
 

  

 

Aalborg Universitet

Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of
Multipath Wireless Channels

Shutin, Dmitriy; Fleury, Bernard Henri

Published in:
I E E E Transactions on Signal Processing

DOI (link to publication from Publisher):
10.1109/TSP.2011.2140106

Publication date:
2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Shutin, D., & Fleury, B. H. (2011). Sparse Variational Bayesian SAGE Algorithm With Application to the
Estimation of Multipath Wireless Channels. I E E E Transactions on Signal Processing, 59(8), 3609-3623.
https://doi.org/10.1109/TSP.2011.2140106

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/TSP.2011.2140106
https://vbn.aau.dk/en/publications/a169caef-004d-4a52-af04-d09a241af9c3
https://doi.org/10.1109/TSP.2011.2140106


IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 8, AUGUST 2011 3609

Sparse Variational Bayesian SAGE Algorithm
With Application to the Estimation of

Multipath Wireless Channels
Dmitriy Shutin, Member, IEEE, and Bernard H. Fleury, Senior Member, IEEE

Abstract—In this paper, we develop a sparse variational

Bayesian (VB) extension of the space-alternating generalized ex-

pectation-maximization (SAGE) algorithm for the high resolution

estimation of the parameters of relevant multipath components

in the response of frequency and spatially selective wireless

channels. The application context of the algorithm considered

in this contribution is parameter estimation from channel

sounding measurements for radio channel modeling purpose.

The new sparse VB-SAGE algorithm extends the classical SAGE

algorithm in two respects: i) by monotonically minimizing the

variational free energy, distributions of the multipath component

parameters can be obtained instead of parameter point estimates

and ii) the estimation of the number of relevant multipath

components and the estimation of the component parameters

are implemented jointly. The sparsity is achieved by defining

parametric sparsity priors for the weights of the multipath

components. We revisit the Gaussian sparsity priors within

the sparse VB-SAGE framework and extend the results by

considering Laplace priors. The structure of the VB-SAGE

algorithm allows for an analytical stability analysis of the update

expression for the sparsity parameters. This analysis leads to

fast, computationally simple, yet powerful, adaptive selection

criteria applied to the single multipath component considered at

each iteration. The selection criteria are adjusted on a per-com-

ponent-SNR basis to better account for model mismatches, e.g.,

diffuse scattering, calibration and discretization errors, allowing

for a robust extraction of the relevant multipath components.

The performance of the sparse VB-SAGE algorithm and its

advantages over conventional channel estimation methods are

demonstrated in synthetic single-input–multiple-output (SIMO)

time-invariant channels. The algorithm is also applied to real

measurement data in a multiple-input–multiple-output (MIMO)

time-invariant context.
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I. INTRODUCTION

I
N modeling real world data, proper model selection plays

a pivotal role. When applying high resolution algorithms

to the estimation of wireless multipath channels from multidi-

mensional channel measurements, an accurate determination

of the number of dominant multipath components is required

in order to reproduce the channel behavior in a realistic

manner—an essential driving mechanisms for the design and

development of next generation multiple-input–multiple-output

(MIMO)-capable wireless communication and localization

systems. Consider for simplicity a single-input–multiple-output

(SIMO) wireless channel,1 e.g., an uplink channel with a base

station equipped with multiple antennas. The received signal

vector made of the signals at the outputs of these antennas

can be represented as a superposition of an unknown number

of multipath components contaminated by additive

noise [1]

(1)

In (1) is the multipath weights and is the received ver-

sion of the transmitted signal modified according to the disper-

sion parameter vector of the th propagation path.2 Classical

parameter estimation [2]–[5] deals with the estimation of the

multipath components, i.e., and , while the estimation of

the number of these components is the object of model order

1The proposed method can be easily extended to MIMO time-variant channels
with stationary propagation constellation. With minor modifications the polar-
ization aspects can be included as well. This extension merely leads to a more
complicated signal model, including for instance more dispersion parameters,
without adding any new aspect relevant to the understanding of the new pro-
posed concepts and methods. The scenario considering a SIMO channel seems
a sensible compromise between complexity of the model underlying the the-
oretical analyses and an interesting application in which the proposed method
can be demonstrated. However, in the experimental section we consider the es-
timation of a MIMO channel.

2We mean as dispersion parameters of the waves propagating from the trans-
mitter side to the receiver site—and, by generalization, of the multipath compo-
nents in the resulting channel response—their relative delay, direction of depar-
ture, direction of arrival, and Doppler frequency. The parameter ��� includes all
these parameters or a subset of them depending on the transmitter and receiver
configurations.

1053-587X/$26.00 © 2011 IEEE
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selection [6]–[9]. Despite its obvious simplicity, (1) provides an

oversimplified description of reality: it adequately accounts for

specular-like propagation paths only. Components originating

from diffuse scattering inevitably present in measured channel

responses are not rendered appropriately in (1). More specifi-

cally, a very large number of specular components is needed

to represent such diffuse components. Further effects leading to

model mismatch are errors in calibration of the response of the

transceiver or measurement equipment that cause inaccuracies

in the description of , as well as the discrete-time ap-

proximation to (1), typically arising when model parameters are

estimated using numerical optimization techniques. All these

effects have a significant impact on the performance of both

the parameter estimation algorithms and the model order se-

lection schemes derived based on (1). Experimental evidence

shows that if the model order selection scheme is not carefully

designed, the above model mismatch will lead to an overestima-

tion of the number of relevant multipath components. Fictive

components without any physical meaning will be introduced

and their parameters estimated. Hence, radio channel estima-

tors combining model order (component number) selection and

component parameter estimation that are robust against model

mismatch are needed here.

Bayesian methods are promising candidates for such robust

methods. For a fixed model order the classical maximum like-

lihood (ML) approach to the estimation of dispersion parame-

ters and gains in (1)

involves maximization of the multidimensional parameter like-

lihood given the measurement . Although efficient

algorithms exist to solve this optimization problem [2], [3], [10],

standard ML algorithms require a fixed number of components

and typically do not employ any likelihood penalization to

compensate for overfitting. Bayesian techniques can compen-

sate for this through the use of a prior , which effec-

tively imposes constrains on the model parameters. The model

fit (i.e., the value of the likelihood) can be traded for the model

complexity [i.e., number of components in (1)] through the like-

lihood penalization. Likelihood penalization lies in the heart of

celebrated information-theoretic model order selection criteria,

such as minimum description length (MDL), Bayesian informa-

tion criterion (BIC), as well as their variants [7]–[9].

Imposingconstraintson themodelparameters isakey tosparse

signal modeling [11]–[16]. In Bayesian sparsity approach [11],

[13], [14], [17] the gains are constrained using a parametric

prior , where is a circularly

symmetric probability density function (pdf), with the prior

parameter —also called sparsity parameter—being inversely

proportional to the width of the pdf. Such form of the prior allows

for controlling the contribution of each basis associated with the

weight through the sparsity parameter : a large value of

will drive the corresponding weight to zero, thus realizing a

sparse estimator. The sparsity parameters are found as the max-

imizers of , which is also known as a type-II likelihood

function or model evidence [13], [14], [18] and the corresponding

estimation approach is known as the evidence procedure (EP)

[14].

