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Abstract

Domain adaptation is critical for success when con-

fronting with the lack of annotations in a new domain. As

the huge time consumption of labeling process on 3D point

cloud, domain adaptation for 3D semantic segmentation is

of great expectation. With the rise of multi-modal datasets,

large amount of 2D images are accessible besides 3D point

clouds. In light of this, we propose to further leverage 2D

data for 3D domain adaptation by intra and inter domain

cross modal learning. As for intra-domain cross modal

learning, most existing works sample the dense 2D pixel-

wise features into the same size with sparse 3D point-wise

features, resulting in the abandon of numerous useful 2D

features. To address this problem, we propose Dynamic

sparse-to-dense Cross Modal Learning (DsCML) to in-

crease the sufficiency of multi-modality information interac-

tion for domain adaptation. For inter-domain cross modal

learning, we further advance Cross Modal Adversarial

Learning (CMAL) on 2D and 3D data which contains dif-

ferent semantic content aiming to promote high-level modal

complementarity. We evaluate our model under various

multi-modality domain adaptation settings including day-

to-night, country-to-country and dataset-to-dataset, brings

large improvements over both uni-modal and multi-modal

domain adaptation methods on all settings. Code is avail-

able at https://github.com/leolyj/DsCML

1. Introduction

3D semantic segmentation is a challenging task with

plenty of real-world applications, such as particular

robotics, autonomous driving and virtual reality. Like other

tasks of scene perception, 3D semantic segmentation also

faces the challenge of domain shift. For instance, training

on one country and testing on another and in different times
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Figure 1. The common strategy of feature processing for 2D-3D

cross modal learning. The 2D dense feature map with dense pixel-

wise features are sampled to sparse features with the same size

of 3D point features. As a result, such sparse-to-sparse feature

matching only leverages quite limited 2D features and might cause

insufficient 2D-3D information interaction. Specifically, H and W

are the height and width of 2D image respectively. N denotes the

number of points in point cloud. C is the number of categories for

semantic segmentation.

of the day may lead to significantly dreadful performance.

Plenty of domain adaptation methods are proposed to ad-

dress such domain shift on the task of 2D semantic segmen-

tation [32, 18, 17, 34, 25, 45] but rarely on 3D [44].

In recent works for multi-modality datasets creation, re-

searchers often incidentally capture 2D images as counter-

part when executing the data collection of 3D point clouds.

In light of this, Jaritz et al. [22] proposes a cross modal

learning method to address domain adaptation for 3D se-

mantic segmentation. Through the complementary advan-

tages between 2D and 3D data, the multi-modality domain
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adaptation can bring large improvements over uni-modal

adaptation methods. And the 2D images are leveraged with-

out labels which means no additional human efforts in label-

ing work.

While this work [22] already explored multi-modality

in domain adaptation, as shown in Fig. 1, it executes the

learning between 2D and 3D only towards the matched fea-

tures by projection from 3D points to 2D image. Multi-

tudes of mismatched features which also contain useful in-

formation are discarded. We consider whether 2D and 3D

features can be more sufficiently utilized in cross modal

learning. This is challenging as the two inputs are hetero-

geneous and contain different number of elements. Com-

pared to the sparse 3D point clouds, pixels in 2D image

are dense and with compact layout. Even if all features of

3D point cloud well matched with the corresponding 2D

pixel-wise features, there can be still lots of 2D features are

mismatched. That is why numerous works of other percep-

tion tasks [37, 9, 24, 6, 21, 26, 39] also capitalize on multi-

modality in the same way with [22], i.e., sparse-to-sparse

feature matching.

To address such limitation, we propose a strategy namely

Dynamic sparse-to-dense Cross Modal Learning (DsCML)

where the sparse point cloud features and dense pixel fea-

tures can sufficiently interact with each other. Specifically,

the proposed DsCML is inspired from the fact that in 2D

semantic segmentation, the neighboring pixels are mostly

classified to a same category. And all the same-categorized

pixel features should be sampled to exchange information

with the corresponding 3D point-wise feature. For each 3D

point-wise feature, DsCML can dynamically capture the re-

lated multiple 2D pixel-wise features with same category.

This introduces much richer context information of texture

and color in 2D image which is complementary to space in-

formation of 3D point cloud. Additionally, a novel sparse-

to-dense learning loss is proposed to support the learning of

multi-modality where 2D and 3D features differ by orders

of magnitude. This DsCML is applied on source and target

domain alternately which is the key to domain adaptation.

