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Abstract—Linear spectral unmixing is a popular tool in re-
motely sensed hyperspectral data interpretation. It aims at esti-
mating the fractional abundances of pure spectral signatures (also
called as endmembers) in each mixed pixel collected by an imaging
spectrometer. In many situations, the identification of the end-
member signatures in the original data set may be challenging due
to insufficient spatial resolution, mixtures happening at different
scales, and unavailability of completely pure spectral signatures in
the scene. However, the unmixing problem can also be approached
in semisupervised fashion, i.e., by assuming that the observed im-
age signatures can be expressed in the form of linear combinations
of a number of pure spectral signatures known in advance (e.g.,
spectra collected on the ground by a field spectroradiometer).
Unmixing then amounts to finding the optimal subset of signatures
in a (potentially very large) spectral library that can best model
each mixed pixel in the scene. In practice, this is a combina-
torial problem which calls for efficient linear sparse regression
(SR) techniques based on sparsity-inducing regularizers, since the
number of endmembers participating in a mixed pixel is usually
very small compared with the (ever-growing) dimensionality (and
availability) of spectral libraries. Linear SR is an area of very
active research, with strong links to compressed sensing, basis
pursuit (BP), BP denoising, and matching pursuit. In this paper,
we study the linear spectral unmixing problem under the light
of recent theoretical results published in those referred to areas.
Furthermore, we provide a comparison of several available and
new linear SR algorithms, with the ultimate goal of analyzing their
potential in solving the spectral unmixing problem by resorting to
available spectral libraries. Our experimental results, conducted
using both simulated and real hyperspectral data sets collected by
the NASA Jet Propulsion Laboratory’s Airborne Visible Infrared
Imaging Spectrometer and spectral libraries publicly available
from the U.S. Geological Survey, indicate the potential of SR
techniques in the task of accurately characterizing the mixed
pixels using the library spectra. This opens new perspectives for
spectral unmixing, since the abundance estimation process no
longer depends on the availability of pure spectral signatures in the
input data nor on the capacity of a certain endmember extraction
algorithm to identify such pure signatures.

Index Terms—Abundance estimation, convex optimization,
hyperspectral imaging, sparse regression (SR), spectral unmixing.
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I. INTRODUCTION

HYPERSPECTRAL imaging has been transformed from

being a sparse research tool into a commodity product

that is available to a broad user community [1]. The wealth

of spectral information available from advanced hyperspectral

imaging instruments currently in operation has opened new

perspectives in many application domains, such as monitoring

of environmental and urban processes or risk prevention and

response, including, among others, tracking wildfires, detecting

biological threats, and monitoring oil spills and other types of

chemical contamination. Advanced hyperspectral instruments

such as NASA’s Airborne Visible Infrared Imaging Spectrom-

eter (AVIRIS) [2] are now able to cover the wavelength region

from 0.4 to 2.5 μm using more than 200 spectral channels at

a nominal spectral resolution of 10 nm. The resulting hyper-

spectral data cube is a stack of images (see Fig. 1) in which

each pixel (vector) is represented by a spectral signature or

fingerprint that characterizes the underlying objects.

Several analytical tools have been developed for remotely

sensed hyperspectral data processing in recent years, cover-

ing topics like dimensionality reduction, classification, data

compression, or spectral unmixing [3], [4]. The underlying

assumption governing clustering and classification techniques

is that each pixel vector comprises the response of a single

underlying material. However, if the spatial resolution of the

sensor is not high enough to separate different materials, these

can jointly occupy a single pixel. For instance, it is likely that

the pixel collected over a vegetation area in Fig. 1 actually

comprises a mixture of vegetation and soil. In this case, the

measured spectrum may be decomposed into a linear combina-

tion of pure spectral signatures of soil and vegetation, weighted

by abundance fractions that indicate the proportion of each

macroscopically pure signature in the mixed pixel [5].

To deal with this problem, linear spectral mixture analysis

techniques first identify a collection of spectrally pure con-

stituent spectra, called as endmembers in the literature, and then

express the measured spectrum of each mixed pixel as a linear

combination of endmembers weighted by fractions or abun-

dances that indicate the proportion of each endmember present

in the pixel [6]. It should be noted that the linear mixture model

assumes minimal secondary reflections and/or multiple scatter-

ing effects in the data collection procedure, and hence, the mea-

sured spectra can be expressed as a linear combination of the

spectral signatures of the materials present in the mixed pixel

[see Fig. 2(a)]. Being quite opposite, the nonlinear mixture

model assumes that the endmembers form an intimate mixture

inside the respective pixel so that the incident radiation interacts

with more than one component and is affected by multiple

scattering effects [see Fig. 2(b)]. Nonlinear unmixing generally
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Fig. 1. Concept of hyperspectral imaging and the presence of mixed pixels.

Fig. 2. (a) Linear versus (b) nonlinear mixture models.

requires prior knowledge about object geometry and the phys-

ical properties of the observed objects. In this paper, we will

focus exclusively on the linear mixture model due to its com-

putational tractability and flexibility in different applications.

The linear mixture model assumes that the spectral response

of a pixel in any given spectral band is a linear combination

of all of the endmembers present in the pixel at the respective

spectral band. For each pixel, the linear model can be written as

follows:

yi =

q∑

j=1

mijαj + ni (1)

where yi is the measured value of the reflectance at spectral

band i, mij is the reflectance of the jth endmember at spectral

band i, αj is the fractional abundance of the jth endmember,

and ni represents the error term for the spectral band i (i.e., the

noise affecting the measurement process). If we assume that

the hyperspectral sensor used in data acquisition has L spectral

bands, (1) can be rewritten in compact matrix form as

y = Mα+ n (2)

where y is an L× 1 column vector (the measured spectrum

of the pixel), M is an L× q matrix containing q pure spec-

tral signatures (endmembers), α is a q × 1 vector containing

the fractional abundances of the endmembers, and n is an

L× 1 vector collecting the errors affecting the measurements

at each spectral band. The so-called abundance nonnegativity

constraint (ANC) (αi ≥ 0 for i = 1, . . . , q) and the abundance

sum-to-one constraint (ASC) (
∑q

i=1 αi = 1), which we, re-

spectively, represent in compact form by

α ≥0 (3)

1T
α =1 (4)

where 1T is a line vector of 1’s compatible with α, are often

imposed into the model described in (1) [7], owing to the

fact that αi, for i = 1, . . . , q, represents the fractions of the

endmembers present in the considered pixel.

In a typical hyperspectral unmixing scenario, we are given a

set Y ≡ {yi ∈ R
L, i = 1, . . . , n} of n observed L-dimensional

spectral vectors, and the objective is to estimate the mixing

matrix M and the fractional abundances α for every pixel in the

scene. This is a blind source separation problem, and naturally,

independent component analysis methods come to mind to

solve it. However, the assumption of statistical independence

among the sources (the fractional abundances in our applica-

tion), central to independent component analysis methods, does

not hold in hyperspectral applications, since the sum of frac-

tional abundances associated to each pixel is constant. Thus,

the sources are statistically dependent, which compromises the

performance of independent component analysis algorithms in

hyperspectral unmixing [8].
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We note that the constraints (3) and (4) define the set Sq−1 ≡
{α ∈ R

q|α ≥ 0,1T
α = 1}, which is the probability simplex

in R
q . Furthermore, the set SM ≡ {Mα ∈ R

L|α ∈ Sq−1} is

also a simplex whose vertices are the columns of M. Over the

last decade, several algorithms have exploited this geometrical

property by estimating the “smallest” simplex set containing

the observed spectral vectors [9], [10]. Some classic techniques

for this purpose assume that the input data set contains at

least one pure pixel for each distinct material present in the

scene, and therefore, a search procedure aimed at finding the

most spectrally pure signatures in the input scene is feasible.

Among the endmember extraction algorithms working under

this regime, we can list some popular approaches such as the

pixel purity index [11], N-FINDR [12], orthogonal subspace

projection technique in [13], and vertex component analysis

(VCA) [14]. However, the assumption under which these al-

gorithms perform may be difficult to guarantee in practical

applications due to several reasons.

1) First, if the spatial resolution of the sensor is not high

enough to separate different pure signature classes at a

macroscopic level, the resulting spectral measurement

can be a composite of individual pure spectra which cor-

respond to materials that jointly occupy a single pixel. In

this case, the use of image-derived endmembers may not

result in accurate fractional abundance estimations since

it is likely that such endmembers may not be completely

pure in nature.

2) Second, mixed pixels can also result when distinct mate-

rials are combined into a microscopic (intimate) mixture,

independent from the spatial resolution of the sensor.

Since the mixtures in this situation happen at the parti-

cle level, the use of image-derived spectral endmembers

cannot accurately characterize intimate spectral mixtures.

In order to overcome the two aforementioned issues, other

advanced endmember generation algorithms have also been

proposed under the assumption that pure signatures are not

present in the input data. Such techniques include optical

real-time adaptive spectral identification systems [15], convex

cone analysis [16], iterative error analysis [17], automatic

morphological endmember extraction [18], iterated constrained

endmembers (ICE) [19], minimum volume constrained non-

negative matrix factorization [20], spatial–spectral endmember

extraction [21], sparsity-promoting ICE [22], minimum vol-

ume simplex analysis [23], and simplex identification via split

augmented Lagrangian [24]. A necessary condition for these

endmember generation techniques to yield good estimates is the

presence in the data set of at least q − 1 spectral vectors on each

facet of the simplex set SM [24]. This condition is very likely

to fail in highly mixed scenarios, in which the aforementioned

techniques generate artificial endmembers, i.e., not necessarily

associated to physically meaningful spectral signatures of true

materials.

