(dy)

≤
(
ess inf
y∈Γ

ζ̺(y)
−1ǎ(y)−p

)∫

Γ
‖f(y; ·)‖pV ′γ̺(dy).

The claim follows from Lemmas 2.29 and 2.32 with η = 0, χ = ̺ and k = p.

However, we also need integrability of u with respect to the measure γ̺.

Lemma 2.35. For all ̺ ≥ 0 and all 0 < r < ∞,

exp

( ∞∑

m=1

αm|ym|
)

∈ Lr(Γ, γ̺)

with∥∥∥∥∥exp
( ∞∑

m=1

αm|ym|
)∥∥∥∥∥

Lr(Γ,γ̺)

≤ exp

(
r

2
e2̺‖α‖ℓ∞‖α‖2ℓ2 +

√
2

π
e̺‖α‖ℓ∞‖α‖ℓ1

)
.
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362 C. Schwab and C. J. Gittelson

Proof. The claim follows from Gittelson (2010a, Lemma 3.10) with the
change of variables zm := e−̺αmym.

Theorem 2.36. Let 0 < q < p < ∞ and ̺ ≥ 0. If f ∈ Lp(Γ, γ̺;V
′), then

the solution u of (2.105) is in Lq(Γ, γ̺;V ) and satisfies

‖u‖Lq(Γ,γ̺;V ) ≤ c̺̃,q,p‖f‖Lp(Γ,γ̺;V ′)

with

c̺̃,q,p =
1

ǎ0
exp

(
qp e2̺‖α‖ℓ∞

2(p− q)
‖α‖2ℓ2 +

√
2

π
e̺‖α‖ℓ∞‖α‖ℓ1

)
,

or, if ess infy∈Γ a∗(y) > 0 and q ≤ p, also with

c̺̃,q,p =
1

ess infy∈Γ a∗(y)
.

Proof. Let r = qp
p−q . By (2.106) and Hölder’s inequality,

∫

Γ
‖u(y)‖qV γ̺(dy) ≤

∫

Γ
ǎ(y)−q‖f(y; ·)‖qV ′γ̺(dy)

≤ ‖ǎ(·)−1‖qLr(Γ,γ̺)
‖f‖qLp(Γ,γ̺;V ′).

Then the claim follows from Lemmas 2.29 and 2.35.

In particular, if f ∈ Lp(Γ, γ̺;V
′) with p > 2, then u ∈ L2(Γ, γ̺;V ) and

‖u‖L2(Γ,γ̺;V ) ≤ c̺̃,p‖f‖Lp(Γ,γ̺;V ′) (2.114)

with

c̺̃,p =
1

ǎ0
exp

(
p e2̺‖α‖ℓ∞

p− 2
‖α‖2ℓ2 +

√
2

π
e̺‖α‖ℓ∞‖α‖ℓ1

)
. (2.115)

By Proposition 2.4 and Theorem 2.12 for (2.15), the tensorized Hermite
polynomials (Hν)ν∈F form an orthonormal basis of L2(Γ, γ). We transform
these to an orthonormal basis of L2(Γ, γ̺) using the map

τ̺ : R∞ → R∞, (ym)m∈N �→ (e−̺αmym)m∈N. (2.116)

Note that τ̺ maps Γ bijectively onto Γ.

Lemma 2.37. For all ̺ ∈ R, the map

L2(Γ, γ) → L2(Γ, γ̺), v �→ v ◦ τ̺ (2.117)

is a unitary isomorphism of Hilbert spaces. Furthermore,
∫

Γ
v(y)γ(dy) =

∫

Γ
v(τ̺(y))γ̺(dy) ∀v ∈ L2(Γ, γ). (2.118)
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Proof. The standard Gaussian measure γ is the image of γ̺ under the
map τ̺, i.e., γ(E) = γ̺(τ

−1
̺ (E)) for all E ∈ B(Γ). This is easily checked

for sets E = {y ∈ Γ ; ym ≤ x} with x ∈ R and m ∈ N. Then (2.118) is the
transformation theorem, and the rest of the claim is a direct consequence.

Proposition 2.38. For all ̺ ∈ R, (Hν ◦ τ̺)ν∈F is an orthonormal basis of
L2(Γ, γ̺).

Proof. The claim follows from Lemma 2.37 since (Hν)ν∈F from (2.15) is an
orthonormal basis of L2(Γ, γ): see Proposition 2.4 and Theorem 2.12.

Corollary 2.39. Let ̺ ≥ 0 and f ∈ Lp(Γ, γ̺;V
′) with p > 2. Then the

solution u of (2.105) is of the form

u(y) =
∑

ν∈F
uνHν(τ̺(y)), y ∈ Γ, (2.119)

with convergence in L2(Γ, γ̺;V ), for the coefficients

uν =

∫

Γ
u(τ−1

̺ (y))Hν(y)γ(dy) ∈ V, ν ∈ F. (2.120)

Furthermore, u := (uν)ν∈F ∈ ℓ2(F;V ) and

‖u‖ℓ2(F;V ) ≤ c̺̃,p‖f‖Lp(Γ,γ̺;V ′) (2.121)

with the constant c̺̃,p from (2.115).

Proof. By Theorem 2.36 with q = 2, the solution u of (2.105) is an element
of L2(Γ, γ̺;V ). Then (2.119) is the expansion of u in the orthonormal basis
from Proposition 2.38, and (2.120) follows from (2.118) since

uν =

∫

Γ
u(y)Hν(τ̺(y))γ̺(dy) =

∫

Γ
u(τ−1

̺ (y))Hν(y)γ(dy).

Equation (2.121) is a consequence of (2.114) and Parseval’s identity.

Weak formulation on a problem-dependent space

Since the diffusion coefficient a(y, x) is not uniformly bounded in y ∈ Γ, sim-
ply integrating (2.105) over Γ with respect to γ does not lead to a well-posed
linear variational problem on L2(Γ, γ;V ). As shown below, this difficulty
can be overcome by assuming sufficient integrability of f with respect to γ̺
for a parameter ̺ > 0.
Furthermore, if a∗(x) is not bounded away from zero, then neither is

a(y, x). For this reason, we integrate (2.105) with respect to a measure that
is stronger than γ in the sense of Proposition 2.33, but not by as much as γ̺.
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For parameters 0 ≤ ϑ < 1 and ̺ > 0, define

Bϑ̺(w, v) :=

∫

Γ
b(y;w(y), v(y))γϑ̺(dy)

=

∫

Γ

∫

D
a(y, x)∇w(y, x) · ∇v(y, x) dxγϑ̺(dy)

(2.122)

and, assuming that y �→ f(y; ·) ∈ V ′ is B(Γ)-measurable and sufficiently
integrable,

Fϑ̺(v) :=

∫

Γ
f(y; v(y))γϑ̺(dy) =

∫

Γ

∫

D
f(x)v(y, x) dxγϑ̺(dy) (2.123)

for suitable w and v.
We define the space

Vϑ̺ := {v : Γ → V B(Γ)-measurable ; Bϑ̺(v, v) < ∞}. (2.124)

More precisely, Vϑ̺ contains equivalence classes of γ-a.e. identical functions.

Proposition 2.40. The space Vϑ̺ endowed with the inner productBϑ̺(·, ·)
is a Hilbert space.

We refer to Gittelson (2010a, Proposition 3.6) for the proof of Proposi-
tion 2.40. The argument is analogous to a standard proof that L2(R) is a
Hilbert space.

Lemma 2.41. For all w, v ∈ L2(Γ, γ̺;V ),

|Bϑ̺(w, v)| ≤ ĉϑ̺‖w‖L2(Γ,γ̺;V )‖v‖L2(Γ,γ̺;V )

with

ĉϑ̺ =

(
‖a∗‖L∞(D)+‖a0‖L∞(D) exp

(
e2̺‖α‖ℓ∞

4(1− ϑ)̺
‖α‖ℓ1

))
exp
(
(1−ϑ)̺‖α‖ℓ1

)
.

Proof. By continuity of b(y; ·, ·) for y ∈ Γ,

|Bϑ̺(w, v)| ≤
∫

Γ

ζϑ̺(y)

ζ̺(y)
â(y)‖w(y)‖V ‖v(y)‖V γ̺(dy)

≤
∥∥∥∥
ζϑ̺
ζ̺

â

∥∥∥∥
L∞(Γ,γ)

‖w‖L2(Γ,γ̺;V )‖v‖L2(Γ,γ̺;V ),

and the claim follows from Lemmas 2.29 and 2.32 with η = ϑ̺, χ = ̺ and
k = 1.

Lemma 2.42. For all v ∈ L2(Γ, γ;V ) with Bϑ̺(v, v) < ∞,

Bϑ̺(v, v) ≥ čϑ̺‖v‖2L2(Γ,γ;V )
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with

čϑ̺ =

(
ess inf
x∈D

a∗(x) + ǎ0 exp

(
−e2ϑ̺‖α‖ℓ∞

4ϑ̺
‖α‖ℓ1

))
exp
(
−ϑ̺‖α‖ℓ1

)
.

Proof. Using coercivity of b(y; ·, ·) for y ∈ Γ, we obtain

Bϑ̺(v, v) ≥
∫

Γ
ζϑ̺(y)ǎ(y)‖v(y)‖2V γ(dy)

≥ ess inf
y∈Γ

ζϑ̺(y)ǎ(y)
−1‖v‖2L2(Γ,γ;V ),

and the claim follows from Lemmas 2.29 and 2.32 with η = 0, χ = ϑ̺ and
k = 1.

Proposition 2.43. If ϑ > 0, the Hilbert space Vϑ̺ is related to Lebesgue–
Bochner spaces by the continuous embeddings

L2(Γ, γ;V ) ⊃ Vϑ̺ ⊃ L2(Γ, γ̺;V ).

For ϑ = 0, this still holds if ess infx∈D a∗(x) > 0.

Proof. Lemmas 2.41 and 2.42 imply

čϑ̺‖v‖2L2(Γ,γ;V ) ≤ Bϑ̺(v, v) ≤ ĉϑ̺‖v‖2L2(Γ,γ̺;V )

for all v ∈ L2(Γ, γ̺;V ).

Also, using (2.111) with η = ϑ̺ and χ = ̺, it follows that if f ∈
L2(Γ, γ̺;V

′), then Fϑ̺ is in the dual of Vϑ̺.

Theorem 2.44. If Fϑ̺ ∈ V ′
ϑ̺, then the solution u of (2.105) is the unique

solution in Vϑ̺ of the linear variational problem

Bϑ̺(u, v) = Fϑ̺(v) ∀v ∈ Vϑ̺. (2.125)

Proof. By the Riesz isomorphism on the Hilbert space Vϑ̺, (2.125) has
a unique solution u ∈ Vϑ̺. Fix a w ∈ V . Setting v(y) = w1E(y) for all
E ∈ B(Γ) on which â(y) is bounded, it follows that the solution of (2.125)
satisfies ∫

E
b(y;u,w)− f(y;w)γϑ̺(dy) = 0,

and since Γ is a countable union of such sets E, the integrand must vanish
γϑ̺-a.e. on Γ. The claim follows since w ∈ V is arbitrary.

Galerkin approximation

Using the variational formulation (2.125) of (2.105), we can define Galerkin
projections of u onto suitable spaces. Let VN ⊂ L2(Γ, γ̺;V ) ⊂ Vϑ̺ be
finite-dimensional. Then the Galerkin projection of u onto VN is the unique
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366 C. Schwab and C. J. Gittelson

element uN ∈ VN satisfying

Bϑ̺(uN , vN ) = Fϑ̺(vN ) ∀vN ∈ VN . (2.126)

This uN is well-defined since, being finite-dimensional, VN is a closed sub-
space of Vϑ̺, and thus also a Hilbert space when endowed with the inner
product Bϑ̺(·, ·).

Theorem 2.45. If f ∈ Lp(Γ, γ̺;V
′) for a p > 2, the Galerkin projection

uN satisfies

‖u− uN‖L2(Γ,γ;V ) ≤
√

ĉϑ̺
čϑ̺

inf
vN∈VN

‖u− vN‖L2(Γ,γ̺;V ). (2.127)

Proof. Theorem 2.36 implies that u ∈ L2(Γ, γ̺;V ). By definition, uN is
the orthogonal projection of u onto VN with respect to the inner product
Bϑ̺(·, ·). Therefore, it minimizes the projection error in the norm induced
by Bϑ̺(·, ·). Using Lemmas 2.41 and 2.42, we have

čϑ̺‖u− uN‖2L2(Γ,γ;V ) ≤ Bϑ̺(u− uN , u− uN )

= inf
vN∈VN

Bϑ̺(u− vN , u− vN )

≤ ĉϑ̺ inf
vN∈VN

‖u− vN‖2L2(Γ,γ̺;V ),

and the claim follows.

Remark 2.46. The errors on the two sides of the estimate (2.127) are
measured in different norms. Therefore, Theorem 2.45 states that the
Galerkin projection is almost quasi-optimal. Inserting the values of ĉϑ̺
and čϑ̺ from Lemmas 2.41 and 2.42, we see that the constant in (2.127) is

√
ĉϑ̺
čϑ̺

=

√√√√√
‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

(
e2̺‖α‖ℓ∞

4(1−ϑ)̺ ‖α‖ℓ1
)

ess infx∈D a∗(x) + ǎ0 exp
(
− e2ϑ̺‖α‖ℓ∞

4ϑ̺ ‖α‖ℓ1
) exp

(
̺

2
‖α‖ℓ1

)
.

In particular, it tends to ∞ as ̺ approaches 0 or ∞, or if ϑ approaches 1.
If a∗ is not bounded away from 0, then the constant also tends to ∞ as ϑ
approaches 0.

Motivated by Corollary 2.39, we consider in particular spaces VN of the
form

VN := {v ∈ L2(Γ, γ̺;V ) ; vν ∈ VN,ν ∀ν ∈∈ dx}, (2.128)

where VN,ν ⊂ V is a finite-dimensional subspace for all ν ∈ F, and VN,ν =
{0} for all but finitely many ν ∈ F. In (2.128), (vν)ν∈F are the Hermite co-
efficients of v ∈ L2(Γ, γ̺;V ) with respect to the scaled Hermite polynomials
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(Hν ◦ τ̺)ν∈F from Proposition 2.38, i.e.,

vν =

∫

Γ
v(τ−1

̺ (y))Hν(y)γ(dy), ν ∈ F. (2.129)

Then VN is a finite-dimensional subspace of L2(Γ, γ̺;V ), and its dimension
is the sum of the dimensions of VN,ν over ν ∈ F.

Corollary 2.47. If f ∈ Lp(Γ, γ̺;V
′) for some p > 2, and VN is of the

form (2.128), then the Galerkin projection uN satisfies

‖u− uN‖L2(Γ,γ;V ) ≤
√

ĉϑ̺
čϑ̺

(
∑

ν∈F
inf

vN∈VN,ν

‖uν − vN‖2V

)1/2

. (2.130)

Proof. The claim follows from Theorem 2.45 and Parseval’s identity since
(Hν ◦ τ̺)ν∈F is an orthonormal basis of L2(Γ, γ̺;V ) by Proposition 2.38.

3. Optimal convergence rates of stochastic Galerkin

approximations

We have seen in the preceding sections, in Proposition 2.27 and in Corol-
lary 2.47, that the Galerkin approximations of solutions for the paramet-
ric, deterministic formulations of the stochastic problems are well-defined
and, in the mean square sense, quasi-optimal. The natural questions that
arise from these results for computable numerical GPC approximations are:
(a) What is the best possible rate achievable by polynomial chaos expan-
sions that are truncated to at most N terms? and (b) How does one obtain
in a constructive fashion index sets Λ ⊂ F of ‘active’ polynomial chaos
coefficients whose cardinality does not exceed N , i.e., #Λ ≤ N?

Question (a) is addressed in the present section, whereas (b) will be dis-
cussed in the subsequent section. We deal with question (a) in the case of
Legendre chaos. The general approach to establishing the convergence rate
of N -term truncated GPC approximations consists in a careful analysis of
the regularity of the unknown solution, in terms of summability of the GPC
coefficient series.
There are several ways to obtain a priori estimates on GPC coefficients.

The most straightforward way is by a bootstrapping argument in the spirit
of regularity theory for PDEs. This approach was taken in Todor and
Schwab (2007) and Cohen, DeVore and Schwab (2010). We found, however,
approaches based on the analytic continuation of the parametric, determin-
istic PDEs resulting from GPC expansions of the input random field in the
parameter space of these expansions to yield, in general, sharper bounds.
We therefore present a priori estimates of GPC coefficients obtained from
the analytic continuation. This approach is rather general (we refer to
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368 C. Schwab and C. J. Gittelson

Schwab and Stuart (2011) for an application of this approach to sparse
approximation of posterior densities in Bayesian inverse problems).

3.1. Elliptic problems

We consider the stochastic elliptic problem (2.49) with coefficient a(x, ω)
depending in an affine fashion (2.55) on the coordinates Ym(ω). Then, by
Lemma 2.20, the functions ϕm(x) that characterize the spatial heterogene-
ity of the random coefficient a(ω, x) in (2.49) can be rescaled via the scaling
factors αm in Lemma 2.20 such that the random coefficients Ym(ω) satisfy
Ym(ω) ∈ [−1, 1] for all ω ∈ Ω and m ∈ N. In what follows we shall as-

sume that αm has been chosen in this way and denote the scaled coefficient

functions by ψj(x), i.e.,

ψj(x) = αjϕj(x), j = 1, 2, . . . .

Then the abstract parametric deterministic operator equation (2.42), (2.44)
reads, formally, as

−∇ · (a(y, x)∇u) = f in D, u(y, ·)|∂D = 0, y ∈ Γ. (3.1)

Basic assumptions and preliminaries

We impose in addition the following conditions on the coefficient func-
tions ψj .

(C1) For all j ∈ N, ψj ∈ L∞(D), and ψj(x) is defined for all x ∈ D.

(C2) The y = (y1, y2, . . .) to be considered are all in the set Γ = [−1, 1]N,
i.e., the unit ball of the sequence space ℓ∞(N) (with N replaced by
{1, . . . ,K} when the number K of random parameters is finite).

(C3) For each a(x, y) to be considered, we have for every x ∈ D and every
y ∈ Γ

a(x, y) = ā(x) +
∑

j≥1

yjψj(x). (3.2)

Under these assumptions, we consider the map y �→ u(y) from Γ to V , where
u(y) is the solution of (3.1) with coefficient given by (3.2).
The variational formulation of (3.1) is set in the Sobolev space V :=

H1
0 (D), called the energy space, which is the set of all functions v whose trace

vanishes on the boundary of D and whose energy norm ‖v‖V := ‖∇v‖L2(D)

is finite. The dual of V is denoted by V ′ = H−1(D). The solution of
the parametric problem (3.1) is defined for any f ∈ V ′ as a measurable
mapping u : Γ → V which satisfies the parametric elliptic PDE (3.1) for a.e.
parameter vector y ∈ Γ, in variational form. If we let Am = −∇·ψm(x)∇ ∈
L(V, V ′), then, by Proposition 2.22, the parametric problem (3.1) admits a
unique solution.
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As indicated before, estimates of the Legendre expansion coefficients of
the parametric, deterministic solution will be obtained by tools from the
theory of complex variables. It will be crucial to verify that the results from
Section 2.3 will also hold for complex extensions of the parameter vector.
To this end, we now recapitulate results on well-posedness of variational

elliptic problems. Consider the generic diffusion problem with coefficient
α(x) in variational form

∫

D
α(x)∇u(x) · ∇v(x) dx =

∫

D
f(x)v(x) dx, for all v ∈ V, (3.3)

where α(x) satisfies the ellipticity condition

0 < r ≤ α(x) ≤ R < ∞, x ∈ D. (3.4)

Then the Lax–Milgram lemma implies existence and uniqueness of the so-
lution u of (3.3) in V and this solution satisfies the a priori estimate

‖u‖V ≤ ‖f‖V ′

r
. (3.5)

Now consider the case that the coefficient function α is complex-valued.
In this case, the weak solution of (3.3) will be a complex-valued function.
Therefore, we assume from now on that all function spaces V , their du-

als, etc., are spaces of complex-valued functions and duality is understood

with respect to the antilinear dual pairing. We shall not distinguish this
generalization notationally. In this case,

0 < r ≤ Re (α(x)) ≤ |α(x)| ≤ R < ∞, x ∈ D. (3.6)

For the parametric coefficient a(y, x), ellipticity is ensured by the uniform

ellipticity assumption, as follows.

Uniform ellipticity assumption. There exist 0 < r ≤ R < ∞ such that,
for all x ∈ D and for all y ∈ Γ,

0 < r ≤ a(x, y) ≤ R < ∞. (3.7)

We shall refer to assumption (3.7) in the following as UEA(r,R). We note
that UEA(r,R) implies r ≤ ā(x) ≤ R for all x ∈ D, since we can choose
yj = 0 for all j ∈ N. We note also that the uniform in Γ validity of the
lower and upper inequality in (3.7) is equivalent to the conditions that

∑

j≥1

|ψj(x)| ≤ ā(x)− r, x ∈ D, (3.8)

and ∑

j≥1

|ψj(x)| ≤ R− ā(x), x ∈ D. (3.9)
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370 C. Schwab and C. J. Gittelson

To ensure well-posedness of the parametric deterministic PDE (3.1) to
complex values of the parameters y, we impose a complex analogue of hy-
pothesis UEA(r,R), as follows.

Uniform ellipticity assumption in C. There exist 0 < r ≤ R < ∞ such
that, for all x ∈ D and all z ∈ U ,

0 < r ≤ Re (a(x, z)) ≤ |a(x, z)| ≤ R < ∞. (3.10)

We refer to (3.10) as UEAC(r,R). We extend the definition of u(y) to
u(z) for the complex variable z = (zj)j≥1 (by using the zj instead of yj in the
definition of a by (3.2)) where |zj | ≤ 1 for all j. Therefore, the parameter
vector z belongs to the polydisc

U :=
∏

j≥1

{zj ∈ C ; |zj | ≤ 1} ⊃ Γ. (3.11)

Using (3.8) and (3.9), it is readily seen that when ā and ψj are real-valued,
then UEA(r,R) implies that for all x ∈ D and z ∈ U ,

0 < r ≤ Re (a(x, z)) ≤ |a(x, z)| ≤ 2R, (3.12)

and therefore the corresponding solution u(z) is well-defined in V for all
z ∈ U according to the complex-valued version of the Lax–Milgram lemma.
We leave to the reader the verification of Lemma 2.21 under UEAC(r,R) in
the complex parameter case.
For the derivation of the convergence rates of best N -term truncated GPC

expansions, the following observation, due to Stechkin, will be used repeat-
edly. Let (γn)n≥1 denote a decreasing sequence of non-negative integers.
Then, for any 0 < p ≤ q ≤ ∞ and any N ∈ N,

(
∑

n≥N

γqn

) 1
q

≤ N
1
q
− 1

p

(
∑

n≥1

γpn

) 1
p

. (3.13)

For q < ∞ this is easily proved by combining the two estimates
∑

n≥N

γqn ≤ γq−p
N

∑

n≥N

γpn ≤ γq−p
N

∑

n≥1

γpn and NγpN ≤
∑

n≤N

γpn ≤
∑

n≥1

γpn.

Verification of the case q = ∞ is left to the reader.
We shall use standard multivariate notation. As in (2.27), the countable

set of finitely supported sequences of non-negative integers is denoted by

F := {ν = (ν1, ν2, . . .) ; νj ∈ N, and νj �= 0 for only a finite number of j},
(3.14)

which implies that

|ν| :=
∑

j≥1

|νj | (3.15)
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Sparse tensor discretizations for sPDEs 371

is finite if and only if ν ∈ F. For ν ∈ F supported in {1, . . . , J}, we define
the partial derivative

∂νu =
∂|ν|u

∂ν1y1 · · · ∂νJyJ
,

and the multi-factorial

ν! :=
∏

j≥1

νj ! where 0! := 1.

If α = (αj)j≥1 is a sequence of complex numbers, we define for all ν ∈ F

αν :=
∏

j≥1

α
νj
j ,

With this notation, the proof of summability of GPC coefficients of the
solution will use the following result on sequence summability proved in
Cohen et al. (2010).

Theorem 3.1. For 0 < p < 1, we have
( |ν|!

ν! b
ν
)
ν∈F ∈ ℓp(F) if and only if

(i)
∑

j≥1 bj < 1, and (ii) (bj) ∈ ℓp(N).

Main result on analyticity

We can now state the main result from Cohen, DeVore and Schwab (2011)
on analyticity of the parametric solution u(z) of (3.1) for parameter vectors
z belonging to the polydisc U . The result also shows convergence rates for
truncated Taylor expansions which include the N most significant terms, in
a sense made precise in the statement of the following theorem. Such results
could become significant in the context of sensitivity analysis of PDEs on
high-dimensional parameter spaces.

Theorem 3.2. If a(x, z) satisfies UEAC(r,R) for some 0 < r ≤ R < ∞,
and if (‖ψj‖L∞(D))j≥1 ∈ ℓp(N) for some 0 < p < 1, then u(z) is analytic as
a mapping from U into V . Moreover, for all z ∈ U , u(z) can be expanded
in the Taylor series

u(z) =
∑

ν∈F
tνz

ν in V, (3.16)

where the Taylor coefficients tν ∈ V are defined as

tν :=
1

ν!
∂νu(0), ν ∈ F

and where tν ∈ V and (‖tν‖V )ν∈F ∈ ℓp(F) for the same value of p.
The convergence of the series (3.16) is unconditional in the following sense.

If (ΛN )N≥1 is any increasing sequence of finite sets which exhausts F, the
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372 C. Schwab and C. J. Gittelson

partial sums SΛN
u(z) =

∑
ν∈ΛN

tνz
ν satisfy

lim
N→+∞

sup
z∈U

‖u(z)− SΛN
u(z)‖V = 0. (3.17)

If in addition ΛN is a set of ν ∈ F corresponding to indices of N Taylor
coefficients with largest norms ‖tν‖V , we have the convergence estimate

sup
z∈U

‖u(z)− SΛN
u(z)‖V ≤ ‖(‖tν‖V )‖ℓp(F)N−s, s :=

1

p
− 1. (3.18)

In the statement of the preceding theorem, a sequence (ΛN )N≥1 ⊂ F is
said to exhaust F if any finite subset Λ ⊂ F is contained in all sets ΛN ,
N ≥ N0 for some N0. We next give the proof of this theorem, drawing
upon Cohen et al. (2011).

Proof of analyticity of u(z)
There are several approaches to proving analyticity of u(z) as a V -valued
function: a power series approach would require a bootstrapping argument
for real parameter values as in Cohen et al. (2010). Here, we establish
strong differentiability of u with respect to the complex coordinates zj by a
difference quotient argument.
The key to proving Theorem 3.2 is the observation that if UEAC(r,R)

holds, then z �→ u(z) is a V -valued and bounded analytic function in certain
domains which are larger than U : for 0 < δ ≤ 2R < ∞ we define the set

Aδ = {z ∈ CN ; δ ≤ Re (a(x, z)) ≤ |a(x, z)| ≤ 2R for every x ∈ D}.
(3.19)

Clearly, if UEAC(r,R) holds, then for any 0 < δ < r the domain Aδ contains
U . By the Lax–Milgram lemma, for any z ∈ Aδ there exists a unique
solution u(z) ∈ V of the parametric problem (3.1) which satisfies the a priori

estimate

‖u(z)‖V ≤ ‖f‖V ′

δ
for all z ∈ Aδ. (3.20)

The difference quotient argument for establishing holomorphy of u(z) as
a V -valued function on Aδ is based on the following perturbation lemma,
whose proof is straightforward. We start from a stability result, which is
also used further in this section.

Lemma 3.3. If u and ũ are solutions of (3.3) with the same right-hand
side f and with coefficients α and α̃, respectively, and if these coefficients
both satisfy the assumption (3.6), then

‖u− ũ‖V ≤ ‖f‖V ′

r2
‖α− α̃‖L∞(D). (3.21)

Based on Lemma 3.3, we are now in a position to prove holomorphy of
the mapping z �→ u(z).
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Lemma 3.4. At any z ∈ Aδ, the function z �→ u(z) admits a complex
derivative ∂zju(z) ∈ V with respect to each variable zj . This derivative is
the weak solution of the parametric problem: find ∂zju(z) ∈ V such that,
for all v ∈ V and for all z ∈ Aδ,
∫

D
a(x, z)∇∂zju(x, z) · ∇v(x) dx = L0(v) := −

∫

D
ψj(x)∇u(x, z) · ∇v(x) dx.

(3.22)

To prove Lemma 3.4, we fix j ≥ 1 and z ∈ Aδ and denote by ej the
Kronecker sequence with 1 at index j and 0 at other indices. For h ∈ C\{0},
consider the difference quotient

wh(z) =
u(z + hej)− u(z)

h
∈ V. (3.23)

We notice that wh(z) is well-defined if |h|‖ψj‖L∞(D) ≤ δ
2 , since then

δ

2
≤ Re (a(x, z + hej)) ≤ |a(x, z + hej)| ≤ 2R+

δ

2
, x ∈ D.

A short calculation shows that the difference quotient wh is the unique
solution to the variational problem

∫

D
a(x, z)∇wh(x, z) · ∇v(x) dx = Lh(v), for all v ∈ V,

where Lh : v → Lh(v) := −
∫
D ψj∇u(z + hej) · ∇v is a continuous, linear

functional on V . The linear functional Lh(·) varies continuously in V ′ with
h as h tends to 0 since the stability estimate (3.21) implies

‖u(z+hej)−u(z)‖V = ‖∇u(z+hej)−∇u(z)‖L2(D) ≤ |h|‖ψj‖L∞(D)
4‖f‖V ′

δ2
.

