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Abstract 

 

We propose a new procedure for sparse factor analysis (FA) such that each variable loads only 

one common factor. Thus, the loading matrix has a single nonzero element in each row and zeros elsewhere. 

Such a loading matrix is the sparsest possible for certain number of variables and common factors. For this 

reason, the proposed method is named sparsest FA (SSFA). It may also be called FA-based variable 

clustering, since the variables loading the same common factor can be classified into a cluster. In SSFA, all 

model parts of FA (common factors, their correlations, loadings, unique factors, and unique variances) are 

treated as fixed unknown parameter matrices and their least squares function is minimized through specific 

data matrix decomposition. A useful feature of the algorithm is that the matrix of common factor scores 

is re-parameterized using QR decomposition in order to efficiently estimate factor correlations. A 

simulation study shows that the proposed procedure can exactly identify the true sparsest models. Real data 

examples demonstrate the usefulness of the variable clustering performed by SSFA. 

 

Key words: Exploratory Factor analysis, Sparsest Loadings, Matrix decomposition factor 

analysis, Variable clustering, QR re-parameterization     
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1.  Introduction 

 

Factor analysis (FA) aims to explain the interrelationships among p observed variables 

by m (<< p) latent variables called common factors. To allow for some variation in each 

observed variable that remains unaccounted for by the common factors, p additional latent 

variables called unique factors are introduced. Each of them accounts for the unique variance 

associated with only one observed variable. FA can be formulated in several ways. Among 

them, maximum likelihood FA (MLFA) and matrix decomposition FA (MDFA) need to be 

outlined before introducing our study. 

    In MLFA, a p × 1 observed vector x, whose expectation E[x] equals to the p × 1 zero 

vector 0p, is modeled as 

x = Λf + Ψu .                                (1) 

Here, random vectors f (m × 1) and u (p × 1) contain common and unique factor scores 

respectively, while Λ is the p × m matrix of factor loadings and Ψ is a p × p diagonal matrix, 

the squares of whose diagonal elements are called unique variances (e.g., Mulaik, 2010). It is 

assumed that f ∼ Nm(0m, Φ), i.e, f follows the m-variate normal distribution whose average 

vector is 0m and covariance matrix is Φ, where the diagonal elements of Φ are ones, implying 

that Φ is a correlation matrix. Further, u ∼ Np (0m, Ip) and E[fu′] = Om×p are assumed with Ip 

the p × p identity matrix and Om×p the m×p matrix of zeros. Those assumptions lead to x ∼ 

Np(0m, ΛΦΛ′+Ψ), which gives the negative log likelihood 

l(Λ,Ψ,Φ) = log|ΛΦΛ′+Ψ| + trS(ΛΦΛ′+Ψ)−1                   (2) 

for sample covariance matrix S = n−1X′X. Here, |Σ| denotes the determinant of matrix Σ, and 

X is the n-observation × p-variables data matrix column-centered as 1n′X = 0p′ with 1n the n × 

1 vector of ones. Since of the rotational freedom of Λ, the attained value of (2) remains 

unchanged even if Φ is set at Im. Thus, (2) is minimized over Λ and Ψ with Φ = Im. 

    In MDFA, factor scores are also treated as fixed parameters, and X is modeled as  

X = FΛ′ + UΨ + E .                             (3) 

Here, matrices F (n × m) and U (n × p) contain common and unique factor scores, respectively, 

with E (n × p) containing errors. Its squared norm ||E||2, i.e.,     

                  f(F, U, Λ, Ψ) = ||X − (FΛ′+UΨ)||2 ,                         (4) 

is minimized over F, U, Λ, and Ψ, subject to the constraints  

n−1F′F = Im,  n−1U′U = Ip,  and  n−1F′U = Om×p .                 (5) 
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Here, the common factors are assumed to be mutually uncorrelated as n−1F′F = Im for the 

same reason as in MLFA. This approach was recently introduced independently by Henk A. L. 

Kiers in Socǎn (2003) and de Leeuw (2004), and later studied and elaborated by Unkel and 

Trendafilov (2010), Trendafilov and Unkel (2011), and Stegeman (2016). It is empirically 

known that MDFA and MLFA provide almost equivalent solutions (Adachi, 2012, 2014). 

A main purpose of FA is to explore the relationships of observed variables to the 

underlying common factors. Those relationships are captured by interpreting the loading 

matrix Λ. The interpretation of Λ is facilitated, if Λ is sparse, i.e., includes a large number of 

zero loadings, as zero ones clearly show no relationship between the corresponding factors 

and variables, implying that only nonzero elements are considered for interpreting factors. A 

classic approach to such facilitation of interpretation is to rotate the loading matrix Λ so that it 

approximates a sparse matrix. However, the rotated loadings cannot be exactly zeros. Thus, 

users must neglect loadings below certain magnitudes and make them zero without further 

adjustment of the remaining (nonzero) loadings.  

New FA procedures which do not show this drawback when rotating loadings have 

recently been proposed, and are generally called sparse FA (Adachi & Trendafilov, 2014; 

Hirose & Yamamoto, 2014a,b). In sparse FA, the goal is to obtain a loading matrix Λ which 

has a large proportion of exactly zero elements (loadings). Here, it should be noted that the 

optimal locations of the zero elements in Λ are unknown and have to be estimated. That is, the 

parameter estimation in sparse FA includes the location of the zero loadings. A great number 

of sparse principal component analysis (PCA) procedures have been successfully developed 

in the last decade (e.g. Jollife, Uddin & Trendafilov, 2003; Zou, Hastie, & Tibshirani, 2006). 