In this paper, we adopt a novel semisupervised approach

to linear spectral unmixing, which relies on the increasing

availability of spectral libraries of materials measured on the

ground, e.g., using advanced field spectroradiometers. Our

main assumption is that mixed pixels can be expressed in

the form of linear combinations of a number of pure spectral

signatures known in advance and available in a library, such as a

the well-known one publicly available from the U.S. Geological

Survey (USGS),1 which contains over 1300 mineral signatures,

or the NASA Jet Propulstion Laboratory’s Advanced Space-

borne Thermal Emission and Reflection Radiometer (ASTER)

spectral library,2 which is a compilation of over 2400 spectra of

natural and man-made materials. When the unmixing problem

is approached using spectral libraries, the abundance estimation

process no longer depends on the availability of pure spectral

signatures in the input data nor on the capacity of a certain

endmember extraction algorithm to identify such pure signa-

tures. Being quite opposite, the procedure is reduced to finding

the optimal subset of signatures in the library that can best

model each mixed pixel in the scene. Despite the appeal of this

semisupervised approach to spectral unmixing, this approach is

also subject to a few potential drawbacks.

1) One risk in using library endmembers is that these spectra

are rarely acquired under the same conditions as the

airborne data. Image endmembers have the advantage of

being collected at the same scale as the data, and thus,

they can be more easily associated with features on the

scene. However, such image endmembers may not always

be present in the input data. In this paper, we rely on

the use of advanced atmospheric correction algorithms

which convert the input hyperspectral data from at-sensor

radiance to reflectance units.

2) The ability to obtain useful sparse solutions for an un-

derdetermined system of equations mostly depends on

the degree of coherence between the columns of the

system matrix and the degree of sparseness of the original

signals (i.e., the abundance fractions) [25]–[28]. The most

favorable scenarios correspond to highly sparse signals

and system matrices with low coherence. Unfortunately,

in hyperspectral applications, the spectral signatures of

the materials tend to be highly correlated. On the other

hand, the number of materials present in a given scene

is often small, e.g., less than 20, and most importantly,

the number of materials participating in a mixed pixel

is usually on the order of four to five [5]. Therefore, the

undesirable high coherence of hyperspectral libraries can

be mitigated, to some extent, by the highly sparse nature

of the original signals.

3) The sparse solutions of the underdetermined systems are

computed by solving the optimization problems contain-

ing nonsmooth terms [26]. The presence of these terms

introduces complexity because the standard optimization

tools of the gradient and Newton family cannot be di-

rectly used. To make the scenario even more complex,

a typical hyperspectral image has hundreds or thousands

of spectral vectors, implying an equal number of inde-

pendent optimizations to unmix the complete scene. To

cope up with this computational complexity, we resort

to recently introduced (fast) algorithms based on the

augmented Lagrangian method of multipliers [29].

1Available online at http://speclab.cr.usgs.gov/spectral-lib.html.
2Available online at http://speclib.jpl.nasa.gov.
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In this paper, we specifically address the problem of spar-

sity when unmixing the hyperspectral data sets using spectral

libraries and further provide a quantitative and comparative as-

sessment of several available and new optimization algorithms

in the context of linear sparse problems. The remainder of this

paper is organized as follows. Section II formulates the sparse

regression (SR) problem in the context of hyperspectral unmix-

ing. Section III describes several available and new unmixing

algorithms, with the ultimate goal of analyzing their potential in

solving the sparse hyperspectral unmixing problems. Section IV

provides an experimental validation of the considered algo-

rithms using the simulated hyperspectral mixtures from the real

and synthetic spectral libraries. The primary reason for the use

of the simulated data is that all details of the simulated mixtures

are known, and they can be efficiently investigated because they

can be manipulated individually and precisely. As a comple-

ment to the simulated data experiments, Section V presents an

experimental validation of the considered SR and convex op-

timization algorithms using a well-known hyperspectral scene

collected by the AVIRIS instrument over the Cuprite mining

district in NV. The USGS spectral library is used in conducting

extensive semisupervised unmixing experiments on this scene.

Finally, Section VI concludes with some remarks and hints

at plausible future research. The Appendix is devoted to the

description of the parameter settings used in our experiments

and to the strategies followed to infer these parameters.

II. SPECTRAL UNMIXING REFORMULATED

AS AN SR PROBLEM

In this section, we revisit the classic linear spectral unmixing

problem and reformulate it as a semisupervised approach using

SR terminology. Furthermore, we review the SR optimization

problems that are relevant to our unmixing problem, their theo-

retical characterization, their computational complexity, and the

algorithms that are used to solve them exactly or approximately.

Let us assume that the spectral endmembers that are used to

solve the mixture problem are no longer extracted nor generated

using the original hyperspectral data as input but are, instead,

selected from a library containing a large number of spectral

samples available a priori. In this case, unmixing amounts to

finding the optimal subset of samples in the library that can

best model each mixed pixel in the scene. This means that a

searching operation must be conducted in a (potentially very

large) library, which we denote by A ∈ R
L×m, where L and

m are the number of spectral bands and the number of mate-

rials in the library, respectively. All libraries herein considered

correspond to underdetermined systems, i.e., L < m. With the

aforementioned assumptions in mind, let x ∈ R
m denote the

fractional abundance vector with regard to the library A. As

usual, we say that x is a k-sparse vector if it has, at most, k
components different from zero. With these definitions in place,

we can now write our SR problem as

min
x

‖x‖0 subject to ‖y−Ax‖2≤δ, x≥0, 1Tx=1

(5)

where ‖x‖0 denotes the number of nonzero components of x

and δ ≥ 0 is the error tolerance due to the noise and modeling

errors. The solution of problem (5), if any, belongs to the set of

sparsest signals belonging to the (m− 1)-probability simplex

satisfying error tolerance inequality ‖y −Ax‖2 ≤ δ. Prior to

addressing problem (5), we consider a series of simpler related

problems.

A. Exact Solutions

Let us first start by assuming that the noise is zero and the

ANC and ASC constraints are not enforced. Our SR optimiza-

tion problem is then

(P0) : min
x

‖x‖0 subject to Ax = y. (6)

If the system of linear equations Ax = y has a solution

satisfying 2‖x‖0 < spark(A), where spark(A) ≤ rank(A) + 1
is the smallest number of linearly dependent columns of A, it is

necessarily the unique solution of (P0) [30], [31]. The spark of

a matrix gives us a very simple way to check the uniqueness of a

solution of the system Ax = y. For example, if the elements of

A are independent and identically distributed (i.i.d.), then with

a probability of one, we have spark(A) = m+ 1, implying that

every solution with no more than L/2 entries is unique.

In our SR problem, we would like then to compute the spark

of the hyperspectral library being used to have an idea of what

is the minimum level of sparsity of the fractional abundance

vectors that can be uniquely determined by solving (P0). Com-

puting the spark of a general matrix is, however, a hard prob-

lem, at least as difficult as solving (P0). This complexity has

fostered the introduction of entities that are simpler to compute,

although providing less tight bounds. Mutual coherence is such

an example. Denoting the kth column in A by ak and the ℓ2
norm by ‖ · ‖2, the mutual coherence of A is given by

μ(A) ≡ max
1≤k,j≤m,k �=j

∣∣aTk aj
∣∣

‖ak‖2‖aj‖2
(7)

i.e., by the maximum absolute value of the cosine of the angle

between any two columns of A. Mutual coherence supplies us

with a lower bound for the spark given by [30]

spark(A) ≥ 1 +
1

μ(A)
.

Unfortunately, as it will be shown further, the mutual coherence

of the hyperspectral libraries is very close to one, leading to

useless bounds for the spark. In the following, we illustrate two

relaxed strategies for computing (P0): pursuit algorithms and

nonnegative signals.

1) Pursuit Algorithms: The problem (P0) is NP hard (which

means that the problem is combinatorial and very complex

to solve) [32], and therefore, there is a little hope in solving

it in a straightforward way. Greedy algorithms such as the

orthogonal basis pursuit [orthogonal matching pursuit (OMP)]

[33] and basis pursuit (BP) [34] are two alternative approaches

in computing the sparsest solution. BP replaces the ℓ0 norm in

(P0) with the ℓ1 norm

(P1) : min
x

‖x‖1 subject to Ax = y. (8)



2018 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 6, JUNE 2011

Contrary to problem (P0), problem (P1) is convex, and it can

be written as a linear programming (LP) problem and can be

solved using LP solvers. What is, perhaps, totally unexpected is

that, in given circumstances related to matrix A, problem (P1)
has the same solution as problem (P0). This result is stated in

terms of the restricted isometric constants introduced in [27].

Herein, we use the variant proposed in [35]. Let αk, with βk ≥
0, be the tightest constants in the inequalities

αk‖x‖2 ≤ ‖Ax‖2 ≤ βk‖x‖2, ‖x‖0 ≤ k (9)

and further define

γ2s ≡
β2
2s

α2
2s

≥ 1. (10)

Then, under the assumption that γ2s < 4
√
2− 3 ≃ 2.6569,

every s-sparse vector is recovered by solving problem (P1)
[35, Th. 2.1 and Corol. 2.1]. Meanwhile, it has been shown

that, in some cases, the OMP algorithm also provides the (P0)
solution in a fashion that is comparable with the BP alternative,

with the advantage of being faster and easier to implement

[26], [36].

