
Sparsely Aggregated Convolutional Networks

Ligeng Zhu1 Ruizhi Deng1 Michael Maire2 Zhiwei Deng1 Greg Mori1 Ping Tan1

1Simon Fraser University 2University of Chicago
{lykenz,ruizhid,zhiweid,mori,pingtan}@sfu.edu, mmaire@uchicago.edu

Abstract. We explore a key architectural aspect of deep convolutional
neural networks: the pattern of internal skip connections used to aggre-
gate outputs of earlier layers for consumption by deeper layers. Such
aggregation is critical to facilitate training of very deep networks in an
end-to-end manner. This is a primary reason for the widespread adoption
of residual networks, which aggregate outputs via cumulative summation.
While subsequent works investigate alternative aggregation operations
(e.g. concatenation), we focus on an orthogonal question: which outputs
to aggregate at a particular point in the network. We propose a new in-
ternal connection structure which aggregates only a sparse set of previous
outputs at any given depth. Our experiments demonstrate this simple de-
sign change offers superior performance with fewer parameters and lower
computational requirements. Moreover, we show that sparse aggregation
allows networks to scale more robustly to 1000+ layers, thereby opening
future avenues for training long-running visual processes.

1 Introduction

As convolutional neural networks have become a central component of many vi-
sion systems, the field has quickly adopted successive improvements in their
basic design. This is exemplified by a series of popular CNN architectures,
most notably: AlexNet [25], VGG [32], Inception [35,34], ResNet [16,17], and
DenseNet [20]. Though initially targeted to image classification, each of these
designs also serves the role of a backbone across a broader range of vision tasks,
including object detection [7,14] and semantic segmentation [28,3,41]. Advances
in backbone network architecture consistently translate into corresponding per-
formance boosts to these downstream tasks.

We examine a core design element, internal aggregation links, of the re-
cent residual (ResNet [16]) and dense (DenseNet [20]) network architectures.
Though vital to the success of these architectures, we demonstrate that the spe-
cific structure of aggregation in current networks is at a suboptimal design point.
DenseNet, considered state-of-the-art, actually wastes capacity by allocating too
many parameters and too much computation along internal aggregation links.

We suggest a principled alternative design for internal aggregation structure,
applicable to both ResNets and DenseNets. Our design is a sparsification of the
default aggregation structure. In both ResNet and DenseNet, the input to a par-
ticular layer is formed by aggregating the output of all previous layers. We switch
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from this full aggregation topology to one in which only a subset of previous out-
puts are linked into a subsequent layer. By changing the number of incoming
links to be logarithmic, rather than linear, in the overall depth of the network,
we fundamentally reduce the growth of parameters in our resulting analogue of
DenseNet. Experiments reveal our design to be uniformly advantageous:

– On standard tasks, such as image classification, SparseNet, our sparsified
DenseNet variant, is more efficient than both ResNet and DenseNet. This
holds for measuring efficiency in terms of both parameters and operations
(FLOPs) required for a given level of accuracy. A much smaller SparseNet
model matches the performance of the highest accuracy DenseNet.

– In comparison to DenseNet, the SparseNet design scales in a robust manner
to instantiation of extremely deep networks of 1000 layers and beyond. Such
configurations magnify the efficiency gap between DenseNet and SparseNet.

– Our aggregation pattern is equally applicable to ResNet. Switching ResNet
to our design preserves or improves ResNet’s performance properties. This
suggests that aggregation topology is a fundamental consideration of its own,
decoupled from other design differences between ResNet and DenseNet.

Section 4 provides full details on these experimental results. Prior to that,
Section 2 relates background on the history and role of skip or aggregation links
in convolutional neural networks. It places our contribution in the context of
much of the recent research focus on CNN architecture.

Section 3 presents the details of our sparse aggregation strategy. Our ap-
proach occupies a previously unexplored position in aggregation complexity be-
tween that of standard CNNs and FractalNet [26] on one side, and ResNet and
DenseNet on the other. Taken together with our experimental results, sparse
aggregation appears to be a simple, general improvement that is likely to filter
into the standard CNN backbone design. Section 5 concludes with a synthesis
of these observations, and discussion of potential future research paths.