In general, evaluating is difficult. This, however, can

be done analytically [11], [13], [14], [17] in the special case

of linear models3 with both model distribution and

sparsity prior being Gaussian. This choice of the prior pdf cor-

responds to the -type of parameter constraints. Moreover, it

can be shown [19] that in the Gaussian prior case the maximum

of the model evidence coincides with the Bayesian

interpretation of the normalized ML model order selection [7]

and reduces to the BIC as the number of measurement samples

grows. Therefore, the EP allows for joint model order selection

and parameter estimation. This approach was investigated in

[19] within the context of wireless channels; however, [19]

considers the estimation of multipath gains only, thus bypassing

the estimation of the dispersion parameters in (1). Recently,

several investigations have been dedicated to study the -type

of parameter penalties [12], [15], [16], [20], [21], which, in

the Bayesian sparsity framework, is equivalent to choosing

as a Laplace prior for . Compared to

Gaussian priors, such form of constraints leads to sparser

models [13], [15], [22], [23]. The -type of penalties signifi-

cantly limits the analytical study of the algorithm; nonetheless

for models linear in their parameters different efficient nu-

merical techniques have been developed [15], [24], [25]. The

extension of the Bayesian sparsity methods with Laplace priors

applied to the estimation of multipath wireless channels has

not been explored yet, mainly due to the nonlinearity of the

channel model in . This can be circumvented by using virtual

channel models [16], [21], which is equivalent to a sampling

or gridding of the dispersion parameters at the Nyquist

rate [16]. The algorithm then estimates the coefficients on the

grid using sparsity techniques [12], [16], [21]. This approach,

however, does not provide high resolution estimates of the

multipath parameters. Although it is very effective in capturing

channel energy, recent investigations [26] demonstrate that

this approach inevitably leads to a mismatch between the true

channel sparsity and the estimated sparsity; more specifically,

even when fine quantization of is used, the number of virtual

multipath components will always exceed the true number of

multipath components; in that respect the channel estimates

derived based on virtual models are not appropriate when the

goal is to extract physical multipath components. In this paper

we aim to demonstrate that the superresolution property should

not be sacrificed to the linearity of the estimation problem. We

achieve this by: i) casting a super-resolution SAGE algorithm

for multipath parameter estimation [3] in a Bayesian frame-

work, and treating the entries in as random variables whose

pdfs are to be estimated and ii) combining this estimation

scheme with the Bayesian sparsity techniques, as aforemen-

tioned, i.e., using multiple sparsity parameters to control

the model sparsity on a per-component basis. Moreover, as we

will show, our analysis also allows for defining ways to reduce

the impact of estimation artifacts due to the basis mismatches

through a detailed analysis of the estimation expressions for the

sparsity parameters.

Our main contribution in this paper is twofold. First, in

order to realize Bayesian sparse estimation and to overcome

the computational difficulties due to the nonlinearity of the

3In our context this corresponds to assuming ��� as known or fixed, and thus
������� � � ����.
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channel model, we propose a new variational Bayesian (VB)

[27] extension of the space-alternating generalized expecta-

tion-maximization (SAGE) algorithm for multipath parameter

estimation [3], [28]. We coin this extension the variational

Bayesian SAGE (VB-SAGE). In contrast to the SAGE algo-

rithm, the VB-SAGE algorithm estimates the posterior pdfs of

the model parameters by approximating the true posterior pdf

with a proxy pdf such as to minimize

the variational free energy [27]. Similar to the original SAGE

algorithm [28], the VB-SAGE algorithm relies on the concept

of the admissible hidden data—an analog of the complete data

in the EM framework—to optimize at each iteration the vari-

ational free energy with respect to the pdfs of the parameters

of one component only. We demonstrate that the monotonicity

property of the VB-SAGE algorithm guarantees that such

optimization strategy necessarily minimizes the variational free

energy. Such optimization strategy makes the estimation of the

parameters in a tractable optimization problem due to the

reduced dimensionality of the resulting objective functions.

Second, we demonstrate that the admissible hidden data also

permits a detailed analytical study of the sparsity parameters

, which leads to selection criteria applied individually to the

multipath component updated at each iteration. On the one

hand, these selection criteria allow for a fast implementation

of the sparse channel estimator; on the other hand, they are

easy to interpret and can be adjusted to compensate for model

mismatch due to, e.g., calibration and discretization errors.

Thus, the sparse VB-SAGE algorithm jointly implements the

estimation of the number of relevant multipath components and

the estimation of the posterior pdfs of the component parame-

ters. We revisit and extend the Gaussian prior case, and present

new results for Laplace sparsity priors within the framework of

the VB-SAGE algorithm. It should also be mentioned that the

performed analysis of the sparsity parameters is equally valid

for the problem of sparse estimation of virtual channel models

[16] with the VB-SAGE algorithm. However, the application

of the sparse VB-SAGE algorithm to the estimation of virtual

channel models is outside the scope of the paper.

The paper is organized as follows: In Section II we intro-

duce the signal model; Section III addresses the derivation of the

VB-SAGE algorithm for the multipath parameter estimation,

followed by the analysis of the sparsity priors for model order

selection discussed in Section IV; in Section V several practical

issues, e.g., algorithm initialization, are discussed; in Section VI

estimation results obtained from synthetic and measured data

are presented; finally, we conclude the paper in Section VII.

Through the paper we shall make use of the following nota-

tion. Vectors are represented as boldface lowercase letters, e.g.,

, and matrices as boldface uppercase letters, e.g., . For vec-

tors and matrices and denote the transpose and Hermi-

tian transpose, respectively. Sets are represented as calligraphic

uppercase letters, e.g., . We use to denote an index set, i.e.,

. The assumed number of elements in is , un-

less stated otherwise. We will write as a short-

hand notation for a list of variables with indices . When

is a set and , then is the complement

of in . Similarly, and .

Two types of proportionality are used: denotes ;

denotes and thus for some ar-

bitrary constants and . An estimate of a random variable

is denoted as . We use to denote the expectation

of a function with respect to a probability density ;

similarly, denotes the expectation with respect to

the joint probability density of the random variables in

the set . Finally, denotes a multivariate com-

plex Gaussian pdf with a mean and a covariance matrix ;

denotes a gamma pdf with parameters and .

II. SIGNAL MODEL

Channel sounding is an instrumental method for the design of

accurate and realistic radio channel models. Channel sounding

is usually performed by sending a specific sounding sequence

through the channel and observing the response at the

receiving side. The received signal is then used to estimate

the channel impulse response (CIR) or its parameters when a

parametric model of the response is specified. Consider now a

SIMO channel model and time-domain channel sounding. The

sounding signal consists of periodically repeated burst

waveforms , i.e., , where has

duration and is formed as

. The known sounding sequence consists of

chips and is the shaping pulse of duration , with

. We assume that the signal vector has been

received/measured with an antenna array consisting of sen-

sors located at positions with respect to

an arbitrary reference coordinate system. The signal originating

from the th propagation path is an altered version of the original

transmitted signal weighted by a complex gain . The al-

teration process is described by a (nonlinear) mapping

, where is the vector of dispersion parameters, e.g.,

relative delay, azimuth and elevation angles of arrival. The non-

linear mapping includes the system effects, e.g.,

the transmitter and receiver RF/IF filters and the responses of the

transmit and receive arrays. In the sequel we try to abstract from

the concrete channel structure where it is possible and keep the

model in its most general form. Additive noise is assumed

to be a zero-mean spatially white and temporally wide-sense

stationary Gaussian process, i.e., ,

and , , , .