2) Nonnegative Signals: We now consider the problem

(
P+
0

)
: min

x
‖x‖0 subject to Ax = y x ≥ 0 (11)

and follow a line of reasoning that is close to that of [25]. The

hyperspectral libraries generally contain only the nonnegative

components (i.e., reflectances). Thus, by assuming that the zero

vector is not in the columns of A, it is always possible to find a

vector h such that

hTA = wT > 0. (12)

Since all of the components of w are nonnegative, matrix W−1,

where W ≡ diag(w), is well defined, and it has positive diago-

nal entries. Defining z ≡ Wx, c ≡ hTy, and D ≡ AW−1 and

noting that

hTAW−1z = 1T z (13)

the problem (P+
0 ) is equivalent to

(
P+
0

)
: min

x
‖z‖0 subject to Dz=y z≥0, 1T z=c.

(14)

We conclude that, when the original signals are nonnegative and

the system matrices comply with property (12), then problem

(11) enforces the equality constraint 1T z = c. This constraint

has very strong connections with the ASC constraint which is

so popular in hyperspectral applications. The ASC is, however,

prone to strong criticisms because, in a real image, there is a

strong signature variability [37] that, at the very least, intro-

duces positive scaling factors varying from pixel to pixel in the

signatures present in the mixtures. As a result, the signatures

are defined up to a scale factor, and thus, the ASC should be

replaced with a generalized ASC of the form
∑

i ξixi = 1, in

which the weights ξi denote the pixel-dependent scale factors.

What we conclude from the equivalence between problems (11)

and (14) is that the nonnegativity of the sources automatically

imposes a generalized ASC. For this reason, we do not explic-

itly impose the ASC constraint.

Similar to problem (P0), problem (P+
0 ) is NP hard and

impossible to exactly solve for a general matrix A. As in

Section II-A1, we can consider instead ℓ1 relaxation

(
P+
1

)
: min

x
‖z‖1 subject to Dz = y z ≥ 0. (15)

Here, we have dropped the equality constraint 1T z = c because

it is satisfied by any solution of Dz = y. As with problem

(P0), the condition γ2s < 4
√
2− 3 ≃ 2.6569 referred to in

Section II-A1 is now applied to the restricted isometric con-

stants of matrix D to ensure that any s-sparse vector solution of

(P+
0 ) is recovered by solving the problem (P+

1 ).
Another way of characterizing the uniqueness of the solution

of problem (P+
0 ) is via the one-sided coherence introduced

in [25]. However, similar to mutual coherence, the one-sided

coherence of the hyperspectral libraries is very close to one,

leading to useless bounds. The coherence may be increased by

left multiplying the system Dz = y with a suitable invertible

matrix P[25]. This preconditioning tends to improve the per-

formance of greedy algorithms such as OMP. It leads, however,

to an optimization problem that is equivalent to (P+
1 ). Thus, a

BP solver yields the same solution.

B. Approximate Solutions

We now assume that the perturbation n in the observation

model is not zero, and we still want to find an approximate

solution for our SR problem. The computation of the approx-

imate solutions raises issues that are parallel to those found

for exact solutions as addressed earlier. Therefore, we go very

briefly through the same topics. Again, we start by assuming

that the noise is zero and the ANC and ASC constraints are not

enforced. Our noise-tolerant SR optimization problem is then

(
P δ
0

)
: min

x
‖x‖0 subject to ‖Ax− y‖2 ≤ δ. (16)

The concept of uniqueness of the sparsest solution is now

replaced with the concept of stability [35], [38], [39]. For

example, in [38], it is shown that, given a sparse vector x0

satisfying the sparsity constraint x0 < (1 + 1/μ(A))/2 such

that ‖Ax0 − y‖ ≤ δ, then every solution xδ
0 of problem (P δ

0 )
satisfies

∥∥xδ
0 − x0

∥∥2 ≤ 4δ2

1− μ(A)(2x0 − 1)
. (17)

Notice that, when δ = 0, i.e., when the solutions are exact, this

result parallels those ensuring the uniqueness of the sparsest

solution. Again, we illustrate two relaxed strategies for com-

puting (P0).
1) Pursuit Algorithms: Problem (P δ

0 ), as (P0), is NP hard.

We consider here two approaches to tackle this problem. The

first approach is the greedy OMP algorithm with stopping rule

‖Ax− y‖2 ≤ δ. The second one consists of relaxing the ℓ0
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norm to the ℓ1 norm, thus obtaining the so-called BP denoising

(BPDN) optimization problem [34]

(
P δ
1

)
: min

x
‖x‖1 subject to ‖Ax− y‖2 ≤ δ. (18)

Contrary to problem (P δ
0 ), problem (P δ

1 ) is convex, and thus, it

is very likely to be solved efficiently with convex optimization

methods. As in (P δ
0 ), the stability of the solution of prob-

lem (P δ
1 ) has also been provided [28], [35]. For example, in

[35, Th. 3.1], if γ2s < 4
√
2− 3 ≃ 2.6569, the ℓ2 error between

any s-sparse solution x of Ax = y and any solution xδ
1 of (P δ

1 )
satisfies

∥∥xδ
1 − x

∥∥
2
≤ Cδ (19)

where δ is a constant that depends on the restricted isometric

constants α2s and β2s defined in (9).

2) Nonnegative Signals: We now consider the problem

(
P δ+
0

)
: min

x
‖x‖0 subject to ‖Ax− y‖2 ≤ δ, x ≥ 0.

(20)

Following the reasoning already put forward in Section II-A2,

problem (P δ+
0 ) is equivalent to

min
z

‖z‖0 subject to ‖Dz− y‖2 ≤ δ, z ≥ 0 (21)

where, as in Section II-B2, D ≡ AW−1, W ≡ diag(hTA),
and h is chosen such that hTA > 0. From the observation

equation y = Dz+ n and from ‖n‖ ≤ δ, we may now write

1T z = c+ hTn, where c ≡ hTy. Therefore, the positivity

constraint in problem (P δ+
0 ) together with the property hTA >

0 implicitly imposes a soft constraint ‖1T z− c‖2 ≤ δh, where

δh is such that ‖hTn‖2 ≤ δh.

Similar to (P δ
0 ), problem (P δ+

0 ) is NP hard and impossible to

solve exactly for a general matrix A or D. As in Section II-B1,

we consider instead the ℓ1 relaxation

(
P δ+
1

)
: min

z
‖z‖1 subject to ‖Dz− y‖2 ≤ δ z ≥ 0.

(22)

As with problem (P δ
1 ), the condition γ2s < 4

√
2− 3 ≃

2.6569 is now applied to the restricted isometric constants of

matrix D, thus ensuring the stability of the solutions of (P δ+
1 ).

III. ALGORITHMS

In the previous section, we have listed a series of opti-

mization problems aimed at computing sparse exact and ap-

proximate solutions for our hyperspectral SR problem. In this

section, we explain in detail the algorithms that we are going

to use for experimental validation in the next two sections.

Specifically, we considered five unmixing algorithms, of which

three do not explicitly enforce the sparseness of the solution,

while the other two belong to the sparse unmixing class of

algorithms.

A. OMP Algorithms

Many variants of the OMP have been published (see [25]

and the references therein). Here, we use the standard imple-

mentation shown for one pixel in Algorithm 1. The algorithms

keeps track of the residual y −Axi, where xi is the estimate

of x at the ith algorithm iteration. At the first iteration, the

initial residual is equal to the observed spectrum of the pixel,

the vector of fractional abundances is null, and the matrix of

the indices of the selected endmembers is empty. Then, at

each iteration, the algorithm finds the member of A which is

best correlated to the actual residual, adds this member to the

matrix of endmembers, updates the residual, and computes the

estimate of x using the selected endmembers. The algorithm

stops when a stop criterion is satisfied (in our case, when the

actual residual is smaller than a preset threshold T ). A member

from A cannot be selected more than once as the residual is

orthogonalized with respect to the members already selected.

Algorithm 1 Pseudocode of the classic OMP algorithm.

Initialization:

Iteration: i = 0
Initial solution: x0 = 0

Initial residual: r0 = y

Initial matrix of selected indices: Λ0 = Φ (empty)

Main iteration:

Update iteration: i ← i+ 1
Compute the index of the best correlated member of A to

the actual residual:

index ← argmin1≤k≤m ‖Akx
i−1 − ri−1‖22 where

Ak represents the kth column of A

Update support: Λi ← Λi−1 ∪ {index}
Update solution: xi ← argminx ‖AΛix− y‖22 subject

to: Support{xi} = Λi

(where AΛi is the matrix containing the columns of A

having the indexes from Λi)

Update residual: ri ← y −Axi

Stop if termination rule: ‖ri‖22 ≤ T is satisfied (the norm

of the residual is below a preset threshold T )

Otherwise, repeat from Main iteration.