In sparse PCA, a sparse weight matrix is produced that contain the weights for the linear 

combinations of variables that will form components. In analogy, a sparse factor loading 

matrix is estimated in sparse FA together with the other parameters.  

In sparse PCA, a major approach to achieve sparseness is by using penalty function 

(Trendafilov, 2014). This has also been employed in Hirose and Yamamoto’s sparse FA 

(2014a,b). The authors have developed the R-package “FANC” which implements their 

procedure. For short, it is referred to as FANC. It is based on MLFA and the negative log 

likelihood (2) is combined with a penalty function Pγ(Λ). Thus, FANC is formulated as 

minΛ,Ψ,Φ l(Λ, Ψ, Φ) + ρ Pγ (Λ)  .                       (6) 

Here Pγ(Λ) is penalizing Λ to have nonzero elements, with ρ and γ being tuning parameters. 

The latter γ specifies the form of function Pγ(Λ), while the former ρ controls the relative 

importance of P(Λ): larger ρ values promote sparser loadings. When Λ is sparse, it does not 

have rotational freedom. Note, that Φ is also estimated by (6), and thus, setting Φ = Im is 

restrictive. 
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On the other hand, the level of sparseness is directly constrained to be a specified integer 

in Adachi and Trendafilov’s procedure (2014). SOFA is based on MDFA and formulated 

using a least squares function (4) and solves the following type of problem   

min F, Λ, U, Ψ f(F, Λ, U, Ψ) subject to Card(Λ) = c and (5) ,             (7) 

where Card(Λ) expresses the cardinality of Λ, i.e. the number of its nonzero elements, and c is 

a pre-specified integer. As already stated, setting factor correlation matrix Φ to Im is 

restrictive in sparse cases. But, n−1F′F = Im in (5) remains valid, as it is technically necessary 

for achieving (7) (Adachi & Trendafilov, 2014, p. 229). Thus, it is called sparse orthogonal 

FA (SOFA), as factors are supposed to be uncorrelated, i.e., orthogonal.  

Bayesian sparse FA procedures have also been developed in which sparseness is induced 

by special prior probabilities (Knowles & Ghahramani, 2011; Rattray, Stegle, Sharp, & Winn, 

2009). We are interested in procedures for sparse parameter FA estimation and thus, they are 

beyond the scope of the paper. 

It is considered that a sparser loading matrix can be interpreted easier. In this respect, the 

interpretation of the sparsest matrix is the easiest possible. In this paper, we propose a FA 

procedure for finding the sparsest loading matrix Λ. Such a matrix looks as follows:  
















=

×
00#00

#00
00#00







mp
Λ                             (8)             

where # indicates the nonzero elements. That is, each of the p variables loads only one of the 

m factors, and thus Card(Λ) = p. This is the lowest limit of sparseness of Λ, because if 

Card(Λ) < p, then at least one of the variables does not load any common factor. The 

procedure for obtaining such loadings as in (8) can be referred to as the sparsest FA. The idea 

of constraining loadings to be sparsest is already presented in the area of principal component 

analysis (PCA): Vichi and Saporta (2009) have proposed a procedure called disjoint PCA in 

which a component loading matrix is constrained as (8). In some sense, sparsest FA extends 

the same idea to a more complicated model involving unique variances, namely FA 

(Trendafilov, Unkel, and Krzanowski, 2011).   

For sparsest FA, the penalty approach is not convenient, since it is unknown beforehand 

what value of the tuning parameter gives the solution with a particular value of Card(Λ). As 

shown in (6), two tuning parameters must be specified in FANC. Thus, one must take efforts 

with trial-and-errors, in order to find the appropriate ρ and γ values that give the sparsest 

solution. On the other hand, Card(Λ) = p is pre-specified in SOFA (7). However, such a 

constraint cannot enforce every variable to load only one factor: it might happen that a row 

has two nonzero elements while another one is filled with zeros. Moreover, the SOFA 

procedure is restricted to the solutions with uncorrelated common factors, i.e. n−1F′F = Im. 
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In sparsest FA, the loadings are restricted to the sparsest, i.e. look like in (8). This 

restrictive property may be disadvantageous. However, in addition to easing interpretation, it 

allows us to classify variables into a few groups: we can regard the variables that load the 

same common factor as a group in the sparsest FA solution. Such classification of entities into 

groups is one of the major subjects in multivariate analysis (Everitt, 1993; Gan, Ma, & Wu, 

2007) and, more recently, in data mining (Aggarwal, 2015, Zaki & Meira, 2014). It is well 

known that most clustering procedures are designed to cluster observations rather than 

variables (see Gan, et al., 2007). However, clustering variable is an important problem for 

which very few methods exist. For example, in the field of the psychological testing for which 

FA was originally proposed (Spearman, 1904), it is desired to cluster test items, as the items 

classified into the same group can be found to measure the same psychological trait (Goldberg, 

1992). Such needs would also be encountered in other fields. For that reason, it is worth 

considering the sparsest FA, which may also be called FA-based variable clustering. 

In this paper, we propose a sparsest FA procedure in which common factors are not 

restricted to uncorrelated ones. The proposed procedure is referred to as SSFA by 

abbreviating sparsest FA. The remaining part of the paper is organized as follows: in the next 

section SSFA is formulated, and its algorithm is detailed in Section 3. SSFA is numerically 

illustrated and compared with SOFA and FANC in Section 4.  