The method mentioned above is adopted in an intra-

domain manner where the 2D and 3D data contain same

semantic content. In this paper, we further explore inter-

domain cross modal learning for high-level semantic inter-

action of multi-modality data with different semantic con-

tent. Specifically, we introduce cross modal learning to

common adversarial strategy by adding discriminator for

identification between 2D and 3D features. We coin our

method Cross Modal Adversarial Learning (CMAL). It en-

ables the mutual learning between 2D and 3D as well as the

alignment of feature distribution from different domains,

which is the other key to domain adaptation.

The main contributions of this paper are summarized as

follows:

• To the best of our knowledge, this is the first work to

explore cross modal learning in both intra and inter do-

main for the semantic segmentation problem.

• As for intra-domain cross modal learning, we propose

a module named DsCML to establish sufficient re-

lationships of multi-modality features, i.e., sparse-to-

dense feature matching.

• As for inter-domain cross modal learning, we pro-

pose a method named CMAL to achieve both high-

level cross modal interaction and cross domain feature

alignment.

• The proposed method is evaluated on various real-to-

real adaptation settings (i.e., day-to-night, country-to-

country and dataset-to-dataset), obtaining state-of-the-

art segmentation performance with both uni-modal and

multi-modal methods.

2. Related Work

In this section, we briefly introduce the techniques re-

lated to our approach from three parts. We first give the

description of Domain Adaptation in Sec. 2.1. Besides,

a considerable literature has grown up around the theme

of Multi-Modality Learning in Sec. 2.2. Moreover, vari-

ous relevant approaches about Adversarial Learning are dis-

cussed in Sec. 2.3

2.1. Domain Adaptation

In the past few years, Domain adaptation has attracted

great interest as its critical success in new, unseen environ-

ments. In the early years, several effective methods have

been developed such as maximal confusion [41, 12, 11],

Maximum Mean Discrepancy (MMD) [30, 31] and synthe-

sizing images with target styles [47, 36]. Some other works

advance adversarial training [48, 27, 18, 5, 17, 40, 35, 45] to

narrow source-target distribution difference. Besides, as a

typical semi-supervised learning scheme, self-training with

pseudo-labels also show positive effect for domain adapta-

tion [49, 50, 28, 29] and capture growing interest.

While promising progress has been achieved, most algo-

rithms focus on the single modality adaptation setting. It

lacks the consideration of utilizing the complementary of

multi-modality data. In addition, mostly methods are con-

cerned with 2D semantic segmentation adaptation, few [44]

adopts domain adaptation in 3D segmentation from point

clouds. In sight of this limitation, approach [22] on multi-

modal input data (i.e., 2D image + 3D point cloud) has been

proposed benefiting from multi-modal data. It assumes that

both modalities are available on source and target domains.

On this basis, in this paper, we aim to handle the problem in

multi-modality domain adaption for 3D semantic segmen-

tation.
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Figure 2. Overall architecture of our approach, which consists of a DsCML module for intra-domain cross modal learning and one adversar-

ial learning for inter-domain cross modal learning. At the end of 2D network and 3D network, DsCML can sufficiently transfer knowledge

across multi-modality features (i.e., F2D,S/T and F3D,S/T) and further generate the prediction maps for 3D semantic segmentation (i.e.,

P̄2D,S/T and P3D,S/T). Only the source predictions are supervised by 3D labels. After that, the prediction maps which are from different

domains and different modalities are fed into CMAL for higher level cross modal learning.

2.2. Multi-Modality Learning

Taking the advantage of modality complementary is a

straightforward and effective way to boost performance. A

typical case is the fusion of RGB-Depth images for 2D se-

mantic segmentation [46, 42, 15]. Due to both RGB and

Depth images are with the almost same geometrical form,

this kind of multi-modality learning is simple to imple-

ment. It is challenge to build the bridge for information

interaction between 2D and 3D as the heterogeneous data

form. A common solution is to filter dense 2D features

to sparse point features to enable one-to-one 2D-3D fea-

ture matching which is convenient for subsequent process-

ing [37, 8, 9, 24, 6, 21, 39]. However, this type of feature

matching leads to the lost of plentiful context information

resulting in insufficient 2D-3D interaction. To this end, in

this paper, we focus on how to exploit sparse-to-dense fea-

ture matching and corresponding learning strategy.