2 Related Work

Modern CNN architectures usually consist of a series of convolutional, ReLU,
and batch normalization [23] operations, mixed with occasional max-pooling and
subsampling stages. Much prior research focuses on optimizing for parameter
efficiency within convolution, for example, via dimensionality reduction bottle-
necks [22,16,17], grouped convolution [39,19], or weight compression [4]. These
efforts all concern design at a micro-architectural level, optimizing structure that
fits inside a single functional unit containing at most a few operations.

At a macro-architectural level, skip connections have emerged as a common
and useful design motif. Such connections route outputs of earlier CNN layers
directly to the input of far deeper layers, skipping over the sequence of interme-
diate layers. Some deeper layers thus take input from multiple paths: the usual
sequential path as well as these shortcut paths. Multiple intuitions motivate
inclusion of skip connections, and may share in explaining their effectiveness.
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2.1 Skip Connections for Features

Predicting a detailed labeling of a visual scene may require understanding it
at multiple levels of abstraction, from edges and textures to object categories.
Taking the plausible view that a CNN learns to compute increasingly abstract
visual representations when going from shallower to deeper layers, skip connec-
tions can provide a pathway for assembling features that combine many levels
of abstraction. Building in such connections alleviates the burden of learning to
store and maintain features computed early that the network needs again later.

This intuition motivates the skip connection structures found in many se-
mantic segmentation CNNs. Fully convolutional networks [28] upsample and
combine several layers of a standard CNN, to act as input to a final prediction
layer. Hypercolumn networks [13] similarly wire intermediate representations
into a concatenated feature descriptor. Rather than use the end layer as the
sole destination for skip links, encoder-decoder architectures, such as SegNet [1]
and U-Net [31], introduce internal skip links between encoder and decoder layers
of corresponding spatial resolutions. Such internal feature aggregation, though
with different connectivity, may also serve to make very deep networks trainable.

2.2 Training Very Deep Networks

Training deep networks end-to-end via stochastic gradient descent requires back-
propagating a signal through the entire network. Starting from random initial-
ization, the gradient received by earlier layers from a loss at the end of the
network will be noisier than that received by deeper layers. This issue worsens
with deeper networks, making them harder to train. Attaching additional losses
to intermediate layers [27,35] is one strategy for ameliorating this problem.

Highway networks [33] and residual networks [16] (ResNets) offer a more
elegant solution, preserving the ability to train from a single loss by adding
skip connections to the network architecture. The addition of skip connections
shortens the effective path length between early network layers and an informa-
tive loss. Highway networks add a gating mechanism, while residual networks
implement skip connections by summing outputs of all previous layers. The ef-
fectiveness of the later strategy is cause for its current widespread adoption.

Fractal networks [26] demonstrate an alternative skip connection structure for
training very deep networks. The accompanying analysis reveals skip connections
function as a kind of scaffold that supports the training processes. Under special
conditions, the FractalNet skip connections can be discarded after training.

DenseNets [20] build directly on ResNets, by switching the operational form
of skip connections from summation to concatenation. They maintain the same
aggregation topology as ResNets, as all previous layer outputs are concatenated.

2.3 Architecture Search

The dual motivations of building robust representations and enabling end-to-
end training drive inclusion of internal aggregation links, but do not dictate an
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optimal procedure for doing so. Absent insight into optimal design methods, one
can treat architectural details as hyperparameters over which to optimize [42].
Training of a single network can then be wrapped as a step in larger search
procedure that varies network design.

However, it is unclear whether skip link topology is an important hyperpa-
rameter over which to search. Our proposed aggregation topology is motivated
by a simple construction and, as shown in Section 4, significantly outperforms
prior hand-designed structures. Perhaps our topology is near optimal and will
free architecture search to focus on more consequential hyperparameters.

2.4 Concurrent Work

Concurrent work [18], independent of our own, proposes a modification of DenseNet
similar to our SparseNet design. We make distinct contributions in comparison:

– Our SparseNet image classification results are substantially better than those
reported in Hu et al. [18]. Our results represent an actual and significant
improvement over the DenseNet baseline.