 

 

2. Formulation 

 

Our proposed SSFA is based on MDFA. The reason for choosing the approach is that its 

objective function (4) is a quadratic function of Λ which can be easily minimized over Λ 

subject to the constraint that Λ is the sparsest, as show in Section 3.4. Thus, the proposed 

method can be viewed as a modification of MDFA-based SOFA formulated as (7). In SSFA, 

Card(Λ) = c in (7) is replaced by the sparsest constraint on Λ, and the orthogonality constraint 

n−1F′F = Im in (5) is relaxed to n−1diag(F′F) = Im: the factor correlations in Φ = n−1F′F are 

also estimated in SSFA, with diag(•) denoting the diagonal matrix whose diagonal elements 

are those of a parenthesized one. The relaxation is attained by re-parameterizing F using its 

constrained QR decomposition as F = QR (e.g., Seber, 2008). Here,  

  
n

1
Q′Q = Im ,                               (9) 

and R = (rjk) = [r1, … , rm] is an upper triangular matrix satisfying diag(R′R) = Im. This 

implies that a part of the jth column of R and r11 are constrained as   
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rj = [rj1′,0m−j′]′, ||rj1|| = 1 (j = 1, …, m), and r11 = 1              (10) 

with rj1 the j × 1 unknown vector and 0m−j the (m−j) × 1 vector of zeros.  

The two constraints in (5) 

                         
n

1
U′U = Ip                                 (11) 

and n−1F′U = Om×p are also used in SSFA, where the latter constraint is rewritten as 

 
n

1
Q′U = Om×p                               (12) 

The remaining constraint is loading matrix Λ = [λ1, … , λp]′ = (λij) being the sparsest, i.e.,  

     λi = [λi1, … , λim]′ being filled with zero except for an element ,          (13) 

which implies 

                       Λ′Λ being a diagonal matrix .                       (14)  

Substituting F = QR into (4), it can be rewritten as   

f(Q, U, R, Λ, Ψ) = ||X − (QRΛ′+UΨ)||2  .                       (15)             

SSFA is thus formulated as minimizing (15) with respect to Q, U, R, Λ, and Ψ over subject to 

the constraints of (9) to (13). Here, we should note that F = QR, (9), and (10) imply that 

                      Φ = 
n

1
F′F = n−1R′Q′QR = R′R                       (16) 

is a factor correlation matrix. 

 

 

3. Algorithm 

 

  The minimization of (15) subject to the constraints of (9) to (13) can be attained by 

alternately iterating the steps, in each of which [Q, U], Ψ, R, or Λ is updated so that (15) is 

decreased. We refer to those steps as factor score, unique variance, correlation, and loading 

steps, respectively. As found in the next subsection, it is unnecessary, indeed, to update Q and 

U in the factor score step for estimating the optimal Ψ, R, and Λ. Furthermore, they can be 

obtained without the original data matrix X, if only the sample correlation matrix S = n−1X′X 

is available. After detailing the steps, the algorithm for SSFA is summarized in the final 

subsection.   
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3.1. Factor score step 

We collect parameter matrices into n × (m+p) and p × (m+p) block matrices as Z = [Q, U] 

and B = [ΛR′, Ψ], respectively. Then, loss function (15) may be rewritten as f(Z, B) = ||X − 

ZB′||2 and the constraints (9), (11), and (12) are summarized into  

                           
n

1
Z′Z = Im+p  .                            (17) 

In this step, we consider minimizing f(Z, B) over Z subject to (17) with B kept fixed. Since 

f(Z, B) = ||X −ZB′||2 is expanded as c − 2trB′X′Z with c = trX′X + ntrBB′ independent of Z, 

the minimization amounts to maximizing the linear form  

η(Z) = trB′X′Z                            (18) 

over Z subject to (17). As found in ten Berge’s (1983, 1993) theorems, this maximization is 

attained using the singular value decomposition (SVD) of the n × (m+p) matrix n−1/2XB:  

n

1
XB = K∆L′ = [K1,K2] 








mm O

1∆





′
′
2

1

L
L

= K1∆1L1′ .            (19) 

Here, ∆ is an (p+m) × (p+m) diagonal matrix with its first p × p diagonal block being positive 

definite matrix ∆1, and the block matrices K = [K1, K2] and L = [L1, L2] satisfy K′K = L′L = 

LL′ = Ip+m with K1 and L1 being n × p and (p+m) × p matrices, respectively. In (19), we have 

assumed  

rank(XB) = p.                (20) 

The linear form (18) satisfies trB′X′Z ≤ ntr∆ = ntr∆1 under (17) and the upper bound ntr∆1 is 

achieved for 

                     Z = n KL′ = n K1L1′ + n K2TL 2′,                    (21)     

where T is an arbitrary m × m orthogonal matrix (Trendafilov & Unkel, 2011).  

It follows from (21), that the optimal factor scores cannot be uniquely determined (e.g., 

Eldén, 2007). But, the p-variables × (m+p)-factors covariance matrix n−1X′Z = n−1[X′Q, X′U] 

is uniquely determined as shown next. Assumption (20) implies that B has full-row rank and 

thus its Moore-Penrose inverse is given by B+ = B′(BB′)−1. Making use of BB+ = Ip and (19), 

one finds that n−1/2X = n−1/2XBB+ = K1∆1L1′B+. This equation and (21) give that:                          

n

1
X′Z = (n−1/2X)′(n−1/2Z) = (B′+L1∆1K1′)(KL′) = B′+L1∆1L1′.           (22) 
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From (19) it follows that the eigenvalue decomposition (EVD) of B′(n−1X′X)B = B′SB is 

defined as 

B′SB = L1∆1
2L1′ .                           (23) 

One can show that (22) follows from (23). Moreover, if (20) holds and the diagonal elements 

of ∆1 take distinct values, then L1 and ∆1 in (23) are uniquely determined. This fact and the 

uniqueness of B+ imply that (22) is also unique. 