2.3. Adversarial Learning

In domain adaptation, adversarial learning is mainly uti-

lized to narrow the domain gap by reducing the distribution

difference between source and target domain. Since the data

representation are quite distinct among different feature lev-

els in CNN, methods based on various feature spaces are

presented. Among these methods, adaptation on pixel-level

[48, 27, 20, 2], feature-level [18, 5, 32, 19], both two levels

[17, 43], output-space [40] and label-space [45] are exist.

For instance, Chen et al. [5] implements a joint global

and class-specific adversarial loss at the middle stage fea-

ture maps. Zhu et al. [48] addresses the adversarial learning

on the pixel level, which essentially transfers the style of la-

beled source images into that of target domain. Hoffman

et al. [17] proposes method CyCADA where both feature-

level and pixel-level adversarial schemes are taken into ac-

count. Besides, Tsai et al. [40] has proven the effectiveness

of output space feature alignment as it jointly promotes the

optimization for both classifier and extractor. Moreover, a

label-driven adversarial learning is studied in [45] for se-

mantic segmentation. In summary, adversarial learning is

a high-level feature constraint towards the holistic data dis-

tribution. It enables the learning between two objects with

different semantic content, so our method utilizes this ad-

vantage.

3. Method

Our approach is presented for 3D semantic segmentation

assuming the presence of 2D images and 3D point clouds.

In this section, we first describe the architecture overview.

Later, we showcase the intra-domain cross modal learn-

ing: DsCML in Section 3.2. Finally, the inter-domain cross

modal learning: CMAL is introduced in Section 3.3.

3.1. Overview of the Proposed Framework

The overall architecture is shown in Fig. 2 (best viewed

from both sides to middle). We can briefly describe the

main steps as follows. We begin by input the data of source

domain S and target domain T into the 2D and 3D network

to produce the feature maps before classifier (i.e., F2D,S,

F3D,S, F2D,Tand F3D,T). Next, the feature maps of each

domain are fed into DsCML module for intra-domain cross

modal learning. After that, DsCML generates the predic-

tion for 3D semantic segmentation on both source and target

domains (i.e., P2D,S, P3D,S, P2D,T and P3D,T). It is wor-

thy to mention that DsCML converts the dense 2D feature

map into the prediction with the same size as 3D predic-

tion. Hence, we use symbol with superscript (i.e., P2D,S
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Figure 3. An illustration of feature matching in CML, sCML and

DsCML. (a) In common CML, 3D point feature are one-to-one

matched with the corresponding 2D pixel-wise features. (b) In

sCML, each point features are matched with a square region learn-

ing with sparse-to-dense learning loss. (c) In DsCML, the region

is deformable which enables the adaptive learning of model for

searching the most suitable regions.

and P2D,T) to distinguish it from the 2D image segmenta-

tion prediction (i.e., P2D,S and P2D,T). Afterwards, only

the source predictions are supervised by the label of source

domain. Finally, the source 2D (3D) and target 3D (2D)

predictions are fed into the discriminator D1 (D2) for adver-

sarial learning, aiming to execute intra-domain cross modal

learning.

3.2. Intra-domain cross modal learning: DsCML

The goal of DsCML is to enable sufficient information

interaction between the modalities in an intra-domain man-

ner to make them complement each other. This objective

can be applied to target domain as its training without ac-

cess of any annotations. The cross modal learning on target

domain enables the domain adaptation for 3D semantic seg-

mentation.

Cross Modal Learning (CML). To better understand

how DsCML solves the problem of insufficient cross modal

learning, we begin with a common Cross Modal Learning

method (CML). As shown in Fig. 3 (a), the loss is imple-

mented on each matched feature pair obtained by sparse-to-

sparse matching. Note that we choose 2D and 3D feature

maps from the output space where features are already han-

dled by classifier. Hence, it can be formulated as:

L =
1

N

N∑

n=1

K(Samp(P2D)
n,Pn

3D), (1)

where Samp(P2D)
n denotes the probability scores of the

n-th sampled pixel, Pn
3D

is probability scores of the n-th

point, N denotes the number of points in 3D point cloud

and K(·, ·) represents the KL distance. We can see that in

common CML, only part of the features in 2D feature map

are learning with 3D point features, large amount of useful

features are discarded.