Therefore Lh converges towards L0 in V ′ as h → 0, which implies that wh

converges in V towards a limit w0 ∈ V which is the solution to
∫

D
a(z, x)∇w0(z) · ∇v = L0(v), for all v ∈ V.

Hence ∂zju(z) = w0 exists in V and is the unique solution of the variational
problem (3.22).
For our further development, it is crucial to note that the analyticity

domains Aδ contain polydiscs: we let ̺ := (̺j)j≥1 be a sequence of positive
radii and define the polydiscs

U̺ =
∏

j≥1

{zj ∈ C ; |zj | ≤ ̺j} = {zj ∈ C ; z = (zj)j≥1, |zj | ≤ ̺j}. (3.24)
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374 C. Schwab and C. J. Gittelson

We say that a sequence ̺ = (̺j)j≥1 is δ-admissible if and only if, for every
x ∈ D, ∑

j≥1

̺j |ψj(x)| ≤ Re (ā(x))− δ. (3.25)

If the sequence ̺ is δ-admissible, then the polydisc U̺ is contained in Aδ.
We also notice that the validity of the lower inequality in (3.10) for all z ∈ U
is equivalent to the condition that

∑

j≥1

|ψj(x)| ≤ Re (ā(x))− r, x ∈ D. (3.26)

Hence the sequence ̺j = 1 is δ-admissible for all 0 < δ ≤ r, and that for
δ < r there exist δ-admissible sequences such that ̺j > 1 for all j ≥ 1, i.e.,
such that the polydisc U̺ is strictly larger than U in every variable. These
increasing δ-admissible sequences ̺ will next be exploited to obtain bounds
on Taylor and Legendre coefficients by shifting paths of integration in the
complex domain into the polydiscs U̺.

Estimates of Taylor coefficients

Estimates for the Taylor coefficients tν for ν ∈ F are given by the following
result.

Lemma 3.5. If UEAC(r,R) holds for some 0 < r ≤ R < ∞ and if ̺ =
(̺j)j≥1 is a δ-admissible sequence for some 0 < δ < r, then for any ν ∈ F

we have the estimate

‖tν‖V ≤ ‖f‖V ′

δ

∏

j≥1

̺
−νj
j =

‖f‖V ′

δ
̺−ν , (3.27)

where we use the convention that t−0 = 1 for any t ≥ 0.

To prove Lemma 3.5, let ν = (νj)j≥1 ∈ F and J = max {j ∈ N ; νj �= 0}.
For J and for z ∈ U , we define the set EJ = {1, . . . , J} and the parameter
vector zEJ

obtained from z by setting to 0 all entries zj for j > J . We then
have

∂νu(0) =
∂|ν|uJ

∂zν11 · · · ∂zνJJ
(0, . . . , 0).

From the assumption that ̺ is δ-admissible, we have that

‖uJ(z1, . . . , zJ)‖V ≤ ‖f‖V ′

δ
, (3.28)

for all (z1, . . . , zJ) in the J-dimensional polydisc

U̺,J :=
∏

1≤j≤J

{zj ∈ C ; |zj | ≤ ̺j}. (3.29)
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Introducing the sequence ˜̺ defined by

˜̺j = ̺j + ε if j ≤ J, ˜̺j = ̺j if j > J, ε :=
δ

2‖∑j≤J |ψj |‖L∞(D)
,

it is easily checked that ˜̺ is δ
2 -admissible and therefore U˜̺ ⊂ Aδ/2. We infer

from Lemma 3.4 that for each z ∈ U˜̺, u is holomorphic in each variable zj .
Therefore uJ is strongly holomorphic as a V -valued function function with

respect to each of the variables z1, . . . , zJ on the polydisc
∏

1≤j≤J{|zj | < ˜̺j}.
This polydisc is an open neighbourhood of U̺,J . In this disc, we apply a
suitable version of Cauchy’s integral formula (e.g., Theorem 2.1.2 of Hervé
(1989)) with respect to each zj , and write

uJ(z̃1, . . . , z̃J)

= (2πi)−J

∫

|z1|=̺1

· · ·
∫

|zJ |=̺J

uJ(z1, . . . , zJ)

(z̃1 − z1) · · · (z̃J − zJ)
dz1 · · · dzJ .

Differentiating this expression with respect to zj , we find

∂|ν|

∂zν11 · · · ∂zνJJ
uJ(0, . . . , 0)

= ν!(2πi)−J

∫

|z1|=̺1

· · ·
∫

|zJ |=̺J

uJ(z1, . . . , zJ)

zν11 · · · zνJJ
dz1 · · · dzJ ,

and therefore, using (3.28), we obtain the estimate

∥∥∥∥
∂|ν|uJ

∂zν11 · · · ∂zνJJ
(0, . . . , 0)

∥∥∥∥
V

≤ ν!
‖f‖V ′

δ

∏

j≤J

̺
−νj
j ,

which is equivalent to (3.27). �

Proof of Theorem 3.2

With the analyticity of the mapping z �→ u(z) on the domains Aδ in
hand, the proof of Theorem 3.2 under the uniform ellipticity assumption
UEAC(r,R) involves two steps: (a) a particular choice of r/2-admissible se-
quences ̺, and (b) establishing ℓp(F)-summability of the Taylor coefficient
sequence. With δ = r/2, (3.27) of Lemma 3.5 reads

‖tν‖V ≤ 2‖f‖V ′

r

∏

j≥1

̺
−νj
j =

2‖f‖V ′

r
̺−ν . (3.30)

There are many sequences ̺ that are δ-admissible. We now indicate one
such choice from Cohen et al. (2011), which is ν-dependent, in order to
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376 C. Schwab and C. J. Gittelson

yield possibly sharp coefficient bounds. We begin our choice by selecting
J0 ∈ N so large that

∑

j>J0

‖ψj‖L∞(D) ≤
r

12
, (3.31)

Such a J0 exists under the assumptions of Theorem 3.2 because

(‖ψj‖L∞(D))j≥1 ∈ ℓp(N) ⊂ ℓ1(N).

Without loss of generality, the basis elements ψj of the sequence are assumed
to be enumerated in such a way that (‖ψj‖L∞)j≥1 is non-increasing.
To construct a δ = r/2 admissible vector ̺ of weights, we partition N into

two sets E := {1 ≤ j ≤ J0} and F := N\E. Next we choose κ > 1 such
that

(κ− 1)
∑

j≤J0

‖ψj‖L∞(D) ≤
r

4
. (3.32)

For each multi-index ν ∈ F we select ̺ = ̺(ν) by

̺j := κ, j ∈ E; ̺j := max

{
1,

rνj
4|νF |‖ψj‖L∞(D)

}
, j ∈ F. (3.33)

Here, νE denotes the restriction of ν to a set E and |νF | :=
∑

j>J0
νj . We

also make the convention that
νj
|νF | = 0 when |νF | = 0. It can be verified

that the sequence ̺ defined in (3.33) is r
2 -admissible (see Cohen et al. (2011)

for details).
The general bound (3.30) is in particular valid for this sequence ̺, for

which it takes the form (with the convention that a factor equals 1 if νj = 0)

‖tν‖V ≤ 2‖f‖V ′

r

(
∏

j∈E
ηνj

)(
∏

j∈F

( |νF |dj
νj

)νj
)
, (3.34)

where η := 1
κ < 1 and

dj :=
4‖ψj‖L∞

r
.

We note that from (3.31)

‖d‖ℓ1 =
∑

j>J0

dj ≤ 1

3
. (3.35)

To prove ℓp(F) summability of the Taylor coefficients tν , we observe that
the estimate (3.34) has the general form

‖tν‖V ≤ Crα(νE)β(νF ). (3.36)
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Sparse tensor discretizations for sPDEs 377

We let FE (respectively FF ) be the collection of ν ∈ F supported on E
(respectively on F ). Then, for any 0 < p < ∞, we have

∑

ν∈F
‖tν‖pV ≤ Cp

r

∑

ν∈F
α(νE)

pβ(νF )
p = Cp

r AE AF , (3.37)

where

AE :=

(
∑

ν∈FE

α(ν)p

)
, AF :=

(
∑

ν∈FF

β(ν)p

)
.

The first factor AE is estimated as follows:

AE =
∑

ν∈FE

α(ν)p =
∑

ν∈FE

∏

j∈E
ηpνj =

∏

j∈E

(
∑

n≥0

ηnp

)
=

(
1

1− ηp

)J0

< ∞.

(3.38)
To show that AF is finite, we observe

β(ν) :=
∏

j∈F

( |νF |dj
νj

)νj

≤ |νF ||νF |
∏

j∈F ν
νj
j

dνF , ν ∈ FF , (3.39)

where dνF =
∏

j∈F d
νj
j and 00 := 1. By Stirling estimates,

n!en

e
√
n

≤ nn ≤ n!en√
2π

√
n
, (3.40)

which hold for all n ≥ 1, we obtain

|νF ||νF | ≤ |νF |!e|νF |.

On the other hand, using the left inequality in (3.40), we obtain

∏

j∈F
ν
νj
j ≥ νF !e

|νF |
∏

j∈F max{1, e√νj}
.

With these estimates we obtain from (3.39) that

β(ν) ≤ |νF |!
νF !

dνF
∏

j∈F
max{1, e√νj} ≤ |νF |!

νF !
d̄νF , (3.41)

where d̄j := edj , j ∈ F . We conclude by noticing that ‖d̄‖ℓ1 = e‖d‖ℓ1 ≤
e
3 < 1. Since d̄ is ℓp(N) summable, we may apply Theorem 3.1 to conclude
the ℓp(F) summability of tν .
With the ℓp(F) summability of tν , the best N -term convergence rate es-

timate (3.18) follows from (3.13). �.

Convergence rates of Legendre expansions

The analyticity result Theorem 3.2 contains, as a special case, the rate
of convergence of best N -term truncations of Taylor expansions in the
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378 C. Schwab and C. J. Gittelson

stochastic coordinates yj . This result and the proof, however, also allow us
to obtain corresponding results for Legendre expansions, as we shall show
next. We shall obtain bounds in L2 and pointwise bounds in the parameter
vector y.
To this end, it will be convenient to introduce two types of Legendre

expansions with different normalization of the Legendre basis: the Legendre
basis (Pn)n≥0 with L∞ normalization

‖Pn‖L∞([−1,1]) = Pn(1) = 1 (3.42)

and the L2 normalized sequence Ln(t) =
√
2n+ 1Pn(t), which satisfies

∫ 1

−1
|Ln(t)|2

dt

2
= 1.

We recall that L0 = P0 = 1 and, for ν ∈ F,

Pν(y) :=
∏

j≥1

Pνj (yj) and Lν(y) :=
∏

j≥1

Lνj (yj). (3.43)

Note that (Lν)ν∈F is an orthonormal basis of L2(Γ, µ) where dµ denotes the

tensor product of the (probability) measures
dyj
2 on [−1, 1] and is therefore

a probability measure on Γ = [−1, 1]N.
Since u ∈ L∞(Γ, µ;V ) ⊂ L2(Γ, µ;V ), it admits unique expansions

u(y) =
∑

ν∈F
uνPν(y) =

∑

ν∈F
vνLν(y), (3.44)

that converge in L2(Γ, µ;V ), where the coefficients uν , vν ∈ V are defined
by

vν :=

∫

Γ
u(y)Lν(y)µ(dy) and uν :=

(
∏

j≥1

(1 + 2νj)

)1/2

vν . (3.45)

Once again, the key step in establishing sharp rates of convergence of best
N -term Legendre GPC approximations of the solution of the parametric, de-
terministic problem are sharp a priori bounds on the Legendre coefficients.
In order to prove their ℓp(F) summability, we estimate the quantities ‖uν‖V
and ‖vν‖V . By (3.45),

‖uν‖V =

(
∏

j≥1

(1 + 2νj)

) 1
2

‖vν‖V , ν ∈ F. (3.46)

Therefore ‖vν‖V ≤ ‖uν‖V and it will be sufficient to prove the ℓp summa-
bility of (‖uν‖V )ν∈F . We have the following analogue to Lemma 3.5 from
Cohen et al. (2011).
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Lemma 3.6. Assume that UEAC(r,R) holds for some 0 < r ≤ R < ∞.
Let ̺ = (̺j)j≥1 be a δ-admissible sequence for some 0 < δ < r that satisfies
̺j > 1 for all j such that νj �= 0. Then, for any ν ∈ F we have the estimate

‖uν‖V ≤ ‖f‖V ′

δ

∏

j≥1,νj �=0

ϕ(̺j)(2νj + 1)̺
−νj
j , (3.47)

where ϕ(t) := πt
2(t−1) for t > 1.

Based on Lemma 3.6 and a judicious choice of δ-admissible sequence, the
following theorem was shown in Cohen et al. (2011). It is the analogue to
Theorem 3.2 for Legendre GPC expansions.

Theorem 3.7. If a(x, z) satisfies UEAC(r,R) for some 0 < r ≤ R < ∞
and if (‖ψj‖L∞)j≥1 ∈ ℓp(N) for some p < 1, then the sequences (‖uν‖V )ν∈F
and (‖vν‖V )ν∈F belong to ℓp(F) for the same value of p. The Legendre ex-
pansions (3.44) converge in L∞(Γ, µ;V ) in the following sense. If (ΛN )N≥1

is any sequence of finite sets which exhausts F, then the partial sums
SΛN

u(y) :=
∑

ν∈ΛN
uν(x)Pν(y) =

∑
ν∈ΛN

vν(x)Lν(y) satisfy

lim
N→+∞

sup
y∈Γ

‖u(y)− SΛN
u(y)‖V = 0. (3.48)

If ΛN is a set of ν ∈ F corresponding to indices of N maximal ‖uν‖V ,

sup
y∈Γ

‖u(y)− SΛN
u(y)‖V ≤ ‖(‖uν‖V )‖ℓp(F)N−s, s :=

1

p
− 1. (3.49)

If ΛN is a set of ν ∈ F corresponding to indices of N maximal ‖vν‖V ,

‖u− SΛN
u‖L2(Γ,µ;V ) ≤ ‖(‖vν‖V )‖ℓp(F)N−s, s :=

1

p
− 1

2
. (3.50)

Spatial regularity and finite element discretization

So far, we have considered approximations of u(y) with respect to the pa-
rameter vector y ∈ Γ under the assumption that the coefficients tν , vν and
uν could be obtained exactly. In practice, however, such coefficients must be
approximated by a discretization scheme such as the finite element method.
An additional discretization error arises in doing so which can be analysed
using standard convergence results for finite element approximations. It is
interesting to note that the regularity required of the solution u(y) must
then involve both smoothness in the stochastic parameter vector y and in
the spatial domain D. We will now present some convergence results of this
type. We assume that D is a bounded Lipschitz polyhedron D and that
in D we are given a one-parameter, affine family of continuous, piecewise
linear finite element spaces (Vh)h>0 on a shape-regular family of simplicial
triangulations of mesh width h > 0 in the sense of Ciarlet (1978).
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380 C. Schwab and C. J. Gittelson

To obtain regularity of the parametric solution u(y) in D, additional
regularity on f is required: we shall assume f ∈ L2(D) ⊂ V ′. Then

‖f‖V ′ ≤ CP ‖f‖L2(D), (3.51)

where CP is the Poincaré constant of D (i.e., CP = 1/
√
λ1 with λ1 being the

smallest eigenvalue of the Dirichlet Laplacian in D). Then the smoothness
space W ⊂ V is the space of all solutions to the Dirichlet problem

−∆u = f in D, u|∂D = 0, (3.52)

with f ∈ L2(D)

W = {v ∈ V ; ∆v ∈ L2(D)}. (3.53)

We define the W -seminorm and the W -norm by

|v|W = ‖∆v‖L2(D), ‖v‖W := ‖v‖V + |v|W . (3.54)

It is well known that W = H2(D)∩V for convex D ⊂ Rd. Then any w ∈ W
may be approximated in V with convergence rate O(h) by continuous, piece-
wise linear finite element approximations on regular quasi-uniform simplicial
partitions of D of mesh width h (see, e.g., Ciarlet (1978), Braess (2007),
Brenner and Scott (2002)). Therefore, denoting by M = dim(Vh) ∼ h−d the
dimension of the finite element space, we have for all w ∈ W the convergence
rate, as M = dim(Vh) → ∞, of

inf
vh∈Vh

‖w − vh‖V ≤ CtM
−t|w|W , (3.55)

with some 0 < t ≤ 1/d (with t = 1/d if W ⊂ H2(D)).
Spatial regularity of the parametric solution u(y) now takes the form of

p-summability of W -norms of the tν , uν and vν .
In addition to the requirement f ∈ L2(D), we add a fourth assumption

to conditions (C1)–(C3) on the coefficient a(z, x).

(C4) The gradients of the functions ā and ψj , for j ≥ 1, are defined for
every x ∈ D and belong to L∞(D).

Then the following regularity holds (see Cohen et al. (2011)).

Theorem 3.8. Let f ∈ L2(D) and let a(z, x) satisfy UEAC(r,R) for some
0 < r ≤ R < ∞. If (‖ψj‖L∞(D))j≥1 ∈ ℓp(N) and (‖∇ψj‖L∞(D))j≥1 ∈ ℓp(N)
for some 0 < p < 1, then (‖tν‖W )ν∈F, (‖uν‖W )ν∈F and (‖vν‖W )ν∈F belong
to ℓp(F).

We now obtain bounds on the convergence rates of the fully discrete ap-
proximation of u by linear combinations

∑

ν∈Λ
t̃νy

ν ,
∑

ν∈Λ
ũνPν(y), or

∑

ν∈Λ
ṽνLν(y),
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where Λ ⊂ F is finite and when the coefficients t̃ν , ũν and ṽν are finite
element approximations of tν , uν and vν , respectively, from finite element
spaces (Vν)ν∈Λ.
For efficiency of approximation as well as in the specific sparse tensor

approximation schemes, it will be crucial that for given ν ∈ Λ ⊂ F, the
approximation space Vν may depend on ν. To this end, we introduce the
vector M = (Mν)ν∈Λ of the dimensions Mν = dimVν , ν ∈ Λ, of the finite
element approximation spaces Vν used for approximating the tν . Without
loss of generality, we may assume that the error bound (3.55) holds for all
such M up to increasing Ct, and express the approximation rate in terms
of Ndof , i.e., the total number of degrees of freedom involved :

Ndof :=
∑

ν∈Λ
Mν . (3.56)

Then we may estimate

sup
y∈Γ

∥∥∥∥∥u(y)−
∑

ν∈Λ
t̃νy

ν

∥∥∥∥∥
V

≤
∑

ν∈Λ
‖tν − t̃ν‖V +

∑

ν /∈Λ
‖tν‖V . (3.57)

The first term on the right-hand side of (3.57) corresponds to the error
occurring from the finite element discretization of the tν ; the second term
on the right-hand side corresponds to the error incurred by truncating the
Taylor series. By taking Λ := ΛN , the set of indices corresponding to N
maximal ‖tν‖W , it is bounded by

∑

ν /∈Λ
‖tν‖W ≤ CV N

−s, s :=
1

p
− 1. (3.58)

The global error can then be bounded by

sup
y∈Γ

∥∥∥∥∥u(y)−
∑

ν∈ΛN

t̃νy
ν

∥∥∥∥∥
W

≤ Ct

∑

ν∈ΛN

M−t
ν |tν |W + CV N

−s. (3.59)

We now have an optimization problem: minimize the degrees of freedom Mν

such that Ndof is minimized for a fixed contribution Ct
∑

ν∈ΛN
M−t

ν |tν |W to
the error, i.e., we consider the minimization

min

{
∑

ν∈ΛN

Mν ;
∑

ν∈ΛN

M−t
ν |tν |W ≤ N−s

}
. (3.60)

In Cohen et al. (2011), this minimization problem is solved and the following
result is obtained. To state it, we let t̃ν , ũν and ṽν denote the V -projection
of tν , uν and vν , respectively, onto Vν .

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core


382 C. Schwab and C. J. Gittelson

Theorem 3.9. Assume that the finite element spaces have the approxima-
tion property (3.55). Then, under the same assumptions as in Theorem 3.8,
the following hold.

(a) Let ΛN be a set of indices corresponding to N maximal ‖tν‖W . Then
there exists a choice of finite element spaces Vν of dimension Mν , ν ∈
ΛN , such that

sup
y∈Γ

∥∥∥∥∥u(y)−
∑

ν∈ΛN

t̃νy
ν

∥∥∥∥∥
V

≤ CN
−min{s,t}
dof , s :=

1

p
− 1,

where Ndof =
∑

ν∈ΛN
Mν , C = (C̄t + ‖(‖tν‖V )‖ℓp(F))‖(‖tν‖W )‖ℓp(F).

(b) Let ΛN be a set of indices corresponding to N maximal ‖uν‖W . Then
there exists a choice of finite element spaces Vν of dimension Mν , ν ∈
ΛN , such that

sup
y∈Γ

∥∥∥∥∥u(y)−
∑

ν∈ΛN

ũνPν(y)

∥∥∥∥∥
V

≤ CN
−min{s,t}
dof , s :=

1

p
− 1,

where Ndof =
∑

ν∈ΛN
Mν , C = (C̄t + ‖(‖uν‖V )‖ℓp(F))‖(‖uν‖W )‖ℓp(F).

(c) Let ΛN be a set of indices corresponding to N maximal ‖vν‖W . Then
there exists a choice of finite element spaces Vν of dimension Mν , ν ∈
ΛN , such that

∥∥∥∥∥u−
∑

ν∈ΛN

ṽνLν

∥∥∥∥∥
L2(Γ,µ;V )

≤ CN
−min{s,t}
dof , s :=

1

p
− 1

2
,

where Ndof =
∑

ν∈ΛN
Mν , C = (C̄2

t + ‖(‖vν‖V )‖2ℓp(F))
1
2 ‖(‖vν‖W )‖ℓp(F).

3.2. Parabolic problems

A class of random parabolic problems

For 0 < T < ∞, we consider in the bounded time interval I = (0, T ) linear,
parabolic initial boundary value problems with random coefficients where,
for ease of exposition, we assume that these coefficients are independent of
t. We still denote by D ⊂ Rd a bounded Lipschitz domain and we denote
the associated space–time cylinder by QT = I ×D. In QT , we consider the
random parabolic initial boundary value problem

∂u

∂t
− ∇ · (a(x, ω)∇u) = g(t, x), u|∂D×I = 0, u|t=0 = h(x). (3.61)

As before, we make the following assumption.

Assumption 3.10. There exist constants 0 < a− ≤ a+ < ∞ such that

∀x ∈ D, ∀ω ∈ Ω : 0 < a− ≤ a(x, ω) ≤ a+.
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It will be convenient to impose a stronger requirement.

Assumption 3.11. The functions ā and ψj satisfy

∑

j≥1

‖ψj‖L∞(D) ≤
κ

1 + κ
ā−,

with ā− = minx∈D ā(x) > 0 and κ > 0.

Assumption 3.10 is then satisfied by choosing

a− := ā− − κ

1 + κ
ā− =

1

1 + κ
ā−. (3.62)

We consider a space–time variational formulation of problem (3.61). To
state it, we denote by V = H1

0 (D) and H = L2(D) and identify H with its
dual: H ≃ H ′. Then V ⊂ H ≃ H ⊂ V ′ = H−1(D) is a Gelfand evolution
triple. For the variational formulation of (3.61), we introduce the Bochner
spaces

X = L2(I;V ) ∩H1(I;V ′) and Y = L2(I;V )×H. (3.63)

We equip X and Y with norms ‖ · ‖X and ‖ · ‖Y , respectively, which are for
u ∈ X and v = (v1, v2) ∈ Y given by

‖u‖X = (‖u‖2L2(I;V )+‖u‖2H1(I;V ′))
1/2 and ‖v‖Y = (‖v1‖2L2(I;V )+‖v2‖2H)1/2.

Given a coefficient realization a(ω, ·) with ω ∈ Ω, a weak solution of problem
(3.61) is a function u(·, ·, ω) ∈ X such that

∫

I

〈
du

dt
, v1

〉

H

dt+

∫

I

∫

D
a(x, ω)∇u(t, x, ω) · ∇v1(t, x) dx dt+ 〈u(0, ·, ω), v2〉H

=

∫

I
〈g(t, ·), v1〉 dt+ 〈h, v2〉H , ∀v ∈ Y. (3.64)

The following proposition from Schwab and Stevenson (2009) guarantees its
well-posedness for all ω ∈ Ω, under Assumption 3.10.

Proposition 3.12. Assume that g ∈ L2(I;V ′), h ∈ L2(D) and that
Assumption 3.10 holds. Then, for every ω ∈ Ω, the parabolic operator
B ∈ L(X ,Y ′) induced by (3.61) in the weak form (3.64) is an isomorphism:
for given (g, h) ∈ Y ′ and every ω ∈ Ω, problem (3.64) has a unique solution
u(·, ·, ω), which satisfies the a priori estimate

‖u‖X ≤ C
(
‖g‖L2(I;V ′) + ‖h‖L2(D)

)
, (3.65)

where the constant C is bounded uniformly for all realizations.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core
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As before, we assume that the coefficient a in (3.61) is characterized by
a sequence of random variables (yj)j≥1, i.e., that

a(x, ω) = ā(x) +
∑

j≥1

yj(ω)ψj(x). (3.66)

We again assume that the ψj are scaled in L∞(D) such that yj : Ω → R,
j = 1, 2, . . . are distributed identically and uniformly, and that the ψj are
scaled in L∞(D) such that the range of the Yj is [−1, 1] (see Lemma 2.20).

Parametric deterministic parabolic problems

As before, with (3.61) we associate the following parametric family of de-
terministic parabolic problems: given a source term g(t, x) and initial data
h(x), for y ∈ Γ, find u(t, x, y) such that

∂u

∂t
(t, x, y)− ∇x · [a(x, y)∇xu(t, x, y)] = g(t, x), in QT ,

u(t, x, y)|∂D×I = 0, u|t=0 = h(x),
(3.67)

where, for every y = (y1, y2, . . .) ∈ Γ,

a(x, y) = ā(x) +
∞∑

j=1

yjψj(x)

in L∞(D). For the weak formulation of (3.67), we follow (3.64) and define
for y ∈ Γ the parametric family of bilinear forms Γ ∋ y → b(y;w, (v1, v2)) :
X × Y → R by

b(y;w, (v1, v2)) =

∫

I

〈
dw

dt
, v1(t, ·)

〉

H

dt (3.68)

+

∫

D

∫

I
a(x, y)∇w(t, x) · ∇v1(t, x) dx dt+ 〈w(0), v2〉H .

We also define the linear form

f(v) =

∫

I
〈g(t), v1(t)〉H dt+ 〈h, v2〉H , v = (v1, v2) ∈ Y. (3.69)

The variational form for the parametric, deterministic parabolic problems
(3.67) reads: given f ∈ Y ′, find u(y) : Γ ∋ y → X such that

b(y;u, v) = f(v) ∀v = (v1, v2) ∈ Y, y ∈ Γ. (3.70)

Proposition 3.13. For each y ∈ Γ, the operator B(y) ∈ L(X ,Y ′) defined
by (B(y)w)(v) = b(y, w, v) is boundedly invertible. The norms of B(y)
and B(y)−1 can be bounded uniformly by constants which only depend
on a−, a+, T and the spaces X and Y. In particular, the solution u of
problem (3.70) is uniformly bounded in X for all y ∈ Γ. Moreover, the map
u(·, ·, y) : Γ → X is measurable as a Bochner function.
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The proof of this theorem can be found in Appendix A of Schwab and
Stevenson (2009), or in Hoang and Schwab (2010b).
The variational formulation (3.70) is pointwise in the parameter and is the

basis for sampling methods, such as the Monte Carlo method. For stochas-
tic Galerkin approximation, (3.70) needs to be extended to the parameter
space. To this end, we introduce Bochner spaces

X = L2(Γ, µ;X ) and Y = L2(Γ, µ;Y)

and note

X ≃ L2(Γ, µ)⊗ X , Y ≃ L2(Γ, µ)⊗ Y.

With the bilinear form B(·, ·) : X ×Y → R and the linear form F (·) : Y → R

defined by

B(u, v) =

∫

Γ
b(y, u, v)µ(dy) and F (v) =

∫

Γ
f(v)µ(dy). (3.71)

we consider the variational problem: find

u ∈ X such that B(u, v) = F (v) for all v ∈ Y. (3.72)

The Galerkin formulation is well-posed, as we see in the next result (see
Hoang and Schwab (2010b)).

Proposition 3.14. Under Assumption 3.10, for every f as in (3.69) with
g ∈ L2(I;V ′) and h ∈ L2(D), the parametric deterministic variational prob-
lem (3.72) admits a unique solution u ∈ X . Since the family {Lν}ν∈F of ten-
sor product polynomials forms a complete orthonormal system of L2(Γ, µ),
each u ∈ X can be represented as

u =
∑

ν∈F
uνLν , (3.73)

where the coefficients uν ∈ X are defined by

uν =

∫

Γ
u(·, ·, y)Lν(y)µ(dy) ∈ X ,

the integral being understood as a Bochner integral of X -valued functions
over Γ.

With this result, we recover from the parametric, deterministic solution
the random solution u(t, x, ω) by inserting the random variables Ym(ω) for
the coordinate vector y ∈ Γ.