     It is shown in the next subsections that B = [ΛR′, Ψ] can be updated if only (22) is 

available. This implies that the update of the factor score matrix Z = [Q, U] can be skipped. 

Further, the availability of the original data matrix X is not essential: if only a sample 

covariance matrix S is available, we can use it, and given B in (23), to obtain L1 and ∆1, 

which gives (22).  

  

3.2. Unique variances step 

    Loss function (15) can be expanded as 

f(Q, U, R, Λ, Ψ) = ntrS + ntrΛR′RΛ′+ ntrΨ2 − 2trX′QRΛ′− 2trX′UΨ     (15′) 

using (9), (11), and (12). The purpose of this step is to minimize (15′) over diagonal matrix 

Ψ with the other parameters fixed. Since (15′) can be rewritten as ||n1/2Ψ − n−1/2diag(X′U)||2 
+ c# with c# a constant independent of Ψ, the minimizer is found to be given by 

Ψ = 
n

1
diag(X′U) .                           (24) 

One can compare this with (22) and take into account X′Z = X′[Q, U] = [X′Q, X′U] to find 

that (24) is rewritten as 

     Ψ = diag(B′+L1∆1L1′Hp),                         (25) 

where Hp = [Op×m, Ip]′ is a block matrix of size (p+m) × p. Here, we should distinguish 

between Ψ on the left hand side of (25) and its counterpart in B = [ΛR′,Ψ] on the right hind 

side. The former Ψ is the updated one, while the latter one is Ψ from the previous iteration: 

(25) can be expressed as Ψnew = diag([ΛR′,Ψold]′+L1∆1L1′Hp). Formula (25) shows that 

unique variances can be updated without the original data in X and the scores in [Q, U].   

 

3.3. Correlation step 

    The purpose of this step is to minimize (15′) over R subject to (6) with the other 

parameters. The name of the step follows from that R forms a factor correlation matrix as 

(16). We can use (24) in (15′) and have f(Q, R, Λ, Ψ) = ntrS + ntrΛR′RΛ′− 2trX′QRΛ′− 

ntrΨ2, which is further rewritten as  



                                                                                                                                                        

 10 

f(R, Λ, Ψ) = n(trS + trΛ′Λ− 2trYRΛ′ − trΨ2) ,                (15′′) 

where we have defined Y as Y = n−1X′Q and used the fact that (10) and (14) imply trΛR′RΛ′ 
= trR′RΛ′Λ = trΛ′Λ. Function (15′′) shows that our task is to maximize trYRΛ′ = trΛ′YR = 

tr(Y′Λ)′R =∑ =
′′m

j
jj

1
)( rY Λ  subject to (10), with (Y′Λ)j denoting the jth column of Y′Λ. The 

maximization is easily attained by setting the rj1 in rj = [rj1′,0m−j′]′ at 

rj1 = 
1

1

)(

)(

j

j

Λ
Λ

Y

Y

′
′

                               (26) 

for j ≥ 2, with (Y′Λ)j1 the j × 1 vector containing the first j elements of (Y′Λ)j = [(Y′Λ)j1′, 
(Y′Λ)j2′]′ and r11 fixed at 1. Comparing Y = n−1X′Q with (22) and considering n−1X′Z = 

n−1[X′Q, X′U] , we find that Y is given by  

               Y = B′+L1∆1L1′Hm                             (27) 

where Hm
 = [Im, Om×p]′ is a block matrix of size (p+m) × m. In (26) and (27), we can find R 

to be updated without X and [Q, U].             

           

3.4. Loadings step 

   The purpose of this step is minimizing (15′′) over Λ subject to constraint (13) with the 

other parameters fixed. Using trΛ′Λ =∑ ∑= =

p

i

m

j
ij1 1

2λ  and trYRΛ′ =∑ ∑= =
′p

i

m

j
ijji

1 1
)( λry  with yi′ 

the i-th row of Y, we can rewrite (15′′) into the form f = ∑ ∑= =

p

i
ij

m

j
ijgn

1 1
)(λ + c*, where c* = 

ntr(S −Ψ2) is irrelevant to Λ and  

gij(λij) = λij
2 − 2(yi′rj)λij  .                      (28) 

Using λi,J(i) for the element in λi′ (the ith row of Λ) to be given a nonzero value, the above 

purpose is found to be attained for 

)(minminarg)(
1

ijij

mj

giJ
ij

λ
λ≤≤

=  .                       (29) 

Here, it follows from (28), that )(min ijijgij λλ  is achieved for λij = yi′rj. Taking this into 

account, (29) can be rewritten as J(i) = argmin1≤j≤m gij(yi′rj). Therefore, the update formula in 

this step is given by  



 =′=

otherwise

)(

0

iJjiffji
ij

ryλ  .                          (30) 
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The resulting loading matrix Λ = [λ1, … , λp]′ containing (30) satisfies 

trYRΛ′ = ∑∑
= =

′
p

i

m

j

ijji

1 1

)( λry =∑
=

′
p

i

iJiiJiiJi

1

)(,)(,)(, )( λry =∑
=

p

i

iJi

1

2
)(,λ = trΛΛ′,         (31) 

which is used in the next subsection. 