Sparse-to-dense Cross Modal Learning (sCML). As

is well-known, the neighboring pixels mostly belong to a

same category in 2D semantic segmentation. In light of

this, we try to utilize a square patch of 2D feature map to

exchange information with the corresponding point features

of 3D point cloud. As shown in Fig. 3 (b), the sparse-to-

dense learning loss is the key to implement one-to-many

constraints. It can be written as:

Lstd =
1

N

N∑

n=1

K(φn
max(P2D),P

n
3D)+K(φn

min(P2D),P
n
3D),

(2)

where φn
max(P2D) denotes the max probability scores in the

n-th 2D patch and similarly φn
min(P2D) is the min probabil-

ity scores in the n-th 2D patch. By constraining the supre-

mum and infimum of a set, we can progressively constrain

every element in the patch after several iterations.

Dynamic sparse-to-dense Cross Modal Learning

(DsCML). As shown in Fig. 3 (c), we further introduce

deformable patch to adaptively search the patch with ap-

propriate region. The sparse-to-dense loss Lstd can thus be

improved as:

Lstd =
1

N

N∑

n=1

K(Φn
max(P2D),P

n
3D)+K(Φn

min(P2D),P
n
3D),

(3)

where Φn
max(P2D) denotes the max probability scores in

the n-th 2D deformable patch and Φn
min(P2D) is the min

one.

Architecture of DsCML. Fig. 4 illustrates the architec-

ture of our DsCML module for intra-domain cross modal

learning. Borrowing from the Deformable Convolution

[7], we utilize the extracted offset map to enable the de-

formable max/min/avg pooling. After pooling, we can se-

lect the max/min/avg features of each deformable patch

with the guidance of projection from 3D to 2D. Finally,

the max/min/avg probability scores are obtained through the

classifier. The max and min probability scores are utilized
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Figure 4. The architecture of our proposed DsCML. With the help of the deformable pooling [7] accompanied with the proposed Lstd, we

can achieve the dynamic sparse-to-dense feature matching.

for cross modal learning in DsCML, while the avg scores

are fed into the computation of segmentation loss:

Lseg = −
1

N

N∑

n=1

Y n
S (log(Φn

avg(P2D,S)) + log(Pn
3D,S)),

(4)

where Y n
S denotes the source label of the n-th point and

Φn
avg(P2D,S) is the average probability scores in the n-th

deformable patch of source 2D predicted map.

3.3. Inter-domain cross modal learning: CMAL

Although performing intra-domain cross modal learning

can directly improve performance of each modal, there still

exist two problems: (a) the learning is mainly towards dif-

ferent modal features with same semantic content, which

is a low-level feature alignment; (b) the learning on source

and target domain are mutually independent, resulting in

the supervision of source label cannot effectively guide the

segmentation of target domain. For the latter, Adversar-

ial Learning has shown tremendous adaptation progress by

focusing on the mapping between data from different do-

mains in feature space. In light of this, we advance to apply

Cross Modal Adversarial Learning (CMAL) to solve both

problems with one scheme. In CMAL, the multi-modality

learning is execute towards features with different content,

different modal and different domain. This high-level fea-

ture alignment aims to relieve the distribution difference be-

tween source and target as well as 2D and 3D. In this way,

the 2D and 3D networks can jointly act 3D semantic seg-

mentation on both domains.

As for CMAL, let P2D,S,P3D,S = G(x2D,S, x3D,S) be

the 3D prediction maps of source 2D image x2D,S and 3D

point cloud x3D,S, where G denotes the multi-modality net-

work with DsCML. Similarly, we process the data in target

domain and obtain the predictions P2D,T and P3D,T.

Table 1. The sample number in each split of datasets for all three

settings. Note that the training samples in target domain are with-

out labels.

settings
Source Target

train train val test

nuScenes:Day/Night 24745 2779 606 602

nuScenes:USA/Singapore 15695 9665 2770 2929

A2D2/SemanticKITTI 27695 18029 1101 4071

To make the distribution of P2D,S (P3D,S) closer to

P3D,T (P2D,T), we use adversarial loss as:

LS2D⇔T3D
= − log(ρ(P2D,S))− log(1− ρ(P3D,T)), (5)

LS3D⇔T2D
= − log(ρ(P3D,S))− log(1− ρ(P2D,T)), (6)

where ρ(P) be the probability that the prediction map P

belongs to the source domain after the identification of dis-

criminator.