In our framework we assume that is known.4 In practice

is low-pass filtered and sampled with the sampling period

, resulting in -tuples with being the number of output

samples per sensor. By stacking the sampled outputs of the

sensors in one vector , (1) can be rewritten as

(2)

where we define ,

, with

, and ,

. Finally, we define .

4Although it is possible to reformulate the algorithm to estimate the noise
covariance [14], [29], we will leave this aspect outside the scope of this work.
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Fig. 1. (a) Graphical model representing (2) with � components. (b) Extended
model with the admissible hidden data ��� .

The probabilistic graph depicted in Fig. 1(a) encodes the de-

pendencies between the parameters and the observation vector

in the model (2). As visualized in the graph structure, the joint

pdf of the probabilistic model can be factored as

, where is the vector

containing the model sparsity parameters. Let us now specify

the statistical model behind the involved variables.

Under the Gaussian noise assumption,

, with . The second

term is the parameter prior. We assume that

, where is the sparsity

prior for the th component. The purpose of the sparsity prior

is, on the one hand, to constrain the gains of the

components, and thus implement sparsification/model order

selection, and, on the other hand, to control this constraint

through the sparsity parameters . We will study two choices

for : i) a Gaussian prior, and ii) a Laplace prior. In both

cases the prior pdfs are complex circularly symmetric, with the

nonnegative hyperparameter inversely proportional to their

width. Thus, large values of will render the contribution of

the component “irrelevant” since the corresponding

prior over will then be concentrated at the origin. The choice

of the prior is arbitrary; however, it must reflect the under-

lying physics and restrictions of the measurement equipment;

a non-informative prior can also be used. The prior ,

also called the hyperprior of the th component, is selected

as a gamma pdf .

Practically we set for all components to render

their hyperprior non-informative [13], [14]. Such formulation

of a hyperprior pdf is related to automatic

relevance determination [18], [30].

III. PARAMETER ESTIMATION FRAMEWORK

Direct evaluation of or of the posterior

for performing inference of the unknown parameters is a

nontrivial task. Two main reasons for this are the nonlinearity of

the model (1) and the statistical dependence of multipath com-

ponent parameters when is observed.5 Approximative tech-

niques might significantly ease the model fitting step. In our

work we resort to the variational Bayesian inference framework.

The variational Bayesian inference generalizes the classical EM

algorithm [27] and provides a tool for estimating distributions of

. Essentially, variational methods approximate the poste-

rior pdf of interest with a simpler pdf (by, e.g., neglecting some

statistical dependencies between random variables) such that the

5Such graph structure is also referred to as a V-structure [31], which leads
to the conditional dependence of the parent variables when the corresponding
child variable is observed.

Kullback-Leibler divergence between the former pdf and the

latter is minimized.

When estimating parameters using the SAGE algorithm [3],

[28], the concept of complete data in the EM algorithm is re-

placed by that of admissible hidden data. The purpose of the ad-

missible hidden data is to make the update procedure for only a

subset a tractable optimization problem. For the vari-

able to be an admissible hidden data with respect to

the following factorization must be satisfied:

[28]. The fact that is an

admissible hidden data guarantees that the likelihood of the new

parameter update (obtained by replacing the updated pa-

rameter subset in the overall parameter set ) cannot be

smaller than the likelihood prior to the update [28]. This prop-

erty is referred to as the monotonicity property. The concept

of admissible hidden data can be exploited within the varia-

tional framework as well. As we will show later, this similarly

leads to an iterative algorithm—we call it the VB-SAGE algo-

rithm—that still exhibits the monotonicity property in terms of

the variational free energy [27].

Consider for a specific component the new variable

(3)

which can be conceived as a received signal associated with the

th propagation path. The additive noise component in (3)

is obtained by arbitrarily decomposing the total noise such

that and . We define

to be the part of the total additive noise that is

not associated with the th component. Thus, . Con-

sider now the modified graph in Fig. 1(b) that accounts for . It

is straightforward to show that is an admissible hidden data

with respect to the subset . Since we are interested

in estimating all components, we can formulate the estima-

tion algorithm as a succession of estimations of

with respect to , , assuming that ,

, are known and fixed. According to the extended graph

in Fig. 1(b), the joint pdf now factors as

(4)

where

(5)

and .

A. Variational Bayesian Inference of Signal Parameters

Variational Bayesian inference [27] is a family of techniques

that exploit analytical approximations of the posterior pdf of in-

terest, i.e., , using a simpler proxy pdf . The

latter pdf is estimated as a minimizer of the variational free en-

ergy [27], which is formally equivalent

to the Kullback-Leibler divergence

between the proxy pdf and the true joint pdf. The admissible
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hidden data, used in the SAGE algorithm to facilitate the max-

imization of the parameter likelihood, can also be used within

the variational inference framework to ease the minimization of

the variational free energy. Such algorithm we term a VB-SAGE

algorithm.

Essentially, the VB-SAGE algorithm approximates

with a variational proxy pdf

(6)

by minimizing the free energy with respect to the parameter

of the th component only, and cycling through all compo-

nents in a “round-robin” fashion. The monotonicity property of

the VB-SAGE algorithm (see Appendix A) ensures that such

sequential optimization necessarily decreases the free energy

.

It is straightforward to show that with the factorization (6) the

estimation of any factor , , requires the

Markov blanket [31] of to be known.6 Define now

(7)

The unconstrained solution for that minimizes the corre-

sponding free energy is then simply found as .

Clearly, an unconstrained solution is preferred. However, we

might have to constrain to belong to some class of

pdfs in order to make the optimization tractable. In this case the

approximate solution is obtained by solving

(8)

In the case of it is straightforward to show that is

quadratic in ; therefore is a Gaussian pdf, and

. We stress that the constraint

guarantees the monotonicity of the VB-SAGE algorithm, as we

show in the Appendix A. Similarly, we select as the set

of Gaussian pdfs, i.e., ; notice that

only when is a Gaussian pdf. For the

sparsity parameters we select as the set of gamma

pdfs, i.e., . This choice is dictated by the

Gamma distribution being the conjugate prior for the inverse

variance of the normal distribution; as a result, in the Gaussian

prior case . We select as the set of Dirac

measures on the range of ; thus, . By doing

so we restrict ourselves to point estimates of the dispersion pa-

rameters.7 The parameters , , , , , , and are called

variational parameters. Obviously, knowing the pdf

translates into knowing the variational parameters of its factors

and vice-versa.

6For a given Bayesian network with � variables, a Markov Blanket of a
variable � is the smallest subset of variables ����� � � that “shields”
� from the rest of the variables � � � � ��������� in the sense that
���	�������� � ���	������.

7Considering more complex forms of ����� � would require the expectation of
����� � with respect to ��� to be evaluated in the closed form. A detailed study of
this case is outside the scope of this paper.