    The update by (30) can produce empty columns 0p in Λ, which violates assumption (20). 

We can deal with this problem, by restarting the algorithm with different initial values if such 

empty columns arose. As described in the next subsection, the initial Λ is chosen randomly, 

which implies that the initial values in the restart differ from the previous ones. Here, we must 

consider the two cases following the restart: 

[1] Empty columns occur again, resulting that the algorithm cannot be terminated.    

[2] The value of loss function (15) when empty columns arise is lower than the value 

for the solution obtained finally, which implies the possibility of the global 

minimizer including empty columns. 

Cases [1] and [2] suggest that the data set is not suitable for SSFA and/or imply that m (the 

number of factors) is set to an improper one. In the simulation studies to be reported in 

Section 4, an empty column was never found. In the real data examples in Section 5, such 

columns rarely arose, but the restart always lead to a solution without an empty column and 

Case [2] was not observed.  

 

3.5. Iterative Algorithm 

   The above results show that we can obtain the SSFA solution of Λ, Ψ, and R without the 

update of [Q, U] and without n × p data matrix X, only if a p × p sample correlation matrix S 

is available which is more compact and thus easier to treat than X. The algorithm for SSFA is 

formally stated as the following list of steps:  

Step 1. Initialize Λ, Ψ, and R.  

Step 2. Perform EVD (23) 

Step 3. Update Ψ with (25) 

Step 4. Obtain Y with (27)  

Step 5. Update of the columns of R with (26) 

Step 6. Update the elements of Λ with (30) 

Step 7. Go back to Step 1 if Λ has an empty column. 

Step 8. Finish if convergence is reached; otherwise, go back to Step 2. 

   For checking convergence in the above Step 8, we can use the standardized loss function 

value  
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fS(Θ) = 1 −
Str

trtr 2ΨΛΛ +′
 .                      (32) 

with Θ = {Λ, Ψ, Φ} a set of parameter matrices. Function (32) is derived as follows: we can 

use (31) in (15′′) to have f(Θ) = ntrS − ntrΛΛ′ − ntrΨ2 , whose division by ntrS gives (32) with 

0 ≤ fS(Θ) ≤ 1. Although Φ is not included in the right hand side of (32), it depends on Φ, since 

the optimal Λ is a function of R forming Φ as found in (30). In this paper, the convergence is 

defined as the decrease of fS(Θ) from the previous round being less than 0.15. As the range of 

fS(Θ) is [0, 1], such a decrease is small enough to be neglected. 

    In Step 1, we initialize R at Im and Ψ at diag(Ip − ΛΛ′)1/2 using Λ chosen as follows. The 

nonzero-elements of Λ are randomly chosen subject to that it is the sparsest and each column 

has at least three nonzero loadings. Each nonzero loading was randomly drawn from U(0.5, 

0.98) or U(−0.98, −0.5) with U(α, β) denoting the uniform distribution defined for range [α, 

β]. The above α and β values were chosen, supposing that SSFA is performed for 

standardized data and the resulting loadings tend to take the values within [−1, 1].  

 

3.6. Multiple Run Procedure 

It should be noted that the presented iterative algorithm is not guaranteed to converge to 

the global minima, since the sets of parameters are alternately updated. To increase the 

possibility of obtaining the global minimizer, we start the algorithm with multiple times with 

different initial Λ. Among the resulting solutions, the one attaining the lowest loss function 

value is selected as the optimal solution. This procedure for selecting the optimal solution is 

detailed in the next paragraph. The issue of local minima and empty columns is also a 

problem in other clustering procedures, e.g. the popular k-means clustering (Gan, et al., 2007).   

Let us use Θl = {Λl, Ψl, Φl} for the solution resulting from the lth run of the SSFA and 

use fs(Θl) for the corresponding loss function value (32) with l = 1, … , L. We regard Θl* with 

l*= argmin1≤ l≤ L f(Θl) as the optimal solution, and define Θl being a local minimizer as ∆(Θl, 

Θl*) = p−1Σi ][
#,

l
iλ − ][

#,

*l
iλ +p−1Σi 2][l

iψ − 2][ *l
iψ +M−1Σj<k ][l

jkφ − ][ *l
jkφ  > 3 × 0.13 with ][

#,
l

iλ  being 

the nonzero element of the ith row of Λl, ][l
iψ  the ith diagonal element of Ψl, and Φl = ( ][l

jkφ ). 

Here, the suitable L (number of runs) is unknown beforehand. We thus employ a strategy in 

which L is initialized at an integer and increased until L is considered to be sufficient. We 

define the sufficiency as that the solutions Θ1, … , ΘL resulting from L runs include the two 

equivalently optimal solutions Θl* and #lΘ  satisfying ∆(Θl*, #lΘ ) ≤ 0.13 and l*= argmin1≤ l≤ L 

f(Θl) with l# ≠ l*. Our strategy can thus be called a two-optimal-solutions stopping procedure, 

which is formally stated as follows:  
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[1] Set L = 50 and obtain l*= argmin1≤ l≤ L f(Θl).  

[2] Go to [6] if ∆(Θl*, #lΘ ) ≤ 3 × 0.13 with l#≠ l* and 1 ≤ l#≤ L; otherwise, go to [3]. 

