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Abstract

Sparse-view CT reconstruction algorithms via total variation (TV) optimize the data iteratively on 

the basis of a noise- and artifact-reducing model, resulting in significant radiation dose reduction 

while maintaining image quality. However, the piecewise constant assumption of TV 

minimization often leads to the appearance of noticeable patchy artifacts in reconstructed images. 

To obviate this drawback, we present a penalized weighted least-squares (PWLS) scheme to retain 

the image quality by incorporating the new concept of total generalized variation (TGV) 

regularization. We refer to the proposed scheme as “PWLS-TGV” for simplicity. Specifically, 

TGV regularization utilizes higher order derivatives of the objective image, and the weighted 

least-squares term considers data-dependent variance estimation, which fully contribute to 

improving the image quality with sparse-view projection measurement. Subsequently, an 

alternating optimization algorithm was adopted to minimize the associative objective function. To 

evaluate the PWLS-TGV method, both qualitative and quantitative studies were conducted by 

using digital and physical phantoms. Experimental results show that the present PWLS-TGV 

method can achieve images with several noticeable gains over the original TV-based method in 

terms of accuracy and resolution properties.
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1. Introduction

X-ray computed tomography (CT) examinations with minimum radiation exposure are 

desired in clinical practice, particularly for mass screening, pediatric imaging, and image-

guided intervention (Einstein et al, 2007). Lowering the milliampere-seconds (mAs) or kVp 

(La Riviére et al, 2006; Li et al, 2004, Wang et al, 2006, Wang et al, 2009, Ma et al, 2011, 

Ma et al, 2012a, Bian et al, 2013) or reducing the number of projection views per rotation 
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around the body (Sidky et al, 2006, Sidky and Pan, 2008, Chen et al, 2008, Tian et al, 2011, 

Liu et al, 2012, Huang et al, 2013, Han et al, 2012, Lauzier Thériault et al, 2012, Jorgensen 

et al, 2013) is an effective means to reduce radiation dose. However, given the noisy or 

sparse-view measurements, the associative image quality would be degraded if insufficient 

operations are performed on conventional analytical reconstruction methods. Achieving 

high-diagnostic CT images from low-dose or sparse-view acquisitions is an important and 

interesting research topic in the CT field.

To reduce the radiation dose in CT examinations, various techniques have been extensively 

investigated, including advanced image reconstruction methods (Wang and Yu, 2004, Sidky 

and Pan, 2008, Chen et al, 2008, Yu and Wang, 2009, Wang et al, 2010, Xu et al, 2012) and 

optimal scan protocols (Kalra et al, 2004, McCollough et al, 2006, Yu et al, 2011). Among 

them, statistical iterative reconstruction (SIR) methods by modeling the measurement 

statistics and imaging geometry can significantly reduce radiation dose while maintaining 

image quality in various CT applications compared with the filtered back-projection (FBP) 

reconstruction algorithm (Elbakri and Fessler, 2002, Tang et al, 2009, Lauzier Thériault and 

Chen, 2013). Usually, the cost function of SIR consists of two components, i.e., the data-

fidelity term and regularization term. The data-fidelity term models the measurement 

statistics and is prerequisite for a successful SIR image reconstruction, the regularization 

term reflects a priori information of the desired image aiming to regularize the solution. 

Usually, the conventional regularization term, through penalizing the differences between 

local neighboring pixels, tends to produce unfavorable over-smoothing effects at the edge 

regions. To address this drawback, several edge-preserving regularization terms were 

proposed in the literature (Rudin et al, 1992, Yu and Fessler, 2002, Ma et al, 2012a, Liu et 

al, 2012, Liu et al, 2014). A typical example is total variation (TV) regularization with the 

piecewise constant assumption (PCA) (Rudin et al, 1992). Extensive studies have shown 

that high-quality CT image can be reconstructed via TV minimization from sparse-view 

measurement without introducing noticeable artifacts (Liu et al, 2014, Niu and Zhu, 2012, 

Park et al, 2012, Sidky et al, 2006). However, PCA often leads to the appearance of 

noticeable patchy artifacts in reconstructed images (Tang et al, 2009, Liu et al, 2013).