– We explore sparse aggregation topologies more generally, showing application
to ResNet and DenseNet, whereas [18] proposes specific changes to DenseNet.

– We experiment with networks in extreme configurations (e.g. 1000 layers) in
order to highlight the robustness of our design principles in regimes where
current baselines begin to break down.

While we focus on skip connections in the context of both parameter ef-
ficiency and network trainability, other concurrent work examines alternative
mechanisms to ensure trainability. Xiao et al. [38] develop a novel initialization
scheme that allows training very deep vanilla CNNs. Chang et al. [2], taking
inspiration from ordinary differential equations, develop a framework for ana-
lyzing stability of reversible networks [8] and demonstrate very deep reversible
architectures.

3 Aggregation Architectures

Figure 1 sketches our proposed sparse aggregation architecture alongside the
dominant ResNet [16] and DenseNet [20] designs, as well as the previously pro-
posed FractalNet [26] alternative to ResNet. This macro-architectural view ab-
stracts away details such as the specific functional unit F (·), parameter counts
and feature dimensionality, and the aggregation operator ⊗. As our focus is on
a novel aggregation topology, experiments in Section 4 match these other details
to those of ResNet and DenseNet baselines.

We define a network with a sparse aggregation structure to be a sequence of
nonlinear functional units (layers) Fℓ(·) operating on input x, with the output
yℓ of layer ℓ computed as:

y0 = F0(x) (1)

yℓ = Fℓ(⊗(yℓ−c0 , yℓ−c1 , yℓ−c2 , yℓ−c3 , . . . , yℓ−ck)) (2)
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(a) Dense Aggregation (ResNet / DenseNet Topology)
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Fig. 1. Aggregation topologies. Our proposed sparse aggregation topology devotes
less machinery to skip connections than DenseNet [20], but more than FractalNet [26].
This is apparent by comparing the exploded view (b) of the ResNet [16] or DenseNet
topology (a), as well as the fractal topology (d), with our proposal (c). All of these
architectures are describable in terms of a basic parameterized functional unit F (·)
(e.g. convolution-ReLU-batchnorm), an aggregation operator ⊗, and a connection pat-
tern. For ResNet, ⊗ is addition [+]; for DenseNet, ⊗ is concatenation [⊕]; for FractalNet
⊗ is averaging [+]. Note how the compact view (a) feeds the result of one aggregation
into the next; the exploded view (b) of DenseNet is the correct visualization for com-
parison to (c) and (d). For a network of depth N , dense aggregation requires O(N2)
connections, sparse aggregation O(N log(N)), and fractal aggregation O(2N). These
differences are visually apparent by comparing incoming links at a common depth. For
example, compare the density of the (highlighted red) links into layer F6(·).
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where c is a positive integer and k is the largest non-negative integer such that
ck ≤ ℓ. ⊗ is the aggregation function. This amounts to connecting each layer
to previous layers at exponentially increasing offsets. Contrast with ResNet and
DenseNet, which connect each layer to all previous layers according to:

yℓ = Fℓ(⊗(yℓ−1, yℓ−2, yℓ−3, yℓ−4, . . . , y0)) (3)

For a network of total depth N , the full aggregation strategy of ResNet and
DenseNet introduces N incoming links per layer, for a total of O(N2) connec-
tions. In contrast, sparse aggregation introduces no more than logc(N) incoming
links per layer, for a total of O(N log(N)) connections.

Our sparse aggregation strategy also differs from FractalNet’s aggregation
pattern. The FractalNet [26] design places a network of depth N in parallel with
networks of depth N

2 ,
N

4 , . . . , 1, making the total network consist of 2N − 1
layers. It inserts occasional join (aggregation) operations between these parallel
networks, but does so with such extreme sparsity that the total connection count
is still dominated by the O(2N) connections in parallel layers.

Our sparse connection pattern is sparser than ResNet or DenseNet, yet denser
than FractalNet. It occupies a previously unexplored point, with a fundamentally
different scaling rate of skip connection density with network depth.

3.1 Potential Drawbacks of Dense Aggregation

The ability to train networks with depth greater than 100 layers using DenseNet
and ResNet architectures can be partially attributed to to their feature aggrega-
tion strategies. As discussed in Section 2, skip links serve as a training scaffold,
allowing each layer to be directly supervised by the final output layer, and ag-
gregation may help transfer useful features from shallower to deeper layers.