[3] Set L:= L + 1, and let #lΘ be the output from another run.  

[4] Exchange Θl* for #lΘ  if f( #lΘ ) < f(Θl*). 

[5] Go to [6] if ∆(Θl*, #lΘ ) ≤ 3 × 0.13 or L = 200; otherwise, go back to [3]. 

[6] Finish with choosing Θl* as the optimal solution. 

 

 

4. Simulation Studies 

 

    In this section, we report the simulation studies for assessing how well the true variable 

clusters and parameter values can be recovered by SSFA. For the purpose of variable 

clustering, it is more persuasive if the SSFA usefulness is demonstrated with comparisons to 

competitors. Thus, SSFA is compared to the existing sparse FA procedures, SOFA and FANC. 

Their purposes are not variable clustering itself, but they can be enforced to eventually 

produce the sparsest loadings with (13). Indeed, SOFA may produce such loadings without its 

factor orthogonality restriction seriously influencing loading estimation. FANC may also 

yield the sparsest loadings if tuning parameters are suitably chosen.       

   

4.1. True Parameters and Data Synthesis 

   We performed a small simulation study in order to see how well the parameters with the 

sparsest loadings are recovered by SSFA, SOFA, and FANC. The Panel (A) in Tables 1, 2, 

and 3 shows our considered sets of the true Λ, Ψ2, and Φ with the numbers of variables and 

factors {p, m} set to {15, 3}, {20, 4}, and {24, 5}. From each set of Λ, Ψ2, and Φ, we 

synthesized a data set as follows: an n × p data matrix X with n = 10 × p is generated, each of 

whose row was sampled from the p-variate normal distribution Np(0p, Σ) with mean vector 0p 

and covariance matrix Σ = ΛΦΛ′+ Ψ2, respectively. Every set of Λ, Ψ2, and Φ in Tables 1, 2, 

and 3 satisfies diag(Σ) = Ip so that the true Σ was a correlation matrix. Thus, a p × p sample 

correlation matrix obtained from X was to be analyzed. The reasons why we choose Np(0p, Σ) 

to generate X and why we analyze the correlations (rather than covariances) are described in 

the following two paragraphs in turn.   

  The model part X* = QRΛ′+UΨ in SSFA loss function (15) leads to the covariance matrix 

n−1X*′X* = Σ = ΛΦΛ′+ Ψ2, since of (9), (11), (12), and (16). In FANC, the covariance matrix 

has also the same form Σ. Further, normality x ∼ Np(0p, Σ) is assumed under the formulation x 

= Λf + Ψu introduced in Section 1. On the other hand, SOFA and SSFA are based on the least 

squares formulation (4) and have no normality assumption. We choose the FANC assumption 

x ∼ Np(0p, Σ) for the simulation study in which a data distribution must be specified. In a 
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sense, this choice favors FANC and is conservative for testing SSFA. 

As detailed in Adachi (2012), the MDFA loss function (4) is not scale-free as MLFA in 

(2) (e.g., Harman, 1976). Thus, the MDFA and MDFA-based SSFA solutions for covariances 

are essentially different from those for the correlations obtained from the same data set. Thus, 

when SSFA is performed for covariances, the inter-variable differences in variances (i.e., 

scales) influence solutions. In the simulation studies, and also in the next section, we consider 

cases where such influences are avoided. Then, FA is performed on correlations with the 

variances homogeneous among the variables.   

 

4.2. Illustrative Results  

For each of the resulting three data sets, we carried out SSFA, SOFA, and FANC with m 

set to the true number. In SOFA and FANC, obtaining a solution with Card(Λ) = p is required 

for allowing the resulting Λ to be the sparsest. Thus, Card(Λ) is set to p in SOFA formulated 

as (7). In FANC (6), the correspondence of the values of tuning parameters ρ and γ to Card(Λ) 

cannot be known beforehand, i.e., it can be found by only looking at the solution resulting in 

the trial with ρ and γ set to specific values, although FANC provides the best combination of 

ρ and γ giving the solution with the least value of BIC = 2l(Λ,Ψ,Φ) + df(ρ, γ) log n. Here, 

l(Λ,Ψ,Φ) is the resulting value of the negative log likelihood (2), and the degree of freedom 

df(ρ, γ), which is a function of ρ and γ, is obtained according to Mazumder, Friedman, & 

Hastie (2011) (Hirose & Yamamoto, 2014). However, the resulting combination is not 

guaranteed to give a solution with the desired Card(Λ). Indeed, this BIC-based selection gave 

the solution of Card(Λ) > p for every data set. Thus, we increased the value of ρ (penalty 

weight) to find a solution with a smaller Card(Λ) while γ was kept fixed. It gave the solutions 

with Card(Λ) = p, as found in Tables 1, 2, and 3, where SSFA and FANC solutions are also 

presented.       