We optimize the following min-max criterion:

max
G

min
D1

LS2D⇔T3D
, (7)

max
G

min
D2

LS3D⇔T2D
, (8)

where D1 and D2 are two discriminators with same archi-

tecture to handle different adversarial tasks. We handle Eq.

7 and 8 by alternating optimization between G and D1 (D2).

4. Experiments

4.1. Datasets Description

We strictly follow Jaritz’s work: xMUDA [22] to imple-

ment our method on three real-to-real adaptation settings:

day-to-night, country-to-country and dataset-to-dataset.

Three public datasets nuScenes [3], A2D2 [13] and Se-

manticKITTI [1] are leveraged where the LiDAR and cam-

era are synchronized and calibrated. Only 3D annotations
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Table 2. Comparison results with both uni-modal and multi-modal adaptation methods for 3D semantic segmentation in different cross-

modal domain adaptation settings. We report the result for each network stream in terms of mIoU. The best two results are marked in bold

and underline. ‘Avg’ denotes the result which is obtained by taking the mean of the predicted 2D and 3D probabilities after softmax.

Modality Method
USA→Singapore (nuScenes) Day→Night (nuScenes) USA→Singapore (Lidarseg) Day→Night (Lidarseg) A2D2→SemanticKITTI

2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

Baseline (Source only) 53.2 46.8 61.2 41.8 41.4 47.6 53.3 48.0 61.6 41.8 43.8 48.0 36.4 37.3 42.2

Uni-modal

MinEnt [43] 53.4 47.0 59.7 44.9 43.5 51.3 53.6 48.6 61.9 44.9 44.3 51.8 38.8 38.0 42.7

PL [28] 55.5 51.8 61.5 43.7 45.1 48.6 55.4 52.7 62.8 43.9 47.6 50.9 37.4 44.8 47.7

FCNs in the Wild [18] 53.7 46.8 61.0 42.6 42.3 47.9 54.0 49.2 62.4 42.6 43.9 48.7 37.1 43.5 43.6

CyCADA [17] 54.9 48.7 61.4 45.7 45.2 49.7 54.9 51.3 62.6 45.5 47.8 49.6 38.2 43.9 43.9

AdaptSegNet [40] 56.3 47.7 61.8 45.3 44.6 49.6 56.5 49.0 62.0 45.5 45.3 49.3 38.8 44.3 44.2

CLAN [32] 57.8 51.2 62.5 45.6 43.7 49.2 57.7 52.1 63.1 45.6 45.1 50.1 39.2 44.7 44.5

Multi-modal

xMUDA [22] 59.3 52.0 62.7 46.2 44.2 50.0 61.7 52.6 63.3 47.3 46.0 50.6 36.8 43.3 42.9

xMUDA+PL [22] 61.1 54.1 63.2 47.1 46.7 50.8 63.0 54.3 64.2 48.4 47.5 51.2 43.7 48.5 49.1

DsCML 61.3 53.3 63.6 48.0 45.7 51.0 63.3 54.0 64.2 49.8 47.2 51.7 39.6 45.1 44.5

DsCML + CMAL 63.4 55.6 64.8 49.5 48.2 52.7 65.6 56.2 66.1 50.9 49.3 53.2 46.3 50.7 51.0

DsCML + CMAL + PL 63.9 56.3 65.1 50.1 48.7 53.0 65.6 57.5 66.9 51.4 49.8 53.8 46.8 51.8 52.4

are utilized for 3D semantic segmentation. Specifically, we

leverage nuScenes to generate the splits: Day/Night and

USA/Singapore for day-to-night and country-to-country

adaptation. The other two datasets are utilized for dataset-

to-dataset adaptation, i.e, A2D2/SemanticKITTI. Tab. 1

shows the split details of three datasets for three real-to-real

adaptation settings.

As for Day/Night, the 3D point clouds captured by Li-

DAR show small domain difference due to the sensor has

a strong robustness to light variations. While the RGB

image capture by camera is the opposite. In the set-

ting of USA/Singapore, the 3D domain difference may be

larger than that of 2D in some conditions or vice versa.

In A2D2/SemanticKITTI, the density (resolution) of point

cloud are large different which highly affect the adaptation

performance of 3D network. In this case, the image with

small domain gap can help to boost the adaptation perfor-

mance.