To eliminate the undesired patchy artifacts from the TV-based methods, in this study, a total 

generalized variation (TGV) regularization (Bredies et al, 2010) was adapted under the 

penalized weighted least-squares (PWLS) criteria for CT image reconstruction from sparse-

view projection measurements. For simplicity, the present method is termed “PWLS-TGV”. 

The novelty of the PWLS-TGV is twofold. First, the TGV is far less restrictive than TV in 

CT image reconstruction. The former could yield visually pleasant images with more 

continuous boundaries and less patchy artifacts in smooth regions compared with the latter. 

Second, an effective iterative algorithm was proposed to optimize the objective function of 

the PWLS-TGV with a robust convergence result. Qualitative and quantitative evaluations 

were carried out on the digital and physical phantoms in terms of accuracy and resolution 

properties.

The remainder of this paper is organized as follows. Section 2 reviews the TGV model 

briefly and then describes the PWLS image reconstruction model, the present PWLS-TGV 

minimization, and the associative optimization algorithm. The experimental setup and 
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evaluation metrics are also presented in this section. In Section 3, the results are reported. 

Finally, the discussion and conclusion are given in Sections 4 and 5, respectively.

2. Methods and Materials

2.1. Total Generalized Variation

The TGV was first proposed by Bredies et al (2010) in the image denoising model, which is 

used to measure image characteristics up to a certain order of differentiation. The related 

gains from the TGV-based methods are remarkable in image restoration compared with 

those from the TV-based methods (Bredies et al, 2013). Mathematically, the original TV of 

an image u can be defined as follows (Rudin et al, 1992):

(1)

where Ω is a bounded domain, and ∇u is the gradient of image u. Another definition of the 

TV can be written as follows:

(2)

where div represents the divergence operator, v denotes the dual variable of the exact TV 

definition, and ℝd denotes the d-dimensional real space. Similar to (2), by modifying the set 

of allowed test functions v, the definition of TGV can be expressed as follows (Bredies et al, 

2010):

(3)

where l = 0, ···, k − 1, and k ∈  is an order of TGV, and α = (α0, α1, ···, αk−1) represents the 

positive weights to TGV. Symk(ℝd) denotes the space of symmetric k-tensors. The l-

divergence of a symmetric k-tensor field is given by  for each 

component η ∈ Mk−1. Here, Mk is the multi-index of order k, i.e., 

. The ∞-norm for symmetric k-vector fields is defined as 

follows:

(4)

In the case of k = 1, the TGV coincides with the TV, i.e., .

In this work, we focus only on the second-order TGV, which can be written as follows:

(5)
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where Sd×d denotes the space of symmetric d × d matrices, and α = (α0, α1) are assumed to 

be positive. Furthermore, the first and second divergences of a symmetric matrix can be 

calculated as follows:

(6)

Likewise, the ∞-norm in (5) can be calculated as follows:

(7)

(8)

In addition, the second-order TGV can be written as follows (Bredies and Valkonen, 2011):

(9)

Here, the minimum is taken over all vector fields on Ω, and the weak symmetrized 

derivative  is a matrix-valued Radon measure. The definition of 

equation (9) provides a way to balance the first- and second-derivative terms via the weights 

α0 and α1.

Through the definition of second-order TGV, we can see that the second-derivative ∇2u is 

locally “small” in smooth regions of the image u, and the minimization of (9) could be well 

performed with ∇u = w in these regions. Given that ∇2u is “larger” than ∇u in the 

neighborhood of edges, the minimization could be well performed with w = 0. Thus, 

has a notable ability to describe the gradient information around the edge regions via first 

derivative. Of course, this argumentation is only intuitively valid, the actual minimum w 

may be located any where between 0 and ∇u (Bredies et al, 2011). Additionally, two terms 

are balanced via the weights α0 and α1, which can lead to eye-appealing smooth regions via 

second derivative without introducing noticeable staircase artifacts. Therefore, TGV, as an 

edge-preserving penalty, could promote the performance of iterative CT image 

reconstruction from noisy or sparse-view projection measurements.