B. Variational Estimation Expressions

Just like SAGE, the VB-SAGE algorithm is implemented in a

sequential manner. For the model with signal components the

algorithm sets and updates the proxy factors , ,

, and related to the first component, i.e., updates

the corresponding variational parameters, based on the currently

available estimates of the factors, i.e., the variational parame-

ters, of all other components. In the same fashion the

variational parameters of the component are updated, and

so on, until all components are considered. The procedure of

updating all parameters of all components in this way consti-

tutes a single update cycle of the algorithm. The update cycles

are repeated anew until convergence.

In what follows, we consider the update expressions for the

variational parameters of the th com-

ponent only. The updated value of a parameter will be denoted

by ; let us point out that after has been updated, the

other factors related to the component can be updated in any

order.

1) Estimation of : From the graph in Fig. 1(b), we

conclude that . Evaluating (7) in this

case leads to . Since

the right-hand side is a product of Gaussian pdfs, is as

well a Gaussian pdf with the mean and covariance matrix given

by

(9)

Thus, . The result (9) general-

izes that obtained in [3] by accounting for the covariance matrix

of and the noise covariance matrix . Note, however, that the

expression for the mean in (9) is identical to that obtained in

the SAGE algorithm.

Let us consider the limiting case as . It has been shown

that for models linear in their parameters the choice

leads to a fast convergence of the algorithm already in the early

iteration steps [28]. This is equivalent to assuming that

, which was also used as an admissible

hidden data in [3]. In this case , so that collapses

to a Dirac distribution and .

2) Estimation of : The Markov blanket of is

. Here the estimation algorithm profits

from the usage of the admissible hidden data . Since

, finding reduces to the computa-

tion of that maximizes given by (7). By noting that

we obtain

(10)

Notice that due to being a Gaussian pdf within the

VB-SAGE framework, (10) includes a Tikhonov-like regular-

ization term with the posterior variance

of acting as a regularization constant. Unfortunately, since
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depends nonlinearly on , (10) has to be optimized

numerically, e.g., using successive line searches where each

element of is determined separately or using a joint search

in which all elements of are computed jointly; if derivatives

of the objective function (10) with respect to are available,

gradient-based optimization schemes can also be used.

Typically is selected to factorize according to

, where is the number of dispersion param-

eters describing a multipath component.8 Estimating

can be done by evaluating (7) using

and performing a simple line search of the

resulting objective function. Notice that the same assumption

underpins the SAGE-based estimation of . The VB-SAGE es-

timation expression for in (10) coincides with that of the stan-

dard SAGE when is selected non-informative and

.

3) Estimation of : The Markov blanket for

is . Evaluating (7) leads to

. For a given choice of

the moments of can be either found

in closed form or efficiently approximated. We defer the esti-

mation of these moments to Section IV, where different priors

are discussed.

4) Estimation of : Here . Observe that

in contrast to and , the admissible hidden data is

not in . This is the result of the Markov chain

; in fact, is the admissible hidden data for estimating

since due to the fac-

torization (4). By noting that , (7) can

be rewritten as . Due

to the fact that , the variational parame-

ters and are found by equating the moments of and

. Observe that it is the estimation of that eventually

leads to the sparse VB-SAGE algorithm. Also notice that the

sparsity prior is a key to the estimation of the sparsity

parameters. In the following section, we will consider several

choices of and analyze their effect on sparsity-based

model order selection.

IV. SPARSITY PRIORS FOR MODEL ORDER SELECTION

In this section we consider three choices for the sparsity prior

: i) a Gaussian prior, which leads to the -type of log-

likelihood penalty; ii) a flat prior, obtained as a limiting case of

the Gaussian prior when ; and iii) a Laplace prior, which

results in the -type of log-likelihood penalty.

A. Gaussian Sparsity Prior

The Gaussian sparsity prior is obtained by selecting

. With this choice it is straightfor-

ward to show that and that

(11)

8If some of the dispersion parameters are statistically dependent, a structured
mean field approximation can be used to account for this dependency by means
of an appropriate factorization of the proxy pdf ����� �.

Observe that (11) is merely a regularized least-squares estimate

of given and with the regularization parameter

.

The variational parameters and of are found from

. This requires the expectation of to be computed.

Doing so leads to the following update expressions:

(12)

Let us now analyze (12) in more details for the case ,

i.e., when is non-informative. In this case the mean of

is given as

(13)

Note that this result coincides with the EM-based evidence es-

timation proposed in [11] and [14]. However, in our case both

and are estimated using the admissible hidden data , as

opposed to [11] and [14] where the incomplete data is used

to obtain these estimates. The updating steps in (11) and (13)

can be alternatively repeated, while keeping and fixed to

generate a sequence , where , ,

etc. Note that this updating process makes sense since neither

nor are in .9 Therefore, the corresponding sequence

of pdfs necessarily mono-

tonically decreases the variational free energy. Let be the

stationary point of the sequence when . In

order to simplify the notation we define . By substi-

tuting (11) into (13) and solving for we obtain (see also

[19])

(14)

By definition , which is satisfied if, and only if,

(15)

By interpreting (13) as a nonlinear dynamic mapping, which at

the iteration maps into , it can be shown [19] that

for the fixed point of the mapping is

at infinity, i.e., . As a result, the th signal component

can be removed from the model.10 A similar result was reported

in [17] using a non-variational analysis of the marginal log-like-

lihood function. This allows us to implement model order se-

lection during a parameter update iteration, (i.e., joint multipath

component detection and parameter estimation, while still min-

imizing the variational free energy.

Now, let us reinspect (15). This inequality might at first glance

seem a bit counter-intuitive—the quadratic quantity on the right-

hand side is compared to the fourth-power quantity on the left-

9Notice that this property allows for a straightforward extension of the sub-
sequent analysis to the estimation of sparse virtual channel models [16] since it
remains valid even when the dispersion parameters ��� are constrained to some
resolution grid.

10Strictly speaking, this is true only in the case of a non-informative hyper-
prior ��� �.
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hand side (LHS). In order to better understand the meaning of

it, let us divide both sides of (15) by . It

follows that (15) is equivalent to

(16)

where . The LHS term in (16) is an

estimate of the posterior variance of scaled by . This result

leads directly to several important observations:

1) The sparsity parameter of the signal component with

smaller than its posterior variance scaled by

is infinite. Thus, such components can be removed from

the model.

2) By multiplying both sides of (16) with , we find

that this inequality is equivalent to , where

is the estimated signal-to-noise

ratio (SNR) of the th component. Thus, (15) [and

(16)] corresponds to keeping this component provided

.

3) Condition (15) can be tuned to retain the component pro-

vided its estimated SNR is above some predefined level

using the modified condition

(17)

These results provide us with the required instruments to de-

termine whether a component with the sparsity parameter

should be updated or pruned: if the component fails to satisfy

(15), it is removed since for , . In case of

(17) we remove the component if its estimated SNR is below

some level . Notice that the obtained results allow

for an interpretation of the sparsity parameter in terms of

estimated SNR of the th component. Thus, model order selec-

tion (sparsification) can be realized using simple SNR-guided

decisions. It should be stressed that the analysis of (14) is pos-

sible only due to the use of the admissible hidden data . A

standard approach with Gaussian priors [11], [14], [17] requires

an posterior covariance matrix of the gain coefficient

vector to be computed. This significantly

complicates the analytical computation of the fixed point

and its analysis. The sparse VB-SAGE algorithm with Gaussian

sparsity prior and model order selection scheme that utilizes

(15) or (17) we denote as the VB-SAGE-G algorithm.