Theorem 3.15. Under Assumptions 3.10, 3.11, for given g ∈ L2(I;V ′)
and h ∈ H, the following variational problem admits a unique solution.
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386 C. Schwab and C. J. Gittelson

Find u ∈ L2(Ω;X ) such that, for every v(t, x, ω) = (v1(t, x, ω), v2(x, ω)) ∈
L2(Ω;Y),

E

{∫

I

〈
du

dt
(t, ·, ·), v1(t, ·, ·)

〉

H

dt

}

+ E

{∫

I

∫

D
a(x, ω)∇u(t, x, ω) · ∇v1(t, x, ω) dx dt

}

+ E

{∫

D
u(0, x, ω)v2(x, ω) dx

}

= E

{∫

I

∫

D
g(t, x)v1(t, x, ω) dx dt

}
+ E

{∫

D
h(x)v2(x, ω) dx

}
. (3.74)

This unique solution satisfies the a priori estimate

‖u‖L2(Ω;X ) ≤ C(a)
(
‖g‖L2(I;V ′) + ‖h‖H

)
. (3.75)

Galerkin approximation

As in the elliptic case, we obtain GPC approximations by Galerkin projec-
tions onto suitable spaces of polynomials in y ∈ Γ. For every finite subset
Λ ⊂ F of cardinality not exceeding N , we define spaces of X - and Y-valued
polynomial expansions

XΛ =

{
uΛ(t, x, y) =

∑

ν∈Λ
uν(t, x)Lν(y) ; uν ∈ X

}
⊂ X ,

and

YΛ =

{
vΛ(t, x, y) =

∑

ν∈Λ
vν(t, x)Lν(y) ; vν ∈ X

}
⊂ Y.

In the Legendre basis (Lν)ν∈F, we write

v1Λ(t, x, y) =
∑

ν∈Λ
v1ν(t, x)Lν(y) and v2Λ(x, y) =

∑

ν∈Λ
v2ν(x)Lν(y),

respectively, where vν = (v1ν , v2ν) ∈ Y for all ν ∈ F. We consider the
(semidiscrete) Galerkin approximation: find

uΛ ∈ XΛ such that B(uΛ, vΛ) = F (vΛ) ∀ vΛ ∈ YΛ. (3.76)

Theorem 3.16. For any finite subset Λ ⊂ F of cardinality exactly equal
to N , the problem (3.76) corresponds to a coupled system of N = #Λ linear
parabolic equations. Under Assumptions 3.10, 3.11, this coupled system of
parabolic equations is stable uniformly with respect to Λ ⊂ F: for any
Λ ⊂ F, problem (3.76) admits a unique solution uΛ ∈ XΛ which satisfies
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the a priori error bound

‖u− uΛ‖X ≤ c

(
∑

ν /∈Λ
‖uν‖2X

)1/2

.

Here, uν ∈ X are the Legendre coefficients of the solution of the parametric
problem in (3.73) and the constant c is independent of Λ.

Proof. To prove the uniform well-posedness of the coupled parabolic sys-
tem resulting from the Galerkin discretization in Γ, we prove that the fol-
lowing inf-sup condition holds: there exist α, β > 0 such that for any Λ ⊂ F,

sup
uΛ∈XΛ,vΛ∈YΛ

|B(uΛ, vΛ)|
‖uΛ‖X ‖vΛ‖Y

≤ α < ∞, (3.77)

inf
0�=uΛ∈XΛ

sup
0�=vΛ∈YΛ

|B(uΛ, vΛ)|
‖uΛ‖X ‖vΛ‖Y

≥ β > 0, (3.78)

∀0 �= vΛ ∈ YΛ : sup
0�=uΛ∈XΛ

|B(uΛ, vΛ))| > 0, (3.79)

where the constants α, β are in particular independent of the choice of Λ ⊂ F

(a proof can be found in the Appendix of Hoang and Schwab (2010b)).
The projected parametric deterministic parabolic problem (3.76) has a

unique solution, and, in virtue of the independence of α, β from Λ, is well-
posed and stable with stability bounds which are independent of the choice
of Λ ⊂ F. Hence, the error incurred by this projection is quasi-optimal:

‖u− uΛ‖X ≤ (1 + β−1(‖g‖L2(I;V ′) + ‖h‖L2(D))) inf
vΛ∈X

‖u− vΛ‖X

≤ c

∥∥∥∥∥u−
∑

ν∈Λ
uνLν

∥∥∥∥∥
X
= c

∥∥∥∥∥
∑

ν /∈Λ
uνLν

∥∥∥∥∥
X
.

By the normalization of the tensorized Legendre polynomials Lν and by
Parseval’s equality, ∥∥∥∥∥

∑

ν /∈Λ
uνLν

∥∥∥∥∥

2

X
=
∑

ν /∈Λ
‖uν‖2X .

The conclusion then follows with c = 1 + β−1(‖g‖L2(I;V ′) + ‖h‖L2(D)).

Best N -term GPC approximations

As in the elliptic case, Theorem 3.16 again suggests choosing Λ ⊂ F to be
the set of the largest N coefficients ‖uν‖X . Once (sharp and computable)
a priori bounds for uν in X are known, one algorithmic strategy could
be to optimize the sets Λ ⊂ F according to these a priori bounds (one
such strategy is outlined in Section 4.1 for the elliptic case). Alternatively,
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388 C. Schwab and C. J. Gittelson

an optimal, adaptive Galerkin method will yield iteratively quasi-optimal
sequences ΛN of active indices. We now determine such a priori bounds.
A best N -term convergence rate estimate in terms of N will result from

these bounds once more using (3.13). Therefore, the convergence rate of
spectral approximations such as (3.76) of the parabolic problem on the infi-
nite-dimensional parameter space Γ is determined by the summability of the
Legendre coefficient sequence (‖uν‖X )ν∈F. We shall now prove that summa-
bility of this sequence is determined by that of the sequence (ψj(x))j∈N in
the input’s fluctuation expansion (3.66). Throughout, Assumptions 3.10
and 3.11 will be required to hold. In addition, we shall make the following
requirement.

Assumption 3.17. There exists 0 < p < 1 such that

∞∑

j=1

‖ψj‖pL∞(D) < ∞. (3.80)

Based on this assumption, in Hoang and Schwab (2010b) the following
result was proved, with a proof along similar lines to that of the elliptic
result Theorem 3.7.

Theorem 3.18. If Assumptions 3.10, 3.11 and 3.17 hold for some 0 <
p < 1,

∑
ν∈F ‖uν‖pX is finite.

Moreover, there is a sequence (ΛN )N∈N ⊂ F of index sets with cardinality
not exceeding N such that the solutions uΛN

of the Galerkin semidiscretized
problems (3.76) satisfy

‖u− uΛN
‖X ≤ CN−σ, σ =

1

p
− 1

2
.

This establishes a rate of convergence for best N -term GPC approxima-
tions in the stochastic Galerkin semidiscretization (3.76), which is analo-
gous to the estimate (3.50) for the parametric elliptic problem. Note that
Theorem 3.18 holds in the semidiscrete setting , i.e., under the assumption
that the Galerkin projections (3.76) can be computed exactly. To obtain
actually computable realizations of such approximations, however, the coef-
ficients need to be approximated in a hierarchical family of finite element
spaces in the domain D. In order to obtain convergence rates analogous
to Theorem 3.9 in the elliptic setting, regularity results for the paramet-
ric, parabolic problems (3.67) are required. Such results on best N -term
approximation of expansions whose coefficients are measured in scales of
spaces with additional smoothness in x and t are obtained in Hoang and
Schwab (2010b).
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3.3. Second-order hyperbolic problems

Analogous results may also be proved for linear, second-order hyperbolic
problems with random coefficients. Such equations arise, for example, in
the mathematical description of wave propagation in media with uncertain
material properties. Below we recapitulate recent results from Hoang and
Schwab (2010a) which are analogous to those for the elliptic and parabolic
cases. One important distinction to the parabolic case, however, is that a
space–time variational principle is not available so that some of the proofs in
Hoang and Schwab (2010a) are significantly different from the elliptic case.

A class of wave equations with random coefficients

For 0 < T < ∞, we consider in I = (0, T ) the following class of linear,
second-order hyperbolic equations with random coefficients: let D be a
bounded Lipschitz domain in Rd. We define the space–time cylinder QT =
I ×D. In QT , we consider the stochastic wave equation

∂2u

∂t2
− ∇ · (a(x, ω)∇u) = g(t, x), u|∂D×I = 0, u|t=0 = g1, ut|t=0 = g2.

(3.81)
As before, we assume the coefficient a(ω, x) to be a random field on a
probability space (Ω,Σ,P) over L∞(D). The forcing g and initial data
g1 and g2 are assumed to be deterministic. To ensure well-posedness of
(3.81), we once more require Assumptions 3.10 and 3.11. To state the weak
form of the initial boundary value problem (3.81), we let V = H1

0 (D) and
H = L2(D), and require

g ∈ L2(I;H), g1 ∈ V, g2 ∈ H. (3.82)

For the variational formulation of (3.81), we introduce the Bochner spaces

X = L2(I;V ) ∩H1(I;H) ∩H2(I;V ′), Y = L2(I;V )× V ×H. (3.83)

A weak solution of the hyperbolic initial boundary value problem (3.81) is
any function u ∈ X such that, for every v = (v0, v1, v2) ∈ Y,

∫

I

〈
d2u

dt2
(t, ·), v0(t, ·)

〉

H

dt+ 〈u(0), v1〉V + 〈ut(0), v2〉H

+

∫

I

∫

D
a(x, ω)∇u(t, x, ω) · ∇v0(t, x) dx dt

=

∫

I

∫

D
g(t, x)v0(t, x) dx dt+ 〈g1, v1〉V + 〈g2, v2〉H . (3.84)

We have the following result, from Hoang and Schwab (2010a).

Proposition 3.19. Under Assumption 3.10 and under condition (3.82),
for every ω ∈ Ω, the initial boundary value problem (3.84) admits a unique

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core


390 C. Schwab and C. J. Gittelson

weak solution u ∈ X . The following estimate holds:

‖u‖X ≤ C(‖g‖L2(I;H) + ‖g1‖V + ‖g2‖H), (3.85)

where the constant C depends only on T and on a− and a+ in Assump-
tion 3.10.

We next present results on the stochastic Galerkin approximation of the
initial boundary value problem (3.84).

Parametric deterministic wave equations

Given a forcing function g(t, x) and initial data g1(x) and g2(x) satisfying
(3.82), for each y ∈ Γ we consider the parametric, deterministic initial
boundary value problem

∂2u(t, x, y)

∂t2
− ∇x · (a(x, y)∇xu(t, x, y)) = g(t, x) in QT ,

u(t, x, y)|∂D×I = 0, u|t=0 = g1, ut|t=0 = g2,

(3.86)

where the parametric coefficient a(x, y) is defined as in the elliptic and
parabolic cases in (3.66). Again, for each y ∈ Γ, we define the bilinear map
b : X × Y → R by

b(y;w, (v0, v1, v2)) =

∫

I

〈
d2w

dt2
(t, ·), v0(t, ·)

〉

H

dt (3.87)

+

∫

I

∫

D
a(x, y)∇w(t, x) · ∇v0(t, x) dx dt

+ 〈u(0), v1〉V + 〈ut(0), v2〉H .

We also define the linear form on Y,

f(v) =

∫

I

∫

D
g(t, x)v0(t, x) dx dt+ 〈g1, v1〉V + 〈g2, v2〉H .

The pointwise parametric (with respect to y ∈ U) variational formulation
of the parametric, deterministic problem (3.86) then reads: find

u(y) ∈ X : b(y;u, v) = f(v) ∀v = (v0, v1, v2) ∈ Y. (3.88)

Note that here y-dependent data g, g1 and g2 would be equally admissible.
This pointwise in y parametric variational formulation is well-posed uni-

formly with respect to the parameter vector y. More precisely, we have the
following result (see Hoang and Schwab (2010a)).

Proposition 3.20. Under Assumption 3.10 and under conditions (3.82),
for every y ∈ Γ, the problem (3.88) admits a unique weak solution u(y) ∈
X . The parametric weak solutions {u(y) ; y ∈ Γ} ⊂ X satisfy the a priori

estimates

∀y ∈ Γ : ‖u(·, ·, y)‖X ≤ C(‖g‖L2(I;H) + ‖g1‖V + ‖g2‖H), (3.89)
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where the constant C is independent of y. The map u : Γ → X is strongly
measurable as an X -valued function.

An analogous result also holds for the Galerkin formulation of the para-
metric deterministic problem. To state this, we introduce the Bochner
spaces X = L2(Γ, µ;X ) and Y = L2(Γ, µ;Y) and define on these spaces
the bilinear form B(·, ·) : X × Y → R and the linear form F (·) : Y → R as

B(u, v) =

∫

Γ
b(y;u, v)µ(dy), F (v) =

∫

Γ
f(v)µ(dy).

We may then consider the variational problem: find

u ∈ X such that B(u, v) = F (v) ∀v ∈ Y. (3.90)

Proposition 3.21. Under Assumptions 3.10 and 3.11, problem (3.90) ad-
mits a unique solution u ∈ X , i.e., the parametric solution map belongs to
to the Bochner space L2(Γ, µ;X ). Moreover, in terms of the orthonormal
basis of L2(Γ, µ) given by the tensorized Legendre polynomials (Lν)ν∈F,
each function u ∈ X can be written as an (unconditionally convergent in
X ) expansion in tensorized Legendre polynomials:

u =
∑

ν∈F
uνLν , uν ∈ X . (3.91)

Semidiscrete Galerkin approximation

Spectral approximations of the parametric, deterministic wave equation
(3.86) are once again obtained by projection onto finite linear combinations
of tensorized Legendre polynomials. We briefly present the corresponding
results from Hoang and Schwab (2010a).
For any set Λ ⊂ F of finite cardinality, we define polynomial subspaces of

X and Y:

XΛ =

{
uΛ(t, x, y) =

∑

ν∈Λ
uν(t, x)Lν(y) ; uν ∈ X

}
⊂ X ,

and

YΛ =

{
vΛ(t, x, y) =

∑

ν∈Λ
vν(t, x)Lν(y) ; vν ∈ Y

}
⊂ Y.

Denoting vν = (v0ν , v1ν , v2ν), we may write the test functions v ∈ YΛ com-
ponentwise as Legendre GPC expansions:

v0Λ(t, x, y) =
∑

ν∈Λ
v0ν(t, x)Lν(y), viΛ(x, y) =

∑

ν∈Λ
viν(x)Lν(y) i = 1, 2.

We consider the following semidiscrete Galerkin projection of u onto XΛ.
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Find

uΛ ∈ XΛ such that B(uΛ, vΛ) = F (vΛ) ∀vΛ ∈ YΛ. (3.92)

Theorem 3.22. Under Assumptions 3.10 and 3.11, for every subset Λ ⊂ F

of finite cardinality, there exists a unique solution uΛ ∈ XΛ to the Galerkin
equations (3.92).

It is to be expected that the semidiscrete Galerkin approximations are
quasi-optimal, i.e., their error is controlled by the best approximation error.
This is indeed once more the case. However, due to the lack of a space–
time variational formulation, additional regularity of solutions, in particular
point values with respect to t, is required. To this end, we introduce the
space

Z := H1(I;V ) ∩H2(I;H) ⊂ C0(I;V ) ∩ C1(I;H). (3.93)

Note that Z ⊂ X . The following error estimate for semidiscrete approxi-
mations of parametric solutions in Z holds.

Proposition 3.23. Assume that u ∈ L2(Γ, µ;Z). Then, for all ν ∈ F

the coefficient uν in (3.91) belongs to Z. Assume further that for a subset
Λ ⊂ F, uΛ ∈ L2(Γ, µ;Z). Then we have the error bound

‖u− uΛ‖L2(Γ,µ;X ) ≤ c

∥∥∥∥∥
∑

ν∈F\Λ
uνLν

∥∥∥∥∥
L2(Γ,µ;Z)

= c

(
∑

ν∈F\Λ
‖uν‖2Z

)1/2

. (3.94)

Here, the constant c > 0 depends only on the coefficient bounds a− and a+
in Assumption 3.10.

For a proof, we refer to Hoang and Schwab (2010a).
Proposition 3.23 once more implies quasi-optimality of the L2(Γ, µ;X )

projection uΛ ∈ XΛ defined in (3.92). We note, however, that in its proof,
the extra regularity u ∈ L2(Γ, µ;Z) was required. It is therefore of interest
to establish a regularity result for uΛ which ensures u ∈ L2(Γ, µ;Z) and,
hence, implies the semidiscrete error bound (3.94). To this end, we recall
the smoothness space W ⊂ V defined in (3.52) and (3.53). On W , we define
the W -seminorm and the W -norm as in (3.54). The role of the space W
for the regularity of the solution of the parametric wave equation becomes
clear from the following result.

Proposition 3.24. If Assumption 3.11 holds and if, moreover,

g ∈ H1(I;H), g1 ∈ W, g2 ∈ V, (3.95)

then for every y ∈ Γ we have u(·, ·, y) ∈ Z, and its Z-norm is bounded
uniformly for all y ∈ Γ.
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The Galerkin projections require the corresponding space–time solution
space

W = L2(I;W ) ∩H1(I;V ) ∩H2(I;H), (3.96)

where W is defined in (3.53). Note that W ⊂ Z for Z defined in (3.93).
We have the following regularity result for the Galerkin-projected GPC
approximations of the parametric, deterministic wave equation (3.86).

Proposition 3.25. Under Assumptions 3.10 and 3.11, and if, in addition,
a(·, ·) ∈ L∞(Γ;W 1,∞(D)), g ∈ H1(I;H), g1 ∈ W and g2 ∈ V , then, for every
subset Λ ⊂ F of finite cardinality,

uΛ ∈ L2(Γ, µ;W) ⊂ L2(Γ, µ;Z).

For the parametric wave equations, the extra regularity uΛ ∈ L2(Γ, µ;W)
is therefore already required to ensure quasi-optimality of the Galerkin pro-
jections. It is also necessary in order to prove best N -term convergence rates
analogous to those for the parametric elliptic and the parabolic problems.
To state these results, we therefore require the following.

Assumption 3.26. We assume in (3.66) that ā ∈ W 1,∞(D) and ψj ∈
W 1,∞(D) are such that

∞∑

j=1

‖ψj‖W 1,∞(D) < ∞.

Moreover, we assume that, for some 0 < p < 1,

∞∑

j=1

(‖ψj‖pL∞(D) + ‖∇ψj‖pL∞(D)) < ∞.

Note that Assumption 3.26 implies Assumption 3.11. Under these as-
sumptions we then have the following regularity and best N -term conver-
gence result (see Hoang and Schwab (2010a) for a proof).

Proposition 3.27. Under Assumptions 3.10, 3.11 and 3.26,
∑

ν∈F ‖uν‖pZ
is finite for the same value of 0 < p < 1 as in these assumptions.
If, moreover, the compatibility condition (3.95) holds, there exists a se-

quence (ΛN ) ⊂ F of index sets with cardinality not exceeding N such that
the solutions uΛN

of the Galerkin semidiscretized problem (3.92) satisfy, as
N → ∞, the error bound

‖u− uΛN
‖X ≤ CN−σ, σ =

1

p
− 1

2
.

Here, the constant C depends only on
∑

ν∈F ‖uν‖pZ .
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394 C. Schwab and C. J. Gittelson

4. Sparse tensor discretizations

4.1. Sparse tensor stochastic Galerkin discretizations

We consider the diffusion equation with a stochastic diffusion coefficient,
as in Section 2.3, discretized by the Legendre chaos basis; see Section 2.3.
Foundations for subsequent Galerkin approximation were laid in Section 2.3.
In Section 3.1, we proved convergence rates of optimal approximations by
non-constructive methods. In this section, we consider Galerkin approxi-
mations in problem-adapted subspaces of L2(Γ, µ;V ) with a sparse tensor
product structure. As in Bieri, Andreev and Schwab (2009), we show that
these computable approximations achieve the optimal convergence rates up
to logarithmic factors. We refer to Gittelson (2011c, 2011d) for an analysis
of adaptive solvers with similar convergence properties.
For a bounded Lipschitz domain D ⊂ Rd, we set V = H1

0 (D). The
dual space of V is V ′ = H−1(D). We denote the parameter domain by
Γ := [−1, 1]∞; µ is the product of uniform measures on Γ, as in Section 2.2.

Wavelet finite element discretization on the physical domain D

Finite element wavelets provide a stable, hierarchical multi-level basis of
V = H1

0 (D). We give a brief overview of the construction of such bases and
refer to Cohen (2003) and Nguyen and Stevenson (2009) for details.
Let D ⊂ Rd be a bounded Lipschitz polyhedron with plane faces, and let

T0 be a regular simplicial mesh of D. For all ℓ ∈ N, let Tℓ be the mesh of
D constructed by ℓ regular refinements of the initial triangulation T0. We
denote by Iℓ the interior nodes of Tℓ and by Nℓ := Iℓ \ Iℓ−1 the new nodes
on discretization level ℓ ∈ N. On the coarsest level, we have N0 = I0. Also,
denote by Eℓ the set of edges of Tℓ. Let V D

ℓ be the space of continuous
piecewise linear functions on the Tℓ. We recall the standard approximation
result

‖v−PD
ℓ v‖H1

0 (D) ≤ CD
τ 2−ℓτ‖v‖H1+τ (D) ∀v ∈ H1+τ (D), 0 ≤ τ ≤ 1, (4.1)

where PD
ℓ is the orthogonal projection in H1

0 (D) onto V D
ℓ and CD

τ > 0 is
independent of ℓ. The dimension of V D

ℓ satisfies

dimV D
ℓ � 2ℓd (4.2)

as ℓ → ∞.
The standard, so-called ‘one-scale’ basis of V D

ℓ consists of the piecewise
linear, nodal basis functions (λℓ

n)n∈Iℓ determined by

λℓ
n(m) = δnm ∀m ∈ Iℓ. (4.3)

Following Nguyen and Stevenson (2009), we construct an alternative, hier-
archical basis of V D

ℓ .
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Sparse tensor discretizations for sPDEs 395

We define auxiliary functions (ηℓn)n∈Iℓ−1
in V D

ℓ satisfying

〈ηℓn, λℓ−1
m 〉L2(D) ≃ δnm‖ηℓn‖L2(D)‖λℓ−1

m ‖L2(D) (4.4)

for all n,m ∈ Iℓ−1 and all ℓ ∈ N. For d = 1,

ηℓn(m) :=





3 m = n,

− 1/2 [m,n] ∈ Eℓ,
0 all other m ∈ Iℓ,

n ∈ Iℓ−1, (4.5)

and for d = 2,

ηℓn(m) :=





14 m = n,

− 1 [m,n] ∈ Eℓ,
0 all other m ∈ Iℓ,

n ∈ Iℓ−1. (4.6)

Wavelets are given by ψ0
m := λ0

m for m ∈ I0 and

ψℓ
m := λℓ

m −
∑

n∈Iℓ−1

〈λℓ
m, λℓ−1

n 〉L2(D)

〈ηℓn, λℓ−1
n 〉L2(D)

ηℓn, m ∈ Nℓ. (4.7)

We define the detail spaces

WD
ℓ := span {ψℓ

m ; m ∈ Nℓ}, ℓ ∈ N0. (4.8)

Then WD
0 = V D

0 , and V D
ℓ is the direct sum of WD

i over all i ≤ ℓ. The
wavelets whose construction was outlined above satisfy properties (W1)–
(W5).

Hierarchical polynomial spaces

By Corollary 2.26, the solution u of (2.44) can be expanded in the Legendre
chaos basis as

u(y) =
∑

ν∈F
uνLν(y) ∈ V, y ∈ Γ. (4.9)

For any subset Λ ⊂ F, we consider the truncated series

SΛu(y) :=
∑

ν∈Λ
uνLν(y) ∈ V, y ∈ Γ. (4.10)

Since (Lν)ν∈F is an orthonormal basis of L2(Γ, µ;V ) (see Corollary 2.16),
SΛu is the orthogonal projection of u onto the span of (Lν)ν∈Λ in L2(Γ, µ;V ).
We denote this space by

〈Λ;V 〉 :=
{
v(y) =

∑

ν∈Λ
vνLν(y) ; (vν)ν∈Λ ∈ ℓ2(Λ;V )

}
. (4.11)
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396 C. Schwab and C. J. Gittelson

For any Λ ⊂ F, 〈Λ;V 〉 is a closed subspace of L2(Γ, µ;V ) since it is the
kernel of SF\Λ, and thus it is a Hilbert space with the same norm. We

abbreviate 〈Λ〉 for the subspace 〈Λ;R〉 of L2(Γ, µ).
Let 0 ≤ τ ≤ 1 and γ > 0. For all k ∈ N0, we define Λγ

k as the set of the

first ⌊2γk⌋ indices ν ∈ F in a decreasing rearrangement of (‖uν‖H1+τ (D))ν∈F,
i.e., Λγ

k consists of the ⌊2γk⌋ indices ν for which ‖uν‖H1+τ (D) is largest. We
assume that the same decreasing rearrangement is used for all k ∈ N0, such
that Λγ

k ⊂ Λγ
k+1. The approximation spaces in L2(Γ, µ) induced by the sets

Λγ
k are

V Γ
k := 〈Λγ

k〉, k ∈ N0, (4.12)

and the detail spaces are given by WΓ
0 := V Γ

0 and

WΓ
k := V Γ

k ⊖ V Γ
k−1 = 〈Λγ

k \ Λγ
k−1〉, k ∈ N. (4.13)

Then V Γ
k ⊗ V and WΓ

k ⊗ V serve as approximation and detail spaces in
L2(Γ, µ;V ).

Remark 4.1. The sets Λγ
k are not computationally accessible. We present

a problem-adapted construction for an alternative sequence of index sets in
Section 4.2.

Sparse tensor product spaces

The approximation spaces V Γ
k ⊂ L2(Γ, µ) and V D

ℓ ⊂ V = H1
0 (D) can be

combined to define finite-dimensional subspaces of L2(Γ, µ;V ). We recall
that the Lebesgue–Bochner space L2(Γ, µ;V ) is isometrically isomorphic to
the Hilbert tensor product L2(Γ, µ)⊗ V .
For any L ∈ N0, the tensor product of V Γ

L and V D
L can be expanded as

V Γ
L ⊗ V D

L =
L⊕

k=0

WΓ
k ⊗ V D

L =
⊕

0≤ℓ,k≤L

WΓ
k ⊗WD

ℓ . (4.14)

The sparse tensor product space of level L ∈ N0 is defined by restricting the
last sum in (4.14) to only the most important component spaces,

V Γ
L ⊗̂V D

L :=
⊕

0≤ℓ+k≤L

WΓ
k ⊗WD

ℓ =

L⊕

k=0

WΓ
k ⊗ V D

L−k. (4.15)

Thus V Γ
L ⊗̂V D

L is equal to VN from (2.90), with VN,ν equal to V D
L−k if ν ∈

Λγ
k \ Λγ

k−1, where Λγ
−1 := ∅. Any element v of V Γ

L ⊗̂V D
L is of the form

v(y, x) =
L∑

k=0

∑

ν∈Λγ
k\Λ

γ
k−1

L−k∑

ℓ=0

∑

n∈Nℓ

cν,nψ
ℓ
n(x)Lν(y), x ∈ D, y ∈ Γ. (4.16)
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Sparse tensor discretizations for sPDEs 397

We denote the Galerkin projection of u onto V Γ
L ⊗̂V D

L by ûL. It is determined
by (2.91) for VN = V Γ

L ⊗̂V D
L . By Proposition 2.27, ûL is a quasi-optimal

approximation of u in V Γ
L ⊗̂V D

L .

Convergence estimate

Due to the quasi-optimality of the Galerkin solution ûL in V Γ
L ⊗̂V D

L , the
convergence of ûL to u is equivalent to that of the best approximation. Let
P̂L denote the orthogonal projection in L2(Γ, µ;V ) onto V Γ

L ⊗̂V D
L . By (4.15),

it has the form

P̂Lv =

L∑

k=0

∑

ν∈Λγ
k\Λ

γ
k−1

(PD
L−kvν)Lν , v =

∑

ν∈F
vνLν ∈ L2(Γ, µ;V ), (4.17)

where Λγ
−1 := ∅.

Theorem 4.2. Let 0 < τ ≤ 1, γ > 0, 0 < p ≤ 2 and s := 1/p − 1/2.
Furthermore, let a+ and a− be the bounds from (2.50). Then

‖u− ûL‖L2(Γ,µ;V ) ≤ CD
t λsγ,τ (L)

√
a+
a−

(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

2−min(sγ,τ)L

(4.18)
with

λsγ,τ (L) =

{ √
2 + 22min(sγ,τ)L always,√
2 + |2−2sγ − 2−2τ |−1 if sγ �= τ .

(4.19)

Proof. By (4.17) and Parseval’s identity in L2(Γ, µ), using (4.1),

‖u− P̂Lu‖2L2(Γ,µ;V ) =

L∑

k=0

∑

ν∈Λγ
k\Λ

γ
k−1

‖uν − PD
L−kuν‖2V +

∑

ν∈F\Λγ
L

‖uν‖2V

≤ (CD
τ )2

(
L∑

k=0

2−2(L−k)τ
∑

ν∈Λγ
k\Λ

γ
k−1

‖uν‖2H1+τ (D) +
∑

ν∈F\Λγ
L

‖uν‖2H1+τ (D)

)
.

Applying Stechkin’s lemma (3.13), we have for any 0 < p ≤ 2 and s :=
1/p− 1/2,

(
∑

ν∈F\Λγ
k−1

‖uν‖2H1+τ (D)

)1/2

≤ (#Λγ
k−1 + 1)−s

(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

for k = 1, . . . , L+ 1. Since also
(
∑

ν∈F
‖uν‖2H1+τ (D)

)1/2

≤
(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

,
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398 C. Schwab and C. J. Gittelson

using #Λγ
k−1 + 1 ≥ 2γ(k−1), it follows that

‖u− P̂Lu‖L2(Γ,µ;V ) ≤ CD
τ Σ

1/2
L

(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

with

ΣL = 2−2Lτ + 2−2sγL +
L∑

k=1

2−2(L−k)τ2−2sγ(k−1).