2.2. PWLS image reconstruction

According to our previous studies (Li et al, 2004, Wang et al, 2008, Ma et al, 2012b), the 

calibrated and log-transformed projection data follow approximately a Gaussian distribution 

with an associated relationship between the data sample mean and variance, which can be 

described by the following analytical formula (Ma et al, 2012b):
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(10)

where I0 is the incident X-ray intensity, ȳi is the mean of the sinogram data at bin i, and 

is the background electronic noise variance.

On the basis of the noise properties of CT projection data, the PWLS criteria for image 

reconstruction can be written as follows (Wang et al, 2006):

(11)

where y represents the obtained sinogram data (projections after system calibration and 

logarithm transformation), i.e., y = (y1, y2, ···, yM)T, f is the vector of attenuation coefficients 

to be reconstructed, i.e., f = (f1, f2, ···, fN)T, where T denotes the matrix transpose. The 

operator H represents the system or projection matrix with the size of M × N. The element of 

hij is the length of the intersection of projection ray i with pixel j. Σ is a diagonal matrix with 

the i-th element of , which is the variance of sinogram data yi, as calculated in (10). R(f) 

represents the regularization term, and β is a hyper-parameter to balance the fidelity and 

regularization terms.

2.3. PWLS-TGV minimization

Inspired by the studies of TGV in image restoration (Bredies et al, 2010), we propose the 

following cost function for CT image reconstruction:

(12)

where , β1 and β2 are two hyper-parameters to balance the fidelity term 

(i.e., the first term in (12)) and the regularization term. By comparing (11) and (12), we use 

the modified weighted least-squares in (12) instead of the weighted least-squares in (11). 

Moreover, when β1 is sufficiently large, the new weighted least-squares is about the same as 

that of (11). Furthermore, by introducing a vector µ, we have

(13)

Therefore, the minimization problem in (12) can be rewritten as follows:

(14)

2.4. Optimization approach

To find the solution of the cost function in (14), we propose a modified alternating 

optimization method with two minimizing steps, which can be expressed as follows:
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(15)

A trial solution in (P1) is constrained by the data-fidelity term, which may yield a noisy 

result. A successful solution can be obtained from (P2) by using the trial solution of (P1) as 

initial value, wherein serious noise-induced artifacts are remarkably suppressed compared 

with the trial solution of (P2).

In the implementation, a separable paraboloidal surrogates algorithm described in (Elbakri 

and Fessler, 2002) was used to solve (P1), which is written as follows:

(16)

where the superscript k = 1, 2, ···, K represents the iteration index. To solve (P2), a 

corresponding discrete version (Bredies et al, 2013) was used, which is written as follows:

(17)

where λ = β2/2β1, F = ℝNN, W = ℝ2NN and the differential operators div, ε, ∇ are 

approximated by using first-order finite differences. These operators are chosen adjoint to 

each other, i.e., . To minimize (17), a Chambolle–Pock first-order 

primal dual algorithm described in (Chambolle and Pock, 2011) was used, which considers 

(17) as a convex–concave saddle-point problem and is derived by duality principles:

(18)

where p and q are the dual variables. The sets associated with these variables are given by P 

= {p ∈ ℝ2NN| ||p||∞ ≤ α1}, Q = {q ∈ ℝ3NN| ||q||∞ ≤ α0}. Let projP(p̃) and projQ(q ̃) denote the 

Euclidean projectors onto the convex sets P and Q, respectively. The associative projections 

can be computed as follows:

(19)

Furthermore, the proximal map prox1 (f̃) with the pointwise operation can be written as 

follows:

(20)
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In summary, the implementation of the present PWLS-TGV method for X-ray CT image 

reconstruction can be described as follows:

1: Initialization: µ0, f0, f ̄0, w0, w̄0, p0 and q0;

2: Initialization: β1, β2, ρ, τ, α0, α1, and k = 0;

3: While stop criterion is not met;

4:  For j = 1, 2, ···, N;

5:

  ,

6:  End For;

7:  For n = 0, 1, ···, J − 1;

8:   pn+1 = projP(pn + ρ(∇f̄n − w̄n)),

9:   qn+1 = projQ(qn + ρε(w ̄n)),

10:   fold = fn,

11:

   ,

12:   f̄n+1 = 2fn+1 − fold,

13:   wold = wn,

14:   wn+1 = wn + τ(pn+1 + div2qn+1),

15:   w ̄n+1 = 2wn+1 − wold,

16:  End For;

17:  f̄0 = f̄J, w0 = wJ, w ̄0 = w̄J, p0 = pJ, q0 = qJ;

18:

 If , then ; j = 1, 2, ···, N;

19:

 Else ; j = 1, 2, ···, N;

20:  End If;

21: End if stop criterion is satisfy.