However, dense feature aggregation comes with several potential drawbacks.
These drawbacks appear in different forms in the ResNet-styled aggregation by
summation and the DenseNet-styled aggregation by concatenation, but share a
common theme of over-constraining or over-burdening the system.

In general, it is impossible to disentangle the original components of a set of
features after taking their sum. As the depth of a residual network grows, the
number of features maps aggregated grows linearly. Later features may corrupt or
wash-out the information carried by earlier feature maps. This information loss
caused by summation could partially explain the saturation of ResNet perfor-
mance when the depth exceeds 1000 layers [16]. This way of combining features
is also hard-coded in the design of ResNets, giving the model little flexibility to
learn more expressive combination strategies. This constraint may be the reason
that ResNet layers tend to learn to perform incremental feature updates [10].

In contrast, the aggregation style of DenseNets combines features through
direct concatenation, which preserves the original form of the previous features.
Concatenation allows each subsequent layer a clean view of all previously com-
puted features, making feature reuse trivial. This factor may contribute to the
better parameter-performance efficiency of DenseNet over ResNet.
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But DenseNet’s aggregation by concatenation has its own problems: the num-
ber of skip connections and required parameters grows at a rate of O(N2),
where N is the network depth. This asymptotically quadratic growth means
that a significant portion of the network is devoted to processing previously seen
feature representations. Each layer contributes only a few new outputs to an
ever-widening concatenation of stored state. Experiments show that it is hard
for the model to make full use of all the parameters and dense skip connections.
In the original DenseNet work [20], a large fraction of the skip connections have
average absolute weights of convolution filters close to zero. This implies that
dense aggregation of feature maps maintains some extraneous state.

The pitfalls of dense feature aggregation in both DenseNet and ResNet are
caused by the linear growth in the number of features aggregated with respect
to the depth. Variants of ResNet and DenseNet, including the post-activation
ResNets [17], mixed-link networks [36], and dual-path networks [5] all use the
same dense aggregation pattern, differing only by aggregation operator. They
thus inherit potential limitations of this dense aggregation topology.

3.2 Properties of Sparse Aggregation

We would like to maintain the power of short gradient paths for training, while
avoiding the potential drawbacks of dense feature aggregation. SparseNets do,
in fact, have shorter gradient paths than architectures without aggregation.

In plain feed-forward networks, there is only one path from a layer to a
previous layer with offset S; the length of the path is O(S). The length of the
shortest gradient path is constant in dense aggregation networks like ResNet and
DenseNet. However, the cost of maintaining a gradient path with O(1) length
between any two layers is the linear growth of the count of aggregated features.
By aggregating features only from layers with exponential offset, the length
of the shortest gradient path between two layers with offset S is bounded by
O((c− 1) log(S)). Here, c is again the base of the exponent governing the sparse
connection pattern.

It is also worth noting that the number of predecessor outputs gathered by
the ℓth layer is O(log(ℓ)), as it only reaches predecessors with exponential offsets.

Parameters Shortest Gradient Path Aggregated Features

Plain O(N) O(N) O(1)

ResNets O(N) O(1) O(ℓ)

DenseNets O(N2) O(1) O(ℓ)

SparseNets (sum) O(N) O(log(N)) O(log ℓ)

SparseNets (concat) O(N logN) O(log(N)) O(log ℓ)

Table 1. SparseNet properties. We compare architecture-induced scaling proper-
ties for networks of depth N and for individual layers located at depth ℓ.



8 L. Zhu et al.

Therefore, the total number of skip connections is

N∑

ℓ=1

⌊logc ℓ⌋ = O(N logN) (4)

where N is the number of layers (depth) of the network. The number of param-
eters are O(N logN) and O(N), respectively, for aggregation by concatenation
and aggregation by summation. Table 1 summarizes these properties.

4 Experiments

We demonstrate the effectiveness SparseNets as a drop-in replacement (and
upgrade) for state-of-the-art networks with dense feature aggregation, namely
ResNets [16,17] and DenseNets [20], through image classification tasks on the CI-
FAR [24] and ImageNet datasets [6]. Except for the difference between the dense
and sparse aggregation topologies, we set all other SparseNet hyperparameters
to be the same as the corresponding ResNet or DenseNet baseline.