4.2. Implementation Details

Dataset Preprocessing: For domain adaptations of

Day/Night and USA/Singapore in nuScenes [3], we uti-

lize the accessible 3D bounding boxes annotations to

obtain the 3D point-wise labels as xMUDA [22] did.

More specifically, for the point lying inside 3D boxes,

we assign it the corresponding object label, otherwise it

is labeled as background. To make a more convinc-

ing evaluation on our approach, we also experiment on

nuScenes-Lidarseg [3] (shorten to ‘Lidarseg’) which con-

tains the point-wise annotation. For domain adaptation of

A2D2[13]/SemanticKITTI[1], we select 10 classes which

are shared between the two datasets, i.e., Car, Truck, Bike,

Person, Road, Sidewalk, Parking, Nature, Building and

Other objects. With the help of code released from xMUDA

[22], we compute the projection between each 3D point and

its corresponding 2D image pixel.

Network Baseline: To make a fair comparison with

the only known multi-modal 3D domain adaptation method

[22], for 2D network, we adopt ResNet34 [16] pre-trained

on ImageNet [10] as the encoder of U-Net [38]. For 3D

network, we use SparseConvNet [14] with U-Net architec-

ture and implement downsampling for six times. Mean-

while, a voxel with size of 5cm is adopted in 3D network,

which is small enough to ensure only one 3D point exists

in each voxel. The source codes and models are trained

and evaluated on PyTorch toolbox [33] based on Python

3.7 platform. All proposed models are implemented on one

NVIDIA RTX 3090Ti GPU with 24GB RAM and four E-

2224 CPUs.

Parameter Settings: In training period, we choose a

batch size of 8 and Adaptive Moment Estimation (Adam)

[23] optimizer with β1 = 0.9 and β2 = 0.999. The learning

rate is set to 1e−3 initially and follows the poly learning rate

policy [4] with a poly power of 0.9. Each deformable patch

in DsCML is based on 5×5 square patch. The max training

iteration is set to 100k.

Evaluation: Following previous domain adaptation

works, we evaluate the performance of a model on the

test set by using the standard PASCAL VOC intersection-

overunion (IoU). The mean IoU (mIoU) is the mean of all

IoU values over all categories. Specifically, the mIoU can

be written as follows:

mIoU =
1

C

C∑

i=0

TP (i)

TP (i) + FP (i) + FN(i)
, (9)

where C is the overall number of categories, TP (i), FP (i),
and FN(i) are values of true positive, false positive and

false negative towards the i-th category, respectively.

4.3. Comparative Studies

We evaluate our approach on the above three real-to-real

adaptation settings and compare with some representative

uni-modal domain adaption methods: MinEnt [43], pseudo-

labeling (PL) [28], FCNs in the Wild [18], CyCADA [17],

AdaptSegNet [40] and CLAN [32]. These uni-modal do-

main adaptation methods are evaluated on each modality

with the same network baselines as ours, i.e., U-Net with

ResNet34 encoder (2D network) and SparseConvNet (3D

network). In the output space of 2D pipeline, we sample

the features from the feature map outputted by 2D network

7113



according to the projection from 3D to 2D. Since AdaptSeg-

Net [40] adopts adversarial learning in the output space, re-

garding the 2D pipeline of AdaptSegNet, we are faced with

two options: implementing adversarial learning on 2D fea-

ture map or sampled point features. Herein, we choose the

one with better performance from two options, i.e., adap-

tion on sampled point features. Besides, we compare our

approach with the only known multi-modal domain adap-

tion method: xMUDA [22].

All comparison results for 3D semantic segmentation are

reported in Tab. 2. We can observe that the only usage of

DsCML and CMAL brings a significant adaptation effect

on all settings compared to Baseline (source only). It is

worth noting that our model with only DsCML can outper-

form all state-of-the-art uni-modal methods. It proves that

the two modalities (2D and 3D) are indeed complementary

to each other and our DsCML can consistently improves

performance of both modalities. From the comparison with

“xMUDA+PL” which is the final approah in [22], our model

with both DsCML and CMAL achieves the superior per-

formance and contributes 2.5% (2D), 1.8% (3D) and 1.9%

(Avg) mIoU gains on average over all settings. Moreover,

the model only with DsCML also outperforms “xMUDA”

by 2.1% (2D), 1.4% (3D) and 1.1% (Avg) on average. Some

qualitative segmentation examples can be viewed in Fig. 5.