First, let us note the results in Table 1 for m = 3. We can find that SSFA and FANC 

Table 1. True parameters with m = 3 and their estimated counterparts 

(A)True (B) SSFA (C) SOFA (D) FANC* 
Λ Ψ2 Λ Ψ2 Λ Ψ2 Λ Ψ2 

0.9 . . 0.19 0.87  . . 0.23  0.86  . . 0.24  0.87  . . 0.24  
-0.8 . . 0.36 -0.83  . . 0.30  -0.83  . . 0.29  -0.83  . . 0.32  
0.7 . . 0.51 0.73  . . 0.46  0.71  . . 0.47  0.72  . . 0.48  

-0.6 . . 0.64 -0.56  . . 0.66  -0.54  . . 0.68  -0.54  . . 0.71  
0.5 . . 0.75 0.44  . . 0.80  0.43  . . 0.80  0.45  . . 0.80  

-0.4 . . 0.84 -0.36  . . 0.86  -0.36  . . 0.86  -0.37  . . 0.86  
. 0.8 . 0.36 . 0.78  . 0.37  0.39  . -0.45  0.57  . 0.78  . 0.39  
. -0.7 . 0.51 . -0.72  . 0.46  -0.48  . 0.46  0.52  . -0.71  . 0.49  
. 0.6 . 0.64 . 0.51  . 0.72  . . . 0.88  . 0.52  . 0.73  
. -0.5 . 0.75 . -0.41  . 0.82  . . . 0.92  . -0.41  . 0.83  
. 0.4 . 0.84 . 0.32  . 0.89  . 0.34  . 0.83  . 0.31  . 0.90  
. . 0.7 0.51 . . 0.74  0.45  . . 0.70  0.48  . . 0.72  0.48  
. . -0.6 0.64 . . -0.45  0.79  . . -0.47  0.77  . . -0.46  0.79  
. . 0.5 0.75 . . 0.60  0.63  . . 0.56  0.66  . . 0.60  0.64  
. . -0.4 0.84 . . -0.50  0.74  . . -0.44  0.77  . . -0.50  0.75  

Φ  Φ  Φ  Φ  
1 0.4 0.3  1.00  0.48  0.33    1.00  . .  1.00  0.47  0.35    

0.4 1 -0.4  0.48  1.00  -0.41    . 1.00  .  0.47  1.00  -0.41    
0.3 -0.4 1  0.33  -0.41  1.00    . . 1.00   0.35  -0.41  1.00    

*ρ = 0.26; γ = 1.01 
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successfully provided the sparsest Λ, i.e., identified the locations of the nonzero loadings. But, 

SOFA failed to give the sparsest Λ, with two variables not loading any factor. It implies that 

the variations in the two variables are not explained by the common factors, which is 

contradictory to the model underlying the data set. For comparing SSFA and FANC in the 

goodness of recovering nonzero parameter values, we obtained the averaged absolute 

differences AAD(Λ) = p−1Σi #,îλ − #,iλ , AAD(Ψ2) = p−1Σi 2ˆ iψ −ψi
2, and AAD(Φ) = 

M−1Σj<k jkφ̂ −φjk. Here, #,iλ  denotes the non-zero element in the ith row of the true Λ, ψi
2 is 

the true unique variance for variable i, and φjk is the (j, k) element of the true Φ, with #,îλ , 

2ˆ iψ , and jkφ̂  the estimated counterparts and M = m(m−1)/2. The resulting values were 

AAD(Λ) = 0.02, AAD(Ψ2) = 0.06, and AAD(Φ) = 0.04 for both SSFA and FANC: they 

presented the equivalent AAD values which are small enough to show good recovery of 

parameters. 

    Next, we note the results in Table 2 for m = 4. We can find that only SSFA succeeded in 

recovering the sparsest Λ, while SOFA and FANC failed it with only one variable loading the 

third factor in their solutions. For the SSFA solution, AAD(Λ) = 0.01, AAD(Ψ2) = 0.05, and 

AAD(Φ) = 0.15: loadings and unique variances were recovered very well, though two 

estimated factor correlations (0.58 and −0.13) were far from the true values (0.3 and −0.4), 

which implies that the recovery of each parameter cannot be indicated by AAD values.  

Finally, let us note the solutions in Table 3 for m = 5. It is found that SSFA and FANC 

successfully recovered the sparsest Λ, while SOFA failed. For the SSFA solution, AAD(Λ) = 

0.01, AAD(Ψ2) = 0.05, and AAD(Φ) = 0.05, while AAD(Λ) = 0.01, AAD(Ψ2) = 0.04, and 

Table 2. True parameters with m = 4 and their estimated counterparts 

(A)True (B) SSFA (C) SOFA (D) FANC* 

Λ Ψ2 Λ Ψ2 Λ Ψ2 Λ Ψ2 

0.9 . . . 0.19 0.89 . . . 0.20 0.86 . . . 0.20 0.89 . . . 0.21 
-0.8 . . . 0.36 -0.81 . . . 0.33 -0.77 . . . 0.34 -0.81 . . . 0.35 
0.7 . . . 0.51 0.67 . . . 0.54 0.67 . 0.39 . 0.39 0.68 . . . 0.54 

-0.6 . . . 0.64 -0.56 . . . 0.67 -0.54 . . . 0.68 -0.56 . . . 0.69 
0.5 . . . 0.75 0.55 . . . 0.68 0.51 . . . 0.70 0.55 . . . 0.70 