For some large models, image classification accuracy appears to saturate
when we continue increasing model depth or internal channel counts. It is likely
such saturation is not due to model capacity limits, but rather both our model
and baselines reach diminishing returns given the dataset size and task complex-
ity. We are interested not only in absolute accuracy, but also parameter-accuracy
and FLOP-accuracy efficiency.

We implement our models in the PyTorch framework [29]. For optimization,
we use SGD with Nesterov momentum 0.9 and weight decay 0.0001. We train all
models from scratch using He et al.’s initialization scheme [15]. All networks were
trained using NVIDIA GTX 1080 Ti GPUs. We release our implementation1 of
SparseNets, with full details of model architecture and parameter settings, for
the purpose of reproducible experimental results.

4.1 Datasets

CIFAR Both the CIFAR-10 and CIFAR-100 datasets [24] have 50,000 training
images and 10,000 testing images with size of 32×32 pixels. CIFAR-10 (C10) and
CIFAR-100 (C100) have 10 and 100 classes respectively. Our experiments use
standard data augmentation, including mirroring and shifting, as done in [20].
The mark + beside C10 or C100 in results tables indicates this data augmen-
tation scheme. As preprocessing, we normalize the data by the channel mean
and standard deviation. Following the schedule from the Torch implementation
of ResNet [11], our learning rate starts from 0.1 and is divided by 10 at epoch
150 and 225.

1 https://github.com/Lyken17/SparseNet

https://github.com/Lyken17/SparseNet
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ImageNet The ILSVRC 2012 classification dataset [6] contains 1.2 million im-
ages for training, and 50K for validation, from 1000 classes. For a fair comparison,
we adopt the standard augmentation scheme for training images as in [11,20,16].
Following [16,20], we report classification errors on the validation set with single
crop of size 224 × 224.

4.2 Results on CIFAR

Table 2 reports experimental results on CIFAR [24]. The best SparseNet closely
matches the performance of the state-of-the DenseNet. We also show the results
for a selection of DenseNet and SparseNet models over multiple runs on the
CIFAR-100 dataset in the supplementary material. Multiple runs exhibit similar
accuracies with low variance. In all of these experiments, we instantiate each
SparseNet to be exactly the same as the correspondingly named DenseNet, but
with sparser aggregation structure (some connections removed). The parameter
k indicates feature growth rates (how many new feature channels each layer
produces), which we match to the DenseNet baseline. Models whose names end
with BC use the bottleneck compression structure, as in the original DenseNet
paper. As SparseNet does fewer concatenations than DenseNet, the same feature
growth rate produces models with fewer overall parameters. Remarkably, for
many of the corresponding 100 layer models, SparseNet performs as well or
better than DenseNet, while having substantially fewer parameters.

Architecture Depth Params C10+ C100+
ResNet [16] 110 1.7M 6.61 -
ResNet(pre-activation)[16] 164 1.7M 5.46 24.33
ResNet(pre-activation)[16] 1001 10.2M 4.62 21.42*
Wide ResNet [40] 16 11.0M 4.81 22.07
FractalNet [26] 21 38.6M 5.52 23.30
DenseNet (k=12)[20] 40 1.1M 5.39* 24.79*
DenseNet (k=12)[20] 100 7.2M 4.28* 20.97*
DenseNet (k=24)[20] 100 28.3M 4.04* 19.61*
DenseNet (k=16, 32, 64)[20] 100 61.1M 4.31* 20.6*
DenseNet (k=32, 64, 128)[20] 100 241.6M N/A N/A
DenseNet-BC (k=24)[20] 250 15.3M 3.65 17.6
DenseNet-BC (k=40)[20] 190 25.6M 3.75* 17.53*