4.4. Ablation Studies

4.4.1 Effects of DsCML and CMAL

Next, we conduct additional experiments to demonstrate the

benefits of our proposed methods. In Tab. 2, we detail the

performance of each design as well as its mIoU improve-

ment by progressively adding DsCML (intra-domain cross

modal learning) and CMAL (inter-domain cross modal

learning) from the baseline. We can see that DsCML

helps to significantly boots the performance of 2D net-

work by 3.2%∼10%, 3D network by 3.4%∼7.8%, Avg

by 2.3%∼3.7%. With the addition of CMAL, our model

achieves over 1.1% improvement on 2D network and over

2.1% improvement on 3D network. This confirms the ef-

fectiveness of our DsCML and CMAL. Besides, we also

conduct experiments with PL to demonstrate the comple-

mentarity of our model and PL.

4.4.2 Effects of sparse-to-dense feature matching and

deformable patch in DsCML

To evaluate the benefits of the proposed sparse-to-dense fea-

ture matching in DsCML, we re-implement our approach

with CML and sCML, respectively. The comparison results

are reported in Tab. 3. Compared to CML (Tab. 3 a), sCML

(Tab. 3 b) can stably boost the results over 0.7% on each

modal under three settings. It demonstrates the benefits of

sparse-to-dense feature matching. To demonstrate the effect

Table 3. Performance comparison on CML, sCML and DsCML.

Each improvement is obtained by comparing with the upper

model.

Method
USA→Singapore (nuScenes) Day→Night (nuScenes) A2D2→Sem.KITTI

2D 3D Avg 2D 3D Avg 2D 3D Avg

(a) CML 59.6 51.7 62.4 46.3 44.3 49.8 36.4 42.8 42.3

(b) sCML
60.6 52.5 63.2 47.2 45.1 50.7 38.2 44.3 44.0

(↑1.0) (↑0.8) (↑0.8) (↑0.9) (↑0.8) (↑0.9) (↑1.8) (↑1.5) (↑0.7)

(c) DsCML
61.3 53.3 63.6 48.0 45.7 51.0 39.6 45.1 44.5

(↑0.7) (↑0.8) (↑0.4) (↑0.8) (↑0.6) (↑0.3) (↑1.4) (↑0.8) (↑0.5)

Table 4. Ablation on feature alignment styles in CMAL. The best

two results are marked in bold and underline.

Adversary Options
U→S (Lidarseg) D→N (Lidarseg) A2D2→Sem.KITTI

2D 3D Avg 2D 3D Avg 2D 3D Avg

(a) S2D ⇔ T2D & S3D ⇔ T3D 64.8 54.9 64.7 50.1 47.3 52.5 40.1 48.2 48.4

(b) S2D ⇔ T3D & S3D ⇔ T2D 65.6 56.2 66.1 50.9 49.3 53.2 46.3 50.7 51.0

(c) Both (a) and (b) 63.8 55.3 64.4 49.6 49.7 52.9 46.6 47.5 49.2

of deformable patch in DsCML, we also conducted an abla-

tion experiment by comparing our DsCML with sCML. Ac-

cording to the comparison between model only sCML (Tab.

3 b) and model only with DsCML (Tab. 3 c), we can see

that the proposed method DsCML achieves stable improve-

ments and performs best on all three settings. It means the

deformable strategy can find the suitable region of patch to

exchange information with 3D point features.

4.4.3 Effects of cross modal alignment in CMAL

As shown in Tab. 4, we conduct ablation studies on three

options: (a) inter-modal alignment, (b) cross-modal align-

ment and (c) both. Except two scores slightly falling behind

the best, (b) shows the best performances in all settings.

Compared with (a) which only considers relieving domain

gap, (b) can effectively improve adaptation performances by

simultaneously narrow the domain and modality gap. Al-

though (c) adopts both schemes, it shows unstable perfor-

mances as it introduces much more discriminators leading

to training complexity and difficulty.