The OMP may be used in any of the problems listed in

Section II. We consider, however, the OMP variation proposed

in [25] tailored to problems (P+
0 ) and (P δ+

0 ), which we de-

note by OMP+. In this variation, the Update solution step in

Algorithm 1 is modified to

zi = argmin
z

‖Dz− y‖ subject to Support{zi} = Si

z > 0. (23)

The OMP and OMP+ stopping rule is adapted to solve either

exact or approximate problems. Considering that ε represents

a measure of the error in the accuracy of the unmixing result,

in the former case, ε is very small (ε → 0), leading to the use

of a small T as stopping threshold, whereas in the latter case,

ε > 0, which translates to setting a higher value for the stopping

threshold T in Algorithm 1.
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B. BP and BPDN Algorithms

In this paper, we also use the recently introduced constrained

sparse unmixing algorithm via variable splitting and augmented

Lagrangian (CSUnSAL) [29] to solve the linear problems

(P1) and (P+
1 ) and the quadratic problems (P δ

1 ) and (P δ+
1 ).

CSUnSAL is tailored to hyperspectral applications with hun-

dreds of thousands or millions of spectral vectors to unmix.

This algorithm exploits the alternating direction method of

multipliers (ADMM) [40] in a way that is similar to recent

works [41], [42]. Here, we use the acronyms CSUnSAL,

CSUnSAL+, CSUnSALδ , and CSUnSALδ+ to denote the vari-

ant of CSUnSAL tailored to (P1), (P+
1 ), (P δ

1 ), and (P δ+
1 )

problems, respectively.

C. Unconstrained BP and BPDN Algorithms

All of the constrained optimization problems (P1), (P
+
1 ),

(P δ
1 ), and (P δ+

1 ) can be converted into unconstrained versions

by minimizing the respective Lagrangian. For example, the

problem (P δ
1 ) is equivalent to

min
x

1

2
‖Ax− y‖22 + λ‖x‖1. (24)

The parameter λ > 0 is the Lagrange multiplier, and λ → 0
when δ → 0. This model, sometimes referred to as the least

squares (LS) ℓ1 model, is widely used in the signal processing

community. It was used before to address the unmixing problem

in [43], in which the endmembers were first extracted from

the original image using the N-FINDR endmember extraction

algorithm [12], and then, the respective fractional abundances

of the endmembers were inferred. However, the N-FINDR

algorithm assumes the presence of pure pixels in the original

image. To the best of our knowledge, this approach was never

used before to address the hyperspectral unmixing problem

using spectral libraries.

In this paper, we use the sparse unmixing algorithm via

variable splitting and augmented Lagrangian (SUnSAL), intro-

duced in [29], to solve problem (24). SUnSAL, as CSUnSAL,

exploits the ADMM method [40] in a way that is similar to [41]

and [42]. SUnSAL solves the unconstrained versions of (P1),
(P+

1 ), (P δ
1 ), and (P δ+

1 ). Hereinafter, we use the acronyms

SUnSAL, SUnSAL+, SUnSALδ , and SUnSALδ+ to denote the

respective variant.

It is important to emphasize that, by setting λ = 0 in (24),

one can arrive to an LS solution of the system, which is obtained

by solving the unconstrained optimization problem

(PLS) : min
x

‖y −Ax‖2. (25)

The solution of optimization problem (25) has a poor behav-

ior in terms of accuracy when the matrix of coefficients is ill

conditioned (as it is always the case in the sparse unmixing

problem, in which we deal with fat matrices) or when the obser-

vations are affected by noise. However, one can take advantage

of the physical constraints usually imposed in the unmixing

problem (ANC and ASC) by plugging them into the objective

function of (PLS). Using this approach, we can simply arrive

to the so-called nonnegative constrained LS (NCLS) and fully

constrained LS (FCLS) solutions in [7] by first activating the

ANC and, then, by activating both the ANC and ASC con-

straints, respectively. In this paper, we use SUnSAL to solve the

constrained versions of the LS problem because, as mentioned

before, they are particular cases of (24) when λ = 0.

D. ISMA

In this paper, we also use the iterative spectral mixture

analysis (ISMA) algorithm [44] to solve the considered prob-

lems. The pseudocode of the ISMA is shown in Algorithm 2.

The ISMA is an iterative technique derived from the standard

spectral mixture analysis formulation presented in (2). It finds

an optimal endmember set by examining the change in the

root-mean-square error (rmse) after reconstructing the original

scene using the fractional abundance estimations, as shown

in Algorithm 2. The algorithm consists of two parts. In the

first one, the ISMA initially computes an unconstrained solu-

tion of the unmixing problem in (2) using all of the spectral

signatures available in a spectral library A. Then, it removes

the signature with the lowest estimated fractional abundance

in xi and repeats the process with the remaining signatures

until only one signature remains. In the second part of the

algorithm, the so-called critical iteration is identified as the

iteration corresponding to the first abrupt change in the rmse,

computed as follows:

∆rmse ≡ 1−
(

rmsej−1

rmsej

)
(26)

where rmsej is the rmse corresponding to the jth iteration.

The critical iteration corresponds to the optimal set of end-

members. The idea of recovering the true endmember set by

analyzing the change in the rmse is based on the fact that,

before finding the optimal set of endmembers, the rmse varies

in certain (small) limits, and it has a bigger variation when one

endmember from the optimal set is removed, as the remaining

endmembers are not sufficient to model with good accuracy the

actual observation. It is important to emphasize that the ISMA

computes, at each iteration, an unconstrained solution instead

of a constrained one. This is because it is predictable that,

when the set of endmembers approaches the optimal one, the

estimated fractional abundance vector x̂ will actually approach

x, which is the true one.

Algorithm 2 Pseudocode of the ISMA algorithm.

Part 1:

Initialization:

Iteration: i = 1
Initial spectral library: A1 ← A

Main iteration:

Compute solution: xi ← argminx ‖Aix− y‖22
Compute rmsei ← (1/

√
L)‖ŷ − y‖2, where

ŷ = Aixi

Compute the member of Ai having the lowest abun-

dance: index ← mink(x
k

i
)
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Remove the member having the lowest fractional

abundance from the spectral library: Ai ← Ai\Ai

index

If A still contains more than one member, update

iteration: i ← i+ 1 and repeat Main iteration

Part 2:

Compute the variation of the rmse for all iterations

imin ≤ i ≤ m : ∆rmsei = 1− rmsei−1/rmsei
(where imin is the minimum number of iterations

before stopping the search)

Determine the position of the first substantial increase

in ∆rmse (the critical iteration): i∆rmsemax

The final solution is the solution computed in Part 1 at

the critical iteration.

IV. EXPERIMENTS WITH SIMULATED DATA

In this section, we run a series of simulated data experi-

ments which are mainly intended to address two fundamental

questions.

1) What is the minimum sparsity of signals which are recov-

erable using the hyperspectral libraries?

2) Among the optimization problems and respective algo-

rithms, what are the more suitable ones to address the

hyperspectral SR problem?

This section is organized as follows. First, we describe the

spectral libraries used in our simulated data experiments and

the performance discriminators. Then, we compute the approx-

imate solutions without imposing the ASC (due to the reasoning

showed in Section II-A2) for simulated mixtures using the tech-

niques described in Section III. We do not address the unmixing

problem when the observations are not affected by noise since,

in this case and for the levels of sparsity considered, all of the

methods were able to recover the correct solution. Furthermore,

we present a comparison of the algorithms used to solve the

unmixing problem from two viewpoints: their computational

complexity and their behavior with different noise levels. Next,

a short example is dedicated to the case when the ASC holds

(for one particular library and with observations affected by

correlated noise). The last experiment of this section exempli-

fies the application of sparse unmixing techniques to spectral

libraries composed of image-derived endmembers, which is an

approach that can be adopted if no spectral library is available

a priori. This section concludes with a summary of the most

important aspects observed in our simulated data experiments.

A. Spectral Libraries Used in the Simulated Data Experiments

We have considered the following spectral libraries in our

experiments.

1) A1 ∈ R
224×498: A selection of 498 materials (different

mineral types) from the USGS library denoted as splib063

and released in September 2007. The reflectance values

are measured for 224 spectral bands distributed uniformly

in the interval 0.4–2.5 μm.

3Available online at http://speclab.cr.usgs.gov/spectral.lib06.

2) A2 ∈ R
224×342: Subset of A1, where the angle between

any two different columns is larger than 3◦. We have
made this pruning because there are many signatures in
A1 which correspond to very small variations (including
scalings) of the same material.

3) A3 ∈ R
224×500: A selection of 500 materials generated

using a spectral library generator tool, which allows a
user to create a spectral library starting from the ASTER
library,4 which is a compilation of over 2400 spectra
of natural and man-made materials. Specifically, each
of the members has the reflectance values measured for
224 spectral bands distributed uniformly in the interval
3–12 μm. In this library, there were selected spectra cor-
responding to materials of the following types: man-made
(30), minerals (265), rocks (130), soil (40), water (2),
vegetation (2), frost/snow/ice (1), and stony meteorites
(30). Notice that, in a real scenario, a library like this is
not likely to be used as it is expected that a given mixture
does not contain materials of so many different types.
Although real hyperspectral images are acquired usually
in a narrower range of wavelengths, this library represents
an interesting case study since it is highly heterogeneous
from the viewpoint of the type of materials that actually
compose it, compared to A1 and A2 (which contain only
the mineral spectra). At the same time, using this library
leads to more challenging unmixing problem due to the
internal characteristics of the library, as it will be seen
further.

4) A4 ∈ R
224×449: Subset of A3, generated following the

same reasonings as that for A2.

For comparative purposes, we also consider the following
two libraries made of i.i.d components:

5) A5 ∈ R
224×440: made of i.i.d. Gaussian components hav-

ing a zero mean and a variance of one;
6) A6 ∈ R

224×440: made of i.i.d. components uniformly
distributed in the interval [0, 1].