If sγ = τ , then ΣL simplifies to

ΣL = (22sγL+ 2)2−2sγL = (22τL+ 2)2−2τL.

More generally, if sγ �= τ , estimating the sum by L times the maximal
summand,

ΣL ≤ 2−2Lτ + 2−2sγL + 2−2min(sγ,τ)(L−1)L.

Alternatively, if sγ �= τ , summing the geometric series leads to

ΣL = 2−2Lτ + 2−2sγL +
2−2sγL − 2−2τL

2−2sγ − 2−2τ
.

If sγ < τ , we have

ΣL ≤ 2−2sγL

(
2 +

1

2−2sγ − 2−2τ

)
,

and similarly, if sγ > τ ,

ΣL ≤ 2−2τL

(
2 +

1

2−2τ − 2−2sγ

)
.

Then the claim follows using the quasi-optimality property from Proposi-
tion 2.27 with ĉ = a+ and č = a−1

− .

We express the convergence estimates in Theorem 4.2 with respect to the
total number of degrees of freedom used to approximate u.

Lemma 4.3. The dimension of the sparse tensor product V Γ
L ⊗̂V D

L scales
as

N̂L := dimV Γ
L ⊗̂V D

L �

{
(L+ 1)2dL if γ = d,

2max(γ,d)L if γ �= d,
∀L ∈ N0. (4.20)

Proof. Using the last expression in (4.15),

N̂L = dimV Γ
L ⊗̂V D

L =
L∑

k=0

#(Λγ
k \ Λγ

k−1) dimV D
L−k.
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By definition, #(Λγ
k\Λ

γ
k−1) ≤ #Λγ

k ≤ 2γk, and by (4.2), dimV D
L−k � 2d(L−k).

Therefore,

N̂L �

L∑

k=0

2γk2d(L−k) = 2dL
L∑

k=0

2(γ−d)k.

If γ = d, then all the summands are one, and we arrive at

N̂L � (L+ 1)2dL.

Otherwise, we sum the geometric series to find

N̂L � 2dL
2(γ−d)L − 1

2γ−d − 1
� 2max(γ,d)L

with constants independent of L.

Corollary 4.4. In the setting of Theorem 4.2, if γ �= d,

‖u− ûL‖L2(Γ,µ;V ) (4.21)

≤ CD
τ λsγ,τ (L)

√
a+
a−

(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

N̂
−min(s,sγ/d,τ/γ,τ/d)
L .

If γ = d, then

‖u− ûL‖L2(Γ,µ;V ) (4.22)

≤ CD
τ λsd,τ (L)

√
a+
a−

(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

(L+ 1)min(s,τ/d)N̂
−min(s,τ/d)
L .

Proof. The claim follows from Theorem 4.2 using Lemma 4.3 to estimate
2L from below by a power of N̂L.

Remark 4.5. Up to logarithmic factors, the convergence rates in Corol-
lary 4.2 with respect to the total number of degrees of freedom N̂L reaches
the optimum min(s, τ/d) from Theorem 3.9 for two choices of γ. There-
fore, assuming a sparse tensor product structure of the Galerkin subspace
of L2(Γ, µ;V ) does not significantly deteriorate the convergence behaviour.
If γ = τ/s �= d, then sγ/d = τ/d and τ/γ = s, so (4.21) becomes

‖u− ûL‖L2(Γ,µ;V ) ≤ CD
τ

√
2 + 22τL

√
a+
a−

(
∑

ν∈F
‖uν‖pH1+τ (D)

)1/p

N̂
−min(s,τ/d)
L .

(4.23)
As already stated in the corollary, γ = d also leads to this convergence rate,
albeit with an additional factor that is logarithmic in N̂L. Nevertheless, this
choice has the advantage of being independent of the regularity parameters
s and τ .
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400 C. Schwab and C. J. Gittelson

Remark 4.6. The above derivation of Theorem 4.2 and Corollary 4.4 cor-
rects some mathematical inaccuracies in the proof of Proposition 3.5 of Bieri
et al. (2009). In particular, it is apparent from the above result that the
sets Λγ

k for k = 0, . . . , L− 1 should be defined to contain the indices ν ∈ F

for which ‖uν‖H1+τ (D) is maximal, and not ‖uν‖V as claimed in Bieri et al.

(2009). For Λγ
L, it is also reasonable to use ‖uν‖V ; doing so sacrifices the

sparse tensor product structure, but may reduce the total number of degrees
of freedom.

Remark 4.7. Corollary 4.4 should be compared with the convergence
of full tensor product discretizations. In this case, the dimension of the
Galerkin subspace of L2(Γ, µ;V ) scales as 2(γ+d)L, and the error satisfies
Theorem 4.2 without the logarithmic terms. Therefore, the convergence
rate of the error with respect to the dimension is min(sγ, τ)/(γ + d). For
example, if γ = d, this is min(s, τ/d)/2, which is just half of the rate from
(4.22). If γ = τ/s, then the convergence rate (1/s + d/τ)−1 is half of the
harmonic mean of s and τ/d, which is only a minor improvement.

Remark 4.8. The convergence rates in Corollary 4.4 and Remark 4.5 are
limited by the order of convergence τ/d ≤ 1/d of linear finite elements on D.
This can be overcome by using higher-order finite elements. For example,
if u ∈ ℓp(F;H1+τ (D)) with s = 1/p − 1/2 and τ = sd, using piecewise
polynomial finite elements of degree ⌈τ⌉ leads to a convergence rate of s

with respect to the total number N̂L of degrees of freedom.

4.2. Algorithmic aspects of polynomial chaos

Hierarchical index sets

The index sets Λγ
k from Section 4.1 are not computationally accessible. We

consider a different family of index sets that can be constructed explicitly.
For any sequence η = (ηm)∞m=1 ∈ R∞, since η0m = 1 for all m ∈ N,

ην :=

∞∏

m=1

ηνmm =
∏

m∈supp ν

ηνmm , ν ∈ F. (4.24)

We assume that for some η ∈ R∞ with ηm ∈ (0, 1), ηm → 0, up to a constant
factor, (4.24) is an estimate for ‖uν‖H1+t(D) for all ν ∈ F; see Section 4.2.
Then, for any ǫ > 0,

Λǫ(η) := {ν ∈ F ; ην ≥ ǫ}. (4.25)

Due to the assumptions 0 < ηm < 1 and ηm → 0, Λǫ(η) is a finite subset of
F for all ǫ > 0. The construction of the sets (4.25) does not require exact
knowledge of ‖uν‖H1+t(D), only estimates with a certain structure. Also,

the sets Λǫ(η) differ from Λγ
k in that they are defined by a thresholding

tolerance instead of a prescribed cardinality.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492911000055
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:41:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492911000055
https:/www.cambridge.org/core


Sparse tensor discretizations for sPDEs 401

It is clear from the definition that the sets Λǫ(η) are monotonic in both
parameters ǫ and η. If ǫ ≤ ǭ, then Λǫ(η) ⊇ Λǭ(η). Similarly, if η ∈ R∞ with
ηm ≤ η̄m < 1 for all m ∈ N, then Λǫ(η) ⊆ Λǫ(η̄).
For a σ > 0, let ησ ∈ R∞ be defined by ησm := (m+1)−σ, m ∈ N. For ησ,

sharp asymptotics on the cardinality of the index sets Λǫ(η
σ) follow from

results on integer factorization (Bieri et al. 2009, Proposition 4.5).

Proposition 4.9. For any σ > 1/2, as ǫ → 0,

#Λǫ(η
σ) ≃ ǫ−1/σ e2

√
σ−1 log ǫ−1

2
√
π(σ−1 log ǫ−1)3/4

. (4.26)

In particular, {(ησ)ν}ν∈F ∈ ℓp(F) for any p > 1/σ.

Proof. We observe that for all ǫ > 0 and σ > 0, Λǫ(η
σ) = Λǫ1/σ(η

1). Let
f(n) denote the number of multiplicative partitions of n ∈ N, disregarding
the order of the factors. For example, f(12) = 4 since 12, 2 · 6, 2 · 2 · 3 and
3 · 4 are the only factorizations of 12. Sharp asymptotics for

FΣ(x) :=

⌊x⌋∑

n=1

f(n)

as x → ∞ were obtained in Canfield, Erdős and Pomerance (1983), based
on earlier work (Oppenheim 1927, Szekeres and Turán 1933). The result
required here is

FΣ(x) = F (x)(1 +O(1/ log n)) with F (x) =
x e2

√
log x

2
√
π(log x)3/4

.

Let ǫ > 0 and ν ∈ Λǫ(η
1). By definition,

n :=
∞∏

m=1

(m+ 1)νm ≤ 1

ǫ
.

Since n is an integer, the index ν represents a multiplicative partition of
an integer n ≤ 1/ǫ. Conversely, for any integer n ≤ 1/ǫ, any multiplicative
partition of n is of the form n =

∏
m(m + 1)νm for a ν ∈ F, and therefore

ν ∈ Λǫ(η
1). Consequently,

#Λǫ(η
σ) = #Λǫ1/σ(η

1) = FΣ(ǫ
−1/σ) ≃ F (ǫ−1/σ)

as ǫ → 0, which implies (4.26).

Note that ǫ−1/σ is the dominating term in (4.26). Let z =
√

σ−1 log ǫ−1.
Then (4.26) is bounded by a constant times

ez
2
e2ze = e(z+1)2 .
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For any κ > 1, we have z + 1 ≤ √
κ z for all z ≥ (

√
κ− 1)−1, and thus

e(z−1)2 ≤ eκz
2
= ǫ−κ/σ ∀z ≥ (

√
κ− 1)−1.

Consequently, by (4.26), for all κ > 1,

#Λǫ(η
σ) = #{ν ∈ F ; (ησ)ν ≥ ǫ} � ǫ−κ/σ.

This is a characterizing property of the weak Lebesgue sequence space ℓqw(F)
with q = κ/σ (DeVore 1998). Since ℓqw(F) ⊂ ℓp(F) for all p > q, and since
κ > 1 is arbitrary, it follows that {(ησ)ν}ν∈F ∈ ℓp(F) for all p > 1/σ.

As demonstrated in Bieri et al. (2009, Figure 4.1), (4.26) provides a good
approximation for thresholds ǫ as large as 10−2.
Proposition 4.9 gives bounds on the size of index sets Λǫ(η). In order to

control the complexity of the numerical construction of these index sets, it
is also important to bound the length # supp ν of indices ν ∈ Λǫ(η). To this
end, we define the maximal dimension reached by Λǫ(η),

Mǫ(η) := max {m ∈ N ; ηm ≥ ǫ} = max {m ∈ N ; ǫm ∈ Λǫ(η)}, (4.27)

where ǫm ∈ F denotes the Kronecker sequence (ǫm)n = δmn.

Proposition 4.10. Let η = (ηm)∞m=1 satisfy 0 < ηm+1 ≤ ηm < 1, ηm → 0,
and

c1m
−σ1 ≤ ηm ≤ c2m

−σ2 ∀m ∈ N, (4.28)

with c1, c2 > 0 and σ1 ≥ σ2 > 0. Then there is a constant C > 0 such that

# supp ν ≤ C log+Mǫ(η) ≤ C log#Λǫ(η) ∀ν ∈ Λǫ(η) (4.29)

for all 0 < ǫ ≤ 1, i.e., whenever Λǫ(η) �= ∅.
Proof. By (4.28) and (4.27), due to the definition of Λǫ(η),

ǫ > ηMǫ(η)+1 ≥ c1(Mǫ(η) + 1)−σ1 ,

and therefore Mǫ(η) + 1 ≤ (ǫ/c1)
−1/σ1 . Since ηm ≤ η1 < 1 for all m ∈ N,

we can assume without loss of generality that c2 = 1, possibly at the cost
of decreasing σ2. Then, for all ν ∈ F,

ην =
∏

m∈supp ν

ηνmm ≤
∏

m∈supp ν

m−νmσ2 ≤ [(# supp ν)!]−σ2 .

We note that, by Stirling’s approximation, (x+1)τ = o(⌈τ log x⌉!) for any
τ > 0 as x → ∞. Indeed, abbreviating n := ⌈τ log x⌉, since n! ≥

√
2πnne−n,

(x+ 1)τ

⌈τ log x⌉! ≤
1√
2π

eτ log x+n−n logn → 0, x → ∞.

Consequently, also (⌈τ log x⌉!)−1 = o((x+ 1)−τ ).
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Suppose that ν ∈ F with # supp ν ≥ (1 + σ1/σ2) logMǫ(η). Then, by the
above estimates with x = Mǫ(η) and τ = 1 + σ1/σ2,

ην ≤
(⌈(

1 +
σ1
σ2

)
logMǫ(η)

⌉
!

)−σ2

= o
(
(Mǫ(µ) + 1)−σ1−σ2

)
= o(ǫ(σ1+σ2)/σ1) = o(ǫ).

The o(·) is with respect to Mǫ(η) → ∞, which by (4.27) is equivalent to
ǫ → 0. Therefore, there is an ǫ0 > 0 such that, for all 0 < ǫ ≤ ǫ0, # supp ν ≥
(1 + σ1/σ2) logMǫ(η) implies ην < ǫ. Equivalently,

# supp ν ≤
(
1 +

σ1
σ2

)
logMǫ(η) ∀ν ∈ Λǫ(η).

As there are only finitely many distinct sets Λǫ(η) with ǫ > ǫ0, this estimate
holds for all ǫ > 0, with a larger constant and log+(n) := max(log(n), 0)
in place of log(n) to accommodate Mǫ(η) = 0. The second part of (4.29)
follows using the observation that Mǫ(η) ≤ #Λǫ(η) since the Kronecker
sequences (ǫm)n = δmn are in Λǫ(η) for m = 1, . . . ,Mǫ(η).

Numerical construction

By Proposition 4.10, any ν ∈ Λǫ(η) for η = (ηm)∞m=1 satisfying (4.28) can
be stored in O(log#Λǫ(η)) memory in the form

{(m, νm) ; m ∈ supp ν}, (4.30)

assuming that an arbitrary integer can be stored in a single storage loca-
tion. Therefore, the total memory required to store the full set Λǫ(η) is
of the order #Λǫ(η) log#Λǫ(η). We show how Λǫ(η) can be constructed in
O(#Λǫ(η) log#Λǫ(η)) time.
For any sequence c = (cm)∞m=1, we define the translation

τ1c := (cm+1)
∞
m=1. (4.31)

Furthermore, we define the concatenation of integers with subsets of F. For
any n ∈ N0 and Λ ⊂ F,

[n,Λ] := {ν ∈ F ; ν1 = n, τ1ν ∈ Λ} = {[n, ν] ; ν ∈ Λ}, (4.32)

where [n, ν] := (n, ν1, ν2, . . .). We observe that

Λǫ(η) =

Nǫ(η)⊔

n=0

[n,Λǫη−n
1

(τ1η)] (4.33)

with

Nǫ(η) := max {m ∈ N0 ; η
n
1 ≥ ǫ} =

⌊
log ǫ

log η1

⌋
. (4.34)
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404 C. Schwab and C. J. Gittelson

This suggests a recursive construction of Λǫ(η). The precise algorithm is
given in Construct(η, ǫ).
We store indices ν ∈ F in the sparse form (4.30). We append to each

ν ∈ Λǫ(η) the value η
ν , which we compute during the construction of Λǫ(η).

In the concatenation [n,Λδ(τ1η)], these values are updated by

η[n,ν] = ηn1 (τ1η)
ν , ν ∈ Λδ(τ1η), (4.35)

where (τ1η)
ν is known from the construction of Λδ(τ1η) for all ν ∈ Λδ(τ1η).

Construct(η, ǫ) �→ Λǫ(η)

if η1 < ǫ then
if ǫ > 1 then

return ∅
else

return {0}
end

end

N ←−
⌊
log ǫ

log η1

⌋

for n = 0, 1, . . . , N do
Λn ←− Construct(τ1η, ǫη

−n
1 )

Λn ←− [n,Λn]
end

Λ ←−
N⊔

n=0

Λn

return Λ

Lemma 4.11. For any ǫ > 0 and any η satisfying the assumptions of
Proposition 4.10, Construct(η, ǫ) constructs Λǫ(η) at a computational cost
of O(#Λǫ(η) log#Λǫ(η)).

Proof. It is clear from (4.33) that Construct(η, ǫ) does construct Λǫ(η).
Due to the sparse storage format (4.30), concatenation [0, ν] of ν ∈ F with
zero does not involve any work. Therefore, each index ν ∈ Λǫ(η) is con-
structed in # supp ν identical steps. The union operations can be performed
in constant time, for example, with a linked list data structure. The claim
follows since # supp ν = O(log#Λǫ(η)) by Proposition 4.10.

Remark 4.12. For the construction of a sparse tensor product similar to
(4.15), we need not only one index set Λǫ(η), but a hierarchical sequence of
such sets. For a sequence of thresholds

ǫ0 ≥ ǫ1 ≥ · · · ≥ ǫL = ǫ > 0, (4.36)
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we use the index sets Λk := Λǫk(η), which satisfy

∅ =: Λ−1 ⊆ Λ0 ⊆ Λ1 ⊆ · · · ⊆ ΛL = Λǫ(η). (4.37)

The detail spaces (4.13) induced by (4.37) are WΓ
k = 〈Λk \ Λk−1〉. Their

construction requires the partitioning of Λǫ(η) into

Λǫ(η) =

L⊔

k=0

Λk \ Λk−1. (4.38)

This can be done after constructing Λǫ(η) by sorting the indices ν ∈ Λǫ(η)
with respect to the values ην , which are computed during the construction of
the index set using the recursion (4.35). Once sorted, the indices ν are easily
assigned to the partitions Λk \ Λk−1 by comparing ην to ǫk. Alternatively,
for a parameter γ > 0 as in Section 4.1, the thresholds ǫ0, . . . , ǫL−1 can be
chosen such that #Λk = ⌊2γk⌋ for k = 0, . . . , L − 1. The total work is of
order O(#Λǫ(η) log#Λǫ(η) + L) as ǫ → 0 or L → ∞.

Remark 4.13. The stochastic Galerkin matrix has the form (2.81), i.e.,
the Legendre coefficients of the Galerkin projection ûL satisfy a discretized
version of the system of equations (2.88), which has direct dependencies
between indices ν, ν̄ ∈ Λǫ(ν) that are identical in all dimensions but one,
and differ by one in this dimension. We call ν and ν̄ neighbours if there is an
m̄ ∈ N such that |νm− ν̄m| = δmm̄. Fast access to the neighbours in Λǫ(η) of
ν ∈ Λǫ(η) is crucial to solving the Galerkin system. The neighbourhood data
are stored efficiently in a directed graph, in which there is an edge from ν to
ν̄ if there is an m̄ ∈ supp ν such that ν̄ = ν− ǫm̄, where ǫm̄ is the Kronecker
sequence (ǫm̄)m = δmm̄. Then there are exactly # supp ν edges starting at
ν ∈ Λǫ(η). It is useful to label each edge by the appropriate m̄ ∈ N. The
routine Construct(η, ǫ) can be extended to compute the neighbourhood
relations during the construction of Λǫ(η) using the observation that ν and
ν̄ are neighbours as above if and only if, at a call of Construct at recursion
depth m̄, ν and ν̄ are constructed by appending n and n − 1, respectively,
to the same index ν̃ ∈ F, for some n ∈ N, and all subsequent additions are
the same.

Choice of parameters

The preceding sections leave open the choice of η = (ηm)∞m=1. Due to
Theorem 4.2, ην should approximate ‖uν‖H1+τ (D) for the unknown u and
some 0 ≤ τ ≤ 1; see Remark 4.6. A reasonable choice is

ηm =
αm

ā−
‖ϕm‖W τ,∞(D), m ∈ N, (4.39)

using the notation from Section 2.3. We refer to Bieri et al. (2009) for
numerical experiments with this and other choices of ηm and τ = 0. Better
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406 C. Schwab and C. J. Gittelson

a priori choices of ηm may be obtainable from sharper a priori bounds on
‖uν‖H1+τ (D).
As mentioned in Remark 4.12, the thresholds ǫ0, . . . , ǫL−1 can be chosen

such that #Λk = ⌊2γk⌋ for k = 0, . . . , L − 1 with a parameter γ > 0 as in
Section 4.1.

4.3. Sparse tensor stochastic collocation

Stochastic collocation is an alternative to the stochastic Galerkin method.
It is also based on a polynomial approximation in the parameter domain.
However, the Galerkin projection is replaced by a suitable interpolation
operator. A sparse tensor product construction similar to that presented in
Section 4.1 is possible in this setting.
We consider the diffusion equation with a stochastic diffusion coefficient,

as in Section 2.3. The following discussion is based primarily on Bieri
(2009a, 2009b).

Stochastic collocation

We recall the spaces of polynomials on Γ = [−1, 1]∞ from Section 4.1,

〈Λ〉 =
{
v(y) =

∑

ν∈Λ
vνLν(y) ; (vν)ν∈Λ ∈ ℓ2(Λ)

}
(4.40)

for Λ ⊂ F, where Lν is the tensor product Legendre polynomial from Sec-
tion 2.2. If Λ is finite and monotonic in the sense that if µ ∈ Λ, then Λ also
contains all ν ∈ F with νm ≤ µm for all m ∈ N, then

〈Λ〉 =
{
v(y) =

∑

ν∈Λ
vνy

ν ; (vν)ν∈Λ ∈ RΛ

}
. (4.41)

Let V Γ
k := 〈Λk〉, k ∈ N0, for a nested sequence of finite monotonic index

sets

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk ⊂ Λk+1 ⊂ · · · ⊂ F. (4.42)

We assume that for each k ∈ N0, there is a finite set

Yk = {yki ; i = 1, . . . , NΓ
k } ⊂ Γ

and an interpolation operator

Ik : RNΓ
k → V Γ

k , (Ik(ai)N
Γ
k

i=1)(y
k
i ) = ai ∀i = 1, . . . , NΓ

k , ∀(ai)N
Γ
k

i=1 ∈ RNΓ
k .

(4.43)
These interpolation operators extend to maps

Ik : C(Γ) → V Γ
k , (Ikf)(yki ) = f(yki ) ∀i = 1, . . . , NΓ

k , ∀f ∈ C(Γ),
(4.44)
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which we assume to be the identity on V Γ
k , i.e., Ik is a projection of C(Γ)

onto V Γ
k .

Example 4.14. Let p ∈ F and

Λp := {ν ∈ F ; νm ≤ pm ∀m ∈ N}. (4.45)

For each m ∈ N, let (y
(m)
i )pmi=0 ⊂ [−1, 1] be an arbitrary set of nodes. The

corresponding Lagrange polynomials are

ℓ
(m)
i (z) =

∏
j �=i(z − yj)∏
j �=i(yi − yj)

, z ∈ [−1, 1], i = 1, . . . , pm + 1. (4.46)

In particular, ℓ
(m)
1 = 1 if pm = 0. Nodes on Γ = [−1, 1]∞ are given by

Yp :=
{
(y

(m)
im

)∞m=1 ; 0 ≤ im ≤ pm ∀m ∈ N
}
⊂ Γ. (4.47)

The tensor product Lagrange polynomials are

ℓy =
∞⊗

m=1

ℓ
(m)
im

∈ 〈Λp〉, y = (y
(m)
im

)∞m=1 ∈ Yp. (4.48)

By construction, they satisfy

ℓy(z) = δyz ∀y, z ∈ Yp. (4.49)

Consequently, the Lagrange polynomials are linearly independent, and since

#Yp = #Λp =
∞∏

m=1

(pm + 1) =
∏

m∈suppp

(pm + 1), (4.50)

(ℓy)y∈Yp
spans 〈Λp〉. Therefore, the interpolation operator (4.44) has the

form

(Ipf)(z) =
∑

y∈Yp

f(y)ℓy(z), f ∈ C(Γ), (4.51)

and it is a projection of C(Γ) onto 〈Λp〉.
The product grids from Example 4.14 are prohibitive for high-dimensional

parameter domains since by (4.50), #Yp grows exponentially in # suppp.
For each dimension m ∈ N, we consider a non-decreasing sequence of

polynomial degrees (q
(m)
k )∞k=0 ⊂ N0, q

(m)
k+1 ≥ q

(m)
k . For every m ∈ N and

k ∈ N0, let (y
(m)
k,j )

q
(m)
k
j=0 be a set of nodes in [−1, 1], and define the interpolation

operator

(I(m)
k f)(ξ) =

q
(m)
k∑

j=0

f(y
(m)
k,j )

∏
i �=j(ξ − y

(m)
k,i )

∏
i �=j(y

(m)
k,j − y

(m)
k,i )

, f ∈ C([−1, 1]). (4.52)
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Furthermore, we define the univariate differences

∆
(m)
0 := I(m)

0 , ∆
(m)
k := I(m)

k − I(m)
k−1, k ∈ N. (4.53)

Then the interpolation operator Ip from (4.51) in Example 4.14 with pm =

q
(m)
km

can be expanded as

Ip =
∞⊗

m=1

I(m)
km

=
∑

0≤nm≤km

∞⊗

m=1

∆(m)
nm

. (4.54)

We approximate Ip by truncating the sum in the last term of (4.54).

We illustrate this construction for pm = q
(m)
k if m ≤ M and pm = 0 if

m ≥ M + 1. The parameter M truncates the dimensions of the parameter
domain Γ, and k determines the order of interpolation in the dimensions

m ≤ M . Note that q
(m)
k may still depend on m, even though k is fixed. For

this p, (4.54) can be written as

IM,k := Ip =
∑

0≤n1,...,nm≤k

∆(1)
n1

⊗· · ·⊗∆(M)
nM

⊗I(M+1)
0 ⊗I(M+2)

0 ⊗· · · . (4.55)

The corresponding Smolyak interpolation operator is

ÎM,k :=
∑

0≤n1+···+nM≤k

∆(1)
n1

⊗ · · · ⊗∆(M)
nM

⊗ I(M+1)
0 ⊗ I(M+2)

0 ⊗ · · · . (4.56)

Inserting (4.53), we arrive at the representation

ÎM,k =
∑

0≤|n|≤k

(−1)k−|n|
(
M − 1

k − |n|

)
I(1)
n1

⊗· · ·⊗I(M)
nM

⊗I(M+1)
0 ⊗I(M+2)

0 ⊗· · · ,

(4.57)
where |n| = n1 + · · ·+ nM .

Remark 4.15. By definition, the Smolyak interpolation operator maps
into 〈Λ̂M,k〉 for

Λ̂M,k :=
⋃

0≤|n|≤k

{ν ∈ F ; νm ≤ q(m)
nm

, 1 ≤ m ≤ M, νm = 0, m ≥ M}.

(4.58)

Let ν ∈ Λ̂M,k. For any n = (n1, . . . , nM ) with |n| ≥ k + 1, there is an

m ≤ M for which νm ≤ q
(m)
nm−1, and consequently

(
∆

(1)
n1 ⊗· · ·⊗∆

(M)
nM

)
yν = 0

for all y ∈ [−1, 1]M since I(m)
nm yνmm = I(m)

nm−1y
νm
m = yνmm . As the difference of

IM,k and ÎM,k is merely a sum of such operators, ÎM,k coincides with IM,k

on 〈Λ̂M,k〉, and the latter acts as the identity on this space. Therefore, the

Smolyak interpolation operator ÎM,k is a projection of C(Γ) onto 〈Λ̂M,k〉,
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though it is generally not actually an interpolation operator in the sense
of (4.51).

As in (2.26), we consider product distributions

µ :=
∞⊗

m=1

µm (4.59)

on Γ = [−1, 1]∞, where each µm is a probability measure on [−1, 1].
For every m ∈ N and any q ∈ N0, the (q + 1)-point Gaussian quadra-

ture rule for the distribution µm consists of abscissae (ξj)
q
j=0 in [−1, 1] and

weights (wj)
q
j=0 such that

∫ 1

−1
f(ξ)µm(dξ) ≈

q∑

j=0

wjf(ξj), (4.60)

and (4.60) is exact if f is a polynomial of degree at most 2q+1. The points
(ξj)

q
j=0 are the roots of the orthonormal polynomial of degree q + 1 with

respect to the measure µm.

For a parameter γ to be specified below, we define (y
(m)
k,j )

⌈γk⌉
j=0 as the ab-

scissae of the (⌈γk⌉ + 1)-point Gaussian quadrature rule for the measure

µm. In this case, we have q
(m)
k = ⌈γk⌉ in the construction of Smolyak in-

terpolation operators Îk,M from (4.56). By Bieri (2009b, Lemma 6.2.2), the

operator Îk,M based on these nodes uses

NΓ
k =

(⌈γk⌉+ 2M

2M

)
(4.61)

collocation points in Γ.