B. Flat Sparsity Prior

In the case where is chosen to be non-informative,

we can still make use of the Bayesian sparsity to estimate the

model order. This can be done by using the VB-SAGE-G algo-

rithm in the limiting case as (i.e., ). Due to the

structure of the graph [see Fig. 1(b)], this will only affect the

moments of , which remain identical to (11) with .

Clearly, in this case and (16) corresponds to the spar-

sification of the th component provided , i.e., we

keep the component when its SNR is above 0 dB. The sparse

VB-SAGE algorithm with such model order selection scheme

we denote as the VB-SAGE-F algorithm. Observe that (17) can

also be used in the case of the VB-SAGE-F algorithm.

C. Laplace Sparsity Prior (Soft Thresholding)

As the last choice we consider a Laplace prior . We

will use an analogous Laplace prior in the complex domain de-

fined as

(18)

The mean of can be obtained in closed form:

(19)

Here is the sign function defined as . Ex-

pression (19) is also known as a soft thresholding rule. To our

best knowledge no closed form expression for the posterior vari-

ance exists. However, we can approximate it with the result ob-

tained for the real-valued , which is given as

(20)

Now we turn to the estimation of the sparsity param-

eter . By plugging (18) in the expression for ,

and ignoring terms independent of , we obtain

. Since is Gaussian,

follows a Rice distribution characterized by the parameters

(19) and (20). The expectation is then given

as , where denotes the Laguerre

polynomial with degree . To simplify the estimation of ,

we consider an approximation of as .

This approximation is equivalent to assuming a high precision

estimate of . In this case . Then, it is

straightforward to show that

(21)

By selecting a non-informative prior , the update expres-

sion for the mean simplifies to

(22)

Similar to the Gaussian prior case we analyze the fixed point

of (22). We define to simplify the notation.

Combining (22) and (19) leads to

(23)
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Assuming that (otherwise ), we

solve for . Doing so yields two solutions:

(24)

(25)

where . Furthermore, we see

that a necessary and sufficient condition for the fixed points to

be real is that

(26)

Components that do not satisfy (26) are removed. Note that both

fixed points are feasible. We have always empirically observed

that when the initial is chosen such that , itera-

tions (22) either diverge or converge to the closest

(smallest) feasible solution given by (25). The properties of the

second stationary point are subject to further investigations left

outside the scope of this paper. The sparse VB-SAGE algorithm

with Laplace sparsity priors that makes use of (26) for model

order selection we denote as the VB-SAGE-L algorithm.

Similarly to (16) it can be shown that (26) is equivalent to

(27)

with . In the same way, (26) and (27)

are equivalent to keeping the component provided ,

where is the estimated component

SNR. Note that (26) and (27) are the Laplace-prior equivalent

conditions of (15) and (16) respectively for the Gaussian prior.

Although the pruning conditions are formally similar, they

differ in their numerical values: the moments of are

estimated differently computed in these two schemes; as a

result, the estimates of the admissible hidden data for the

VB-SAGE-L and VB-SAGE-G algorithms are also different;

in addition, the scaling factor in (27) is computed differently

from that in (16). It should also be mentioned that as

the VB-SAGE-L algorithm converges to the VB-SAGE-F

algorithm.

Similarly to (17), (26) can be tuned to keep the component

when its estimated SNR is above some predefined level

using the modified condition

(28)

V. IMPLEMENTATION AND INITIALIZATION OF THE ALGORITHM

A. Summary of the Algorithm

Let us now summarize the main steps of the proposed algo-

rithm. For the moment we assume that at some iteration the

proxy factors , , , and , , are

known for the components. A single update iteration for the

component is summarized in Algorithm 1.

Algorithm 1: Update iteration for the component

Update from (9)

Update from (10) and evaluate

if Condition (17) or (28) are TRUE then

Update from (14) (VB-SAGE-G) or (25)

(VB-SAGE-L)

Update from (11) (VB-SAGE-G, -F) or (19)

(VB-SAGE-L)

else

Remove the th component;

end if

This update iteration is repeated for all components in a

round-robin fashion, which constitutes a single update cycle

of the algorithm. The update cycles are then repeated until

the number of components and their variational parameters

converge. Observe that the number of components might be

reduced during one update cycle: at each iteration the updated

multipath component undergoes a test specified by (17) or (28).

When the corresponding condition is not satisfied the compo-

nent is removed. The model order might also be increased by

adding new components. Details of this procedure are outlined

in Section V-D.

B. Algorithm Initialization

We propose a simple bottom-up initialization strategy, which

allows us to infer the initial variational parameters from the

observation by starting with an empty model, i.e., assuming

all variational parameters to be 0. The first component is

initialized by letting and applying the initialization

loop shown in Algorithm 2. Observe that using the disper-

sion parameters are initialized using a simple beamformer

and the obtained estimate of is plugged in (15) (in the

Gaussian prior case) or in (26) (in the Laplace prior case) to

determine whether the initialized component should be kept

in the model. When the test fails, the initialization stops. It

should be stressed that the use of (15) or (26) during the

initialization is optional and may be omitted if an overcom-

plete channel representation is desired. The components with

large sparsity parameters will then be pruned later during the

update iterations. This initialization strategy is similar to the

successive interference cancellation scheme proposed in [3]

and [5]. The number of initialization iterations (i.e., the initial

number of signal components) can be either fixed to ,

or inferred automatically by repeating the initialization itera-

tions until the pruning condition (15) [or (26)] fails at some
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iteration.11 In our implementation of the algorithm, we use

a combination of the two methods by limiting the maximum

number of initial components to . The application of the

VB-SAGE algorithm requires the specification of several free

parameters. Specifically, one has to select the covariance ma-

trix of the additive noise and the parameter in the definition

of the admissible hidden data. The choice of these parameters

is described below.

Algorithm 2: Algorithm initialization

Set ; initialize :

while Continue initialization do

Initialize by computing

if Condition (15) (VB-SAGE-G, -F) or (26)

(VB-SAGE-L) are TRUE then

Initialize from (11) with

Initialize from (12) (VB-SAGE-G) or (21)

(VB-SAGE-L)

;

;

else

Stop initialization:

end if

end while

1) Noise Statistics: A crucial part of the initialization pro-

cedure is the accurate estimation of the variance of the additive

noise . Logically, when the noise level is high, we tend to put

less “trust” in the estimates of the signal parameters and thus

sparsify components more aggressively.

In many cases estimates of the noise variance can be derived

from the signal itself. Specifically, the noise variance can be es-

timated from the tail of the measured CIR. Alternatively, the

noise variance can be estimated from the residual signal ob-

tained after completion of the initialization step. In our work

we use the former initialization strategy.

2) Selecting : The obtained sparsity expressions for model

order selection all depend on the covariance matrix of the addi-

tive noise associated with the th multipath component. The

covariance matrix is related to the total covariance matrix

as , where is the noise splitting parameter in-

troduced in the definition of the admissible hidden data (3).