Fig. 3(a) shows the mean signature and two other signatures
randomly chosen from library A1. All of the curves shown are
nonnegative and relatively smooth. These characteristics are
also shown in Fig. 3(b), which shows the mean square value
of the Discrete Cosine Transform coefficients computed over
all signatures of the library A1, together with their cumulative
energy. From this plot, we can conclude that 99.9% of the
energy is contained in the first 21 coefficients. If we assume
that (from a practical point of view) the remaining coefficients
are zero, then the spark of A1 should be no larger than 21. This
results from the following.

1) Computing the DCT of the columns of A is equivalent to
left multiplying A by a unitary L× L matrix, which does
not therefore change spark(A).

2) Any matrix with zero elements for any line greater that a
given natural l has a rank that is not larger than l.

Table I characterizes the libraries A1–A6. We draw attention
on the very high values of the coherence for the spectral li-
braries (both original and pruned versions). The upper limits of
the spark values for libraries A1–A4 anticipate the difficulties

4Available online at http://speclib.jpl.nasa.gov.
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Fig. 3. (a) Mean signature and two other signatures randomly chosen from library A1. (b) DCT coefficients and cumulative energy.

TABLE I
MUTUAL COHERENCE VALUES AND ESTIMATION OF THE SPARK FOR DIFFERENT SPECTRAL LIBRARIES

in the SR. These difficulties are somehow mitigated by the very
low level of sparsity of the signal in which we are interested.
On the other hand, it is important to emphasize that libraries
composed of i.i.d. components (similar to A5 and A6) have
been extensively used in the literature in order to investigate
the ability of different algorithms to deal with underdetermined
systems of equations. In a sparse unmixing context, the use of
these libraries is mainly intended to preliminarily validate the
algorithms used. This is because these libraries represent ideal
situations that are never encountered in real scenarios, as it can
be concluded from Table I. In the following sections, we present
a series of simulation results based on the aforementioned
libraries and aimed at assessing the potential of SR techniques
in the context of hyperspectral unmixing applications.

B. Performance Discriminators

Before presenting our experimental results, first, it is im-

portant to describe the parameter settings and performance

discrimination metrics adopted in our experiments. Regarding

parameter settings, the algorithms described in Section III have

been applied to unmix simulated mixtures containing a number

of endmembers (i.e., values of the sparsity level), which ranges

from 2 to 20. For each considered cardinality, spectral library,

and noise level, we generated 100 mixtures containing random

members from the library. The fractional abundances were

randomly generated following a Dirichlet distribution [14]. The

ISMA, OMP, and OMP+ algorithms were constrained to return

solutions having at most 30 endmembers (we assume that it

is not plausible that a mixed pixel contains more materials).

Also, the rmse variation for the ISMA (∆rmse) was simply

related to the difference between two consecutive values of the

rmse: ∆rmsei ≡ rmsei − rmsei−1. We remind that the ISMA is

a per-pixel optimization method. This means that the stopping

criterion should be individually set for each pixel separately,

which is impossible in real scenes with thousands or tens of

thousands of pixels. In our experiments, the stopping criterion

was set for a large number of samples at once. The semioptimal

parameters that we have empirically set in our experiments are

reported in the Appendix (see Table IV for additional details).

It is important to emphasize that, in Table IV and in all of the

following figures, the algorithms OMP, ISMA, SUnSAL, and

CSUnSAL are used to solve the unmixing problems (P1) and

(P δ
1 ), whereas the SUnSAL+ and CSUnSAL+ algorithms are

used to solve the problems (P+
1 ) and (P δ+

1 ). Finally, algorithms

SUnSAL + D and CSUnSAL + D solve the modified problems

shown in (15). SUnSAL also solves the NCLS problem. It is

also important to note that algorithms OMP+, SUnSAL + D,

and CSUnSAL + D were not applied for library (A5) as the

corresponding technique is dedicated to nonnegative signals.

Regarding the adopted performance discriminators, the qual-

ity of the reconstruction of a spectral mixture was measured us-

ing the signal-to-reconstruction error SRE ≡ E[‖x‖22]/E[‖x−
x̂‖22] measured in decibels: SRE(dB) ≡ 10 log10(SRE). We

use this error measure, instead of the classical rmse, as it

gives more information regarding the power of the error in

relation with the power of the signal. We also computed the

so-called “probability of success” ps, which is an estimate of
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Fig. 4. Toy example illustrating the reconstruction quality obtained for SRE(dB) ≈ 5 dB. The figures at the top, respectively, represent the abundance fractions
of an endmember and the reflectance values of spectral band 100 (1.28 µm) in the toy hyperspectral image, and the figures in the middle represent the respective
estimations using the SUnSAL algorithm, while the figures at the bottom show the corresponding differences between the true and estimated values in both cases.

the probability that the relative error power is smaller than

a certain threshold. This metric is a widespread one in SR

literature and is formally defined as follows: ps ≡ P (‖x̂−
x‖2/‖x‖2 ≤ threshold). For example, if we set threshold =
10 and get ps = 1, this means that the total relative error

power of the fractional abundances is (with a probability of

one) less than 1/10. This gives an indication about the sta-

bility of the estimation that is not directly inferable from

the SRE (which is an average). In our case, the estimation

result is considered successful when ‖x̂− x‖2/‖x‖2 ≤ 3.16
(5 dB). In all of the following figures related to the SRE(dB),

we plot a dashed blue line representing the 5-dB level in

all situations in which at least one of the algorithms reaches

this value. The main rationale for using this threshold is that,

after inspecting the results of different unmixing scenarios,

we concluded that a reconstruction attaining SRE(dB) = 5 dB

is still useful. To illustrate this situation, we simulated a toy

hyperspectral image with dimensions of 15 × 15 pixels using

the spectral library A1. We assumed the presence of five

randomly selected endmembers in all simulated pixels, with

all observations affected by a white noise with the signal-to-

noise ratio (SNR ≡ ‖Ax‖2/‖n‖22) given as SNR = 40 dB. For

a better visual perception of the unmixing results, the fractional

abundance of one of the endmembers follows a deterministic

Fig. 5. (Blue) True and (red) reconstructed spectra of a randomly selected
pixel in a toy hyperspectral image simulated with SRE(dB) = 5.2 dB.

pattern (e.g., a staircase shape with 15 values comprised be-

tween 0 and 1), with the other abundances generated randomly

(such that the ASC holds in each pixel). Fig. 4 shows the true

and inferred abundance maps obtained for the first endmember

when SRE(dB) = 5.3 dB after applying the SUnSAL algo-

rithm. Fig. 4 also shows the true and reconstructed reflectance
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Fig. 6. Plot of the SRE(dB) values (as a function of the number of endmembers) obtained by the different sparse unmixing methods when applied to the simulated
data with white noise (SNR = 30 dB) using different spectral libraries.

Fig. 7. Plot of the ps values (as a function of the number of endmembers) obtained by the different sparse unmixing methods when applied to the simulated data
with white noise (SNR = 30 dB) using different spectral libraries.

values at spectral band number 100 (1.28 μm) of our toy

hyperspectral image. Finally, the last row of Fig. 4 shows the

difference images (which represent the per-pixel differences be-

tween the images in the top and middle rows of the same figure)

in order to represent the magnitude of the errors that occurred in

the estimation of fractional abundances and in the image recon-

struction at the considered spectral band. Note the low values

of the errors achieved in both cases. The simple toy example

in Fig. 4 indicates that a reconstruction with SRE(dB) ≥ 5 dB

can be considered of good accuracy. Fig. 5 also shows the true

and reconstructed spectra of a randomly selected pixel in our

toy hyperspectral image. In Fig. 5, the reconstructed spectrum
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Fig. 8. Plot of the SRE(dB) values (as a function of the number of endmembers) obtained by the different sparse unmixing methods when applied to the simulated
data with correlated noise (SNR = 30 dB) using different spectral libraries.

Fig. 9. Plot of the ps values (as a function of the number of endmembers) obtained by the different sparse unmixing methods when applied to the simulated data
with correlated noise (SNR = 30 dB) using different spectral libraries.

was obtained for SRE(dB) = 4.8 dB. Moreover, while, in this

example, the noise was set to a low value, in the following tests,

the observations are affected by higher noise (SNR = 30 dB),
which means that the chosen threshold is even more powerful

in terms of performance discrimination.

C. Calculation of the Approximate Solutions Without

Imposing the ASC Constraint

In this section, we consider that the observations are affected
by noise, i.e., n �= 0. The SNR was set to 30 dB. This noise
level was chosen after analyzing the SNR estimated using the
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Fig. 10. Plot of the SRE(dB) values (as a function of the considered SNR) obtained by the different sparse unmixing methods when applied to the simulated data
with white noise using different spectral libraries.

Fig. 11. Plot of the SRE(dB) values (as a function of the considered SNR) obtained by the different sparse unmixing methods when applied to the simulated data
with correlated noise using different spectral libraries.

VCA [14] algorithm5 in several real hyperspectral images and
for different values of the number of endmembers assumed to
be present in the respective scenes.

5Demo available online at http://www.lx.it.pt/ bioucas/code.htm.