DenseNet-BC (k=16, 32, 64)[20] 100 7.9M 4.02* 19.55*
DenseNet-BC (k=32, 64,128)[20] 100 30.5M 3.92* 18.71*
SparseNet (k=12) 40 0.8M 5.13 24.65
SparseNet (k=24) 100 2.5M 4.64 22.41
SparseNet (k=36) 100 5.7M 4.34 20.50
SparseNet (k=16, 32, 64) 100 7.2M 4.11 19.49
SparseNet (k=32, 64, 128) 100 27.7M 3.88 18.80
SparseNet-BC (k=24) 100 1.5M 4.03 22.12
SparseNet-BC (k=36) 100 3.3M 3.91 20.31
SparseNet-BC (k=16, 32, 64) 100 4.4M 3.43 19.71
SparseNet-BC (k=32, 64, 128) 100 16.7M 3.22 17.71

Table 2. CIFAR classification performance. We show classification error rate for
SparseNets compared to DenseNets, ResNets, and their variants. Results marked with
a ∗ are from our implementation. Datasets marked with + indicates use of standard
data augmentation (translation and mirroring).
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Model Depth Params CIFAR 100+

ResNet

56 0.59M 27.00
110 1.15M 24.70
200 2.07M 23.10
1001 10.33M 21.42

2000 20.62M 22.76

SparseNet[+]

56 0.59M 27.70
110 1.15M 26.10
200 2.07M 25.77
1001 10.33M 22.10
2000 20.62M 21.01

Model Depth Params CIFAR 100+

DenseNet(k=12)
40 1.10M 24.79
100 7.20M 20.97
400 117M N/A

DenseNet-BC(k=24)
250 25.6M 17.6
400 216.3M N/A

DenseNet-BC(k=4)
400 1.10M 32.94
1001 6.63M 28.50

SparseNet[⊕]-BC
(k=12)

100 0.40M 27.99
400 1.70M 24.41
1001 4.62M 22.10

Table 3. Depth scalability on CIFAR. Left: ResNets and their sparsely aggregated
analogue SparseNets[+]. Right: DenseNets and their corresponding sparse analogues
SparseNets[⊕]. Observe that ResNet and all SparseNet variants of any depth exhibit
robust performance. DenseNets suffer an efficiency drop when stretched too deep.

4.3 Going Deeper with Sparse Connections

Table 3 shows results of pushing architectures to extreme depth. While Table 2
explored only the SparseNet analogue of DenseNet, we now explore switching
both ResNet and DenseNet to sparse aggregation structures, and denote their
corresponding SparseNets by SparseNet[+] and SparseNet[⊕], respectively.

Both ResNet and SparseNet[+] demonstrate better performance on CIFAR100
as their depth increases from 56 to 200 layers. The gap between the performance
of ResNet and SparseNet[+] initially enlarges as depth increases. However, it nar-
rows as network depth reaches 1001 layers, and the performance of SparseNet[+]-
2000 surpasses ResNet-2000. Compared to ResNet, SparseNet[+] appears better
able to scale to depths of over 1000 layers.

Similar to both ResNet and SparseNet[+], the performance of DenseNet
and SparseNet[⊕] also improves as their depth increases. The performance of
DenseNet is also affected by the feature growth rate. However, the parameter
count of DenseNet explodes as we increase its depth to 400, even with a growth
rate of 12. Bottleneck compression layers have to be adopted and the number of
filters in each layer has to be significantly reduced if we want to go deeper. We
experiment with DenseNets of depth greater than 1000 by adopting bottleneck
compression (BC) structure and using a growth rate of 4. But, as Table 3 shows,
their performance is far from satisfying. In contrast, building SparseNet[⊕] with
more than 1000 layers is practical and memory-efficient. We can easily build
SparseNet[⊕] with depth greater than 400 using BC structure and a growth rate
of 12. At 1001 layers, it achieves far better performance than DenseNet-1001.

An important advantage of SparseNet[⊕] over DenseNet is that the number
of previous layers aggregated can be bounded by a small integer even when the
depth of the network is over 1000 layers. This is a consequence of the slow growth
rate of the logarithm function. This feature not only permits building deeper
SparseNet[⊕] variants, but allows us to explore hyperparameters of SparseNet[⊕]
with more flexibility on both depth and filter count.
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We also observe that SparseNet[⊕] generally has better parameter efficiency
than SparseNet[+]. For example, on CIFAR-100, the error rate of SparseNet[+]-
1001 and SparseNet[⊕]-1001 are (coincidently) both 22.10. However, notice that
SparseNet[⊕]-1001 requires less than half the parameters of SparseNet[+]-1001.
Similar trends are also seen in the comparison between SparseNet[+]-200 and
SparseNet[⊕]-400. The DenseNet vs. ResNet advantage of preserving features via
concatenation (over summation) also holds for the sparse aggregation pattern.