In the SAGE algorithm applied to the estimation of superim-

posed signal parameters [3] this parameter was set to ;

we also adopt this choice. Obviously, in this case and

.

11We suggest to use (15) or (26) instead of their modified versions (17)
and (28), since this allows for the inclusion of even the weakest components
during the initialization.

C. Stopping Criterion for the Update Cycles

The iterative nature of the algorithm requires a stopping cri-

terion for the variational parameter updates. In our implemen-

tation we use the following simple criterion: the estimation it-

erations are terminated when: i) the number of signal compo-

nents stabilizes; and ii) the maximum change of the components

in between two consecutive update cycles is less than

0.01%.

D. Adaptive Model Order Estimation

The structure of the estimation algorithm also allows for

increasing the model order. Increasing the model order might

be useful when is selected too small so that not all

physical multipath components might have been discov-

ered. Alternatively, new components might also appear in

time-varying scenarios. The new components can be initial-

ized from the residual signal. After the model fitting has

been performed at some update cycle, e.g., , the residual

is computed and used to initialize

new components as explained in Section V-B. Essentially, the

residual signal can be used at any stage of the algorithm to

initialize new components.

E. Estimation Uncertainty and Selection of the Sensitivity

Level

There are four main sources of uncertainty in model-based

multipath estimation: i) the inaccuracy of the specular model (1)

in representing reality (e.g., in the presence of diffuse compo-

nents); ii) the error in calibrating the measurement equipment,

which results in an error in the specification of the mapping

; iii) the discrete-time approximation (2) of the

model; and iv) the discrete optimization that is typically nec-

essary due to the nonlinearity of the model versus some of its

parameters. All these aspects have a significant impact on the

model order estimation. Any deviation from the “true” model

[effects i) and ii)] and inaccuracies in the parameter estimates

[due to iii) and iv)] result in a residual error, manifesting itself as

a contribution from fictive additional components. If no penal-

ization of the parameter log-likelihood is used, this error leads to

additional signal components being detected, especially in high

SNR regime. These non-physical components are numerical ar-

tifacts; they do not correspond to any real multipath compo-

nents. Moreover, these fictive components, which are typically

much weaker than the real specular components, create pseudo-

clusters since typically their parameters are highly correlated.

In the case of the VB-SAGE-G, VB-SAGE-F and VB-SAGE-L

algorithms, the artifacts can be efficiently controlled using the

pruning conditions (17) and (28) with an appropriately chosen

sensitivity level . The sensitivity level can be set globally,

or can be tuned individually to each multipath component. We

propose the following implementation of individual tuning.

First, we consider the impact of all aforementioned inaccura-

cies together. This approach is motivated by experimental evi-

dence indicating that: i) each type of inaccuracies has a non-neg-

ligible effect on channel estimation and ii) that these effects are

difficult to quantify and also to separate. Second, we assume
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that—due to these inaccuracies—the residual error contributed

by a given estimated multipath component is proportional to

the sample of the delay power profile at the component delay.

Indeed, it makes sense to presume that the stronger a multi-

path component is, the larger the residual error due to calibra-

tion and discretization error is. This rationale leads us to select

proportional to a low-pass filtered version

of the delay power profile . In Section VI-B we discuss

how this scheme is applied to measured CIRs.

Note that there are also alternative approaches to account

for the inaccuracy of the specular model. In [32] the authors

propose a method that jointly estimates the specular multipath

components and the diffuse component, called dense multipath

component (DMC), in a time-variant MIMO context. The

parameters of the components (direction of departure (DoD),

direction of arrival (DoA), relative delay, Doppler frequency,

polarimetric path gain) are estimated using an extended Kalman

filter built around a dynamic model of these parameters. The

parameters of the DMC are computed from the residual signal

resulting after subtracting the estimated specular components

from the observed signal. Obviously, an accurate estimation of

the specular part of the channel plays a vital role here. We now

discuss the main differences between of the sparse VB-SAGE

algorithm proposed here and the method published in [32].

First, both algorithms apply a path pruning algorithm that relies

on comparing the path weight to a threshold. The pruning

algorithm proposed here is based on a Bayesian sparsity frame-

work, while that used in [32] implements the Wald test. This

leads to different ways of computing the pruning threshold

and the signals compared to this threshold. Second, the sparse

VB-SAGE algorithm does not make any particular assumption

on the structure of the DMC. Experimental evidence suggests

that the DoD-DoA-delay power spectrum characterizing the

DMC typically does not factorize, up to a proportionality

constant, in the product of the corresponding DoD, DoA, and

delay spectra, as implied by the Kronecker factorization of

the transmit-array–receive-array–frequency covariance ma-

trix assumed in [32]. The inherent directionality of the radio

channel, which holds for both specular components and dif-

fuse components, translates in power spots scattered in the

DoD-DoA-delay space that cannot be represented by the above

factored spectrum [see also Fig. 5(d)–(f) and Fig. 6(d)–(f)]. This

observation, combined with the other early mentioned model

inaccuracies, has motivated the empirical method based on the

selected threshold. Finally, the sparse VB-SAGE is

derived and applied in a time-invariant SIMO scenario with

only one polarization considered. As mentioned earlier it can

be easily extended to time-variant MIMO scenario including

full path polarization, provided the propagation constellation is

stationary. Extension to the time-variant scenario with changing

propagation constellation as considered in [32] will require

further work. A thorough investigation is needed to assess the

pros and cons of the model order selection methods applied

in the channel estimation proposed in [32] and in the sparse

VB-SAGE algorithm. This study is, however, beyond the scope

of this paper.

VI. APPLICATION OF THE SPARSE VB-SAGE ALGORITHM TO

THE ESTIMATION OF WIRELESS CHANNELS

A. Synthetic Channel Responses

We first demonstrate the performance of the algorithm with
synthetic channel responses generated according to model
(2). We use a sounding sequence with chips and a
square-root-raised-cosine shaping pulse with a duration

and a roll-off factor 0.25. A horizontal-only
propagation scenario is considered with a received replica of the
transmitted signal represented as
where , , and denote respectively the complex gain, the
azimuthal direction and the relative delay of the th multipath
component. Thus, . The -dimensional complex
vector is the steering vector
of the array [3]. We assume a linear array with ideal
isotropic sensors spaced half a wavelength apart. The parameters
of the multipath components are chosen by randomly drawing
samples from the corresponding distributions: delays and
angles , are drawn uniformly in the interval
[0.03, 0.255] and , respectively. For generating the
multipath gains we follow two scenarios. In the first scenario
we generate the gains as , where is some positive
constant and , , are independent random phases
uniformly distributed in the interval [0, ). This ensures that
all multipath components have the same power and therefore
the same per-component SNR. In the second scenario the values
of , , are independently drawn from a complex

Gaussian distribution with the pdf , where
is some positive constant and is the delay spread set to

. In this case the distribution of the component gains is
conditioned on the delay such that the average received power
decays exponentially as the delay increases. The later choice
approximates better the real behavior of component powers
versus delay. At the same time it demonstrates the performance
of the algorithm under conditions with changing per-component
SNR.