It is important to emphasize that the additive perturbation in

the model described in (2) may be motivated by several causes,

including system noise, Poisson noise related with the photon

counting process, and modeling errors related with deviations

in the spectral signatures resulting from atmospheric interferers
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or nonlinearities in the observation mechanism. The first two

causes usually introduce band uncorrelated noise, whereas the

latter one yields band correlated noise. In hyperspectral imag-

ing applications, we argue that the correlated noise is a major

concern since it is very difficult to calibrate the observations

resulting from an airborne/spaceborne sensor with regard to

those in a spectral library of signatures that are acquired in a

laboratory and that are free of atmospheric interferers, leaving

the spectral variability issues alone. Taking into account that,

in real applications, the noise is highly correlated as it mainly

represents the modeling noise and the spectra are of low-pass

type with respect to the wavelength, in our simulations, we

considered, on the one hand, the white noise and, on the other

hand, the colored noise resulting from low-pass filtering the

i.i.d. Gaussian noise using a normalized cutoff frequency of

5π/L. For a given mixture, the unmixing process was again

considered successful when SRE(db) ≥ 5 dB. In the following,

we describe our experiments by assuming white and correlated

noise, respectively.

1) Experiments Assuming White Noise: Fig. 6 shows the

SRE(dB) obtained for our simulated observations affected by

white noise. Similarly, Fig. 7 shows the probability of success

ps achieved by each method for the simulated observations

affected by white noise. It should be noted that we removed the

curves corresponding to algorithms with poor behavior from

the plots in Figs. 6 and 7. From these figures, we can conclude

that pruning the libraries can improve the performances of

the algorithms when the observations are affected by white

noise. Fig. 7 shows that the highest probability of success is

achieved by SUnSAL (specifically, by its positive constrained

version) and NCLS. The library A3 seems to be the most

difficult one to treat for all methods (being the most coher-

ent matrix), but its pruned version is much more accessible.

CSUnSAL particularly exhibits a significant performance

improvement when pruning the libraries. For the libraries

composed of real signatures (A1, . . . ,A4), the probability of

success is low for all methods when the cardinality is higher

than ten. Nevertheless, in a sparse unmixing framework, we

are interested in solutions with a smaller number of endmem-

bers, e.g., up to five endmembers per pixel. For the libraries

composed of i.i.d. entries, all methods exhibit a good behav-

ior. For the other libraries, the ISMA and OMP exhibit poor

results.

2) Experiments Assuming Correlated Noise: Fig. 8 shows

the SRE(dB) obtained for our simulated observations affected

by correlated noise. Similarly, Fig. 9 shows the probability of

success ps obtained for our simulated observations affected

by correlated noise. From the viewpoint of our considered

problem, perhaps, this is the most interesting case study since

the noise in the hyperspectral images is usually correlated. In

Figs. 8 and 9, it can be observed that most considered sparse

unmixing methods exhibit a better performance when applied

to observations affected by colored noise. As in previous (and

subsequent) experiments, we removed the curves correspond-

ing to algorithms with poor behavior. For the libraries com-

posed of real signatures, the highest probability of success is

achieved by CSUnSAL and/or its variants, closely followed

by the unconstrained version of SUnSAL (see the plots for

the most difficult cases, corresponding to A1 and A3). This

result confirms our introspection that imposing sparsity can lead

to improved results in the context of hyperspectral unmixing

problems using the spectral libraries.

D. Comparison of the Unmixing Algorithms With

Regard to Computational Complexity

An important issue in the evaluation of the sparse unmix-

ing algorithms is their computational complexity, particularly

when large spectral libraries are used to solve the unmixing

problem. In this regard, we emphasize that both OMP (and

its variations) and ISMA are computationally complex, with

cubic running time O(L3). All remaining algorithms (NCLS,

FCLS, SUnSAL and its variations, and CSUnSAL and its

variations) have the same theoretical complexity, with quadratic

running time O(L2). A more detailed comparison reporting

the actual algorithm running times in the task of unmixing

a real hyperspectral scene is given (for the same computing

environment) in Section V.

E. Comparison of the Unmixing Algorithms in the

Presence of Different Noise Levels

In this section, we compare the performances of the con-

sidered sparse unmixing algorithms with different noise levels.

Specifically, we consider SNR levels of 20, 30, 40, and 50 dB

both for white and correlated noise. In this experiment, the

observations were generated by assuming a fixed cardinality of

the solution: k = 5. Fig. 10 shows the SRE(dB) as a function

of the noise level affecting the measurements in the case of

white noise, while Fig. 11 shows the same plots in the case

of measurements affected by correlated noise for different

spectral libraries. Again, we removed the curves corresponding

to algorithms with poor behavior. The algorithm parameters in

this experiment were set using the procedure described in the

Appendix (see Table V). In Figs. 10 and 11, we can conclude

that the performance of the algorithms decreases when the

noise increases, as expected. In general, the algorithm behavior

observed in previous simulated scenarios is confirmed here,

with the general trend that most considered approaches perform

better in the presence of correlated noise rather than in the

presence of white noise. For the white noise scenario, both

SUnSAL and SUnSAL+ generally provide the highest values

of SRE(dB), particularly for high SNR values. For the corre-

lated noise scenario, CSUnSAL and its variation CSUnSAL+
generally provide the highest scores of SRE(dB), with the

exception of spectral library A6 for which NCLS provides

the highest error scores as it was already the case in previous

experiments. To conclude this section, it is worth mentioning

that we evaluated the performance of the proposed method

not only with different libraries and a fixed cardinality of the

solution (as shown in Figs. 10 and 11) but also with a fixed

library and a variable cardinality of the solution. For instance,

extensive experiments conducted using only the library A1

for different cardinalities of the solution (not included here

for space considerations) led to the same conclusions obtained

using all of the libraries.
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Fig. 12. Plot of the SRE(dB) and ps values (as a function of the number of endmembers) obtained by the different sparse unmixing methods, including the ASC
constraint, when applied to the simulated data with white and correlated noise using spectral library A1.

Fig. 13. Simulated data set constructed to evaluate the possibility of applying the sparse unmixing methods using the image-derived endmembers. (a) Simulated
image. (b) Abundances of endmember #1. (c) Abundances of endmember #2. (d) Abundances of endmember #3. (e) Abundances of endmember #4. (f) Abundances
of endmember #5.

F. Calculation of the Approximate Solutions

Imposing the ASC Constraint

This section discusses the results obtained in a noisy en-
vironment by the techniques presented in Section III, which
include the ASC constraint, denoted by SUnSALASC (which
also solves here the FCLS problem) and CSUnSALASC. The

simulated data were generated as explained in Section IV-C
but imposing this time the ASC constraint and adding both
white and correlated noise to the simulated observations. The
spectral library used in this example is A1. When the ASC
holds, SUnSALASC is equal to FCLS since, no matter how
the parameter λ is chosen, the sparsity enforcing term does
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TABLE II
SRE(dB) VALUES ACHIEVED AFTER APPLYING SUnSAL+ TO THE IMAGE-DERIVED ENDMEMBERS FROM THE SIMULATED IMAGE IN FIG. 13

Fig. 14. True and estimated abundance fractions for one of the simulated endmembers (all results were obtained using SUnSAL+ for different values of
the parameter λ). (a) True abundances for endmember #5. (b) Estimations with λ = 10−1 and SRE(dB) = 5.43. (c) Estimations with λ = 5× 10−2 and
SRE(dB) = 6.85. (d) Estimations with λ = 10−3 and SRE(dB) = 8.41. (e) Estimations with λ = 5× 10−4 and SRE(dB) = 8.22. (f) Estimations with λ = 0
and SRE(dB) = −1.82.

not play any role (it is a constant). As a consequence, we do
not plot here the results obtained by SUnSALASC but, instead,
the results obtained by SUnSAL+ and CSUnSAL+ for white
and correlated noise, respectively. Fig. 12 shows the values
of SRE(dB) and ps for the two considered cases (white and
correlated noise). These results exemplify the behavior of the
constrained unmixing algorithms in the hypothetical situation
in which the ASC constraint holds, which is an assumption that
is not always true in real unmixing scenarios due to signature
variability issues, as explained in Section II-A2. Fig. 12 shows
that the performances of SUnSAL+ and FCLS are quite similar
(with a small advantage for SUnSAL+) and generally superior
to those achieved by CSUnSALASC for white noise, while
both CSUnSAL+ and CSUnSALASC exhibit a significant per-
formance improvement with regard to FCLS when applied to
unmix observations affected by correlated noise, especially for
high cardinalities of the solution.

G. Application of the Sparse Unmixing Techniques to the

Image-Derived Endmembers

The main goal of this experiment is to analyze the perfor-
mance of sparse unmixing techniques when a spectral library is

not available a priori. In this case, the proposed methods can
still be applied by resorting to an artificially generated spectral
library constructed using the image-derived endmembers. In
our experiment, we first derived a subset of 12 members from
library A1 (the subset was generated after retaining only the
spectral signatures which form a spectral angle larger than 20◦

with all other signatures in the library). Then, we randomly
selected five of the spectral signatures in the resulting subset
and used them to generate a simulated hyperspectral image
with 75 × 75 pixels and 224 bands per pixel. The data were
generated using a linear mixture model, using the five randomly
selected signatures as the endmembers and imposing the ASC
in each simulated pixel. In the resulting image, shown in
Fig. 13(a), there are pure regions as well as mixed regions
constructed using mixtures ranging between two abd five end-
members, distributed spatially in the form of distinct square
regions. Fig. 13(b)–(e), respectively, shows the true fractional
abundances for each of the five endmembers. The background
pixels are made up of a mixture of the same five endmembers,
but this time, their respective fractional abundance values were
fixed to 0.5130, 0.1476, 0.1158, 0.1242, and 0.0994, respec-
tively. The simulated data were then contaminated with noise
(SNR = 20 dB).
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Fig. 15. USGS map showing the location of different minerals in the Cuprite mining district in NV. The map is available online at
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.