In our study, an initial estimate of the to-be-reconstructed image µ0 in line was set to be the 

preliminary image reconstructed by the FBP method with ramp filter; the other six 

parameters (i.e., f0, f ̄0, w0, w ̄0, p0, and q0) were set to be zeros in our studies. In line 2, the 

six parameters (i.e., β1, β2, ρ, τ, α0, and α1) were initialized before iteration starts, where ρ 

and τ are step variables. The related parameter selections are discussed in Section 2.5.

2.5. Parameter selections

2.5.1. Selection of β1 and β2—Two hype-parameters β1 and β2 were used to balance the 

data fidelity and regularization terms. Optimizing them is a difficult task in CT image 

reconstruction (Wang et al, 2011). Practically, they are empirically selected by visual 

inspection for eye-appealing result, together with the normal-dose image for comparison. In 

our studies, we found that the results of (P1) were less sensitive to the value of β1 with the 

range 1 × 10−3 ≤ β1 ≤ 1 × 10−2. Given that the value of β2 controls the smoothing strength of 
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the reconstructed image, selection of this variable was optimized case by case on the basis of 

the noise level of image and sparse-view projections, as described in the results section.

2.5.2. Selection of parameters in solving (P2)—The iteration number of the sub-

iteration step is an important factor for yielding a successful result. Although more iteration 

may produce a stable convergence solution, the related computational load would be very 

heavy. In practice, given that the trial solution of (P1) is a reasonable initial value for 

solving (P2), the total iterations in solving (P2) could be reduced significantly. Additionally, 

the step variables ρ and τ control the step lengths of the updating procedure, and a large 

step-size would unavoidably increase the variation of the solution and lead to an unsteady 

result. Although a small step-size could result in a steady solution, the related computational 

load would also result in a significant increase. In our studies, to address the aforementioned 

issues, ρ and τ were optimized by using the method described in (Bredies et al, 2011) and α0 

= 3, α1 = 1 for all the present experiments.

2.5.3. Selection of the stop criterion—The stop criterion is selected often based on the 

developed algorithm. In our studies, to find a stable convergent solution, the relative root 

mean square error (rRMSE) metric, which calculates the accuracy of the resulting image, 

was used to measure the reconstructed image quality. The rRMSE is defined as follows:

(21)

where f(m) and fxtrue(m) represent the reconstructed and true attenuation coefficient at pixel 

m, respectively. N is the total number of pixels of the desired image. A small rRMSE value 

indicates a small difference value between two images and vice versa.

2.6. Experimental data acquisitions

To validate and evaluate the performance of the PWLS-TGV method in CT image 

reconstruction from sparse-view projection measurements, a digital XCAT phantom (Segars 

et al, 2010) and an anthropomorphic torso phantom (Radiology Support Devices, Inc., Long 

Beach, CA) were used in the experiments.

2.6.1. XCAT phantom—Figure 1(a) shows a slice of the XCAT phantom, which contains 

head anatomy structures with a tumor lesion. For the CT projection simulation, we chose a 

geometry that was representative of a monoenergetic fan-beam CT scanner setup. The 

imaging parameters of the CT scanner were as follows: (1) each rotation included 1160 

projection views that were evenly spaced on a circular orbit; (2) the number of channels per 

view was 672; (3) the distance from the detector arrays to the X-ray source was 1040 mm; 

(4) the distance from the rotation center to the X-ray source was 570 mm; and (5) the space 

of each detector bin was 1.407 mm. All the reconstructed images were composed of 512 × 

512 square pixels. The size of each pixel was 0.625 mm × 0.625 mm. Each projection datum 
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along an X-ray through the sectional image was calculated based on the known densities and 

intersection areas of the ray with the geometric shapes of the objects in the sectional image.