Sparse tensorization

Let V D
ℓ ⊂ V = H1

0 (D) denote the finite element spaces from Section 4.1,
and let PD

ℓ be the orthogonal projection in H1
0 (D) onto V D

ℓ . We recall
that ND

ℓ := dimV D
ℓ � 2ℓd, and these spaces satisfy the approximation

property (4.1).
For parameters M and L, the stochastic collocation solution for the

Smolyak interpolation operator ÎM,L and the finite element space V D
L is

uM,L := (ÎM,L ⊗ PD
L )u. (4.62)

It can be expanded as

uM,L =
∑

0≤k,ℓ≤L

(ÎM,k − ÎM,k−1)⊗ (PD
ℓ − PD

ℓ−1)u. (4.63)

This approximation can be computed by solving a linear system in V D
L for
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410 C. Schwab and C. J. Gittelson

each collocation point of ÎM,L. Therefore, a measure for the computational
cost of computing uM,L is the product NL := NΓ

LN
D
L of the number of

collocation points and the dimension of the finite element space.
The sparse tensor approximation can be derived by truncating the sum in

(4.63), analogously to the sparse tensor product construction in Section 4.1,
as

ûM,L :=
∑

0≤k+ℓ≤L

(ÎM,k − ÎM,k−1)⊗ (PD
ℓ − PD

ℓ−1)u. (4.64)

A (rough) measure for the computational cost of obtaining ûM,L is the total
number of degrees of freedom, i.e.,

N̂L :=
∑

0≤k+ℓ≤L

NΓ
k N

D
ℓ , (4.65)

which is significantly smaller than NL due to the geometric growth of NΓ
k

and ND
ℓ . We turn next to the error analysis of this sparse collocation

approximation. We assume that y
(m)
0 = 0 for allm ≥ M+1. This is satisfied

by Gaussian abscissae if the distributions µm are symmetric. All collocation

points in (4.62) and (4.65) are of the form y = (y′, y(M+1)
0 , y

(M+2)
0 , . . .) with

y′ = (ym)m ∈ [−1, 1]M , and thus the diffusion coefficient

a((y′, y(M+1)
0 , y

(M+2)
0 , . . .), x) = ā(x) +

M∑

m=1

ymam(x) +
∞∑

m=M+1

y
(m)
0 am(x)

= ā(x) +
M∑

m=1

ymam(x), (4.66)

am(x) = αmϕm(x), depends only on y′ ∈ [−1, 1]M .
Now let uM ∈ C(Γ;V ) denote the solution of
∫

D
aM (y, x)∇uM (y, x) · ∇v(x) dx =

∫

D
f(x)v(x) dx ∀v ∈ V, ∀y ∈ Γ,

(4.67)
for the truncated series

aM (y, x) = ā(x) +
M∑

m=1

ymam(x), am(x) = αmϕm(x). (4.68)

Since the collocation approximations (4.62) and (4.64) depend only on the
first M dimensions of Γ, we can only expect convergence to uM , not to the
solution u of (4.67) with the exact diffusion coefficient a(y, x). The following
statement is Proposition 6.3.1 from Bieri (2009b).
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Sparse tensor discretizations for sPDEs 411

Theorem 4.16. For any 0 ≤ τ ≤ 1, if γ = τ log 2
rmin−1 , then

‖uM − ûM,L‖L2(Γ,µ;V ) ≤ C‖uM‖C(Σ(Γ,̺);H1+τ (D))N̂
−min

(
rmin−1

1+log 2M
, τ log 2

d

)

L ,
(4.69)

where rmin := min {rm ; m = 1, . . . ,M},

rm := log
(
̺m +

√
1 + ̺2m

)
, 1 < ̺m <

a−
2‖am‖L∞(D)

,

and

Σ(Γ, ̺) :=
M∏

m=1

{c ∈ C ; dist(z, [−1, 1]) ≤ ̺m} ⊂ CM .

Remark 4.17. For comparison, by Bieri (2009b, Remark 6.3.2),

‖uM − uM,L‖L2(Γ,µ;V ) ≤ C‖uM‖C(Σ(Γ,̺);H1+τ (D))N
−
(

d
τ
+ 1+log 2M

rmin−1

)−1

L . (4.70)

Therefore, the sparse tensor approximation ûM,L converges to uM signifi-
cantly faster than the full tensor approximation uM,L as L → ∞.

4.4. The multi-level Monte Carlo finite element method

We regard the multi-level Monte Carlo finite element method as a sparse ten-
sorization of a Monte Carlo method and a standard finite element method.
It is the third example of a class of sparse tensor product discretizations after
stochastic Galerkin in Section 4.1 and stochastic collocation in Section 4.3.

Preliminaries

For a bounded Lipschitz domain D ⊂ Rd and a probability space (Ω,Σ,P),
we consider the stochastic isotropic diffusion equation

−∇ ·
(
a(ω, x)∇u(ω, x)

)
= f(ω, x), x ∈ D, ω ∈ Ω,

u(ω, x) = 0, x ∈ ∂D, ω ∈ Ω
(4.71)

as in Section 2.3. The differential operators in (4.71) are meant with respect
to the physical variable x ∈ D. Here, f is a stochastic source term, and a
is a stochastic diffusion coefficient. We assume there are constants a− and
a+ such that

0 < a− ≤ a(ω, x) ≤ a+ < ∞ ∀x ∈ D, ∀ω ∈ Ω, (4.72)

and a is a strongly measurable map from Ω into L∞(D). We assume ho-
mogeneous Dirichlet boundary conditions in (4.71) only for simplicity. All
of the following can be generalized, for instance to inhomogeneous bound-
ary conditions, or to mixed Dirichlet and Neumann boundary conditions
(Barth, Schwab and Zollinger 2010).
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412 C. Schwab and C. J. Gittelson

For any fixed ω ∈ Ω, the weak formulation in space of (4.71) is to find
u(ω) ∈ H1

0 (D) such that
∫

D
a(ω, x)∇u(ω, x) · ∇v(x) dx =

∫

D
f(ω, x)v(x) dx ∀v ∈ H1

0 (D). (4.73)

The solution u(ω) is well-defined by (4.73) if f(ω) ∈ L2(D). We abbreviate

V := H1
0 (D), ‖v‖V :=

(∫

D
|∇v(x)|2 dx

)1/2

. (4.74)

Then the Lax–Milgram lemma implies existence and uniqueness of u(ω) ∈
V , and

‖u(ω)‖V ≤
(
ess inf
x∈D

a(ω, x)
)−1

‖f(ω)‖V ′ ≤ 1

a−
‖f(ω)‖V ′ . (4.75)

Consequently, if f ∈ Lr(Ω;V ′) for any 1 ≤ r ≤ ∞, then u ∈ Lr(Ω;V ) and

‖u‖Lr(Ω,V ) ≤
1

a−
‖f‖Lr(Ω,V ′). (4.76)

We next turn to finite element discretizations of (4.71). Let T0 be a
regular partition of D into simplices K, and let {Tℓ}∞ℓ=0 be the sequence of
partitions obtained by uniform mesh refinement. We set

Vℓ = Sp(D, Tℓ) = {u ∈ C0(D̄) ; u|K ∈ Pp(K) ∀K ∈ Tℓ}, (4.77)

where Pp(K) denote the space of polynomials of degree at most p on K.
We denote the mesh width by

hℓ := max {diamK ; K ∈ Tℓ} = 2−ℓh0. (4.78)

The dimension of Vℓ is

Nℓ := dimVℓ = O(h−d
ℓ ) = O(2ℓd). (4.79)

For any ω ∈ Ω and any ℓ ∈ N0, let uℓ(ω) be the Galerkin projection of
u(ω) onto Vℓ. By (4.73), uℓ(ω) is the unique element of Vℓ such that
∫

D
a(ω, x)∇uℓ(ω, x) · ∇vℓ(x) dx =

∫

D
f(ω, x)vℓ(x) dx ∀vℓ ∈ Vℓ. (4.80)

The Lax–Milgram lemma implies existence and uniqueness of uℓ(ω), and as
in (4.75),

‖uℓ(ω)‖V ≤ 1

a−
‖f(ω)‖L2(D) ∀ω ∈ Ω. (4.81)

Furthermore, uℓ(ω) is a quasi-optimal approximation of u(ω) in Vℓ,

‖u(ω)− uℓ(ω)‖V ≤ Ca inf
vℓ∈Vℓ

‖u(ω)− vℓ‖V ∀ω ∈ Ω, (4.82)
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where Ca =
√

a+
a−

.

We define the scales of Hilbert spaces

Xs := V ∩H1+s(D), Ys := V ′ ∩H−1+s(D), s ≥ 0. (4.83)

Then Xs ⊃ Xt and Ys ⊃ Yt whenever s < t. Let s∗ ≥ 0 such that f(ω) ∈ Ys
and assume that a(ω) ∈ W s,∞(D) for P-a.e. ω ∈ Ω. We also assume

‖u(ω)‖Xs ≤ Cs(a)‖f(ω)‖Ys ∀s ∈ [0, s∗] (4.84)

for a constant Cs(a) depending continuously on a−, a+ and ‖a(ω)‖W s,∞(D).
If 0 < s ≤ p, we have the approximation property

inf
vℓ∈Vℓ

‖w − vℓ‖V ≤ CI2
−sℓh0‖w‖Xs ∀w ∈ Xs, (4.85)

with a constant CI independent of ℓ. Consequently, if in addition s ≤ s∗,

‖u(ω)− uℓ(ω)‖V ≤ CaCIh02
−sℓ‖u(ω)‖Xs . (4.86)

Computation of the mean field

Let (ui)∞i=1 be independent copies of the solution u of (4.71). The sample
mean with M samples is the V -valued random variable

EM [u] :=
1

M

M∑

i=1

ui. (4.87)

As in Theorem 1.12, the sample mean EM [u] converges to the mean E[u] in
probability, with a rate of M−1/2.

Proposition 4.18. If f ∈ L2(Ω;V ′), then for all η > 0 and all M ∈ N,

P
(
‖E[u]− EM [u]‖V ≥ η

)
≤ 1

η2M
‖u‖2L2(Ω;V ). (4.88)

Proof. By Chebyshev’s inequality, using that (ui)Mi=1 are uncorrelated,

P
(
‖E[u]− EM [u]‖V ≥ η

)
≤ 1

η2
Var(EM [u]) =

1

η2M
Var(u).

The claim follows since Var(u) ≤ ‖u‖2L2(Ω;V ).

Equation (4.88) is equivalent to

P

(
‖E[u]− EM [u]‖V ≤

‖u‖L2(Ω;V )√
ǫM

)
≥ 1− ǫ ∀ǫ > 0. (4.89)

In this sense, EM [u] converges to E[u] in V at rate M−1/2, with probability
1− ǫ, which can be chosen arbitrarily close to one.
For all i ∈ N and any ℓ ∈ N0, let uiℓ denote the Galerkin projection of

ui onto Vℓ. The Monte Carlo finite element (MC–FE) method consists of
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414 C. Schwab and C. J. Gittelson

approximating E[u] by

EM [uℓ] =
1

M

M∑

i=1

uiℓ (4.90)

for a single discretization level ℓ.

Theorem 4.19. If f ∈ L2(Ω;Ys) and a ∈ L∞(Ω;W s,∞(D)) with 0 < s ≤
min(p, s∗), then for any ǫ > 0,

P

[
‖E[u]− EM [uℓ]‖V ≤

(
1√
ǫM

+ Cs(a)CaCIh02
−sℓ

)
‖f‖L2(Ω;Ys)

]
≥ 1− ǫ.

(4.91)

Proof. The statement follows from Proposition 4.18, (4.86) and (4.84) by
splitting the error as

‖E[u]− EM [uℓ]‖V ≤ ‖E[u]− EM [u]‖V + ‖EM [u]− EM [uℓ]‖V
and using linearity of EM . By the assumption a ∈ L∞(Ω;W s,∞(D)), the
constant Cs(a) in (4.84) is independent of ω.

Remark 4.20. The optimal choice of sample size M versus discretiza-
tion level ℓ is reached when the statistical and discretization errors are
equilibrated. This is the case when ǫ−1/2M−1/2 = 2−sℓ, or equivalently,
M = 22sℓǫ−1, with some rounding strategy. Since Nℓ = O(2ℓd), if the com-
putational cost of computing a sample of uiℓ is estimated as Nℓ, then the
total cost of reaching a tolerance C2−sℓ with probability 1−ǫ by the MC–FE
method is O(MNℓ), which is equal to O(2ℓ(2s+d)ǫ−1).

In the multi-level Monte Carlo finite element (MLMC–FE) method, the
multi-level splitting of the finite element space VL is used to obtain a hier-
archy of discretizations which are sampled with level-dependent MC sample
sizes Mℓ. Specifically, for any L ∈ N0, setting u−1 := 0, we write, using the
linearity of the expectation operator E[·],

E[uL] = E

[
L∑

ℓ=0

(uℓ − uℓ−1)

]
=

L∑

ℓ=0

E[uℓ − uℓ−1]. (4.92)

Each of the remaining expectations can be approximated by a different
number of samples. This leads to the approximation

EL[u] :=
L∑

ℓ=0

EMℓ
[uℓ − uℓ−1] (4.93)

of E[u], with EMℓ
defined as in (4.87).
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Theorem 4.21. If f ∈ L2(Ω;Ys) and a ∈ L∞(Ω;W s,∞(D)) with 0 < s ≤
min(p, s∗), then there is a constant C depending only on a, D and s such
that, for any ǫ > 0 and any L ∈ N0,

P

[
‖E[u]−EL[u]‖V ≤ C

(
hsL +

√
L+ 1

ǫ

L∑

ℓ=0

M
−1/2
ℓ hsℓ

)
‖f‖L2(Ω;Ys)

]
≥ 1− ǫ.

Proof. Adding and subtracting E[uL], we have

‖E[u]− EL[u]‖V ≤ ‖E[u]− E[uL]‖V +
L∑

ℓ=0

‖E[uℓ − uℓ−1]− EL[uℓ − uℓ−1]‖V .

Using (4.86), the first term is bounded by

‖E[u]−E[uL]‖V ≤ E[‖u− uL‖V ] ≤ CaCIh
s
LE[‖u‖Xs ] ≤ CaCIh

s
L‖u‖L2(Ω;Xs).

We apply (4.89) with ǫℓ > 0 to each of the remaining terms. Thus, with
probability 1− ǫ0 − · · · − ǫL,

L∑

ℓ=0

‖E[uℓ − uℓ−1]− EL[uℓ − uℓ−1]‖V ≤
L∑

ℓ=0

1√
ǫℓMℓ

‖uℓ − uℓ−1‖L2(Ω;V ).

Furthermore, due to (4.86),

‖uℓ − uℓ−1‖L2(Ω;V ) ≤ 3CaCIh
s
ℓ‖u‖L2(Ω;Xs).

The claim follows with the choice ǫℓ := (L+ 1)−1ǫ, using (4.84).

Remark 4.22. Theorem 4.21 holds for arbitrary choices of Mℓ in (4.93).
For any ǫ > 0, we consider

Mℓ :=
⌈
22s(L−ℓ)(L+ 1)3ǫ−1

⌉
, ℓ = 0, 1, . . . , L. (4.94)

Then Theorem 4.21 states that, with probability 1− ǫ,

‖E[u]− EL[u]‖V ≤ 2ChsL‖f‖L2(Ω;Ys). (4.95)

Assuming the availability of an optimal finite element solver such as a full
multigrid method or, for d = 1, a direct solver, the total work required to
compute EL[u] is

L∑

ℓ=0

MℓNℓ ∼ 22sL(L+ 1)3ǫ−1
L∑

ℓ=0

2ℓ(d−2s). (4.96)

In terms of NL = O(2Ld), the computational cost is

L∑

ℓ=0

MℓNℓ �





NL(logNL)
3ǫ−1 if 2s < d,

NL(logNL)
4ǫ−1 if 2s = d,

N
2s/d
L (logNL)

3ǫ−1 if 2s > d.

(4.97)
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Remark 4.23. If 2s ≤ d, the cost (4.97) of the MLMC–FE method is
equivalent to that of the finite element method for solving a single deter-
ministic problem to the same tolerance, up to a logarithmic factor. For
example, if d = 2, the MLMC–FE method exhibits this optimal behaviour
for p = 1 and s = 1. If d = 3, linear complexity is retained up to order
s = 3/2. In the case d = 1, this is only true up to s = 1/2. Already for p = 1
and s = 1, the cost of MLMC–FE in d = 1 is O(N2

L(logNL)
3ǫ−1). This still

compares favourably to the MC–FE method, which requires O(N3
Lǫ

−1) work
to achieve the same accuracy. Generally, if 2s > d, the cost of the MLMC–
FE method is equivalent to the total number

∑
ℓMℓ of Monte Carlo samples,

independently of the dimension of the finite element spaces. Thus the ef-
ficiency of the MLMC–FE method is dominated by the weaker of its two
constituent methods.

The above error analysis of the MLMC–FE method is with respect to con-
vergence in probability. Analogous results also hold when the convergence
in L2(Ω;V ) of the MLMC–FE method is analysed, as in Theorem 1.11. We
refer to Barth et al. (2010) for proofs and numerical experiments.

Approximation of higher moments

We recall some notation from Section 1. For any k ∈ N, we denote the
k-fold Hilbert tensor product of the Hilbert space V by

V (k) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

. (4.98)

Let u(k)(ω) denote the k-fold tensor product u(ω)⊗· · ·⊗u(ω) ∈ V (k). Then,
if u ∈ Lk(Ω;V ),

‖u(k)‖L1(Ω;V (k)) =

∫

Ω
‖u(ω)⊗ · · · ⊗ u(ω)‖V (k)P(dω)

=

∫

Ω
‖u(ω)‖kV P(dω) = ‖u‖kLk(Ω;V ).

(4.99)

The kth moment of u is

Mku := E[u(k)] =

∫

Ω
u(ω)⊗ · · · ⊗ u(ω)︸ ︷︷ ︸

k times

P(dω) ∈ V (k). (4.100)

We use analogous notation for other Hilbert spaces V .
We assume that f ∈ Lr∗(Ω;Ys∗) for some r∗ ≥ 2 and s∗ > 0 such that

(4.84) holds. Also, we assume a ∈ L∞(Ω;W s,∞(D)) for all s ∈ [0, s∗]. The
following regularity property generalizes Theorem 1.6 and is shown in Barth
et al. (2010, Theorem 5.3).
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Theorem 4.24. Under the above assumptions, for all 2 ≤ k ≤ r∗, all
1 ≤ r ≤ r∗/k and every 0 ≤ s ≤ s∗,

‖u(k)‖
Lr(Ω;X

(k)
s )

≤ C‖f (k)‖
Lr(Ω;Y

(k)
s )

≤ C‖f‖kLrk(Ω;Ys)
. (4.101)

We recall the sparse tensor product construction from Section 1.2. Let
(ψℓ

j)(ℓ,j)∈∇ be a wavelet basis of V such that VL is the span of all ψℓ
j with ℓ ≤

L. Then the operator PL on V defined as the restriction to the coordinates
with ℓ ≤ L is a projection onto VL.
Let Qℓ := Pℓ − Pℓ−1 for ℓ ∈ N0, with P−1 := 0, and let Wℓ denote the

range of Qℓ. Then Wℓ is the span of ψℓ
j for all indices j. It complements Vℓ−1

to Vℓ in that Vℓ = Vℓ−1 ⊕ Wℓ, with a direct, but generally not orthogonal
sum.
We recall from (1.36) that the k-fold sparse tensor product with level

L ∈ N0 is given by

V̂
(k)
L :=

∑

0≤ℓ1+···+ℓk≤L

Vℓ1 ⊗ · · · ⊗ Vℓk =
⊕

0≤ℓ1+···+ℓk≤L

Wℓ1 ⊗ · · · ⊗Wℓk ⊂ V (k).

(4.102)

The dimension of V̂
(k)
L is only O(NL(logNL)

k−1), compared to Nk
L for the

full tensor product V
(k)
L .

If a hierarchical basis of the subspaces {Vℓ}∞ℓ=0 ⊂ V satisfying (W1)–
(W5) is explicitly given, the mappings Pℓ can be realized by truncating the
corresponding expansions: see (1.38) and (1.39). These truncations provide
numerically computable, stable and quasi-optimally accurate projections

onto V̂
(k)
L . They are defined by

P̂
(k)
L :=

∑

0≤ℓ1+···+ℓk≤L

Qℓ1 ⊗ · · · ⊗Qℓk . (4.103)

This is simply the restriction of an element of V (k), expanded in the ten-
sor product hierarchical basis (ψℓ1···ℓk

j1···jk )(ℓi,ji)∈∇ (assumed to be V -orthogonal

between different levels), to the indices with ℓ1 + · · ·+ ℓk ≤ L.

By Lemma 1.9, the projection P̂
(k)
L is stable on V (k) in the sense that

(1.42) holds. Furthermore, the quasi-interpolant P̂
(k)
L is quasi-optimal (pro-

vided that the basis (ψℓ
j) is V -orthogonal between different levels ℓ). Using

Remark 1.8, for all 0 ≤ s ≤ min(p, s∗), there is a constant C(k, s) > 0 such

that, for all L ∈ N0 and every U ∈ X
(k)
s ,

‖U − P̂
(k)
L U‖V (k) ≤ C(k, s)N

−s/d
L (logNL)

(k−1)/2‖U‖
X

(k)
s

. (4.104)

By Proposition 1.7, the approximation rate in (4.104) is optimal. In terms
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418 C. Schwab and C. J. Gittelson

of the projection P̂
(k)
L , the sparse tensor multi-level Monte Carlo approxi-

mation of the kth moment Mku = E[u(k)] reads

ÊL[u(k)] :=
L∑

ℓ=0

EMℓ

[
P̂

(k)
ℓ u

(k)
ℓ − P̂

(k)
ℓ−1u

(k)
ℓ−1

]
, (4.105)

where EMℓ
is defined as in (4.87), and u−1 := 0. In the case k = 1, (4.105)

reduces to (4.93). The proof of the following statement is analogous to the
proof of Theorem 4.21.

Theorem 4.25. If f ∈ L2k(Ω;Ys) with 0 < s ≤ min(p, s∗), then there
exists a constant C depending only on a, D, s and k such that, for any
ǫ > 0 and any L ∈ N0, with probability 1− ǫ,

‖Mku− ÊL[u(k)]‖V (k) (4.106)

≤ C

(
hsL|log hL|(k−1)/2 +

√
L+ 1

ǫ

L∑

ℓ=0

M
−1/2
ℓ hsℓ |log hℓ|(k−1)/2

)
‖f‖kL2k(Ω;Ys)

.

Remark 4.26. We consider the same choice of Mℓ as in Remark 4.22,

Mℓ :=
⌈
22s(L−ℓ)(L+ 1)3ǫ−1

⌉
, ℓ = 0, 1, . . . , L. (4.107)

Then the error bound (4.106) in Theorem 4.25 becomes

‖Mku− ÊL[u(k)]‖V (k) ≤ 2ChsL|log hL|(k−1)/2‖f‖kL2k(Ω;Ys)
(4.108)

with probability 1−ǫ. Assuming the availability of an optimal finite element
solver, such as a full multigrid method or, for d = 1, a direct solver, since the

dimension of V̂
(k)
ℓ is on the order of Nℓ(logNℓ)

k−1, the total work required

to compute ÊL[u(k)] is

L∑

ℓ=0

MℓNℓ(logNℓ)
k−1 � 22sL(L+ 1)k+2ǫ−1

L∑

ℓ=0

2ℓ(d−2s). (4.109)

In terms of NL = O(2Ld), the computational cost is

L∑

ℓ=0

MℓNℓ(logNℓ)
k−1 �





NL(logNL)
k+2ǫ−1 if 2s < d,

NL(logNL)
k+3ǫ−1 if 2s = d,

N
2s/d
L (logNL)

k+2ǫ−1 if 2s > d.

(4.110)

We refer to Barth et al. (2010) for a proof and further details. They also
provide an error analysis of MLMC methods in the L2(Ω, V (k))-norm.
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APPENDIX

A. Review of probability

A.1. Basic notation

Definition A.1. (probability space) A triple (Ω,Σ,P) is called a prob-

ability space if Ω is a set, Σ is a σ-algebra on Ω, and P is a positive measure
on Σ with P(Ω) = 1. Measurable sets E ∈ Σ are events; P(E) is the
probability of the event E. P is called the probability measure.

Remark A.2.

(i) We shall always have {ω} ∈ Σ for all ω ∈ Ω. This is not implied by
Definition A.1.

(ii) For all E ∈ Σ, P(E) ∈ [0, 1].

(iii) Instead of ‘P-a.e.’, we write ‘P-a.s.’, which stands for ‘P almost surely’.

Consider a finite number n of experiments Ei with random outcomes Ei,
i = 1, . . . , n. To describe them, we assume we are given probability spaces
(Ωi,Σi,Pi), i = 1, . . . , n. Imagine next a new experiment E consisting of
‘mutually independent parallel’ experiments E1, . . . , En. What is a suitable
probability space (Ω,Σ,P) for the mathematical description of E?
Any realization is of the form E ∋ (ω1, . . . , ωn) ∈ Ω1 × · · · × Ωn. If

Ai ∈ Σi, i = 1, . . . , n is the outcome of Ei, then we consider the outcomes
A1, . . . , An of E1, . . . , En (in this order). Hence, A := A1 × · · · × An ⊂
Ω1 × · · · × Ωn is the outcome of E . ‘Independence’ suggests that we choose

P(A) := P1(A1) · · ·Pn(An). The set of all events {A1 × · · · ×An ; Ai ∈ Σi}
is a generator of the product sigma algebra Σ :=

⊗n
i=1Σi. On Σ, the

product measure P = P1⊗· · ·⊗Pn =
⊗n

i=1 Pi is the only measure satisfying
the consistency condition

P(A1 × · · · ×An) =
n∏

i=1

Pi(Ai) ∀Ai ∈ Σi.

Obviously, P is a probability measure on Σ. Hence

(Ω,Σ,P) =

n⊗

i=1

(Ωi,Σi,Pi)

is a probability space for E .

A.2. Random variables, distributions, moments

Definition A.3. (random variable) Let (Ω,Σ,P) be a probability space,
and let (Ω′,Σ′) be any measurable space. A (Ω′,Σ′)-valued random variable

is any (Σ,Σ′)-measurable map X : Ω → Ω′.
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420 C. Schwab and C. J. Gittelson

Remark A.4.

(i) If the measurable space (Ω′,Σ′) is clear from the context, we omit it.

(ii) Images of elementary events ω ∈ Ω, i.e., ω �→ X(ω) ∈ Ω, are referred
to as samples (of X), draws (of X), or realizations (of X).

(iii) Images X(A) of ‘complex’ events A ∈ Σ are called ensembles.

Example A.5.

(1) If (Ω′,Σ′) = (R,B1,R1), we call X a random number resp. a random
variable (RV).

(2) If (Ω′,Σ′) = (Rn,Bn), n > 1, we call X a random vector. We always
assume for Ω′ = Rd that Σ′ = Bn.

(3) If I = [0, T ] is an interval in R and Ω′ = C0(I), we call Ω ∋ ω �→
Xt(ω) ∈ C0(I) a stochastic process; for given fixed ω ∈ Ω, the real-
ization Xt(ω) : I ∋ t �→ Xt(ω) is called a (continuous) sample path

(of X).

(4) We shall be interested in random variables mapping into a function
space Ω′ over a domain D ⊂ Rd, for example the Sobolev space Ω′ =
H1

0 (D). Then a ‘sample’ Ω ∋ ω �→ u(ω) ∈ H1
0 (D) is a random function

or random field. The construction of a σ-algebra Σ′ on such an Ω′ will
be explained below.

Notation A.6. Let X be a (Ω′,Σ′)-valued random variable. For any A′ ∈
Σ′,

{X ∈ A′} := X−1(A′) ∈ Σ, (A.1)

P{X ∈ A′} := P(X−1(A′)). (A.2)

The set {X ∈ A′} is called the ‘event that X lies in A′’, and P{X ∈ A′} is
the probability of this event. Note that

A′ �→ P{X ∈ A′}, A′ ∈ Σ′,

is the image measure of P underX on (Ω′,Σ′). Since P{X ∈ Ω′} = P(Ω) = 1,
it is a probability measure on (Ω′,Σ′).

Random variables are measurable maps between measurable spaces.

Proposition A.7. Let (Ω,Σ), (Ω′,Σ′) be measurable spaces.

(a) A map T : Ω → Ω′ is measurable if and only if

∀A′ ∈ E ′ : T−1(A′) ∈ Σ (A.3)

for some generator E ′ of Σ′.

(b) If T1 : (Ω1,Σ1) → (Ω2,Σ2) and T2 : (Ω2,Σ2) → (Ω3,Σ3) are measur-
able, then T2 ◦ T1 : (Ω1,Σ1) → (Ω3,Σ3) is measurable.
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(c) If T : (Ω,Σ) → (Ω′,Σ′) is measurable. Then, for every measure µ on
Σ the map

A′ �−→ µ(T−1(A′)) =: µ′(A′) (A.4)

is a measure µ′ on (Ω′,Σ′).

Definition A.8. (image measure) The measure µ′ in (A.4) is the image

measure of µ under T , denoted by µ′ = T#(µ), i.e.,

T#(µ)(A
′) := µ(T−1(A′)) ∀A′ ∈ Σ′. (A.5)

Note that

(T2 ◦ T1)#(µ) = T2#(T1#(µ)). (A.6)

Consider now a family ((Ωi,Σi))i∈I of measurable spaces and a family
(Ti)i∈I of maps Ti : Ω → Ωi into Ωi. Then the σ-algebra Σ generated by⋃

i∈I T
−1
i (Σi) in Ω is the smallest σ-algebra such that each Ti is (Σi,Σ)-

measurable. We write

σ(Ti ; i ∈ I) := σ

(
⋃

i∈I
T−1
i (Σi)

)
. (A.7)

Definition A.9. (distribution, law) LetX be a (Ω′,Σ′)-valued random
variable on a probability space (Ω,Σ,P). Then

PX := X#(P) = P ◦X−1 (A.8)

is called the distribution of X (with respect to P) or the law of X.

Hence

PX(A′) = P{X ∈ A′}, A′ ∈ Σ′. (A.9)

Definition A.10. (expectation, mean field) Let X ∈ Rn be a random
variable on a probability space (Ω,Σ,P). Then

E(X) = EP(X) :=

∫

Ω
X P(dω) ∈ Rn (A.10)

is called the expected value or expectation of X.
If X ∈ Ω′ is a random field in a separable Banach space Ω′, then

E(X) = EP(X) =

∫

Ω
X P(dω) ∈ Ω′ (A.10′)

is called the mean field or ensemble average of X and is sometimes denoted
by 〈X〉 when P is clear from the context.