By sampling with a sampling period we obtain the
equivalent discrete-time formulation (2) with samples per
channel. The samples of the received signal are recorded over
the time window (i.e., ) at a rate

. In the simulations we set the number of specular com-
ponents to . By fixing we aim to demonstrate the
possible bias of the model order selection mechanism. Additive
noise is assumed to be white with covariance matrix .
Different SNR conditions are simulated. The considered SNR is
the averaged per-component SNR defined as

With this setting the estimation step (10) is implemented as a
sequence of two numerical optimizations. For instance, the es-
timation of with is performed first as

(29)
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Fig. 2. Performance of the proposed estimation algorithms applied to synthetic channels with equal component power. Estimation of model order � (a)–(e), and
the achieved RMSE between the synthetic and reconstructed responses (f)–(j). The true number of components is � � �� (dotted line in upper plots). The solid
lines denote the averaged estimates of the corresponding parameters. Upper and lower dotted lines denote the 5th and 95th percentiles of the estimates, respectively.

followed by the estimation of the azimuth with
as

(30)

Optimizations (29) and (30) are performed using a simple
line search on a grid followed by polynomial interpolation to
improve the precision of the estimates. For the initialization
of the algorithm we use the scheme described in Section V-B.
The maximum number of initialized components is set to

. We use the modified pruning conditions (17) for
the VB-SAGE-G and VB-SAGE-F schemes and (28) for the
VB-SAGE-L algorithm with set to the true SNR used in
the simulations. This setting demonstrates the performance of
the algorithms when the true per-component SNR is known. In
particular, it allows us to investigate how the modified pruning
conditions can be used to control the estimation artifacts.

We compare five estimation algorithms: i) VB-SAGE-G; ii)
VB-SAGE-F; iii) VB-SAGE-L; iv) the SAGE algorithm [3]
with Bayesian information criterion for model order selection
(SAGE-BIC); and v) the VB-SAGE algorithm with the neg-
ative log-evidence (NLE) approach for model order selection
(VB-SAGE-NLE) [19]. The NLE is equivalent to the Bayesian
interpretation of the normalized ML model order selection [7],
[9]. For SAGE-BIC and VB-SAGE-NLE, we set the initial
number of components to the number of samples .

We first consider the simulation scenario where all compo-
nents have the same power. The corresponding results, averaged
over 200 Monte Carlo runs, are summarized in Fig. 2. It can be
seen that VB-SAGE-G, VB-SAGE-F, and VB-SAGE-L clearly
outperform the other two methods, with VB-SAGE-L ex-
hibiting the best performance. Notice that (17) in VB-SAGE-G
and VB-SAGE-F fails for low SNR; also the initial number
of components (126 in this case) remains unchanged during
the update iterations. The VB-SAGE-L algorithm, however,
does not exhibit such behavior. Nonetheless, all three methods
have a small positive model order bias in the high SNR regime.

Fig. 3. Averaged number of update cycles versus the averaged per-component
SNR.

VB-SAGE-NLE and SAGE-BIC perform reasonably only in
the limited SNR range 8–14 dB and fail as the SNR increases
beyond. The reason for this is an inadequate penalization of
the parameter likelihood, which leads to the introduction of
estimation artifacts. Specifically, the selected sampling rates
of the processed signals limit the precision in the estimation
of the dispersion parameters of the multipath components.
As a result the mean-squared error of these estimates exhibits a
floor at high SNR. These estimates are obtained by optimizing
parameter-specific objective functions, cf. (29) and (30), which
in a real implementation are computed from discrete signals.
As a consequence, the objective functions need to be interpo-
lated between their computed samples in these optimization
procedures. It is the error resulting from these interpolations
that leads to the flooring of the estimate errors at high SNR
regime. The residual errors of the dispersion parameters trans-
late into residual interference that may manifest itself as fictive
components if not handled appropriately. This effect can also
be seen as a basis mismatch problem that leads to an overesti-
mation of true model sparsity [26]. The use of adjusted pruning
conditions in case of VB-SAGE-G, -F, and -L algorithms
allows for a better control over the estimation artifacts. This,
however, leads to a floor of the RMSE between the synthetic
and reconstructed channel responses at high SNR, as seen
in Figs. 2(f), (g), and (h). In contrast, VB-SAGE-NLE and
VB-SAGE-BIC do not exhibit this behavior of RMSE, albeit
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Fig. 4. Performance of the proposed estimation algorithms applied to synthetic channels with exponentially decaying component power. Estimation of model

order � (a)–(e), and the achieved RMSE between the synthetic and reconstructed responses (f)–(j). The true number of components is � � �� (dotted line in
upper plots). The solid lines denote the averaged estimates of the corresponding parameters. Upper and lower dotted lines denote the 5th and 95th percentiles of
the estimates, respectively.

at the expense of introducing more and more fictive multipath
components to compensate for multipath parameter estimation
errors as the SNR increases.12 Increasing the number of samples

while keeping fixed and increasing the number of antenna
elements reduces the noise RMSE floor since the multipath
dispersion parameters can be estimated with greater precision.

Obviously, the model order estimate has a significant impact
on the convergence speed of the algorithm. Fig. 3 depicts the
averaged number of update cycles versus SNR for the five in-
vestigated channel estimation schemes. We see here that for an
SNR above 12 dB the VB-SAGE-G, -F, and -L schemes outper-
form the other estimation schemes, with the convergence rate
of the VB-SAGE-L algorithm being almost independent of the
SNR. Notice that the overestimation of the model order with
VB-SAGE-NLE and SAGE-BIC leads to a significant increase
of the number of iterations as the SNR increases.

Let us now consider the second scenario where the compo-
nent power decreases exponentially versus delay. The results
are reported in Fig. 4. A picture similar to that of the equal-
power case is observed here. The performance of VB-SAGE-L
is clearly better than that of the other tested schemes. In this set-
ting both VB-SAGE-G and VB-SAGE-F require higher SNR
to bring the estimated model order within the range of the true
number of components. Notice that the VB-SAGE-G, -F, and -L
methods are no longer biased and on average estimate the cor-
rect number of components.

B. Estimation of Measured Wireless Channels

We now investigate the performance of the VB-SAGE-L al-
gorithm applied to the estimation of measured wireless channel
responses collected in an indoor environment. The measure-
ments were done with the MIMO channel sounder PropSound
manufactured by Elektrobit Oy. Details on the measurement

12Note, however, that the same effect is observed with VB-SAGE-G and
VB-SAGE-L when ��� is not used to enforce sparsity and correct for model
order estimation errors.

campaign can be found in [34]. To compute the results presented
in this paper we used a portion of the measurement data that cor-
responds to a line-of-sight scenario. The sounder operated at the
center frequency 5.25 Ghz with a chip period ns. We
used the 9 dual-polarized elements of the bottom ring of the re-
ceive antenna array and all 25 dual-polarized elements of the
transmit array (see Fig. 1c in [34]), i.e., and .
The sounding sequence consisted of chips, resulting
in a burst waveform of duration . One burst wave-
form was sent to sound each channel corresponding to a pair or
transmit antenna and receive antenna. The received signal was

sampled with the period (i.e., 2 samples/chip).
The estimation results obtained using the VB-SAGE-L algo-

rithm are compared to Bartlett estimates [33]. We report only
the azimuthal information of the estimated multipath compo-
nents. In order to minimize the effect of estimation artifacts we
make use of (28). The sensitivity level is computed from
the estimated delay power profile as described in Section V-E:
a smoothed estimate of the delay power profile is
normalized with the estimated additive noise variance ; the

sensitivity is then defined as13 .
This setting allows for the detection (removal) of components
at a certain delay with power above (below) a threshold set 15
dB below the received power at that delay. The algorithm is
initialized as described in Section V-B. To initialize ’s we par-
tition the DPP in 8 delay segments covering the delay interval
[10,360] ns. Then, using (29) and (30) we initialize at most 7
components per segment,14 which results in . For the
used sensitivity level the algorithm estimates
components. The parameter estimates of these components are
summarized in Figs. 5 and 6.