4.4 Efficiency of SparseNet[⊕]

Returning to Table 2, we can further comment on the efficiency of SparseNet[⊕]
(denoted in Table 2 as SparseNet) in comparison to DenseNet. These results
include our exploration of parameter efficiency by varying the depth and number
of filters of SparseNet[⊕]. As the number of features each layer aggregates grows
slowly, and is nearly a constant within a block, we also double the number of
filters across blocks, following the approach of ResNets. Here, a block refers to a
sequence of layers running at the same spatial resolution, between pooling and
subsampling stages of the CNN pipeline.

There are two general trends in the results. First, SparseNet usually requires
fewer parameters than DenseNet when they have close performance. Most no-
tably, DenseNet-BC (N = 190, k = 40) requires 25.6 million parameters to
achieve error rate 17.53% on CIFAR100+, while SparseNet-BC can achieve a
similar error of 17.71% under setting (N = 100, k = {32, 64, 128}) with only
16.7 million parameters. The 19.71% error rate of SparseNet-BC (N = 100,
k = {16, 32, 64}) is close to the performance of the corresponding DenseNet-BC
(N = 100, k = {16, 32, 64}) but requires 4.4 rather than 7.9 million parameters.

Second, when both networks have less than 15 million parameters, SparseNet
always outperforms the DenseNet with similar parameter count. For example,
DenseNet (N = 100, k = 12) and SparseNet (N = 100, k = {16, 32, 64}) both
have around 7.2 million parameters, but the latter shows better performance.
DenseNet (N = 40, k = 12) consumes around 1.1 million parameters but still
has worse performance than the 0.8 million param SparseNet (N = 40, k = 12).

Counterexamples do exist, such as the comparison between SparseNet-BC-
100-{32, 64, 128} and DenseNet-BC-250-24. The latter model, with fewer param-
eters, performs slightly better (17.6% vs 17.71% error) than the previous one. We
argue this is an example of performance saturation considering DenseNet-BC-
190-40 only has slightly higher accuracy than DenseNet-BC-250-24, with many
more parameters (25.6 million vs. 15.3 million). These large networks may be
close to saturating performance on the CIFAR-100 image classification task.

Note that when we double the number of filters across different blocks, the
performance of SparseNets is boosted and their better parameter efficiency over
DenseNets becomes more obvious. SparseNets achieve similar or better perfor-
mance than DenseNets, while requiring at most half the number of parame-
ters uniformly across all settings. These general trends are summarized in the
parameter-performance plots in Figure 2 (left).
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Model Error Params FLOPs Time

DenseNet-121-32 [20] 25.0* 7.98M 5.7G 19.5ms
DenseNet-169-32 [20] 23.6* 14.15M 6.76G 32.0ms
DenseNet-201-32 [20] 22.6* 20.01M 8.63G 42.6ms
DenseNet-264-32 [20] 22.2* 27.21M 11.03G 50.4ms

SparseNet[⊕]-121-32 25.6 4.51M 3.46G 13.5ms
SparseNet[⊕]-169-32 24.2 6.23M 3.74G 18.8ms
SparseNet[⊕]-201-32 23.1 7.22M 4.13G 22.0ms
SparseNet[⊕]-201-48 22.1 14.91M 9.19G 43.1ms

ResNet-50 23.9 25.5M 8.20G 42.2ms
ResNet-50 Pruned [12] 23.7 7.47M - -

Table 4. ImageNet results. The top-1 single-crop validation error, parameters,
FLOPs, and time of each model on ImageNet.

4.5 Results on ImageNet

To demonstrate efficiency on a larger-scale dataset, we further test different
configurations of SparseNet[⊕] and compare them with state-of-the-art networks
on ImageNet. All models are trained with the same preprocessing methods and
hyperparameters. Table 4 reports ImageNet validation error.