Remark A.11. The Bochner integral in (A.10′) is well-defined if E(‖X‖) <
∞, where ‖·‖ denotes the norm on Ω′.
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422 C. Schwab and C. J. Gittelson

Remark A.12. Let (Ω′,Σ′) = (Rn,Bn). Then, for any Borel-measurable
function f on Rn which is PX -integrable, we have

E(f ◦X) =

∫

Rn

f dPX (A.11)

or

EP(f ◦X) = EPX
(f). (A.11′)

In particular, if X is integrable, f(x) := x gives

E(X) =

∫

Rn

xPX(dx). (A.12)

Definition A.13. (covariance) Let X be an integrable (Rn,Bn)-valued
random variable on a probability space (Ω,Σ,P). Then

Cov(X) := E
(
(X − E[X])(X − E[X])⊤

)
∈ Rn ⊗ Rn = Rn×n (A.13)

is called the covariance of X.

Note that

Cov(X) :=

∫

Rn

(x− E[X])(x− E[X])⊤ dx (A.14)

is finite if and only if X is square-integrable.

Proposition A.14. A real-valued random variable X on a probability
space (Ω,Σ,P) is square-integrable if and only if X is integrable and

Cov(X) = Var(X) < ∞.

Then
Var(X) = E

(
(X − E(X))2

)
= E(X2)− E(X)2

=

∫

R

x2 PX(dx)−
(∫

R

xPX(dx)

)2

.
(A.15)

A.3. Independence

Let (Ω,Σ,P) be a probability space and let I be a set of indices.

Definition A.15. (independent events) A family (Ai)i∈I of events in
Σ is called independent (with respect to P) if, for every non-empty, finite
index set {i1, . . . , in} ⊂ I,

P(Ai1 ∩ · · · ∩Ain) = P(Ai1) · · ·P(Ain). (A.16)

Example A.16. Let (Ωi,Σi,Pi), i = 1, . . . , n, be probability spaces, and
(Ω,Σ,P) =

⊗n
i=1(Ωi,Σi,Pi). For each i, let A′

i ∈ Σi. Then the events

Ai := Ω1 × · · · × Ωi−1 ×A′
i × Ωi+1 × · · · × Ωn, i = 1, . . . , n,

in Ω are independent.
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Definition A.17. (independent families of events) Let (Ei)i∈I be a
family of sets in Σ. It is called independent if (A.16) holds for every non-
empty, finite index set {i1, . . . , in} ⊂ I and every possible choice ofAiν ∈ Eiν ,
ν = 1, . . . , n.

It is clear from the definition that independence is preserved if each Ei is
reduced.

Remark A.18.

(i) Independence is preserved if each Ei is increased to its Dynkin system
δ(Ei) ⊂ Σ.

(ii) If (Ei)i∈I ⊂ Σ is any independent family of ∩-stable subsets Ei of Σ,
then the family (σ(Ei))i∈I is independent.

(iii) If (Ei)i∈I ⊂ Σ is as in (ii), and (Ij)j∈J is a partition of I into mutually
disjoint Ij ⊂ I, then the system

Σj := σ

(
⋃

i∈Ij
Ei
)
, j ∈ J ,

is independent.

A.4. Independent random variables

Let (Ω,Σ,P) be a probability space. By Remark A.18(ii), the family (Ai)i∈I
is independent if and only if the family (Σi)i∈I of σ-algebras is independent,
where Σi = {∅, Ai, A

c
i ,Ω}.

Definition A.19. (independent random variables) A family (Xi)i∈I
of random variables (with i-dependent ranges) is independent if (σ(Xi))i∈I
is independent.

Theorem A.20. Let (Xi)i=1,...,n be (Ωi,Σi)-valued random variables, and
let Gi be a ∩-stable generator of Σi, Ωi ∈ Gi, i = 1, . . . , n. Then (Xi)i=1,...,n

is independent if and only if, for all Qi ∈ Gi, i = 1, . . . , n,

P

(
n⋂

i=1

X−1
i (Qi)

)
=

n∏

i=1

P(X−1
i (Qi)). (A.17)

Proof. Put

Ei := {X−1
i (Qi) ; Qi ∈ Gi}.

Then Ei is a generator of σ(Xi), and, by ∩-stability of Gi, Ei is ∩-stable and
Ω ∈ Ei. By Remark A.18(ii), we must show that independence of (Ei)i∈I is
equivalent to

∀Ei ∈ Ei : P(E1 ∩ · · · ∩ En) = P(E1) ∩ · · · ∩ P(En).
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424 C. Schwab and C. J. Gittelson

This is evident.

Let Xi be (Ωi,Σi)-valued random variables, i = 1, . . . , n, on a single

probability space (Ω,Σ,P), and define the product map

Y := X1 ⊗ · · · ⊗Xn : Ω → Ω1 × · · · × Ωn

by

Y (ω) := (X1(ω), . . . , Xn(ω)), ω ∈ Ω. (A.18)

Then, for each A1 × · · · ×An, Ai ∈ Σi, i = 1, . . . , n,

Y −1(A1 × · · · ×An) = X−1
1 (A1) ∩ · · · ∩X−1

n (An). (A.19)

Hence Y is a (
∏n

i=1Ωi,
⊗n

i=1Σi)-valued random variable on (Ω,Σ,P), and
the distributions PXi , i = 1, . . . , n, and PY are well-defined. We call

PY = PX1 ⊗ · · · ⊗ PXn

the joint distribution of X1, . . . , Xn. It is a probability measure on the
product-measurable space

(
n∏

i=1

Ωi,
n⊗

i=1

Σi

)
=

n∏

i=1

(Ωi,Σi).

Theorem A.21. Finitely many random variables Xi, i = 1, . . . , n, are
independent if and only if their joint distribution is the product of their
marginal distributions, i.e., if

PX1⊗···⊗Xn = PX1 ⊗ · · · ⊗ PXn . (A.20)

Proof. For each i = 1, . . . , n, let Ai ∈ Σi be an event. By (A.19),

PY

(
n∏

i=1

Ai

)
= P

[
Y −1

(
n∏

i=1

Ai

)]
= P

(
n⋂

i=1

X−1
i (Ai)

)
,

and

PXi(Ai) = P(X−1
i (Ai)), i = 1, . . . , n.

Hence, PY is the measure of the PXi if and only if, for any Ai ∈ Σi,

PY (A1 × · · · ×An) = PX1(A1) · · ·PXn(An).

This is equivalent to

P

(
n⋂

i=1

X−1
i (Ai)

)
=

n∏

i=1

P(X−1
i (Ai)) ∀Ai ∈ Σi, i = 1, . . . , n.

By Theorem A.20, (A.17), X1, . . . , Xn are independent.
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A.5. Infinite products of probability spaces

We saw that the proper model for the description of n < ∞ indepen-
dent experiments with random outcome is the product probability space
(Ω,Σ,P) =

⊗n
i=1(Ωi,Σi,Pi).

We now consider the case where we have an infinite family E = (En)∞n=1

of ‘independent’, ‘random’ experiments. Each experiment is described by a
probability space (Ωn,Σn,Pn), n = 1, 2, . . . . We build a probability space
to describe E . It should satisfy the following conditions.

(1) Each elementary event ω ∈ Ω is a sequence (ωn)
∞
n=1 of elementary

events ωn ∈ Ωn, i.e.,

Ω =

∞∏

n=1

Ωn = Ω1 × Ω2 × · · · .

(2) If A1 ∈ Σ1, . . . , An ∈ Σn are possible outcomes at the first n experi-
ments, we view the set

A = A1 × · · · ×An × Ωn+1 × Ωn+2 × · · · , n = 1, 2, . . . (A.21)

as that outcome of E which gives A1, . . . , An in the first n experiments
of the (infinite) sequence (Ei)∞i=1 of experiments. Therefore, we require

that A defined in (A.21) satisfies A ∈ Σ and that

P(A) = P1(A1) · · ·Pn(An). (A.22)

The requirements (A.21) and (A.22) and a certain minimum property de-
fine the measure P uniquely. Given an index set I �= ∅ and a family
((Ωi,Σi,Pi))i∈I of probability spaces, for each K ⊆ I we define

ΩK :=
∏

i∈K
Ωi, (A.23)

and we set

Ω := ΩI =
∏

i∈I
Ωi. (A.24)

Note that ΩK is the set of all maps

ωK : K →
⋃

i∈K
Ωi such that ωK(i) ∈ Ωi ∀i ∈ K.

Restricting ωK to J ⊂ K, we get the projection map

pKJ := ΩK → ΩJ . (A.25)

If K = I, we write pJ := pIJ ; if j = {i}, pKi := pK{i}. Then

pLJ = pKJ ◦ pLK , J ⊂ K ⊂ I. (A.26)
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By F = F(I) we denote the set of all finite subsets of I. For each J ∈ F ,
we have

ΣJ :=
⊗

i∈J
Σi, PJ :=

⊗

i∈J
Pi. (A.27)

Definition A.22. (infinite product of σ-algebras) We call the prod-

uct
⊗

i∈I Σi of the family {Σi ; i ∈ I} of σ-algebras the smallest σ-algebra
Σ0 in Ω for which each projection pi is (Σ0,Σi)-measurable, i.e.,

Σ0 =
⊗

i∈I
Σi := σ(pi ; i ∈ I). (A.28)

For all J ∈ F , pJ is (Σ0,ΣJ)-measurable, since, by (A.26), we have pi =
pJi ◦ pJ for all i ∈ J . This allows us to extend (A.28) to

⊗

i∈I
Σi = σ(pi ; i ∈ I) = σ(pJ ; J ∈ F(I)). (A.28′)

We now wish to find a probability measure P on Σ0 such that

P

(
p−1
J

(
∏

i∈J
Ai

))
=
∏

i∈J
Pk(Ai) ∀J ∈ F , ∀Ai ∈ Σi, ∀i ∈ J.

By definition of the image of a measure under a mapping, each pJ(P) of a
set
∏

i∈J Ai has the value

(pJ)#(P)

(
∏

i∈J
Ai

)
=
∏

i∈J
Pi(Ai). (A.29)

For all J ∈ F , the finite product measure PJ in (A.27) is the unique
measure such that (A.29) holds. Does there exist a probability measure P

on Σ0 such that its image under any projection pJ , J ∈ F , equals PJ?

Theorem A.23. There exists a unique measure P on Σ0 =
⊗

i∈I Σi such
that

(pJ)#(P) = PJ ∀J ∈ F(I). (A.30)

P is a probability measure on (Ω,Σ0).

We refer to Bauer (1996) for the proof.
If |I| < ∞, P = PI by (A.30).

Definition A.24. (infinite product measure) The unique probability
measure P on Σ0 from Theorem A.23 is called the product of the measures

(Pi)i∈I and is denoted by
⊗

i∈I Pi. The probability space

(Ω,Σ0,P) =

(
∏

i∈I
Ωi,
⊗

i∈I
Σi,
⊗

i∈I
Pi

)
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is called the product of the probability spaces ((Ωi,Σi,Pi)i∈I) and is denoted
by

(Ω,Σ0,P) =:
⊗

i∈I
(Ωi,Σi,Pi).

Now we can extend Theorem A.21 on independence of random variables
X1, . . . , Xn.

Theorem A.25. A family (Xi)i∈I of random variables is independent if
and only if their joint distribution is the product of the distributions PXi ,
i.e.,

P⊗
i∈I

Xi
=
⊗

i∈I
PXi . (A.31)

Proof. For every ∅ �= J ⊂ I, J ∈ F , let

pJ :
∏

i∈I
Ωi →

∏

j∈J
Ωj

denote the projection, let Y denote the mapping
⊗

i∈I Xi, and let YJ : Ω →∏
j∈J Ωj denote

⊗
j∈J Xj .

Then YJ = pJ ◦ Y , whence it follows that

PYJ
= (pJ)#(PY ),

by transitivity (A.6) of image measures.
Independence of (Xi)i∈I is equivalent to independence of (Xj)j∈J for all

J ∈ F , i.e., by Theorem A.21,

PYJ
=
⊗

j∈J
PXj ∀J ∈ F .

By Theorem A.23, (A.31) is equivalent to

(pJ)#(PY ) =
⊗

j∈J
PXj ∀J ∈ F .

The assertion follows.

Corollary A.26. For any family ((Ωi,Σi,Pi))i∈I of probability spaces,
there exists an independent family (Xi)i∈I of (Ωi,Σi)-valued random vari-
ables Xi on a suitable probability space (Ω,Σ,P) such that

∀i ∈ I : Pi = PXi (A.32)

is the distribution of Xi.

Proof. We choose

(Ω,Σ,P) =
⊗

i∈I
(Ωi,Σi,Pi)
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and

Xj = pj :
∏

i∈I
Ωi → Ωj .

Then, by the definition of product measure P =
⊗

i∈I Pi, Pj is the distribu-
tion of Xj , for all j ∈ I.

The independence of (Xi)i∈I follows from Theorem A.25, since
⊗

i∈I Xi

is the identity map from Ω =
∏

i∈I Ωi onto itself, whence

P⊗
i∈I Xi

= P =
⊗

i∈I
Pi =

⊗

i∈I
PXi .

B. Review of Hilbert spaces

We review several standard notions and definitions of bases in separable
Hilbert spaces to the extent necessary in the present work; among the many
references for this material, we mention in particular Christensen (2008,
2010).

B.1. Basic properties

By H, we denote a real , separable Hilbert space, with norm ‖·‖H and inner
product 〈·, ·〉.
Definition B.1. (Schauder basis) A sequence (ek)

∞
k=1 ⊂ H is called a

(Schauder) basis of H if for any x ∈ H there exists a unique sequence
(ck)

∞
k=1 such that

∥∥∥∥∥x−
n∑

k=1

ckek

∥∥∥∥∥
H

→ 0, n → ∞, (B.1)

or equivalently,

x =
∞∑

k=1

ckek in H. (B.1′)

Proposition B.2. Every separable Hilbert space over R admits a basis
(ek)

∞
k=1. Given any basis (ek)

∞
k=1 of H, there exists a unique sequence

(gk)
∞
k=1 ⊂ H such that

∀f ∈ H : f =
∞∑

k=1

〈f, gk〉ek in H. (B.2)

Then (gk)
∞
k=1 is also a basis of H, called the dual basis. The sequences

(ek)
∞
k=1 and (gk)

∞
k=1 are biorthogonal ,

〈ek, gj〉 = δkj . (B.3)
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We also say (gk)
∞
k=1 is the biorthogonal system for (ek)

∞
k=1.

Definition B.3. (Bessel sequence) (fk)
∞
k=1 ⊂ H is a Bessel sequence if

∃B > 0 ∀f ∈ H :

∞∑

k=1

|〈f, fk〉|2 ≤ B‖f‖2H .

B is called a Bessel bound.

Lemma B.4. (fk)
∞
k=1 ⊂ H is a Bessel sequence with Bessel bound B if

and only if

T : (ck)
∞
k=1 �→

∞∑

k=1

ckfk

is a well-defined, bounded operator from ℓ2(N) into H and ‖T‖ ≤
√
B.

Proof. Assume (fk)k ⊂ H is Bessel and (ck)k ∈ ℓ2(N). To show that T (ck)k
is well-defined, we show that

∑∞
k=1 ckfk converges in H. Let m,n ∈ N,

n > m. Then∥∥∥∥∥

n∑

k=1

ckfk −
m∑

k=1

ckfk

∥∥∥∥∥ =

∥∥∥∥∥

n∑

k=m+1

ckfk

∥∥∥∥∥ = sup
‖g‖=1

∣∣∣∣∣

〈
n∑

k=m+1

ckfk, g

〉∣∣∣∣∣

≤ sup
‖g‖=1

n∑

k=m+1

|ck〈fk, g〉|

≤
(

n∑

k=m+1

|ck|2
)1/2

sup
‖g‖=1

(
n∑

k=m+1

|〈fk, g〉|2
)1/2

≤
√
B

(
n∑

k=m+1

|ck|2
)1/2

.

Since (ck) ∈ ℓ2(N), (
∑n

1 |ck|2)∞n=1 is Cauchy, and thus (
∑n

1 ck fk)
∞
n=1 ⊂ H

is convergent. Therefore T : ℓ2(N) → H is well-defined and bounded with
‖T‖ ≤

√
B. Obviously, T is also linear. Since

∞∑

k=1

|〈f, fk〉|2 = ‖T ∗f‖2ℓ2 ≤ ‖T‖2‖f‖2H ∀f ∈ H,

the claim follows.

Lemma B.5. Let (ek)
∞
k=1 be a basis of H and (gk)

∞
k=1 the associated

biorthogonal system. If (ek)
∞
k=1 is a Bessel sequence with bound B, then

1

B
‖f‖2H ≤

∞∑

k=1

|〈f, gk〉|2 ∀f ∈ H, (B.4)
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and for all finitely supported sequences (ck)
∞
k=1,

1

B

∞∑

k=1

|ck|2 ≤
∥∥∥∥∥

∞∑

k=1

ckgk

∥∥∥∥∥

2

H

. (B.5)

Proof. Let f ∈ H. Since f =
∑∞

k=1〈f, gk〉ek,

‖f‖4H =

∣∣∣∣∣

∞∑

k=1

〈f, gk〉〈ek, f〉
∣∣∣∣∣

2

≤
∞∑

k=1

|〈f, gk〉|2
∞∑

k=1

|〈ek, f〉|2 ≤ B‖f‖2H
∞∑

k=1

|〈f, gk〉|2.

This shows (B.4).
Let (ck)

∞
k=1 be a finitely supported sequence. Then (B.5) follows from

∞∑

k=1

|ck|2 =
∞∑

k=1

∣∣∣∣∣

∞∑

j=1

cj 〈gj , ek〉︸ ︷︷ ︸
δjk

∣∣∣∣∣

2

=
∞∑

k=1

∣∣∣∣∣

〈 ∞∑

j=1

cjgj , ek

〉∣∣∣∣∣

2

≤ B

∥∥∥∥∥

∞∑

j=1

cjgj

∥∥∥∥∥

2

H

.

B.2. Bases of Hilbert spaces

As before, we let H denote a separable Hilbert space.

Definition B.6. (orthonormal basis) A sequence (ek)
∞
k=1 ⊂ H is an

orthonormal system in H if

〈ek, ej〉 = δkj .

It is an orthonormal basis of H if, in addition, it is a basis of H, i.e.

∀x ∈ H :

∥∥∥∥∥x−
n∑

i=1

〈x, ei〉ei
∥∥∥∥∥
H

→ 0, n → ∞, (B.6)

or equivalently,

∀x ∈ H : x =
∞∑

i=1

〈x, ei〉ei in H. (B.6′)

Remark B.7. Any orthonormal system (ek)k ⊂ H is a Bessel sequence
with Bessel constant B = 1.

Proof. Let (ck)k ⊂ ℓ2(N), m,n ∈ N, n > m. Then (
∑n

k=1 ckek)n converges
in H since ∥∥∥∥∥

m∑

k=n+1

ckek

∥∥∥∥∥

2

H

=
m∑

n+1

|ck|2 → 0, m → ∞,
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and we find ∥∥∥∥∥

∞∑

k=1

ckek

∥∥∥∥∥

2

H

=
∞∑

k=1

|ck|2 = ‖c‖2ℓ2(N).

Therefore, for f ∈ H, (ck)k = (〈f, ek〉)k ∈ ℓ2(N) and thus B = 1.

Theorem B.8. For an orthonormal system (ek)k ⊂ H, the following con-
ditions are equivalent:

(a) (ek)k is an orthonormal basis of H,

(b) for all f ∈ H, f =
∑∞

k=1〈f, ek〉ek,
(c) for all f, g ∈ H, 〈f, g〉 =∑∞

k=1〈f, ek〉〈ek, g〉,
(d) for all f ∈ H,

∑∞
k=1|〈f, ek〉|2 = ‖f‖2H (Parseval),

(e) span(ek)
∞
k=1 is dense in H,

(f) 〈f, ek〉 = 0 for all k ∈ N implies f = 0.

Corollary B.9. If (ek)k is an orthonormal basis of H, it coincides with
its biorthogonal basis, and

∀f ∈ H : f =
∞∑

k=1

〈f, ek〉ek.

Theorem B.10. Every separable Hilbert space H has an orthonormal
basis (ek)k.

Proof. Since H is separable, there exists a sequence (fk)
∞
k=1 for which

span(fk)
∞
k=1 is dense in H. We assume, without loss of generality, that for

all n ∈ N, fn+1 /∈ span(fk)
n
k=1. Applying Gram–Schmidt orthogonaliza-

tion to (fk)
∞
k=1, we obtain an orthonormal system (ek)

∞
k=1 ⊂ H such that

span(ek)
n
k=1 = span(fk)

n
k=1 for all n ∈ N. By Theorem B.8, (ek)k is an

orthonormal basis of H.

Example B.11. If H = ℓ2(N), then (δk) = (0, 0, . . . , 0, 1, 0, . . .) is an or-
thonormal basis.

Theorem B.12. Every separable infinite-dimensional Hilbert space H is
isometrically isomorphic to ℓ2(N).

Proof. Let (ek)
∞
k=1 be an orthonormal basis of H. Then, for all (ck) ∈

ℓ2(N),
∑∞

k=1 ckek is convergent. Also,

∀f ∈ H : f =
∞∑

k=1

〈f, ek〉ek.
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If (δk)
∞
k=1 is the orthonormal basis of ℓ2(N) from Example B.11, we define

U : H → ℓ2(N) : U

( ∞∑

k=1

ckek

)
:=

∞∑

k=1

ckδk, (ck)k ∈ ℓ2(N).

Then U : H → ℓ2(N) is well-defined and bijective. Also, for all f ∈ H,
f =

∑
k〈f, ek〉ek and

‖Uf‖2ℓ2(N) =
∥∥∥∥∥

∞∑

k=1

〈f, ek〉δk
∥∥∥∥∥

2

ℓ2(N)

=

∞∑

k=1

|〈f, ek〉|2 = ‖f‖2H .

Theorem B.13. Let (ek)k be an orthonormal basis of a separable Hilbert
space H. Then all orthonormal bases of H are of the form (Uek)

∞
k=1 for a

unitary map U : H → H.

Proof. Let (fk)k be an orthonormal basis of H. Define

U : H → H, U

(
∑

k

ckek

)
=
∑

k

ckfk, (ck)k ∈ ℓ2(N). (B.7)

Then U : H → H is bounded and bijective.
For f, g ∈ H, f =

∑
k〈f, ek〉ek, g =

∑
k〈g, ek〉ek. Then using (B.7),

Theorem B.8 implies

〈U∗Uf, g〉 = 〈Uf, Ug〉

=

〈
∑

k

〈f, ek〉fk,
∑

ℓ

〈g, eℓ〉fℓ
〉

=
∑

k

〈f, ek〉〈g, ek〉 = 〈f, g〉.

Therefore U∗U = I, and since U is surjective by (B.7), U is unitary.
Conversely, if a unitary map U is given, then

〈Uek, Uej〉 = 〈U∗Uek, ej〉 = 〈ek, ej〉 = δkj ,

so (Uek)k is an orthonormal system. Since U is surjective, (Uek)k is an
orthonormal basis of H.

B.3. Tensor products of separable Hilbert spaces

Tensor products are useful in the design of sparse approximation schemes.
We consider tensor products of separable Hilbert spaces and refer to Light
and Cheney (1985), Ryan (2002), Schatten (1943), Grothendieck (1955)
and Kalton (2003) for a general theory of tensor products of Banach spaces.
We follow the construction in Reed and Simon (1980) for separable Hilbert
spaces.
Let H1, H2 be two separable Hilbert spaces. For ϕ1 ∈ H1, ϕ2 ∈ H2, we

denote by ϕ1 ⊗ ϕ2 the conjugate bilinear form on H1 ×H2 defined by

(ϕ1 ⊗ ϕ2)(ϕ1, ψ2) := 〈ψ1, ϕ1〉H1〈ψ2, ϕ2〉H2 ∀ψi ∈ Hi, i = 1, 2.
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Let E denote the space of all finite linear combinations of such bilinear
forms; on E , we define an inner product by

〈ϕ⊗ ψ, η ⊗ µ〉 := 〈ϕ, η〉H1〈ψ, µ〉H2 , ϕ, η ∈ H1, ψ, µ ∈ H2. (B.8)

Proposition B.14. 〈·, ·〉 from (B.8) is well-defined and positive definite.

Proof. To show that 〈·, ·〉 is well-defined, we check that 〈λ, λ′〉 is indepen-
dent of the linear combination of simple tensors used to represent λ and λ′

in E . By linearity and symmetry, it suffices to show that if µ is a finite sum
in E equal to the zero form, then

〈η, µ〉 = 0 ∀η ∈ E .
Let

η =
N∑

i=1

ci(ϕi ⊗ ψi).

Then

〈η, µ〉 =
〈

N∑

i=1

ci(ϕi ⊗ ψi), µ

〉
=

N∑

i=1

ciµ(ϕi, ψi) = 0,

since µ is the zero form. Hence 〈·, ·〉 is well-defined.
Next, we show that 〈·, ·〉 is positive definite. Let

λ =
M∑

k=1

dk(ηk ⊗ µk).

Then

M1 := span {ηk}Nk=1 ⊂ H1, M2 := span {µk}Mk=1 ⊂ H2

are subspaces. Let {ϕj}N1

j=1, {ψℓ}N2
ℓ=1 be orthonormal bases of M1 and M2.

Then we can write each ηk uniquely in terms of the ϕj , and each µk uniquely
via the ψℓ to get

λ =

N1∑

j=1

N2∑

ℓ=1

cjℓ(ϕj ⊗ ψℓ).

We compute

〈λ, λ〉 =
〈
∑

j,ℓ

cjℓ(ϕj ⊗ ψℓ),
∑

i,m

cim(ϕi ⊗ ψm)

〉

=
∑

j,ℓ,i,m

cjℓcim〈ϕj , ϕi〉H1〈ψℓ, ψm〉H2 =
∑

j,ℓ

|cjℓ|2 ≥ 0.

Furthermore, if 〈λ, λ〉 = 0, then cjℓ = 0 for all j, ℓ, hence λ = 0. Thus 〈·, ·〉
is positive definite.

Therefore, E is a pre-Hilbert space with inner product 〈·, ·〉.
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Definition B.15. (tensor product of separable Hilbert spaces) The
tensor product H1 ⊗H2 of H1 and H2 is the completion of E under 〈·, ·〉.
Proposition B.16. If (ϕk)k and (ψℓ)ℓ are orthonormal bases of H1 and
H2, respectively, then the set of all dyadic products (ϕk ⊗ ψℓ)k,ℓ is an or-
thonormal basis of H1 ⊗H2.

Proof. We assume that H1, H2 are infinite-dimensional and separable.
Then (ϕk ⊗ ψℓ)kℓ is an orthonormal set in H1 ⊗ H2, and hence we must
show E ⊂ S := spanH1⊗H2

(ϕk ⊗ ψℓ). Let ϕ⊗ ψ ∈ E . Since (ϕk)k, (ψℓ)ℓ are
bases, we have

ϕ =
∑

k

ckϕk,
∑

k

|ck|2 < ∞, ψ =
∑

ℓ

dℓψℓ,
∑

ℓ

|dℓ|2 < ∞.

Therefore, there exists a vector

µ =
∑

k,ℓ

ckdℓϕk ⊗ ψℓ ∈ S,

and ∥∥∥∥∥ϕ⊗ ψ −
N1∑

k=1

N2∑

ℓ=1

ckdℓϕk ⊗ ψℓ

∥∥∥∥∥ → 0, N1, N2 → ∞.

Let (M1, µ1), (M2, µ2) denote two measure spaces. We assume that
L2(M2, µ1) and L2(M2, µ2) are separable. Further, let (ϕk(x))k, (ϕℓ(y))ℓ
denote orthonormal bases of L2(M1, µ1) and of L2(M2, µ2), respectively.
We show that (ϕk(x)ψℓ(y))kℓ is then an orthonormal basis of L2(M1 ×
M2, µ1 ⊗ µ2). To see this, we assume f(x, y) ∈ L2(M1 ×M2, µ1 ⊗ µ2) and∫

M1×M2

f(x, y)ϕk(x)ψℓ(y) (µ1 ⊗ µ2) d(x, y) = 0 ∀k, ℓ.

By Fubini’s theorem,
∫

M2

(∫

M1

f(x, y)ϕk(x)µ1(dx)

)
ψℓ(y)µ2(dy) = 0.

Since (ψℓ) is an orthonormal basis of L2(M2, µ2), we have
∫

M1

f(x, y)ϕk(x)µ1(dx) = 0, for µ2-a.e. y. (B.9)

Let Sk = {y ∈ M2 ; (B.9) �= 0}. Then µ2(Sk) = 0, and

∀y /∈
⋃

k

Sk :

∫

M1

f(x, y)ϕk(x)µ1(dx) = 0 ∀k.

Therefore, f(x, y) = 0 for all y /∈ ⋃
k Sk, µ1-a.e. x ∈ M1, and conse-

quently f(x, y) = 0 for µ1 ⊗ µ2-a.e. (x, y) ∈ M1 × M2. This implies that
(ϕk(x)ψℓ(y))kℓ is a basis of L2(M1 ×M2, µ1 ⊗ µ2).
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Let

U : ϕk ⊗ ψℓ �→ ϕk(x)ψℓ(y).