Similar to previous studies (Wang et al, 2006), we first simulated the noise-free sinogram 

data ŷ then generated the noisy transmission measurement I according to the statistical 

model of the pre-logarithm projection data, that is,

(22)

where I0 is the incident X-ray intensity and  is the background electronic noise variance. 

In the simulation, I0 and  were set to 1.0 × 106 and 11.0, respectively. Finally, the noisy 

sinogram data y were calculated by performing the logarithm transformation on the 

transmission data I.

2.6.2. Anthropomorphic torso phantom—The anthropomorphic torso phantom was 

used for the experimental data acquisition, as shown in Figure 1b. The phantom was scanned 

by a clinical CT scanner (Siemens SOMATOM Sensation 16 CT) at two exposure levels, 

i.e., 40 and 100 mAs. For each exposure level, the tube voltage was set to 120 kVp, and the 

phantom was scanned in cine mode at a fixed bed position. The associated imaging 

parameters of the CT scanner were as follows: (1) each rotation included 1160 projection 

views that were evenly spaced on a circular orbit; (2) the number of channels per view was 

672; (3) the distance from the detector arrays to the X-ray source was 1040 mm; (4) the 

distance from the rotation center to the X-ray source was 570 mm; and (5) the space of each 

detector bin was 1.407 mm. All the reconstructed images were composed of 512×512 square 

pixels. The size of each pixel was 1.2 mm×1.2 mm. We evenly extracted 58-, 116-, 232-, 

290-, 386-, 580-, and 1,160-view projection from the sinogram data acquired at 40 (i.e., low 

mAs case) and 100 mAs (i.e., normal mAs case) to ensure the same noise level for each 

projection.

2.7. Performance evaluation

2.7.1. Evaluation by image similarity—To explore the performance of the various 

methods at the local detail level, the universal quality index (UQI) (Wang and Bovik, 2007) 

was utilized in the region of interest (ROI)-based analysis, which was performed by 

evaluating the degree of similarity between the reconstructed and ideal images. Given a 

selected ROI at corresponding locations in the two images, the mean, variance, and 

covariance of intensities in the ROI can be respectively calculated as

(23)

(24)
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(25)

where f(m) denotes the voxel value of the estimated low-dose image, fxtrue(m) denotes the 

voxel value of the ideal phantom or golden standard image in the ROI, and Z is the total 

number of voxels in the ROI. Then, the UQI can be calculated as follows:

(26)

UQI measures the intensity of the similarity between two images, and its value ranges from 

zero to one. A UQI value closer to one suggests great similarity to the ideal phantom image 

or gold standard image.

2.7.2. Modulation transfer function—The resolution property of the presented PWLS-

TGV method was studied using a modulation transfer function (MTF), which characterizes 

the spatial resolution of images. For the MTF computation, an edge spread function (ESP) 

was first obtained along the profile as indicated by the red line in figure 1a. A line spread 

function (LSF) was then obtained from the derivation of the ESP. By applying the Fourier 

transformation to the LSF, the MTF could be obtained. In this case, normalization may be 

needed so that MTF(0) = 1.

2.7.3. Comparison method—To validate and evaluate the performance of the proposed 

PWLS-TGV method, TV regularization was also carried out under the PWLS criteria for 

comparison. This regularization is hereafter referred to as the PWLS-TV method. By 

incorporating the noise model described in equation (10), the cost function of the PWLS-TV 

approach can be written as follows:

(27)

where Σ is a diagonal matrix with the i-th element of  estimated in equation (10), and 

. β1 and β2 are two hyper-parameters used to balance the fidelity term (i.e., 

the first term in equation (27)) and the regularization term.