Once the simulated data set was generated, we used the

HySime algorithm [45] to find the signal subspace and pro-

jected the data on this subspace. Then, two endmember

extraction algorithms (VCA and N-FINDR) were used to au-

tomatically extract the endmembers from the simulated data.

The obtained endmember sets were merged in order to construct

the spectral library used in the sparse unmixing process. In this

library, only materials with a spectral angle of at least 3◦ with

regard to other materials in the library were retained in order to

avoid strong similarities between the spectral signatures when

conducting the sparse unmixing process. Abundance estimation

was then conducted with SUnSAL+ using different values of

the parameter λ. The same algorithm was used to find the

NCLS solution by setting λ = 0. Finally, the estimated and

true abundances were aligned, and the SRE(dB) was computed.

Table II shows the mean SRE(dB) achieved both for different

values of λ and for each different endmember. For illustrative

purposes, Fig. 14 also graphically shows the abundance esti-

mation results obtained for one specific endmember (the fifth

one used in the simulations). In Table II, it can be seen that

the sparse techniques can still be successfully applied using the

image-derived endmembers if in case there is no spectral library

available a priori. Even in the presence of significant noise,

SUnSAL+ always performed better than NCLS no matter what

the value of λ tested or the endmember considered is. The

results shown in Fig. 14 are also in line with these observations.

It is also worth noting that, in this experiment, we did not

determine a priori the optimal parameter for λ.

H. Summary and Main Observations

In summary, our main observation from the experiments

conducted in this section is that the spectral libraries are in-

deed suitable in solving the sparse unmixing problem in our

simulated analysis scenarios. Although the techniques which

do not explicitly enforce the sparsity of the solution exhibit

similar performances with regard to the sparse techniques when

the observations are affected by white noise, our experimental

results demonstrated that, by enforcing the sparsity of the

solution, unmixing results can significantly improve when the

observations are affected by correlated noise, which is the most

typical one in real hyperspectral imaging scenarios. It is also

worth noting that, according to our experiments, the sparse

techniques exhibit not only a better performance when the

number of endmembers is low (e.g., up to five), which is a

reasonable assumption in practice, but also higher cardinalities

when the noise is correlated. Finally, we also demonstrated that

the sparse unmixing methods can be applied using the image-

derived endmembers when there is no spectral library available

a priori. Although our experiments with the simulated mixtures
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Fig. 16. AVIRIS Cuprite hyperspectral scene used in our experiments. (a) Spatial localization of a toy 70 × 30 pixel subscene in the considered 350 × 350 pixel
data set. (b) Spectral band at the 558-nm wavelength of the toy subscene.

Fig. 17. (a) Plot of the diagonal values of correction matrix C. (b) Original (blue) and corrected (red) spectra of a randomly selected pixel in the AVIRIS Cuprite
data set.

are quite encouraging, the complexity of the real mixtures is

usually quite high, and it is difficult to account for all possible

issues affecting such mixtures when conducting simulations.

For this reason, further experiments using real hyperspectral

data sets are highly desirable. These will be conducted in the

following section.

V. EXPERIMENTS WITH REAL DATA

The scene used in our real data experiments is the well-
known AVIRIS Cuprite data set, available online in reflectance
units.6 This scene has been widely used to validate the per-
formance of endmember extraction algorithms. The portion
used in the experiments corresponds to a 350 × 350 pixel
subset of the sector labeled as f970619t01p02_r02_sc03.a.rfl
in the online data. The scene comprises 224 spectral bands
between 0.4 and 2.5 μm, with a nominal spectral resolution
of 10 nm. Prior to the analysis, bands 1–2, 105–115, 150–170,
and 223–224 were removed due to water absorption and low
SNR in those bands, leaving a total of 188 spectral bands.
The Cuprite site is well understood mineralogically, and it has

6http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

several exposed minerals of interest (all included in the USGS
library considered in the experiments), denoted as splib067 and
released in September 2007. In our experiments, we use the
spectra obtained from this library as the input to the unmixing
methods described in Section III. For illustrative purposes,
Fig. 15 shows a mineral map produced in 1995 by USGS,
in which the Tricorder 3.3 software product [46] was used to
map different minerals present in the Cuprite mining district.8

It should be noted that the Tricorder map is only available
for the hyperspectral data collected in 1995, while the pub-
licly available AVIRIS Cuprite data were collected in 1997.
Therefore, a direct comparison between the 1995 USGS map
and the 1997 AVIRIS data is not possible. However, the USGS
map serves as a good indicator for the qualitative assessment
of the fractional abundance maps produced by the unmixing
algorithms described in Section III.

In order to compute the approximate solutions and to

compare the performances of the algorithms described in

Section III, a toy subscene of 70 × 30 pixels of the Cuprite

data set was first used prior to conducting the experiments with

7http://speclab.cr.usgs.gov/spectral.lib06.
8http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
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Fig. 18. Fractional abundance estimations obtained for each endmember material in the A1 spectral library (as a function of the pixel index in the considered
toy subscene) by the considered sparse unmixing methods.

the 350 × 350 pixel scene. The position of the toy subscene in

the 350 × 350 scene is shown in Fig. 16(a), while the spectral

band at the 558-nm wavelength of the toy subscene is shown in

Fig. 16(b). The results obtained for the 350 × 350 pixel scene

are presented at the end of this section.
In all of our experiments with real data, we use library

A1 to compute the approximate solutions. However, before
processing the hyperspectral data, we should first focus our
attention on the calibration issues. As we have already referred
to before, even though we are working with atmospherically
corrected data in reflectance units, there are always calibration
mismatches between the real pixel spectra and the spectra
available in the library due to the rather different acquisition
conditions of the two data types. In order to minimize these
mismatches, we apply a band-dependent correction strategy to
the original data set, which amounts at replacing the data set

Fig. 19. Fractional abundance estimations obtained for each endmember
material in the A1 spectral library (as a function of the pixel index in the
considered toy subscene) by the SUnSAL+ method. The most significant
minerals found by this algorithm are outlined.
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Fig. 20. Fractional abundance estimations obtained for each endmember material in the A1 spectral library (as a function of the pixel index in the considered
toy subscene) by the OMP, OMP+, and ISMA methods. (a) OMP. (b) OMP+. (c) ISMA.

Fig. 21. Fractional abundance estimations obtained for each endmember
material in the A1 spectral library (as a function of the pixel index in the
considered toy subscene) by the NCLS method.

Y with CY, where C is a diagonal matrix that minimizes the
modeling error, i.e.,

Ĉ = arg min
C,X≥0,1T

m
X=1T

n

‖A1X−CY‖2 (27)

where X ≥ 0 is the fractional abundance matrix. Problem (27)
is nonconvex and, thus, very hard to exactly solve. We have
computed a suboptimal solution to this problem by alternating
the minimizing with respect to C and X. We start the iterative
procedure with C = I. The minimizations with respect to C

and X are, respectively, the LS and constrained LS problems.
To speed up the process and to ensure quality in the estimate
of C, we removed the nonsparse fractional abundances from
X and the respective spectral vectors from Y after the first
iteration. We ran a total of 20 iterations. The plot of the
correction factors with regard to the spectral bands is shown
in Fig. 17(a). These factors are always close to one, apart from
a few bands in the blue wavelengths. For illustrative purposes,
Fig. 17(b) shows a random pixel observation from the original
AVIRIS Cuprite data set and its corrected version using the
aforementioned strategy.

After correcting the data, the unmixing problem was first

solved for the toy subscene using the sparse unmixing algo-

rithms described in Section III. The parameters used were the

following: λ = 10−5 for SUnSAL and all its variations and

δ = 10−4 for CSUnSAL and all its variations. Fig. 18 shows the

fractional abundance estimations obtained for each endmember

material in the A1 spectral library (as a function of the pixel

index in the considered toy subscene) by the considered sparse

unmixing methods. We emphasize that there are a total of 70×
30 = 2100 pixels in the toy subscene. As shown in Fig. 18, the

unconstrained version of CSUnSAL leads to highly inaccurate

(i.e., physically unrealistic) results since the solutions contain

negative values. CSUnSAL+, on the other hand, introduces

more reasonable abundance estimates which, in turn, do not

comply with the ASC constraint since the sum of all abun-

dance fractions per pixel generally exceeds the value of 1.0,

i.e., these are superunitary. CSUnSAL+ D seems far more

realistic than the unconstrained version. Both SUnSAL + D

and CSUnSAL + D produce, in some cases, superunitary frac-

tional abundances. SUnSAL and SUnSAL+ exhibit similar

performances, with the general observation that SUnSAL re-

turns vectors of fractional abundances which are more dense

than SUnSAL+. Another general observation is that the con-

strained methods clearly show the sparsity of the solution as the

nonzero fractions appear in distinct lines (sometimes grouped

in clusters). This is due to the fact that, in the library, there are

consecutive members describing similar materials. This general

observation is strengthened if we compute the average num-

ber of endmembers having fractional abundances higher than

0.05 in one pixel: 44.05 for SUnSAL, 6.07 for SUnSAL+, 6.2

for SUnSAL + D, 68.55 for CSUnSAL, 8.36 for CSUnSAL+,

and 11.09 for CSUnSAL + D. For illustrative purposes, Fig. 19

shows the most significant minerals found by SUnSAL+ in the

toy subscene.