Then U maps the orthonormal bases (ϕk)k of L2(M1, µ1) and (ϕℓ)ℓ of
L2(M2, µ2) onto the orthonormal basis (ϕk ⊗ ψℓ) of L

2(M1 ×M2, µ1 ⊗ µ2).
Thus U extends uniquely to a unitary isomorphism

U : L2(M1, µ1)⊗ L2(M2, µ2) → L2(M1 ×M2, µ1 ⊗ µ2).

Note that for f ∈ L2(M1, µ1) and g ∈ L2(M2, µ2),

U(f ⊗ g) = U

(
∑

k

ckϕk ⊗
∑

ℓ

dℓψℓ

)
= U

(
∑

k,ℓ

ckdℓϕk ⊗ ψℓ

)

=
∑

k,ℓ

ckdℓϕk(x)ψℓ(y) = f(x)g(y).

Thus

L2(M1 ×M2, µ2 ⊗ µ2)
U∼= L2(M1, µ1)⊗ L2(M2, µ2).

Also, if (M,µ) is a measure space, and H is a separable Hilbert space
with orthonormal basis (ϕk)k, then we have in H:

∀g ∈ L2(M,µ;H) : g(x) = lim
N→∞

N∑

k=1

(ϕk, g(x))H︸ ︷︷ ︸
=:fk(x)∈L2(M,dµ)

ϕk.

Define

U :
N∑

k=1

fk(x)⊗ ϕk �→
N∑

k=1

fk(x)ϕk.

Then U is well-defined on a dense subset of L2(M,µ)⊗H onto a dense set
in L2(M,µ;H), preserving norms. Thus U extends uniquely to a unitary
operator

U : L2(M,µ)⊗H → L2(M,µ;H).

Theorem B.17. Let (M1, µ1) and (M2, µ2) be measure spaces such that
L2(M1, dµ1) and L2(M2, dµ2) are separable.

(a) There is a unique unitary isomorphism from L2(M1, µ1)⊗ L2(M2, µ2)
to L2(M1 ×M2, µ1 ⊗ µ2) such that f ⊗ g �→ fg.

(b) For any separable Hilbert space H, there exists a unique unitary iso-
morphism from L2(M1, µ1)⊗H to L2(M1, µ1;H) such that f(x)⊗ϕ �→
f(x)ϕ.

(c) There exists a unique unitary isomorphism from L2(M1×M2, µ1⊗µ2)
to L2(M1, µ1;L

2(M2, µ2)) satisfying f(x, y) �→ f(x, ·).
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B.4. Linear operators on Hilbert spaces

Again we denote by H and U real , separable Hilbert spaces, with norms
‖·‖H , ‖·‖U , inner products 〈·, ·〉H , 〈·, ·〉U and associated Borel sets B(H)
and B(U), respectively.
Let L(U,H) denote the Banach space of all bounded linear maps from

U into H. For U = H, we write L(H) = L(H,H). For T ∈ L(H), T ≥ 0
denotes a non-negative, self-adjoint operator, for which 〈h, Th〉H ≥ 0 for all
h ∈ H. Let L+(H) be the set of all such operators,

L+(H) := {T ∈ L(H) ; 〈Tx, x〉 ≥ 0 ∧ 〈Tx, y〉 = 〈x, Ty〉 ∀x, y ∈ H}.
By K(U,H) ⊂ L(U,H) we denote the set of compact linear operators from
U to H.
In building Gaussian measures on Hilbert spaces, we shall be using two

important subsets of L(U,H): the nuclear operators, which are also called
trace-class operators, and the Hilbert–Schmidt operators. We recapitulate
basic properties as needed here and refer to the Appendix of Peszat and
Zabczyk (2007) for a more detailed overview.

Definition B.18. By L1(U,H) ⊂ L(U,H) we denote the subset of nuclear
operators from U to H: T ∈ L(U,H) is nuclear if there exist sequences
{aj}j∈N ⊂ H, {bj}j∈N ⊂ U such that

∑∞
j=1 ‖aj‖H‖bj‖U < ∞ and such that

∀f ∈ U : Tf =

∞∑

j=1

〈f, bj〉Uaj . (B.10)

The set L1(U,H) is a Banach space with norm

‖T‖L1(U,H) := inf

{ ∞∑

j=1

‖aj‖H‖bj‖U ; Tf =
∞∑

j=1

〈f, bj〉Uaj , ∀f ∈ U

}
.

(B.11)
Note that L1(U,H) ⊂ K(U,H) since each T ∈ L1(U,H) can be approxi-
mated in operator norm by a sequence of operators of finite rank.

Lemma B.19. Let T ∈ L1(H) and let {ek}∞k=1 be an orthonormal basis
of H. Then

Tr T =

∞∑

k=1

〈Tek, ek〉H (B.12)

exists and is independent of the particular choice of orthonormal basis.

Definition B.20. We call T ∈ L(U,H) a Hilbert–Schmidt operator (HS
operator) if

∞∑

k=1

‖Tek‖2H < ∞ (B.13)
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for some orthonormal basis (ek)
∞
k=1 of U . We denote the subset of L(U,H)

of HS operators by L2(U,H).

The linear space L2(U,H) of HS operators from U into H is a separable
Hilbert space: its scalar product is defined in terms of the orthonormal basis
(ek)k ⊂ U of U ,

〈S, T 〉HS :=
∞∑

k=1

〈Sek, T ek〉H . (B.14)

We denote by ‖ · ‖HS the corresponding Hilbert–Schmidt norm. For S ∈
L2(U,H) and orthonormal bases (ek)k ⊂ U , (fk)k ⊂ H of U and of H,
respectively, we have

∑

k

‖Sek‖2H =
∑

kj

〈Sek, fj〉2H =
∑

kj

〈ek, S∗fj〉2U =
∑

j

‖S∗fj‖2U .

Therefore we have the following.

Proposition B.21. The HS operator norm ‖ · ‖HS does not depend on
the choice of orthonormal basis for U . Also, S ∈ L2(U,H) if and only if
S∗ ∈ L2(H,U) and ‖S‖L2(U,H) = ‖S∗‖L2(H,U).
Moreover, if (fk)k ⊂ H and (ek)k ⊂ U are orthonormal bases, then the

rank-one operators (fj ⊗ ek)j,k∈N defined by

(fj ⊗ ek)(u) := fj〈ek, u〉U , u ∈ U

are an orthonormal basis of L2(U,H).

We collect further properties of operators in L1 and L2.

Proposition B.22.

(a) For S ∈ L1(U,H) and T ∈ L(H,V ), TS ∈ L1(U, V ) and

‖TS‖L1(U,V ) ≤ ‖S‖L1(U,H)‖T‖L(H,V ).

(b) If S ∈ L(U,H), T ∈ L1(H,V ) then TS ∈ L1(U, V ) and

‖TS‖L1(U,V ) ≤ ‖S‖L(U,H)‖T‖L1(H,V ).

(c) If S ∈ L(U,H) and T ∈ L(H,U), and if either S or T is of trace class,
then TS ∈ L1(U) and Tr(TS) = Tr(ST ).

(d) if S ∈ L(U) and if T ∈ L2(U,H) then TS ∈ L2(U,H) and

‖TS‖L2(U,H) ≤ ‖T‖L2(U,H)‖S‖L(U).

(e) If K(U,H) ⊂ L(U,H) denotes the subset of compact linear operators
from U to H,

L1(U,H) ⊂ L2(U,H) ⊂ K(U,H) ⊂ L(U,H).
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Proof. We show (e): we can write R ∈ L1(U,H) as R =
∑

k bk ⊗ak, where
(ak)k ⊂ U and (bk)k ⊂ H are bases such that

∑
k ‖ak‖U‖bk‖H < ∞ and we

recall that b⊗ a(u) = b〈a, u〉U . Let (en)n ⊂ U denote an orthonormal basis
of U . Then

∑

n

‖Ren‖2H =
∑

n

∥∥∥∥
∑

k

bk〈ak, en〉U
∥∥∥∥
2

H

≤
∑

n

∑

kl

|〈bk, bl〉| |〈ak, en〉U | |〈al, en〉U |

≤
∑

kl

‖bk‖H‖bl‖H
(∑

n

〈ak, en〉2U
)1/2(∑

n

〈al, en〉2U
)1/2

≤
(∑

k

‖bk‖H‖ak‖U
)2

.

Taking the infimum over all bases (ak)k ⊂ U and (bk)k ⊂ H such that∑
k ‖ak‖U‖bk‖H < ∞, we obtain the estimate

‖R‖L2(U,H) ≤ ‖R‖L1(U,H),

which proves L1(U,H) ⊂ L2(U,H).
The next inclusion follows from the fact that the HS norm is a stronger

norm than the operator norm, and that K(U,H) is closed in L(U,H) and
that each HS operator R ∈ L2(U,H) is the limit, in the HS norm, of the
sequence of operators of finite rank,

Tn =
∑

k≤n

fk ⊗ T ∗fk, n ∈ N.

We recall the spectral theorem for compact, self-adjoint operators.

Proposition B.23. For Q ∈ K(H) and Q = Q∗, there exists an orthonor-
mal basis (ek)

∞
k=1 of eigenfunctions of H such that Qek = λkek, and a de-

creasing sequence (λk)k ⊂ R, λ1 ≥ λ2 ≥ · · · ≥ 0 of real, non-negative
eigenvalues which accumulate only at zero. Moreover,

∀x ∈ H : Qx =
∞∑

k=1

λk〈x, ek〉ek,

and if Q ∈ L+
1 (H),

∞ > Tr(Q) =
∞∑

k=1

λk.

We finally add a result which is useful in the context of Karhunen–Loève

expansion of random fields. It should be compared to Theorem B.17.
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Proposition B.24. Let (Ei, Ei), i = 1, 2 be two measurable spaces and
let µi be σ-finite measures on (Ei, Ei), i = 1, 2. Further, let E = E1×E2 and
E := E1 ⊗E2 denote the product space. Then product measure µ = µ1 ⊗ µ2

is σ-finite on (E, E). Further, let U = L2(E1, E1, µ1) and H = L2(E2, E2, µ2)
be separable.
Then an operator R ∈ L(U,H) belongs to L2(U,H) if and only if there

is a kernel K ∈ L2(E, E , µ) such that

∀ψ ∈ U, ξ ∈ E2 : Rψ(ξ) :=

∫

E1

K(η, ξ)ψ(η)µ1(dη). (B.15)

Then

‖R‖2L2(U,H) =

∫

E1

∫

E2

|K(η, ξ)|2µ1(dη)µ2(dξ). (B.16)

Proof. Let (ek)
∞
k=1 be an orthonormal basis of L2(E1, E1, µ1) and let (fk)

∞
k=1

be an orthonormal basis of = L2(E2, E2, µ2). Further, let the operator R be
given by (B.15).
Then the Parseval equality (Theorem B.8(d)) implies

∞∑

n=1

‖Ren‖2H =

∫

E2

(∫

E1

K(η, ξ)en(η)µ1(dη)

)2

µ2(dξ)

=

∫

E2

∫

E1

|K(η, ξ)|2µ(dη)µ2(dξ).

Conversely, assume that R ∈ L2(U,H) and let (en)
∞
n=1 be an orthonor-

mal basis of L2(E1, E1, µ1) and let (fk)
∞
k=1 be an orthonormal basis of

L2(E2, E2, µ2). Define the kernel K(η, ξ) : U ×H → R by

K(η, ξ) :=
∞∑

n=1

∞∑

k=1

〈Ren, fk〉Nen(η)fk(ξ).

C. Review of Gaussian measures on Hilbert spaces

C.1. Measures on metric spaces

For any complete metric space E, denote by B(E) the Borel σ-algebra gen-
erated by all closed or, equivalently, open sets of E.
A random variable in (Ω,Σ,P) with values in E is a mapping X : Ω → E

such that

∀I ∈ B(E) : X−1(I) ∈ Σ.

The law of X is the probability measure X#P on (E,B(E)) defined by

X#P(I) := P(X−1(I)) = P(X ∈ I) ∀I ∈ B(E).
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Proposition C.1. (change of variables) Let X be a random variable
on (Ω,Σ,P) with values in E. Let ϕ : E → R be bounded and B(R)-
measurable. Then∫

Ω
ϕ(X(ω))P(dω) =

∫

E
ϕ(x)X#P(dx). (C.1)

Proof. We show (C.1) for ϕ = 1I , I ∈ B(E). In this case,

ϕ(X(ω)) = 1
X−1(I)︸ ︷︷ ︸

∈Σ

(ω), ω ∈ Ω.

Hence,
∫

Ω
ϕ(X(ω))P(dω) = P(X−1(I)) = X#P(I) =

∫

E
ϕ(x)X#P(dx).

The general case follows by approximating ϕ(x) by simple functions.

C.2. Gaussian measures on separable Hilbert spaces

We present a concrete construction of Gaussian measures on separable
Hilbert spaces as countable products of Gaussian measures on R, gener-
alizing naturally the construction of Gaussian measures in Rd for finite
dimensions d < ∞, following Da Prato (2006).

Gaussian measure on R

For a pair (a, λ) of real numbers with a ∈ R, λ ≥ 0, define a measure Na,λ

on (R,B(R)) as follows. If λ = 0,

Na,0 := δa,

where

δa(B) :=

{
1 if a ∈ B,

0 else,
B ∈ B(R),

and if λ > 0,

Na,λ(B) :=
1√
2πλ

∫

B
e−

(x−a)2

2λ dx, B ∈ B(R).

Note that

Na,λ(R) =
1√
2πλ

∫ ∞

−∞
e−

(x−a)2

2λ dx = 1,

hence Na,λ is a probability measure. As is well known, Na,λ is absolutely
continuous with respect to the Lebesgue measure dx, with explicit density

Na,λ(dx) =
1√
2πλ

e−
(x−a)2

2λ dx.
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Proposition C.2. For any a ∈ R, λ ≥ 0, the mean of Na,λ is
∫

R

xNa,λ(dx) = a,

and its variance is ∫

R

(x− a)2Na,λ(dx) = λ.

For all m ∈ N, the mth moment of the Gaussian measure Na,λ is finite, i.e.,
∫

R

xmNa,λ(dx) < ∞,

and its Fourier transform is given by

N̂a,λ(h) :=

∫

R

eihxNa,λ(dx) = eiah−
1
2
λh2

, h ∈ R.

Gaussian measures on finite-dimensional Hilbert spaces

We consider a finite-dimensional Hilbert space H, d := dimH < ∞ with
scalar product 〈·, ·〉 and norm ‖·‖H . To this end, we recall that for proba-
bility space (Ωi,Σi,Pi), i = 1, . . . , d, the product probability space is given
by

(Ω,Σ,P) :=
d⊗

i=1

(Ωi,Σi,Pi)

(see Appendix A).
Let a ∈ H, Q ∈ L+(H) (see Appendix B). Then Q can be represented in

any orthonormal basis (ei)
d
i=1 of H as a d× d symmetric, positive semidefi-

nite matrix (〈ej , Qej〉)di,j=1. We now choose a particular orthonormal basis

(ei)
d
i=1 such that Q becomes diagonal, i.e., such that

Qek = λkek, k = 1, . . . , d, λk ≥ 0.

Let

∀x ∈ H : xk := 〈x, ek〉, k = 1, . . . , d.

Then a = (a1, . . . , ad), ak = 〈a, ek〉, and H is isomorphic to Rd via the
unitary map

γ : H → Rd, x �→ γ(x) := (x1, . . . , xd).

Define a product measure Na,Q on (Rd,B(Rd)) by

Na,Q :=
d⊗

k=1

Nak,λk
.

If a = 0, we write NQ for Na,Q.
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Proposition C.3. Let H be a Hilbert space with d := dimH < ∞, and
let Q ∈ L+(H). Then

∫

H
xNa,Q(dx) = a ∈ H,

for all y, z ∈ H,
∫

H
〈y, x− a〉〈z, x− a〉Na,Q(dx) = 〈Qy, z〉,

and for all h ∈ H,

N̂a,Q(h) :=

∫

H
ei〈h,x〉Na,Q(dx) = ei〈a,h〉−

1
2
〈Qh,h〉 .

If, moreover, detQ > 0, then Na,Q(dx) is absolutely continuous with respect
to the Lebesgue measure on Rd, and

Na,Q(dx) =
1√

(2π)d detQ
e−

1
2
〈Q−1(x−a),(x−a)〉 dx.

The vector a ∈ H is the mean and Q ∈ H ⊗ H is called the covariance

operator of Na,Q.

Proposition C.4. Let H be a finite-dimensional Hilbert space, a ∈ H,
Q ∈ L+(H), and let µ be a finite measure on (H,B(H)) such that

∀h ∈ H :

∫

H
ei〈h,x〉µ(dx) = ei〈a,h〉−

1
2
〈Qh,h〉 .

Then

µ = Na,Q.

Measures on separable Hilbert spaces

Let H be a separable Hilbert space with dimH = ∞, scalar product 〈·, ·〉
and norm ‖·‖H . For any n ∈ N and any orthonormal basis (ek)

∞
k=1 of H, we

define the projection Pn : H → Pn(H) = span{e1, . . . , en} ⊂ H by

Pnx :=
n∑

k=1

〈x, ek〉ek, x ∈ H. (C.2)

Then, for any x ∈ H, ‖x − Pnx‖H → 0 as n → ∞. Denote by M(H) the
set of all bounded measures on (H,B(H)).

Proposition C.5. (uniqueness of measures on H) For µ, ν ∈ M(H),
if, for all continuous, bounded ϕ : H → R,

∫

H
ϕ(x)µ(dx) =

∫

H
ϕ(x) ν(dx), (C.3)

then µ = ν.
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Proof. Let C ⊂ H be closed, and let (ϕn)n be a sequence of continuous,
bounded functions on H such that

∀x ∈ H : ϕn(x) −→
n→∞

1C(x), sup
x∈H

|ϕn(x)| ≤ 1, (C.4)

e.g.,

ϕn(x) :=





1 if x ∈ C,

1− n d(x,C) if x /∈ C ∧ d(x,C ′) <
1

n
,

0 if d(x,C) ≥ 1

n
.

By dominated convergence,
∫

H
ϕn dµ =

∫

H
ϕn dν −→

n→∞
µ(C) = ν(C).

Since the closed subsets of H are ∩-stable and generate B(H), µ = ν.

Proposition C.6. Let µ, ν be finite measures on (H,B(H)) such that for
all n ∈ N, (Pn)#µ = (Pn)#ν. Then

µ = ν in M(H).

Proof. Let ϕ : H → R be continuous and bounded. By dominated conver-
gence, ∫

H
ϕ(x)µ(dx) = lim

n→∞

∫

H
ϕ(Pnx)µ(dx).

The change of variables formula (C.1) implies
∫

H
ϕ(x)µ(dx) = lim

n→∞

∫

H
ϕ(Pnx)µ(dx) = lim

n→∞

∫

Pn(H)
ϕ(ξ)(Pn)#µ(dξ)

= lim
n→∞

∫

Pn(H)
ϕ(ξ)(Pn)#ν(dξ) = lim

n→∞

∫

H
ϕ(Pnx) ν(dξ)

=

∫

H
ϕ(x) ν(dx).

Proposition C.5 implies the assertion µ = ν.

Define the Fourier transform µ̂ of µ ∈ M(H) as

∀h ∈ H : µ̂(h) :=

∫

H
ei〈x,h〉µ(dx). (C.5)

Proposition C.7. (Fourier characterization) Let µ, ν be finite mea-
sures on (H,B(H)). Then

∀h ∈ H : µ̂(h) = ν̂(h) =⇒ µ = ν in M(H).
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Proof. By (C.1), for all n ∈ N,

µ̂(Pnh) =

∫

H
ei〈x,Pnh〉µ(dx) =

∫

Pn(H)
ei〈ξ,h〉(Pn)#µ(dξ) = ̂(Pn)#µ(h),

and similarly

ν̂(Pnh) =

∫

H
ei〈x,Pnh〉ν(dx) =

∫

Pn(H)
ei〈ξ,h〉(Pn)#ν(dξ) = ̂(Pn)#ν(h).

By assumption, µ̂(Pnh) = ν̂(Pnh) for all n ∈ N, hence ̂(Pn)#µ = ̂(Pn)#ν,
and thus (Pn)#µ = (Pn)#ν by a generalization of Proposition C.4. Then
Proposition C.6 implies µ = ν in M(H).

Let P(H) ⊂ M(H) be the set of probability measures on (H,B(H)). Let
µ ∈ P(H) satisfy

∫

H
‖x‖H µ(dx) < ∞,

∫

H
‖x‖2H µ(dx) < ∞.

Define

F : H → R, F (h) :=

∫

H
〈x, h〉 µ(dx), h ∈ H.

Then F ∈ H ′ since F (·) is linear and by the Cauchy–Schwarz inequality,

|F (h)| ≤
∫

H
‖x‖H µ(dx)‖h‖H ∀h ∈ H,

so

‖F‖H′ = sup
0�=h∈H

|F (h)|
‖h‖H

≤
∫

H
‖x‖H µ(dx).

By the Riesz representation theorem, there is a unique m ∈ H such that

〈m,h〉 =
∫

H
〈x, h〉 µ(dx), ∀h ∈ H;

m is called the mean of µ ∈ P(H); we write mean(µ) := m.
Consider next the bilinear form G(·, ·) : H ×H → R defined by

G(h, k) :=

∫

H
〈h, x−m〉〈k, x−m〉 µ(dx), h, k ∈ H.

Then by the Cauchy–Schwarz inequality,

|G(h, k)| ≤
∫

H
‖x−m‖2H µ(dx)‖h‖H‖k‖H ∀h, k ∈ H.

By the Riesz representation theorem, there exists a unique Q ∈ L(H) such
that

〈Qh, k〉 =
∫

H
〈h, x−m〉〈k, x−m〉 µ(dx), ∀h, k ∈ H.
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The operator Q ∈ L(H) is called the covariance (operator) of µ ∈ P(H);
we write Cov(µ) := Q ∈ L(H).

Proposition C.8. Let µ ∈ P(H) such that m = mean(µ) ∈ H and Q =
Cov(µ) ∈ L(H) exist. Then Q ∈ L+

1 (H), i.e., Q is symmetric, positive and
of trace class.

Proof. 〈Qh, k〉 = 〈h,Qk〉 for all h, k ∈ H by definition. For any orthonor-
mal basis (ek)k of H,

∀k ∈ N : 〈Qek, ek〉 =
∫

H
|〈x−m, ek〉|2µ(dx).

By monotone convergence and Parseval’s identity, Q ∈ L(H) implies

∞ > TrQ =
∞∑

k=1

∫

H
|〈x−m, ek〉|2 µ(dx) =

∫

H
‖x−m‖2H µ(dx).

We close with a lemma on kth moments of a measure µ on H.

Lemma C.9. Let µ ∈ M(H) be a probability measure on (H,B(H)) and
let k ∈ N be such that

∀h ∈ H :

∫

H
|〈h, x〉|kµ(dx) < ∞.

Then there exists a constant C(k, µ) such that, for all h1, . . . , hk ∈ H,
∫

H
|〈h1, x〉 · · · 〈hk, x〉|µ(dx) ≤ C(k, µ)‖h1‖H · · · ‖hk‖H .

In particular, the symmetric k-form

H ⊗ · · · ⊗H︸ ︷︷ ︸
k times

∋ (h1, . . . , hk) �→
∫

H
〈h1, x〉 · · · 〈hk, x〉µ(dx)

is continuous. Observing that for

H(k) = H ⊗ · · · ⊗H︸ ︷︷ ︸
k times

we have (H(k))′ ≃ H ′ ⊗ · · · ⊗H ′
︸ ︷︷ ︸

k times

,

by the Riesz representation theorem there exists a unique Mkµ ∈ (H(k))′,
the kth moment of the measure µ, such that, for all h1 ⊗ · · · ⊗ hk ∈ H(k),

(H′)(k)〈Mkµ, h1 ⊗ · · · ⊗ hk〉H(k) =

∫

H
〈h1, x〉 · · · 〈hk, x〉µ(dx).

Gaussian measures on separable Hilbert spaces

Definition C.10. (Gaussian measure) Let a ∈ H and Q ∈ L+
1 (H).

The Gaussian measure

µ := Na,Q on (H,B(H))
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with mean mean(µ) = a and covariance Cov(µ) = Q is the µ ∈ P(H) with
Fourier transform

µ̂(h) = N̂a,Q(h) = exp

(
i〈a, h〉 − 1

2
〈Qh, h〉

)
, h ∈ H.

Theorem C.11. On any separable Hilbert space H, for any a ∈ H and
Q ∈ L+

1 (H), there is a unique Gaussian measure Na,Q.

Proof. Since H is separable and Q ∈ L+
1 (H), the spectral theorem implies

that there is an orthonormal basis (ek)k of H and a sequence (λk)k ⊂ R≥0

such that

Qek = λkek ∀k ∈ N.

For x ∈ H, set xk := 〈x, ek〉, k ∈ N. Then (xk)k ∈ ℓ2(N). Note that
H ∼= ℓ2(N) via γ : H → ℓ2 defined by

x �→ γ(x) := (xk)k ∈ ℓ2(N).

Define, on H = ℓ2(N), the measure

µ :=

∞⊗

k=1

Nak,λk︸ ︷︷ ︸
µk

, x = (x1, x2, . . .). (C.6)

Note that formally, µ is defined on R∞ rather than ℓ2(N).

Proposition C.12. ℓ2(N) ∈ B(R∞), and for µ as in (C.6), µ(ℓ2(N)) = 1.

Proof. We leave the first statement as an exercise. By monotone conver-
gence,

∫

R∞

‖x‖2ℓ2(N) µ(dx) =
∫

R∞

( ∞∑

k=1

|xk|2
)2

µ(dx) =

∞∑

k=1

∫

R

|xk|2Nak,λk
(dxk)

=
∞∑

k=1

(∫

R

(xk − ak)
2Nak,λk

(dxk) + a2k

)

=
∞∑

k=1

(λk + a2k) = TrQ+ ‖a‖ℓ2(N) < ∞.

Therefore,

µ({x ∈ R∞ ; ‖x‖ℓ2 = ∞}) = 0,

which implies the second assertion.

We next characterize the Fourier transform of Gaussian measures on
infinite-dimensional, separable Hilbert spaces.
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Theorem C.13. For any a ∈ H and Q ∈ L+
1 (H), there exists a unique

µ ∈ P(H) such that

µ̂(h) = exp

(
i〈a, h〉 − 1

2
〈Qh, h〉

)
∀h ∈ H. (C.7)

Moreover, if H is identified with ℓ2(N) via the eigenbasis of Q, then µ is the
restriction to H of the product measure

∞⊗

k=1

µk =
∞⊗

k=1

Nak,λk
.

Proof. Since the characteristic function µ̂ of µ uniquely determines µ by
Proposition C.7, we must only show existence. The sequence µk := Nak,λk

of Gaussian measure on R, k = 1, 2, . . . admits a unique product measure

µ =
∞⊗

k=1

µk

on R∞, and µ ∈ P(R∞).
By Proposition C.12, µ is concentrated on ℓ2(N), i.e., µ(ℓ2(N)) = 1. We

denote the restriction µ|ℓ2(N) again by µ. Define

∀n ∈ N : νn :=
n⊗

k=1

µk.

Then using Proposition C.3,
∫

ℓ2(N)
ei〈x,h〉µ(dx) = lim

n→∞

∫

ℓ2(N)
ei〈Pnh,Pnx〉µ(dx) = lim

n→∞

∫

Rn

ei〈Pnh,ξ〉νn(dξ)

= lim
n→∞

ei〈Pnh,Pna〉− 1
2
〈QPnh,Pnh〉 = ei〈h,a〉−

1
2
〈Qh,h〉 .

Corollary C.14.
∫

H
‖x‖2H Na,Q(dx) = TrQ+ ‖a‖2H . (C.8)

Gaussian random fields

For the mathematical formulation of results on existence and regularity of
solutions to stochastic PDEs, we require Bochner spaces of random variables
taking values in separable Hilbert and Banach spaces.

Definition C.15. (Lebesgue–Bochner spaces) Let (Ω,Σ,P) be a prob-
ability space, K a separable Hilbert space, and X : Ω → K a random
variable.

(i) We say that X is a K-valued Gaussian random variable if the distri-
bution of X is a Gaussian measure on K.
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(ii) For any 0 < p < ∞, denote by Lp(Ω,Σ,P;K) the linear space of all
random variables X : Ω → K for which∫

Ω
‖X(ω)‖pK P(dω) < ∞,

and by L∞(Ω,Σ,P;K) the space of all X with ess supω‖X(ω)‖K < ∞.

(iii) The space Lp(Ω,Σ,P;K) endowed with

‖X‖Lp(Ω,Σ,P;K) :=

(∫

Ω
‖X(ω)‖pK P(dω)

)1/p

(C.9)

if p < ∞, and ‖X‖L∞(Ω,Σ,P;K) := ess supω‖X(ω)‖K , is a quasi-Banach
space for 0 < p < 1 and a Banach space if p ≥ 1.

(iv) For p = 2, L2(Ω,Σ,P;K) equipped with the inner product

〈X,Y 〉L2(Ω,Σ,P;K) :=

∫

Ω
〈X(ω), Y (ω)〉K P(dω) (C.10)

is a Hilbert space.

Example C.16. Let X ∈ L2(Ω,Σ,P;K). Then X has mean mX ∈ K,

〈mX , h〉K =

∫

K
〈y, h〉K X#P(dy) =

∫

Ω
〈X(ω), h〉K P(dω) ∀h ∈ K, (C.11)

and covariance QX ∈ L(K),

〈QXh, k〉K =

∫

K
〈y −mX , h〉K〈y −mX , k〉K X#P(dy)

=

∫

Ω
〈X(ω)−mX , h〉K〈X(ω)−mX , k〉K P(dω)

(C.12)

for all h, k ∈ K. We abbreviate mean(X) := mX = mean(X#P) and

Cov(X) := Q = Cov(X#P).