4.4.4 Effects of Sparse-to-dense Loss

As mentioned in Sec. 3.2, the sparse-to-dense loss Lstd

is proposed to constrain each element of a patch aiming to

make them have a same probability distribution with the

corresponding 3D point. It accomplishes this goal though

constraining the supremum and infimum of each patch iter-

atively. Averaging is a straightforward way to integrate the

information of all elements in patch, and naturally compress

the 2D output to the same size of 3D output. One could be

curious about whether the performance improvement could

also be achieved if we change it to the loss based on mean

value of each deformable patch. Specifically speaking, we

address this concern by conducting additional experiments

where the Eq. 3 is changed as follows:

L′

std =
1

N

N∑

n=1

K(Φn
avg(P2D),P

n
3D), (10)
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Figure 5. Qualitative 3D semantic segmentation results on three multi-modality adaptation settings: Day/Night, USA/Singapore and

A2D2/Sem.KITTI. We show the ensembling results by averaging the softmax outputs of 2D and 3D networks. It can be seen that the

segmentation performance is improved by adding the proposed modules progressively.

Table 5. Ablation on sparse-to-dense loss Lstd. L′

std denotes the

loss between 3D point and mean value of each deformable patch.

Note that the decline (↓) is obtained by comparing with the first

model: DsCML(Lstd).

Method
USA→Singapore (nuScenes) Day→Night (nuScenes) A2D2→Sem.KITTI

2D 3D Avg 2D 3D Avg 2D 3D Avg

DsCML(Lstd) 61.3 53.3 63.6 48.0 45.7 51.0 39.6 45.1 44.5

DsCML(L′
std)

60.2 52.5 62.9 47.1 44.9 50.3 37.6 44.3 43.6

(↓1.1) (↓0.8) (↓0.7) (↓0.9) (↓0.8) (↓0.7) (↓2) (↓0.8) (↓0.9)

DsCML(w/o Lstd)
53.4 46.9 61.5 41.8 41.6 47.6 36.5 37.3 42.3

(↓7.9) (↓6.4) (↓2.1) (↓6.2) (↓4.1) (↓3.4) (↓3.1) (↓7.8) (↓2.2)

where φn
avg(P2D) denotes the average probability scores in

the n-th 2D deformable patch. From the comparison re-

sults reported in Tab. 5, we observe that with L′

std, DsCML

performs at least 0.7% worse than that with Lstd. The per-

formance decline is obviously indicates the effectiveness of

our Sparse-to-dense loss which constrains each element in

patch. As shown in Fig. 6, constraining on average object

of 2D patch is unable to ensure all elements are optimized to

a same and correct direction. As mentioned before, Lstd is

the crucial loss function which enables cross modal learning

in DsCML. To demonstrate the effectiveness of loss func-

tion between modalities. We conduct experiments using the

model without Lstd. Results are shown the in last row of

Tab. 5. As the interaction between 2D and 3D is removed,

it shows evident decline. This demonstrates that the loss be-

tween 2D and 3D is of great importance for domain adapta-

tion.

5. Conclusion

In this paper, we present a multi-modality domain adap-

tation method for 3D semantic segmentation, which adopts

both intra and inter domain cross modal learning. As for

intra-domain CML, we advance Dynamic sparse-to-dense

Cross Modal Learning (DsCML) to address the problem of

insufficient information interaction between dense 2D and

sparse 3D features. With the help of sparse-to-dense learn-

ing loss, DsCML builds effective consistency constraint

Probability score of each 
element in 2D patch

Probability score 
of 3D point

Deformable 2D 
Patch (blue)

1.0

1.0

Probability Score 
Distribution

Probability Score 
Distribution

 Training with

Training with 

Average score 
of 2D elements

3D point 
(green)

Deformable 2D 
Patch (blue)

3D point 
(green)

std

std

Figure 6. Comparision of probability distribution between learn-

ing with L′

std and Lstd. We show actual probability scores of

2D patch and 3D point after training. As shown above, compared

with our Lstd which can effectively constrain each 2D element,

L′

std may lead to elements with anomalous distribution despite fa-

vorable convergence of average distribution.

between the two heterogeneous data. The design of de-

formable patch in DsCML enables the network to adap-

tively search the most suitable 2D region for knowledge

transfer with 3D point. As for inter-domain CML, we uti-

lize Cross Modal Adversarial Learning (CMAL) between

output features which are both domain-different and modal-

different aiming to introduce a higher level modality com-

plementarity. Extensive experiments indicate that our ap-

proach achieves the superior performance to both uni-modal

and multi-modal methods.
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