These results reveal that the better parameter-performance efficiency exhib-
ited by SparseNet[⊕] over DenseNet extends to ImageNet [6]: SparseNet[⊕] per-
forms similarly to state-of-the-art DenseNets, while requiring significantly fewer
parameters. For example, SparseNet-201-48 (14.91M params) yields better vali-
dation error than DenseNet-201-32 (20.01M params). SparseNet-201-32 (7.22M
params) outperforms DenseNet-169-32 with just half the parameter count.

Even compared to pruned networks, SparseNets show competitive param-
eter efficiency. In the last row of the Table 4, we show the result of pruning
ResNet-50 using deep compression [12], whose parameter-performance efficiency
significantly outpaces the unpruned ResNet-50. However, our SparseNet[⊕]-201-
32, trained from scratch, has even better error rate than pruned ResNet-50, with
fewer parameters. See Figure 2 (right) for a complete efficiency plot.

4.6 Feature Reuse and Parameter Redundancy

The original DenseNets work [20] conducts a simple experiment to investigate
how well a trained network reuses features across layers. In short, for each layer
in each densely connected block, they compute the average absolute weights of
the part of that layer’s filters that convolves with each previous layer’s feature
map. The averaged absolute weights are rescaled between 0 and 1 for each layer
i. The jth normalized value implies the relative dependency of the features of
layer i on the features of layer j, compared to other layers. These experiments
are performed on a DenseNet consisting of 3 blocks with N = 40 and k = 12.

We perform a similar experiment on a SparseNet model with the same con-
figuration. We plot results as heat maps in Figure 3. For comparison, we also
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include the heat maps of the corresponding experiment on DenseNets [20]. In
these heap maps, a red pixel at location (i, j) indicates layer i makes heavy use
of the features of layer j; a blue pixel indicates relatively little usage. A white
pixel indicates there is no direct connection between layer i and layer j. From
the heat maps, we observe the following:

– Most of the non-white elements in the heat map of SparseNet are close to red,
indicating that each layer takes full advantage of all the features it directly
aggregates. It also indicates almost all the parameters are fully exploited,
leaving little parameter redundancy. This result is not surprising considering
the high observed parameter-performance efficiency of our model.

– In general, the layer coupling value at position (i, j) in DenseNet decreases
as the offset between i and j gets larger. However, such a decaying trend does
not appear in the heat map of SparseNet, implying that layers in SparseNets
have better ability to extract useful features from long-distance connections
to preceding layers.

The distribution of learned weights in Figure 3, together with the efficiency
curves in Figure 2, serves to highlight the importance of optimizing macro-
architectural design. Others have demonstrated the benefits of a range of schemes
[22,37,30,9,19] for sparsifying micro-architectural network structure (parameter
structure within layers or filters). Our results show similar considerations are
relevant at the scale of the entire network.

5 Conclusion

We demonstrate that following a simple design rule, scaling aggregation link
complexity in a logarithmic manner with network depth, yields a new state-
of-the-art CNN architecture. Extensive experiments on CIFAR and ImageNet
show our SparseNets offer significant efficiency improvements over the widely
used ResNets and DenseNets. This increased efficiency allows SparseNets to scale
robustly to great depth. While CNNs have recently moved from the 10-layer to
100-layer regime, perhaps new possibilities will emerge with straightforward and
robust training of 1000-layer networks.

The performance of neural networks for visual recognition has grown with
their depth as they evolved from AlexNet [25] to ResNet [16,17]. Extrapolating
such trends could be cause to believe building deeper networks should further
improve performance. Much effort has been devoted by researchers in computer
vision and machine learning communities to train deep neural networks with
more than 1000 layers, with such hope [17,21].

Though previous works and our experiments show we can train very deep
neural networks with stochastic gradient descent, their test performance still
usually plateaus. Even so, very deep neural networks might be suitable for other
interesting tasks. One possible future direction could be solving sequential search
or reasoning tasks relying on long-term dependencies. Skip connections might
empower the network with backtracking ability. Sparse feature aggregation might
permit building extremely deep neural networks for such tasks.
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