Proposition C.17. (convergence of Gaussian RV) Let (Xn)n be a se-
quence of Gaussian random variables in (Ω,Σ,P), taking values in a separa-
ble Hilbert space K. Let an := meanXn ∈ K and Qn := CovXn ∈ L+

1 (K)
for all n ∈ N, and assume that Xn → X in L2(Ω,Σ,P;K) as n → ∞. Then
X is a Gaussian random variable with law Na,Q where, for every h, k ∈ K,

〈a, h〉K = lim
n→∞

〈an, h〉K , 〈Qh, k〉K = lim
n→∞

〈Qnh, k〉K .

Proof. Let a := mean(X) and Q := Cov(X). By dominated convergence,

lim
n→∞

〈an, h〉 = lim
n→∞

∫

Ω
〈Xn(ω), h〉 P(dω) =

∫

Ω
〈Xn(ω), h〉 P(dω) = 〈a, h〉
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for all h ∈ K, and

lim
n→∞

〈Qnh, k〉 = lim
n→∞

∫

Ω
〈Xn(ω)− an, h〉〈Xn(ω)− an, k〉 P(dω)

=

∫

Ω
〈X(ω)− a, h〉〈X(ω)− a, k〉 P(ω) = 〈Qh, k〉

for all h, k ∈ K.
To show that X is Gaussian, by Theorem C.13 it suffices to show that the

Fourier transform of X#P is the Fourier transform of a Gaussian measure,
i.e., ∫

K
ei〈y,k〉X#P(dy) = ei〈a,k〉−

1
2
〈Qk,k〉 ∀k ∈ K.

This follows from∫

K
ei〈y,k〉X#P(dy) =

∫

Ω
ei〈X(ω),k〉P(dω) = lim

n→∞

∫

Ω
ei〈Xn(ω),k〉 P(dω)

= lim
n→∞

ei〈an,k〉−
1
2
〈Qnk,k〉 = ei〈a,k〉−

1
2
〈Qk,k〉 .

Hence X is Gaussian, and X#P = Na,Q.

It is well known that linear transformations of Gaussian random variables
are once again Gaussian. For random fields taking values in function spaces,
this covariance takes the following form.

Theorem C.18. (affine transformations of Gaussians) Let µ = Na,Q

be a Gaussian measure on a separable Hilbert space (H,B(H)). Then

(a) For all b ∈ H, T : H → H, T (x) := x + b is Gaussian on (H,B(H)),
and

T#µ = Na+b,Q. (C.13)

(b) If T ∈ L(H,K) for a separable Hilbert space K, T is Gaussian and

T#µ = NTa,TQT ∗ . (C.14)

Proof. By (C.1), for all k ∈ K,
∫

K
ei〈k,y〉 T#µ(dy) =

∫

H
ei〈k,Tx〉 µ(dx)

=

∫

H
ei〈T

∗k,x〉 µ(dx) = ei〈T
∗k,a〉− 1

2
〈TQT ∗k,k〉 .

Then Theorem C.13 implies (C.14), and (C.13) follows similarly.

Computation of some Gaussian integrals

Let H be a separable Hilbert space. We abbreviate

L2(H,Na,Q) := L2(H,B(H), Na,Q)
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450 C. Schwab and C. J. Gittelson

for any Gaussian measure Na,Q on (H,B(H)).

Proposition C.19.
∫

H
xNa,Q(dx) = a, (C.15)

∫

H
〈x− a, y〉〈x− a, z〉Na,Q(dx) = 〈Qy, z〉 ∀y, z ∈ H, (C.16)

∫

H
‖x− a‖2H Na,Q(dx) = TrQ =

∞∑

k=1

λk. (C.17)

Proof. Let (ek)k be an orthonormal basis of H, and Pnx :=
∑n

k=1〈ek, x〉ek.
Then∫

H
xNa,Q(dx) = lim

n→∞

∫

H
PnxNa,Q(dx)

= lim
n→∞

n∑

k=1

(
n∏

ℓ=1

∫

R

xkλ
−1/2
ℓ e

− (xℓ−aℓ)

2λℓ dxℓ

)
ek =

∞∑

k=1

akek = a.

Equations (C.16) and (C.17) are proved analogously.

C.3. Elliptic operator equations with Gaussian data

Elliptic operator equations

Let X,Y be separable Hilbert spaces and A ∈ L(X,Y ′), with associated
bilinear form

a(u, v) = Y ′〈Au, v〉Y , u ∈ X, v ∈ Y. (C.18)

Theorem C.20. Assume that the bilinear form a(·, ·) in (C.18) is

continuous: ∀u ∈ X, v ∈ Y : |a(u, v)| ≤ C1‖u‖X‖v‖Y , (C.19a)

coercive: inf
0�=u∈X

sup
0�=v∈Y

a(u, v)

‖u‖X‖v‖Y
≥ C2 > 0, (C.19b)

injective: ∀v ∈ Y \ {0} : sup
u∈X

|a(u, v)| > 0. (C.19c)

Then, for every f ∈ Y ′, the problem

Au = f, (C.20a)

i.e.,

u ∈ X : a(u, v) = f(v) = Y ′〈f, v〉Y ∀v ∈ Y m, (C.20b)

admits a unique solution u ∈ X, and

‖u‖X ≤ ‖f‖Y ′

C2
. (C.21)

Conversely, A ∈ L(X,Y ′) is boundedly invertible if and only if (C.19) holds.
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Example C.21. Let D ⊂ Rd be a bounded Lipschitz domain. Consider
the equation

Ak2u := −∇ ·A(x)∇u− k2u = f in D, u|∂D = 0, (C.22)

where A ∈ L∞(D,Rd×d
sym) is symmetric positive definite, i.e., there is an

α > 0 such that, for all ξ ∈ Rd,

ess inf
x∈D

ξ⊤A(x)ξ ≥ α‖ξ‖22. (C.23)

Let 0 < µ1 ≤ µ2 < µ3 < · · · , µn → ∞, denote the eigenvalues of the
Dirichlet problem, σ = {µ1, µ2, . . .} = (µn)

∞
n=1, and denote by (wn)n the

corresponding sequence of eigenfunctions,

−∇ ·A∇wn = µnwn in D, wn|∂D = 0. (C.24)

We assume that (wn)n are normalized in L2(D); then

〈wm, wn〉L2(D) = δmn, m, n = 1, 2, . . . . (C.25)

Claim C.22. For every value of k in (C.22) such that

k2 /∈ σ = {µ1, µ2, . . .} (no resonance condition), (C.26)

the bilinear form

ak(u, v) := 〈∇v,A(x)∇u〉L2(D) − k2〈u, v〉L2(D)

of (C.22) satisfies (C.19) with X = Y = H1
0 (D) and

C2 = min
ℓ

|k2 − µℓ|
µℓ

.

Then, for every f ∈ V ′ = H−1(D), (C.22) has a unique solution u ∈ H1
0 (D)

and

‖u‖H1
0 (D) ≤

1

minℓ µ
−1
ℓ |k2 − µℓ|

‖f‖H−1(D). (C.27)

Elliptic operator equations with Gaussian data

We consider now the special case X = Y =: V , A ∈ L(V, V ′) coercive, i.e.,
there is a C2 > 0 such that

a(v, v) ≥ C2‖v‖2V ∀v ∈ V. (C.28)

Then we obtain (C.19c), and the following problem admits a unique solution:
given f ∈ V ′, find u ∈ V such that

a(u, v) := V ′〈Au, v〉V = V ′〈f, v〉V ∀v ∈ V. (C.29)

Theorem C.23. Assume that f ∈ L2(Ω,Σ,P;V ′) is a Gaussian random
field such that af = mean(f) ∈ V ′ and Qf = Cov(f) ∈ L+

1 (V
′) exist. Then
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the following problem admits a unique solution: find u ∈ L2(Ω,Σ,P;V )
such that

Au = f in L2(Ω,Σ,P;V ′). (C.30)

Moreover,

au = mean(u) = A−1af , and (C.31)

Qu ∈ L+
1 (V ) satisfies AQuA

∗ = Qf in L(V ′). (C.32)

Proof. The weak form of (C.30) is

u ∈ L2(Ω,Σ,P;V ) : ã(u, v) = ℓ̃(v) ∀v ∈ L2(Ω,Σ,P;V ′), (C.33)

where

ã(u, v) :=

∫

Ω
V 〈v(ω), Au(ω)〉V ′ P(dω), ℓ̃(v) :=

∫

Ω
V 〈v(ω), f(ω)〉V ′ P(dω).

Letting V = L2(Ω,Σ,P;V ), we infer from (C.28) that

∀v ∈ V : ã(v, v) ≥ C2‖u‖2V ,
hence (C.33) has a unique solution.
Since A−1 ∈ L(V ′,V) is 1 to 1 and onto, we get that

u(ω) = A−1f(ω) P-a.s.

By Theorem C.18 with T = A−1, u is Gaussian on V since u = A−1f , and
its distribution is the Gaussian measure

NA−1af ,A−1Qf (A−1)∗ ,

i.e., it is characterized completely by

au = mean(u) = A−1af and Qu = Cov(u) = A−1Qf (A
−1)∗.

Remark C.24. For any separable Hilbert space H, by Theorem B.17,

L2(Ω,Σ,P;H) ∼= L2(Ω,Σ,P)︸ ︷︷ ︸
S

⊗H.

C.4. Covariance kernels and the Karhunen–Loève expansion

From Theorem C.23, (C.32), we infer that, given a covariance operator
Qf ∈ L+

1 (V
′) on the data space V of the boundedly invertible operator

A ∈ L(V, V ′), we have that if f is Gaussian, then u = A−1f is Gaussian on
V , with mean au satisfying

Aau = af , (C.34)

and covariance operator Qu given by

AQuA
∗ = Qf ∈ L(V, V ′) resp. Qu = A−1Qf (A

−1)∗ ∈ L+
1 (V ). (C.35)
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For the computation of u in terms of f , it suffices, by Theorem C.18, to
compute au and Qu in terms of af and Qf as in (C.35). As we shall see,
this is done most easily by means of covariance kernel representations of
Qf and Qu.
Let (H1, 〈·, ·〉H1) and (H2, 〈·, ·〉H2) be separable Hilbert spaces, and let S

denote a ‘stochastic’ space of random variables with finite second moments.
For example, we have

L2(Ω,Σ,P;Hi) ∼= L2(Ω,Σ,P)⊗Hi = S ⊗Hi, i = 1, 2, . . . , (C.36)

for S = L2(Ω,Σ,P).
Let (sm)m∈Λ be an orthonormal basis in S, with a countable index set Λ.

Then any f ∈ H1 ⊗ S can be uniquely represented as

f =
∑

m∈Λ
fm ⊗ sm in S ⊗H1, (C.37)

with (fm)m ∈ ℓ2(Λ;H1).

Proposition C.25. The mapping

S ⊗H1 × S ⊗H2 ∋ (f, g) �→ Cfg :=
∑

m∈Λ
fm ⊗ gm ∈ H1 ⊗H2

is well-defined, bilinear, bounded with norm 1, and independent of the choice
of basis (sm)m of the stochastic space S.

Definition C.26. (correlation kernel) For f ∈ S⊗H1, g ∈ S⊗H2, we
call Cfg ∈ H1⊗H2 defined in Proposition C.25 the correlation kernel of the
pair (f, g) in H1 ×H2.

If H1 = H2 = H, the set {Cf := Cfg ; f ∈ S ⊗H} of auto-correlation
kernels is in one-to-one correspondence with the class L+

1 (H) of positive
definite trace-class operators.

Theorem C.27. If (H, 〈·, ·〉H) and (S, 〈·, ·〉S) are separable Hilbert spaces
of equal dimension, and (sm)m∈Λ is an orthonormal basis of S, then the auto-
correlation kernels of elements f in S⊗H are in one-to-one correspondence
with the positive definite trace-class operators on H, via the correspondence

∑

m∈Λ
fm ⊗ fm = Cf �→ Cf : H ∋ x �→

∑

m∈Λ
〈x, fm〉Hfm, (C.38)

where

S ⊗H ∋ f =
∑

m∈Λ
fm ⊗ sm, fm ∈ H, m ∈ Λ. (C.39)

Proof. The operator Cf defined in (C.38) is the L+
1 (H)-norm limit of the

finite rank operators Cn
f :=

∑
m∈Λn

〈x, fm〉Hfm, for some sequence (Λn)
∞
n=1
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454 C. Schwab and C. J. Gittelson

of subsets Λn ⊂ Λ such that #Λn = n, since

Tr Cf =
∑

m

〈Cfem, em〉H =
∑

m

∑

n

|〈fm, en〉H |2 =
∑

m

‖fm‖2H = ‖f‖2S⊗H < ∞,

for any orthonormal basis (em)m of H. Non-negative definiteness of Cf is
obvious.
Since

∀x, y ∈ H : 〈Cfx, y〉H = 〈Cf , x⊗ y〉H⊗H , (C.40)

the definition (C.38) of Cf is independent of the choice of bases in S and
H. Hence the map (C.38) is well-defined. The mapping (C.38) from covari-
ance kernels to covariance operators, i.e., the correspondence Cf �→ Cf , is
injective.
To see that Cf �→ Cf is also surjective, we let C ∈ L+

1 (H) be given. Then
C is compact and has a countable eigensequence (λm, ϕm)m∈N, such that

Cϕm = λmϕm, m ∈ N, 〈ϕm, ϕn〉H = δmn. (C.41)

The eigenvalues λm ∈ R have finite multiplicity, and we assume they are
ordered decreasingly, i.e., λ1 ≥ λ2 ≥ · · · , and they accumulate only in 0.
Then, since C is of trace class,

∑

m

λm < ∞. (C.42)

The series
∑

m

√
λm ϕm⊗ sm converges, by (C.42), to some f ∈ S⊗H such

that

Cf =
∑

m

λmϕm ⊗ ϕm in H ⊗H. (C.43)

(C.40), (C.41) and (C.43) imply that C has the same spectral decomposition
as Cf , hence C = Cf .
Corollary C.28. Let (H, 〈·, ·〉H) be a separable Hilbert space and let C ∈
H⊗H be a correlation kernel. Then, with the spectrum (C.8) of its operator
C ∈ L+

1 (H) defined as in (C.40), the corresponding covariance kernel C can
be represented as

C =
∑

m

λmϕm ⊗ ϕm in H ⊗H. (C.44)

Theorem C.29. Let (H, 〈·, ·〉H) and (S, 〈·, ·〉S) be separable Hilbert spaces,
and let C ∈ H ⊗ H be a correlation kernel with representation (C.44).
Then f ∈ S ⊗ H satisfies Cf = C in H ⊗ H if and only if there exists an
S-orthonormal family (Xm)m ⊂ S such that

f =
∑

m

√
λm Xm ⊗ ϕm in S ⊗H. (C.45)
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Proof. The ‘if’ part follows as in the proof of Theorem C.27, upon com-
pletion of the family (Xm)m ⊂ S to an orthonormal basis of S. Conversely,
if Cf = C, then we may write

f =
∑

m

Ym ⊗ ϕm in S ⊗H,

with (Ym)m ⊂ S, which implies with Proposition C.25 that

Cf =
∑

m,m′

〈Ym′ , Ym〉Sϕm ⊗ ϕm′ .

Comparing this with (C.44), we find (since (ϕm)m is an orthonormal basis
of H) that

〈Ym, Ym′〉S = λmδmm′ , m,m′ ∈ N.

This is (C.44) with Xm := λ
−1/2
m Ym.

Definition C.30. The expansion (C.45) of f ∈ S ⊗ H in terms of the
spectral decomposition of its covariance operator Cf is called Karhunen–

Loève expansion of f .

Theorem C.31. Let X,Y be separable Hilbert spaces. Let A ∈ L(X,Y ′)
be boundedly invertible (see Theorem C.20), and let f ∈ L2(Ω,Σ,P;Y ′) ∼=
L2(Ω,Σ,P)⊗ Y ′ be a given Gaussian random field on Y ′, with

mean(f) = af ∈ Y ′, Qf = Cov(f) ∈ L+
1 (Y

′). (C.46)

Then u = A−1f ∈ L2(Ω,Σ,P;X) is also Gaussian on X, with

mean(u) = au ∈ X, Qu = Cov(u) ∈ L+
1 (X), (C.47)

satisfying

Aau = af in Y ′, (C.48)

and

AQuA
∗ = Qf in L+

1 (Y
′), Qu = A−1Qf (A

−1)∗ ∈ L+
1 (X). (C.49)

The kernels Cu of Qu, resp. Cf of Qf , satisfy the equation

(A⊗A)Cu = Cf in Y ′ ⊗ Y ′ ∼= (Y ⊗ Y )′. (C.50)

C.5. The white noise map

Let H be a separable Hilbert space, dimH = ∞, and µ = NQ a non-

degenerate centred Gaussian measure on H (i.e., kerQ = {0} ⊂ H); fur-
thermore, let (ek)k be an orthonormal basis of H such that Qek = λkek,
k ∈ N. For x ∈ H, set xk := 〈x, ek〉. Then, for all k, Q−1ek = λ−1

k ek,
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456 C. Schwab and C. J. Gittelson

hence Qx0 ∈ H⊥, so Qx0 ∈ L(H) is not boundedly invertible (since λk → 0
as k → ∞ due to TrQ < ∞). The range Q(H) of Q does not equal H,
Q(H) �= H.

Lemma C.32. Q(H) is a dense subspace of H.

Proof. Let x0 ∈ Q(H)⊥ ⊂ H. Then, since Q is self-adjoint,

∀x ∈ H : 0 = 〈x0, Qx〉H = 〈Qx0, x〉H ,

hence Qx0 = 0. But kerQ = {0}, so x0 = 0.

Define the operator Q1/2 by

Q1/2x :=
∞∑

k=1

√
λk 〈x, ek〉H , x ∈ H. (C.51)

Its range Q1/2(H) is the reproducing kernel Hilbert space or the Cameron–

Martin space of the measure µ = NQ in H. It is a dense subspace of H,

and H �= Q1/2(H).
We introduce an isometry W : H → L2(H,NQ), the white noise map.

Let Q1/2(H) ∋ f �→ Wf ∈ L2(H,NQ) be given by

Wf (x) = 〈Q−1/2f, x〉H ∀x ∈ H. (C.52)

We have ∫

H
Wf (x)Wg(x)NQ(dx) = 〈f, g〉H ∀f, g ∈ H. (C.53)

This map W : Q1/2(H) → L2(H,NQ) is a densely defined isometry which
can be extended to all of H.

Lemma C.33. For any f ∈ H, Wf is a real Gaussian random variable
with mean zero and variance ‖f‖2H .

Proof. Define νf := (Wf )#µ. We must show

∀η ∈ R ν̂f (η) =

∫

R

eiξηνf (dξ) =

∫

H
eiηWf (x)µ(dx) = e−

1
2
η2‖f‖2H .

To this end, let (zn)n ⊂ Q1/2(H) be a sequence such that zn → z ∈ H. By
dominated convergence,

∫

H
eiηWz(x)µ(dx) = lim

n→∞

∫

H
eiη〈Q

−1/2zn,x〉µ(dx)

= lim
n→∞

e−
1
2
η2‖zn‖2H = e−

1
2
η2‖z‖2H .

We pick z = f to conclude.
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Remark C.34. Given z ∈ H \Q1/2(H), one could try to define Wz by

∀x ∈ Q1/2(H) : Wz(x) = 〈Q−1/2x, z〉H ,

rather than by (C.52). This is meaningless due to µ(Q1/2(H)) = 0.

Lemma C.35. µ(Q1/2(H)) = 0.

Proof. For all n, k ∈ N, set

Un :=

{
y ∈ H ;

∞∑

ℓ=1

λ−1
ℓ Y 2

ℓ < n2

}
, Un,k :=

{
y ∈ H ;

2k∑

ℓ=1

λ−1
ℓ Y 2

ℓ < n2

}
,

Then Un ↑ Q1/2(H), as n → ∞, and, for every fixed n ∈ N, Un,k ↓ Un as
k → ∞. Hence we are done, if

∀n : µ(Un) = lim
k→∞

µ(Un,k) = 0. (C.54)

To see (C.54), we use that for all n, k ∈ N, for zℓ := λ
−1/2
ℓ Yℓ,

µ(Un,k) =

∫

Un,k

2k⊗

ℓ=1

Nλk
(dyk) =

∫

{z∈R2k ; |z|<n}
NI

R2k
(dx).

We compute

µ(Un,k) =
µ(Un,k)

µ(H)
=

∫ n
0 e−

r2

2 r2k−1 dr
∫∞
0 e−

r2

2 r2k−1 dr
=

∫ n2/2
0 e−̺̺k−1 d̺∫∞
0 e−̺̺k−1 d̺

.

Hence,

µ(Unk) =
1

(k − 1)!

∫ n2/2

0
e−̺̺k−1 d̺ ≤ 1

(k − 1)!

∫ n2/2

0
̺k−1 d̺ =

1

k!

(
n2

2

)k

,

whence (C.54).

Proposition C.36. (properties of the white noise map)

(a) For any n ∈ N, z1, . . . , zn ∈ H, the law of (Wz1 , . . . ,Wzn) ∈ Rn is given
by N(〈zi,zj〉H)ni,j=1

.

(b) Wz1 , . . .Wzn are independent if and only if z1, . . . zn areH-orthogonal.

(c) For all f ∈ H, ∫

H
eWf (x)µ(dx) = e

1
2
‖f‖2H (C.55)

and ∫

H
eiλWf (x)µ(dx) = e−

1
2
λ2‖f‖2H . (C.56)
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(d) The exponential map H → L2(H,NQ), f �→ eWf is continuous, and
∫

H

(
eWf (x) − eWg(x)

)2
NQ(dx) =

∫

H

(
e2Wf − 2eWf+g + e2Wg

)
NQ(dx)

= e2‖f‖
2
H − 2e

1
2
‖f+g‖2H + e2‖g‖

2
H

=
(
e‖f‖

2
H − e‖g‖

2
H
)
+ 2e‖f‖

2
H+‖g‖2H

(
1− e−

1
2
‖f−g‖2H

)
.

Proposition C.37. Assume that M ∈ L(H) is symmetric such that, for
given Q ∈ L+

1 (H),

Q1/2MQ1/2 ≤ 1 (⇐⇒ ∀x ∈ H : 〈Q1/2MQ1/2x, x〉H ≤ ‖X‖2H ),

and let b ∈ H be arbitrary. Then
∫

H
exp

(
1

2
〈My, y〉 + 〈b, y〉

)
NQ(dy) (C.57)

=
[
det(1−Q1/2MQ1/2)

]−1/2
exp

(
1

2
|(1−Q1/2MQ1/2)−1/2Q1/2b|2

)
.

C.6. Absolute continuity of Gaussian measures

Let H be a separable Hilbert space, dimH = ∞, µ = NQ a non-degenerate
centred Gaussian measure on H with covariance operator Q ∈ L+

1 (H),
kerQ = {0}, (ek)k orthonormal basis of H with Qek = λkek, k = 1, 2, . . .
(see Theorem B.23).
Given a ∈ H, when are the two Gaussian measures NQ and Na,Q singular,

resp. equivalent?
Recall that two measures µ, ν on (Ω,Σ) are equivalent if µ ≪ ν and

ν ≪ µ. Here, µ ≪ ν (‘µ is absolutely continuous with respect to ν’) if, for
all A ∈ Σ with ν(A) = 0, also µ(A) = 0.
If µ ≪ ν, the Radon–Nikodym theorem implies that there exists a unique

̺ ∈ L1(Ω,Σ, ν) such that

∀A ∈ Σ : µ(A) =

∫

A
̺ dν.

Assume for the moment dimH < ∞. Then kerQ = {0} ⊂ H implies
detQ > 0. Hence, for all a ∈ H, NQ ∼ Na,Q and for all x ∈ H,

dNa,Q

dNQ
(x) =

e−
1
2
〈Q−1(x−a),x−a〉H

e−
1
2
〈Q−1x,x〉H

= e−
1
2
‖Q−1/2a‖2H+〈Q−1/2a,Q−1/2x〉H . (C.58)

We claim:

(1) if a ∈ Q1/2(H), then Na,Q ∼ NQ,

(2) if a ∈ H ∩Q1/2(H)⊥, then Na,Q ⊥ NQ.
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In the first case, (C.58) still holds if dimH = ∞, but 〈Q−1/2a,Q−1/2x〉H is
replaced by WQ−1/2a(x).

Hellinger integral

Let µ and ν be probability measures on (Ω,Σ). Then both µ and ν are
absolutely continuous with respect to the probability measure ζ = (µ+ν)/2
on (Ω,Σ).

Definition C.38. (Hellinger integral) The Hellinger integral of µ, ν is
defined by

H(µ, ν) :=

∫

Ω

√
dµ

dζ

dν

dζ
ζ(dω). (C.59)

Obviously, 0 ≤ H(µ, ν) ≤ 1. By Hölder’s inequality, we have

0 ≤ H(µ, ν) ≤
(∫

Ω

dµ

dζ
dζ

)1/2(∫

Ω

dν

dζ
dζ

)1/2

= 1.

Remark C.39. If λ is a probability measure on (Ω,Σ) such that µ ≪ λ
and ν ≪ λ, then also ζ ≪ λ and

dµ

dζ
=

dµ

dλ

dλ

dζ
∧ dν

dζ
=

dν

dλ

dλ

dζ
,

and we find

H(µ, ν) =

∫

Ω

√
dµ

dλ

dν

dλ
dλ.

Remark C.40. Assume µ ∼ ν. Then

dµ

dζ
=

dν

dζ
=

dµ

dζ

dν

dµ

dµ

dζ
=

(
dµ

dζ

)2 dν

dµ

and hence

H(µ, ν) =

∫

Ω

√
dν

dµ

dµ

dζ
dζ =

∫

Ω

√
dν

dµ
dµ.

Example C.41. Let Ω = R, µ = Nλ, ν = Na,λ, a ∈ R, and λ > 0. Then

dν

dµ
(x) = e−

a2

2λ
+ax

λ , x ∈ R,

and hence

H(µ, ν) = e−
a2

2λ

∫

R

e
ax
2λNλ(dx) = e−

a2

8λ .

Proposition C.42. If H(µ, ν) = 0, the µ and ν are singular.
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Proof. Let

f =
dµ

dζ
, g =

dν

dζ
, ζ =

1

2
(µ+ ν).

Then fg = 0 ζ-a.e., since

H(µ, ν) =

∫

Ω

√
fg dζ = 0.

Define the sets

A = {ω ∈ Ω ; f(ω) = 0}, B = {ω ∈ Ω ; g(ω) = 0},
C = {ω ∈ Ω ; (fg)(ω) = 0}.

Then ζ(C) = 1, hence µ(C) = ν(C) = 1. Moreover, µ(A) =
∫
A f dζ = 0

and ν(B) =
∫
B g dζ = 0. Therefore, µ(B \A) = 1 and ν(A \B) = 1, i.e., µ

and ν are mutually singular.

Kakutani’s theorem

If H(µ, ν) = 0, µ and ν are mutually singular. Conversely, if H(µ, ν) > 0,
then µ and ν are not necessarily equivalent, in general, unless µ, ν are count-
able products of equivalent ‘factor measures’. This is Kakutani’s theorem.
We prepare its exposition with products of two measures.

Lemma C.43. Let µi, νi, i = 1, 2, be probability measures on (Ω,Σ).
Then

H(µ1 ⊗ µ2, ν1 ⊗ ν2) = H(µ1, ν1)H(µ2, ν2).

Proof. Let ζ1, ζ2 be probability measures on (Ω,Σ) such that

µ1 ≪ ζ1, ν1 ≪ ζ1, µ2 ≪ ζ2, ν2 ≪ ζ2.

Then, by Fubini’s theorem,

µ1 ⊗ µ2 ≪ ζ1 ⊗ ζ2 ∧ ν1 ⊗ ν2 ≪ ζ1 ⊗ ζ2.

Define

fi(ωi) :=
dµi

dζi
(ωi), gi(ωi) :=

dνi
dζi

(ωi), i = 1, 2.

Then

d(µ1 ⊗ µ2)

d(ζ1 ⊗ ζ2)
= f1(ω1)f2(ω2),

d(ν1 ⊗ ν2)

d(ζ1 ⊗ ζ2)
= g1(ω1)g2(ω2).

Hence

H(µ1 ⊗ µ2, ν1 ⊗ ν2) =

∫

Ω×Ω

(
(f1, g1)(ω1)(f2, g2)(ω2)

)1/2
ζ1(dω1)ζ2(dω2)

= H(µ1, ν1)H(µ2, ν2).
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Kakutani’s theorem is an infinite-dimensional generalization of the previ-
ous result.

Theorem C.44. (Kakutani) Let (µk)k, (νk)k be sequences of probabil-
ity measures on (R,Σ), such that µk ∼ νk for all k ∈ N, and define

µ :=
∞⊗

k=1

µk, ν :=
∞⊗

k=1

νk.

If H(µ, ν) > 0, then µ ∼ ν and

dν

dµ
(x) = lim

n→∞

n∏

k=1

dνk
dµk

(xk) in L1(R∞, µ). (C.60)

If H(µ, ν) = 0, then µ and ν are singular.

We refer to Kakutani (1948) and Da Prato (2006) for a proof of Theo-
rem C.44.

REFERENCES
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I. Babuška, F. Nobile and R. Tempone (2005), ‘Worst case scenario analysis for

elliptic problems with uncertainty’, Numer. Math. 101, 185–219.
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O. Christensen (2010), Functions, Spaces, and Expansions: Mathematical Tools

in Physics and Engineering, Applied and Numerical Harmonic Analysis,
Birkhäuser.
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