It is important to note that the constrained results of the

sparse unmixing algorithms have very similar norms of the

reconstruction error, with all of them situated for one randomly

selected pixel around 0.05. We have used this observation in

order to set the stopping threshold in the OMP and OMP+
algorithms to this value (i.e., by forcing them to achieve exactly

the same error). In the case of the ISMA, we empirically set

the algorithm threshold to t3 = 2 based on the observed rmse

variation of a small number of randomly selected pixels (10).

It is also worth noting that choosing a threshold for the ISMA

is extremely difficult in this application since the rmse has a

very smooth variation and since the critical iteration is very

difficult to identify. For illustrative purposes, the unmixing

results after using these three algorithms (OMP, OMP+, and
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TABLE III
PROCESSING TIMES (IN SECONDS) MEASURED AFTER APPLYING THE CONSIDERED UNMIXING ALGORITHMS TO THE TOY 70 × 30 PIXEL

SUBSCENE ON A DESKTOP PC EQUIPPED WITH AN INTEL CORE 2 DUO CPU (AT 2.33 GHz) AND 2 GB OF RAM MEMORY

Fig. 22. Qualitative comparison between the fractional abundance maps estimated by the SUnSAL+ sparse unmixing technique and the classification maps
produced by the USGS Tricorder algorithm for the 350 × 350 pixel AVIRIS Cuprite scene.

ISMA) are shown in Fig. 20. In Fig. 20, it can be seen that

the OMP performs poorly (its solution contains many negative

fractional abundances). OMP+ performs better and tolerates

large superunitary values, although the sparsity of the solution

is quite apparent. The same observation is valid for the ISMA.

For the sake of completeness, Fig. 21 shows the fractional

abundances estimated by the NCLS in the toy subscene. The

results were obtained using the SUnSAL algorithm by setting
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TABLE IV
PARAMETER SETTINGS USED IN OUR SIMULATED DATA EXPERIMENTS WHEN THE SNR WAS CONSTANT (SNR = 30 dB)
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TABLE V
PARAMETER SETTINGS USED IN OUR SIMULATED DATA EXPERIMENTS WHEN THE SNR VARIED BETWEEN 20 AND 50 dB
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λ = 0 and by activating the ANC constraint. Before reporting

the abundance estimation results obtained for the 350 × 350

pixel data set, Table III reports the processing times (in seconds)

measured after applying the considered unmixing algorithms

to the toy 70 × 30 pixel subscene. The algorithms were im-

plemented using MATLAB R2009 on a desktop PC equipped

with an Intel Core 2 Duo CPU (at 2.33 GHz) and 2 GB of

RAM memory. As shown in Table III, the ISMA is quite slow

compared to the other algorithms, while the OMP and OMP+
are the fastest ones. NCLS and SUnSAL in all its variants

exhibit comparable running times, while CSUnSAL proves to

be slower than them. In turn, SUnSAL is very fast in the

unconstrained version. Although some of the reported sparse

unmixing algorithms needed significant times to complete their

calculations in this example, their implementation in the form

of parallel algorithms is very feasible, and this strategy (not

adopted in this paper) can lead to significant reductions in

processing time in future developments.

Based on the previous results, which indicate that the ANC-

constrained versions of SUnSAL and CSUnSAL exhibit similar

performances in this problem and that the sparse techniques

generally exhibit a better performance than those techniques

that do not explicitly enforce sparseness, we now apply the

SUnSAL+ algorithm to estimate the fractional abundances in

the 350 × 350 pixel AVIRIS Cuprite scene using the spectral

library A1 and a pruned version of A1. The pruned version was

obtained by simply removing some of the spectral signatures

which form a spectral angle smaller than 2.5◦, thus obtaining

a library with 390 spectrally distinct signatures denoted by

A. Fig. 22 shows a visual (qualitative) comparison between

the fractional abundance maps, estimated for seven highly

mixed materials in the AVIRIS Cuprite scene, by applying the

SUnSAL+ algorithm. For comparative purposes, the spatial

distribution maps of these materials extracted from the Tri-

corder classification map shown in Fig. 15 are also displayed.

In Fig. 22, it can be observed that the SUnSAL+ sparse

unmixing technique is able to find a good approximation for

the distribution of the materials in the scene both for the original

and pruned versions of the spectral library. It should be noted

that there are still some differences between our estimated

abundance maps and the Tricorder maps, mainly due to the fact

that the Tricorder maps are, in fact, classification maps (i.e.,

all pixels are considered pure and are classified as members

or not of a class given by the representative mineral in that

pixel) and not abundance maps (in which the value assigned

to a mixed pixel varies depending on the degree of presence of

the mineral in the pixel). Even so, it can be visually seen that the

SUnSAL+ sparse unmixing technique generally returns the

highest abundances exactly for those pixels classified as mem-

bers of the respective class of materials.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have reformulated the spectral unmixing

problem under the light of SR and have further evaluated the

performance of several (available and new) SR algorithms in

spectral unmixing applications. One significant advantage of

using SR for spectral unmixing purposes is to take advantage

of the increasing availability of the spectral libraries of the

materials measured on the ground, e.g., using advanced field

spectroradiometers. Through the sparse unmixing techniques

described in this paper, mixed pixels can be expressed in the

form of linear combinations of a number of pure spectral

signatures known in advance and available in a library. With this

strategy, the abundance estimation process no longer depends

on the availability of pure spectral signatures in the input data

nor on the capacity of a certain endmember extraction algorithm

to identify such pure signatures. Being quite opposite, the

procedure is reduced to finding the optimal subset of signatures

in the library that can best model each mixed pixel in the scene.

Although our experimental results (conducted with both

simulated and real data sets) are very encouraging, there are

several aspects to be considered in practice, and they are worthy

to be further investigated in future research efforts. One is

the fact that the library spectra are rarely acquired under the

same conditions as the airborne data. To address this issue, in

this paper, we have adopted a simple correction algorithm to

compensate for possible interferers. Another issue is the fact

that the ability to obtain useful sparse solutions of an underde-

termined system of equations mostly depends on the degree of

coherence between the columns of the system matrix and also

on the degree of sparseness of the original signals. As a result,

the most favorable scenarios correspond to the highly sparse

signals and system matrices with low coherence. Unfortunately,

in hyperspectral imaging applications, the spectral signatures

of the materials tend to be highly correlated. This unfavorable

aspect is somehow balanced by the highly sparse nature of the

fractional abundances. The final issue that is to be explored in

future developments is the high computational complexity of

the sparse unmixing algorithms, addressed in this paper by the

consideration of the fast algorithms based on the augmented

Lagrangian method of multipliers, but they are also subject to

further improvements related to the inherently parallel nature of

such algorithms. In fact, an important advantage of the sparse

unmixing methods is that their complexity depends more on the

cardinality of the solution and on the number of spectra in the

library and less on the size of the hyperspectral image that is

to be processed. Since the sparse unmixing is conducted in the

pixel-by-pixel fashion, the procedure could be accelerated by

dividing the image into subimages (or subsets of pixels) of any

size and by processing the subpartitions in parallel without the

need to establish an optimal size of subimages or subpartitions.

This feature anticipates the high scalability of the potential

parallel solutions to this approach.

APPENDIX

In this Appendix, we report the parameters used in our

simulated data experiments. Specifically, Table IV reports the

parameters used when looking for the approximate solutions

in the experiments with SNR = 30 dB for each considered

cardinality, unmixing method, and spectral library. In order to

ensure a fair comparison, we defined the near-optimal param-

eters for groups or levels of sparsity, with each group being

described by a representative level for all considered methods.

The parameters were denoted as follows: t1, t2, and t3 are
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the thresholds imposed on the stopping criteria for the OMP,

OMP+, and ISMA; λ1, λ2, and λ3 are the regularization pa-

rameters for SUnSAL, SUnSAL+, and SUnSAL + D; and δ1,

δ2, and δ3 are the tolerance errors for CSUnSAL, CSUnSAL+,

and CSUnSAL + D, respectively. It should be noted that the

NCLS does not require any input parameter.

In order to find the near-optimal parameters in this particular

case (SNR = 30 dB), the representative levels for the groups of

sparsity were chosen as follows: for k = 2, . . . , 6, the represen-

tative level is k1 = 4; for k = 7, . . . , 13, the representative level

is k2 = 10; and for k = 14, . . . , 20, the representative level is

k3 = 17. Table IV [columns (a) and (b)] shows the near-optimal

parameters established for the simulated data sets affected by

white and correlated noise, respectively. These parameters are

near optimal for the representative cardinalities, but they are

applied for all sparsity levels in the respective group, and they

were inferred by testing the algorithms using toy examples, i.e.,

by considering a large range of possible discrete values on the

basis of a small number of samples (10).

On the other hand, Table V reports the parameters used in

our simulated data experiments when the true cardinality was

k = 5 and when the SNR varied between 20 and 50 dB. These

parameters were found in a similar fashion to the ones reported

in Table IV, considering two representative levels of the SNR:

k1 = 25 dB for SNR = 20, . . . , 30 dB and k2 = 45 dB for

k = 40, . . . , 50 dB. To conclude this section, we would like to

emphasize our significant efforts in testing the most suitable

parameters in order to report only the near-optimal results for

each considered method.
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