13A possible extension, not considered here due to space limitations, would
consists in making ��� both delay and direction dependent.

14The initialization of the multipath components located in a delay segment
is interrupted when the pruning condition (26) fails.
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Fig. 5. (a)–(c) Bartlett estimates (solid line) and model-based estimates (dashed line) of the delay power profile; dotted lines denote the estimated delay power
profile of the residual ���; triangles denote the delays of the estimated components; (d)–(f) normalized Bartlett estimates of the azimuth of arrival (DoA) and departure
(DoD) for the selected delay intervals (denoted by crosses in figures (a)–(c), respectively; crossed circles denote the azimuths of the estimated components.

Fig. 6. (a)–(c) Bartlett estimates (solid line) and model-based estimates (dashed line) of the delay power profile; dotted lines denote the estimated delay power
profile of the residual ���; triangles denote the delays of the estimated components; (d)–(f) normalized Bartlett estimates of the azimuth of arrival (DoA) and departure
(DoD) for the selected delay intervals (denoted by crosses in figures (a)–(c), respectively; crossed circles denote the azimuths of the estimated components.

Investigations, not reported due to space limitation, show
that the estimated multipath components can be associated
to propagation paths computed from the geometry of the
environment using ray-tracing. Due to the delay-dependent
sensitivity level very weak components in the tail
of the delay response are also detected. Their positions co-
incide well with the maxima of the Bartlett spectra. We

also note that not all “footprints” in the Bartlett spectra
have been identified as multipaths. This is due to the com-
ponent magnitudes being below the detection sensitivity of
the algorithm; also, some of the footprints observed in the
Bartlett spectra are likely due to side lobes caused by the
system response and thus may not correspond to any true
physical multipath component.
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VII. CONCLUSION

This contribution proposes a new algorithm that estimates
the number of relevant multipath components in the response
of radio channels and the parameters of these components
within the Bayesian framework. High-resolution estimation of
the multipath components is performed using the VB-SAGE
algorithm—a new extension of the traditional SAGE algo-
rithm—which allows for computing estimates of the posterior
pdfs of the component parameters, rather than parameter point
estimates. By introducing sparsity priors for the multipath
component gains, the sparse VB-SAGE algorithm estimates
the posterior pdfs of the component parameters jointly with
the posterior pdfs of the sparsity parameters by minimizing
the variational free energy. The pdfs of the parameters of a
single component are updated at each iteration of the algorithm,
with the iterations cycling through the components. Due to the
monotonicity property of the VB-SAGE algorithm, the free
energy is non-decreasing versus the iterations.

Several sparsity priors are considered: Gaussian, flat, and
Laplace priors. The admissible hidden data introduced in
the VB-SAGE algorithm lead to simple and easy to interpret
component pruning rules/conditions for these priors. Theses
conditions are shown to be equivalent to removing signal com-
ponents based on comparison of the per-component SNR with
a given threshold. This threshold can be set for all components
or tailored for each component individually.

The sparse VB-SAGE algorithm is applied to the estimation
of the multipath components in the response of synthetic and
measured wireless multipath channels. We show by means of
Monte Carlo simulations that the sparsity-based model order
selection methods with sensitivity-adjusted pruning conditions
outperform the Bayesian Information Criterion and the neg-
ative log-evidence model order selection criterion. The latter
approaches fail since, due to various effects (calibration errors,
finite precision in the discretization process, diffuse scattering,
etc.) leading to a model mismatch, numerical artifacts are
introduced, which lead to a decreasing RMSE at the expense
of an increased model order. In case of estimation of wireless
channels this is highly undesirable, since the estimated artifacts
have no physical meaning. The proposed modifications of the
pruning conditions allow for correcting for possible model
order estimation bias due to modeling mismatch. Making use
of the Laplace prior results in the best performance among
the tested methods. Simulations show that for low SNR the
VB-SAGE algorithm with Laplace sparsity priors, which we
refer to as the VB-SAGE-L algorithm, keeps only reliably
estimated components, while successfully removing the ar-
tifacts. The VB-SAGE-L algorithm also exhibits the fastest
convergence as compared to the other tested algorithms with
the same stopping criterion.

We apply the VB-SAGE-L algorithm to the estimation of the
multipath components in measured channel impulse responses.
In order to minimize the effects of model mismatch, the detector
sensitivity is adjusted based on an estimate of the delay
power profile. Since the artifacts are typically more pronounced
in delay ranges associated with high received power, a smoothed
version of the delay power profile can be used as an indicator of
the received power versus propagation delay. Investigations, not
reported in this paper due to space limitation, show that the es-
timated multipath components can be associated to propagation

paths computed from the geometry of the environment using
ray-tracing.

The sparse VB-SAGE algorithm provides a new and effective
tool for efficient estimation of wireless channels. Its flexibility
and its iterative structure make it very attractive for many ap-
plications in wireless communications: analysis and estimation
of complex MIMO channel configurations in channel sounding
and MIMO radars, channel estimation in iterative receivers per-
forming joint channel estimation and data decoding, as well as
extraction of location-dependent features of the radio channel
for localization purposes.

APPENDIX A

MONOTONICITY PROPERTY OF THE VB-SAGE ALGORITHM

In what follows, we assume that the variational approx-
imating pdf (6) and its factors are selected as outlined in
Section III-A and is set to 1.

Define as the set of parameters associated
with the th multipath component and

as the set of the other multipath parameters. We assume
that . It is straightforward to show that
minimizing the free energy with re-
spect to is equivalent to minimizing
with . The
VB-SAGE algorithm facilitates this optimization using the
admissible hidden data in (3). Consider the equality

. By combining
this equality with the factorization (4) and computing the
expectation with respect to and we obtain

where is a term independent of . Define now
. Observe that is a func-

tion of the admissible hidden data and the th multipath compo-
nent parameters. Now, the free energy with respect to can be
rewritten as

(31)

Minimizing is typically simpler
as compared to minimizing .
However, whether decreases as

decreases ultimately depends on the term
in (31).

Let denote an existing (old) estimate of , and
let be the new minimizer of .
A current estimate of the admissible hidden data
posterior pdf is given by (7), i.e.,

, since
. Note that it is easy to show that

must be quadratic in . Similarly we define
. With these set-

tings it follows that

(32)
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Result (32) expresses the monotonicity property of the
VB-SAGE algorithm. Furthermore,

is a sufficient con-
dition that guarantees the monotonicity of the VB-SAGE
algorithm for our estimation problem.
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