3. Results

3.1. Numerical XCAT phantom study

3.1.1. Convergence analysis—Figure 2 shows the rRMSE versus the iteration steps for 

the proposed PWLS-TGV method from different sparse-views (30-, 40-, and 60-view 

projections) with β1 = 1 × 10−2 and β2 = 7 × 10−5. The proposed PWLS-TGV method can 

converge to a steady solution after enough iteration in terms of the rRMSE measure. In 

addition, the convergence speed accelerates as the projection views increase. The results 

illustrate that the present algorithm can successfully minimize the objective functions with a 

satisfactory solution in different cases.
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3.1.2. Visualization-based evaluation—Figure 3 shows the results reconstructed by 

different methods from 30-, 40-, and 60- view projections. To further visualize the 

differences between the TV- and TGV-based approaches, vertical profiles of the resulting 

images (figure 4) were drawn across the 296th column, that is, from the 180th row to the 

300th row. The PWLS-TGV method can produce more closely matching results compared 

with the PWLS-TV method. The results indicate that the gains from the PWLS-TGV 

method are more noticeable compared with those from the PWLS-TV method in sparse-

view CT image reconstruction. To quantitatively measure the consistency between the 

profiles from the phantom and the profiles from the images reconstructed by the PWLS-TV 

and PWLS-TGV methods, the Lin’s concordance correlation coefficients from the different 

cases were obtained (table 1). The results suggest that compared with the PWLS-TV 

method, the PWLS-TGV method can achieve better profiles that match the ideal ones.

3.1.3. UQI study—To perform the quantitative analysis of the PWLS-TGV method, we 

studied the UQI, which measures the similarity between reconstructed and true images. The 

ROI, as indicated by a red rectangular window in figure 1(a), was selected for the 

calculation of the UQI values. The curves of the UQI values versus the number of projection 

views for the XCAT phantom are shown in figure 5. The PWLS-TGV method has higher 

UQI values than the PWLS-TV method, especially in the 30- and 40- view projection.

3.1.4. MTF measure—Figure 6 shows the MTFs obtained by the PWLS-TGV and PWLS-

TV methods for the 30-, 40- and 60- view projection. We can observe that the PWLS-TGV 

method can yield a better image resolution than the PWLS-TV method in all cases.

3.2. Anthropomorphic torso phantom study

3.2.1. Visualization-based evaluation—Figures 7 and 8 show the images reconstructed 

by the different methods at 100 and 40 mAs. To further display the gains of the PWLS-TGV 

method, the zoomed ROIs (as indicated by the squares in figure 1(c)) are shown in figures 9 

and 10. Serious artifacts existed in the FBP results in all cases, and the PWLS-TGV method 

yielded more noticeable gains than the PWLS-TV method in terms of patchy artifact 

suppression. To further visualize the difference between the TV- and TGV-based 

approaches, vertical profiles of the resulting images (figures 11 and 12) were drawn across 

the 67th column, that is, from the 236th row to the 263th row. The results suggest that 

compared with the PWLS-TV method, the PWLS-TGV method can achieve better profiles 

that match the gold standard.

3.2.2. Normal vector flow study—To further verify the improvement of the PWLS-

TGV method over the PWLS-TV method, small ROI from the results of the 232-view 

projection were selected and used in the plotting of the normal vector flow (NVF) images 

(figures 13 and 14) at 100 and 40 mAs. The NVF image of the FBP reconstruction based on 

the averaged full-view (1160-view) sinogram data of the scans repeated 150 times was 

drawn as gold standard. The gradual changes in the intensities of the desired image are often 

shown as ordered arrows in NVF images, whereas the noise in the image is often shown as 

disordered arrows, as shown in figures 13(b) and 14(c). The NVF image of the PWLS-TGV 

method illustrates the recovery of a large number of ordered arrows. This condition indicates 
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the good preservation of the small textures of the resulting image, as indicated by the circles 

in figures 13(d) and 14(c).

3.2.3. UQI study—In the UQI evaluation, the gold standard image (figure 1(c)) was 

reconstructed by the FBP method with ramp filter at full view based on the averaged 

sinogram data with scans repeated 150 times and at 100 mAs and 120 kVp. Figure 15 shows 

the curves of the UQI values versus the number of projection views. The PWLS-TGV 

results have a higher UQI value than the PWLS-TV results. Thus, the PWLS-TV method 

can produce more closely matching results compared with the PWLS-TV method in the 

sparse-view case.

4. Discussion

TV-based methods have been widely used in CT image reconstruction based on noisy and/or 

sparse-view projection measurements with noticeable gains compared with other existing 

methods. For example, the PWLS-TV method outperforms the quadratic regularization-

based PWLS method based on sparse-view projection measurements in terms of streak 

artifact suppression (Tang et al, 2009, Liu et al, 2013). However, one major drawback of 

TV-based methods is that the associative results often suffer from patchy artifacts because of 

the PCA of the TV model (Tang et al, 2009, Liu et al, 2013).

To eliminate the drawback of the original TV-based methods in sparse-view CT image 

reconstruction, we introduced the TGV model under the PWLS criteria, which considers the 

first and second derivatives of an image. The effectiveness of the present PWLS-TGV 

method in sparse-view CT image reconstruction was extensively validated and evaluated in 

terms of accuracy and resolution properties in section of Results. The PWLS-TGV method 

can yield satisfactory results at uniform regions with patchy artifact elimination and around 

the edges with detailed information preservation. The MTF and UQI studies indicate the 

superiority of the gains from the PWLS-TGV method over those from the PWLS-TV 

method in terms of the quantitative measurement of image quality. As shown in the studies 

on the digital XCAT phantom, the proposed method demonstrates impressive performance 

with regard to quantitative measure and visual inspection. However, in realistic CT imaging, 

projection data are affected by photon count noise and electrical background noise. Many 

reconstruction methods have therefore failed to demonstrate their gains in a realistic 

scanning environment. Hence, we further validated the proposed method in two different 

scenarios (i.e., normal- and low-dose cases) using physical phantom imaging. In both cases, 

the PWLS-TGV method outperformed the PWLS-TV method in sparse-view CT image 

reconstruction in terms of visual inspection and UQI measure. In other words, the present 

PWLS-TGV method is more suitable than the PWLS-TV method in a realistic scanning 

environment.

As indicated by the studies on the XCAT phantom, the present algorithm can monotonically 

converge to a steady solution in terms of rRMSE measure (figure 2). To yield a convergence 

result, several parameters should be optimally selected. Such requirement is an open 

problem for all the regularized iterative CT image reconstruction methods (Wang et al, 

2011). For the present PWLS-TGV method, six parameters need to be determined, i.e., β1, 
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β2, ρ, τ, α0, and α1. As β1 mainly depends on the intensities of the desired image during 

implementation, it can be optimally selected before running the algorithm. ρ and τ as step 

variables can be optimized according to the scheme introduced in a previous study (Knoll et 

al, 2011). β2 as a hyper-parameter controls the smoothness of the reconstructed image, 

which can be determined by a broader range of parameter values in terms of rRMSE and 

eye-appealing visualization compared with the gold standard. For compatibility with the 

usual TV regularization, α1 = 1 and α0 = 3 were used in all the applications throughout the 

current study. Similar to most SIR methods in CT image reconstruction (Ma et al, 2012a, 

Lauzier Thériault and Chen, 2013), the computational cost of the present PWLS-TGV 

method is very large because of the projection and back-projection operations using a huge 

system matrix. However, with the development of fast computers and dedicated hardware 

(Xu and Mueller, 2005, Knaup et al, 2006), iterative reconstruction algorithms, including the 

present PWLS-TGV method, may be used in clinical CT reconstruction in the near future.

The PWLS-TGV method presented in the current work was only focused on CT image 

reconstruction based on sparse-view projections. The present method can also be used in 

other X-ray CT applications, including limited angle reconstruction (Persson et al, 2001, 

Sidky et al, 2006) and interior tomography (Yu and Wang, 2009). In addition, the PWLS-

TVG method can be efficiently applied in regularizing many types of inverse problems in 

tomographic imaging, such as phase-contrast CT (Ma et al, 2010), and SPECT (Wolf et al, 

2013). This feature is an interesting topic for future research.

5. Conclusion

With the goal of reducing the radiation dose in CT image examinations, we proposed the 

PWLS-TGV method, which is a TGV regularization model under the PWLS criteria for CT 

image reconstruction based on sparse-view projection measurements. The use of the 

proposed PWLS-TGV method is aimed at relieving the piecewise constant assumption of 

TV-based methods for sparse-view CT image reconstruction. The proposed PWLS-TGV 

method can achieve significant gains compared with the PWLS-TV method in terms of the 

preservation of structural details and the suppression of image noise as well as undesired 

patchy artifacts. In other words, the proposed PWLS-TGV method has useful potential for 

radiation dose reduction by lowering the mAs and reducing the number of projection views.
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Figure 1. 

Digital and physical phantoms used in the studies: (a) a slice of digital XCAT phantom that 

contains head anatomy structures; (b) an anthropomorphic torso phantom (Radiology 

Support Devices, Inc., Long Beach, CA); (c) the golden standard image reconstructed by the 

FBP method with ramp filter based on the averaged sinogram data of scans repeated 150 

times at a protocol of 100 mAs and 120 kVp.
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Figure 2. 

rRMSE versus iteration steps for the PWLS-TGV method from different sparse-views: (a) is 

from 60-view projection; (b) is from 40-view projection; (c) is from 30-view projection.
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Figure 3. 

Images reconstructed by the FBP with ramp filter, PWLS-TV (β1 = 1 × 10−2, β2 = 7.5 × 

10−5), and PWLS-TGV (β1 = 1 × 10−2, β2 = 7 × 10−5) methods from 30-, 40-, and 60-view 

projections, respectively.
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Figure 4. 

Vertical profiles (296th column) of the images reconstructed by the PWLS-TV and PWLS-

TGV methods from different projections: (a) 30-view projection; (b) 40-view projection; (c) 

60-view projection.
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Figure 5. 

The curves of UQI values versus the number of projection views (a), and the zoomed curves 

from the 30-view projection to the 116-view projection (b).
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Figure 6. 

MTF curves from the PWLS-TGV and PWLS-TV methods in three cases: (a) 60-view 

projection; (b) 40-view projection; (c) 30-view projection.
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Figure 7. 

Images reconstructed by the FBP, PWLS-TV, and PWLS-TGV methods from 58-, 116-, 

232-, 290-, 387-, 580-, and 1160- view projection at 100 mAs.
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Figure 8. 

Images reconstructed by the FBP, PWLS-TV, and PWLS-TGV methods from 58-, 116-, 

232-, 290-, 387-, 580-, and 1160- view projection at 40 mAs.
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Figure 9. 

Zoomed-in views of images reconstructed by the FBP (1th row), PWLS-TV (2th row), and 

PWLS-TGV (3th row) methods from 58-, 116-, 232-, 290-, 387-, 580-, and 1160-view 

projection at 100 mAs.
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Figure 10. 

Zoomed-in views of images reconstructed by the FBP (1th row), PWLS-TV (2th row), and 

PWLS-TGV (3th row) methods from 58-, 116-, 232-, 290-, 387-, 580-, and 1160-view 

projection at 40 mAs.
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Figure 11. 

Vertical profiles (67th column) of the images reconstructed by the PWLS-TV and PWLS-

TGV methods from different projections at 100 mAs: (a) 58-view projection; (b) 116-view 

projection; (c) 232-view projection; (d) 290-view projection; (e) 387-view projection; (f) 

580-view projection.
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Figure 12. 

Vertical profiles (67th column) of the images reconstructed by the PWLS-TV and PWLS-

TGV methods from different projections at 40 mAs: (a) 58-view projection; (b) 116-view 

projection; (c) 232-view projection; (d) 290-view projection; (e) 387-view projection; (f) 

580-view projection.
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Figure 13. 

NVF images of the reconstructed images by the PWLS-TV, and PWLS-TGV methods from 

232-view projection at 100 mAs: (a) from the FBP with 1160-view (the gold standard); (b) 

from the FBP; (c) from the PWLS-TV method; and (d) from the PWLS-TGV method.
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Figure 14. 

NVF images of the reconstructed images by different methods from 232-view projection at 

40 mAs: (a) from the FBP; (b) from the PWLS-TV method; and (c) from the PWLS-TGV 

method.

Niu et al. Page 30

Phys Med Biol. Author manuscript; available in PMC 2015 June 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 15. 

Curves of the UQI values versus the number of projection views from the PWLS-TV and 

PWLS-TGV methods: (a) 100 mAs; (b) 40 mAs.
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