-0.4 . . . 0.84 -0.39 . . . 0.82 -0.40 . . . 0.81 -0.39 . . . 0.85 
. 0.8 . . 0.36 . 0.77 . . 0.40 . 0.72 . . 0.42 . 0.76 . . 0.42 
. -0.7 . . 0.51 . -0.72 . . 0.48 . -0.73 . . 0.44 . -0.72 . . 0.48 
. 0.6 . . 0.64 . 0.56 . . 0.68 . 0.54 . . 0.68 . 0.57 . . 0.68 
. -0.5 . . 0.75 . -0.53 . . 0.71 . -0.48 . . 0.74 . -0.52 . . 0.73 
. 0.4 . . 0.84 . 0.42 . . 0.81 . 0.39 . . 0.82 . 0.42 . . 0.82 
. . 0.7 . 0.51 . . 0.63 . 0.59 0.43 . . . 0.75 0.35 . . . 0.87 
. . -0.6 . 0.64 . . -0.64 . 0.57 -0.41 . . . 0.77 -0.36 . . . 0.87 
. . 0.5 . 0.75 . . 0.45 . 0.78 0.39 . . . 0.84 0.35 . . . 0.88 
. . -0.4 . 0.84 . . -0.25 . 0.92 . . . . 0.96 . . -0.99 . 0.02 
. . . 0.8 0.36 . . . 0.84 0.27 . . . 0.83 0.27 . . . 0.85 0.28 
. . . -0.7 0.51 . . . -0.74 0.44 . . . -0.74 0.44 . . . -0.74 0.45 
. . . 0.6 0.64 . . . 0.64 0.58 . . . 0.62 0.59 . . . 0.63 0.60 
. . . -0.5 0.75 . . . -0.46 0.78 . . . -0.47 0.77 . . . -0.46 0.79 
. . . 0.4 0.84  . . 0.46 0.77 . . . 0.46 0.77 . . . 0.46 0.79 

Φ  Φ  Φ  Φ   
1.0 0.4 0.3 -0.2  1.00 0.49 0.58 -0.15   1.00 . . .  1.00 0.45 0.11 -0.18   
0.4 1.0 -0.4 0.3  0.49 1.00 -0.13 0.21   . 1.00 . .  0.45 1.00 -0.03 0.19   
0.3 -0.4 1.0 -0.3  0.58 -0.13 1.00 -0.19   . . 1.00 .  0.11 -0.03 1.00 -0.06   

-0.2 0.3 -0.3 1.0  -0.15 0.21 -0.19 1.00   . . . 1.00  -0.18 0.19 -0.06 1.00   
*ρ = 0.15; γ = 1.01 
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AAD(Φ) = 0.06 for the FANC solution. Those results do not show substantial differences 

between the two methods, with the AAD values beings small enough and showing the good 

recovery of parameter values. 

    In summary, only SSFA exactly recovered the sparsest loadings for the three data sets, 

while SOFA failed for all of them and FANC failed for m = 4. We can also consider that the 

performances of FANC was good in that it succeeded the recovery of the sparsest loadings for 

the two of the data sets. However, it needs the task for searching out the tuning parameters 

that provide sparsest loadings. On the other hand, they are given straightforwardly in SSFA. 

This easiness and the good performances demonstrated that SSFA is the most suitable for 

finding the sparsest loadings. 

 

4.3. Results for Multiple Data Sets  

   We replicated the data generation in Section 4.1 to have 15 data sets for each m. The 

resulting data were analyzed by the three procedures. For FANC, it is too laborious to find the 

tuning parameters that provide sparsest loadings for each of the multiple data sets. Thus, 

FANC was performed with ρ = 0.26 and γ = 1.01 chosen for m = 3 and 5 in Section 4.1. 

Those tuning parameters values were also used for m = 4, as they were found to give better 

results than ρ = 0.14 and γ = 1.01 in Table 2. FANC was also performed with BIC-based 

selection of tuning parameters. 

    Table 4 shows the resulting averages and standard deviations of MIS0(Λ) and AAD 

values over 15 data sets. Here, MIS0(Λ) stands for the misidentification rates of zero/nonzero 

loadings: MIS0(Λ) = w/(pm) with w the number of the resulting λij that are zero in spite of the 

Table 3. True parameters with m = 5 and their estimated counterparts 

(A)True (B) SSFA (C) SOFA (D) FANC* 

Λ Ψ2 Λ Ψ2 Λ Ψ2 Λ Ψ2 

0.9 . . . . 0.19 0.88 . . . . 0.22 0.84 . . . . 0.23 0.88 . . . . 0.22 
-0.8 . . . . 0.36 -0.82 . . . . 0.32 -0.82 . . . . 0.30 -0.82 . . . . 0.33 
0.7 . . . . 0.51 0.68 . . . . 0.53 0.68 . . . . 0.52 0.68 . . . . 0.54 

-0.6 . . . . 0.64 -0.64 . . . . 0.58 -0.62 . . . . 0.59 -0.63 . . . . 0.61 
0.5 . . . . 0.75 0.46 . . . . 0.78 0.43 . . . . 0.80 0.46 . . . . 0.79 

-0.4 . . . . 0.84 -0.47 . . . . 0.76 -0.46 . . . . 0.76 -0.47 . . . . 0.78 
. 0.8 . . . 0.36 . 0.83 . . . 0.31 . 0.83 . . . 0.26 . 0.83 . . . 0.32 
. -0.7 . . . 0.51 . -0.68 . . . 0.53 . -0.61 . . . 0.56 . -0.67 . . . 0.55 
. 0.6 . . . 0.64 . 0.60 . . . 0.63 . 0.56 . . . 0.64 . 0.60 . . . 0.64 
. -0.5 . . . 0.75 . -0.52 . . . 0.72 . -0.51 . . . 0.71 . -0.52 . . . 0.73 
. 0.4 . . . 0.84 . 0.41 . . . 0.82 . 0.38 . . . 0.82 . 0.41 . . . 0.83 
. . 0.7 . . 0.51 . . 0.72 . . 0.47 . -0.43 . . . 0.72 . . 0.70 . . 0.51 
. . -0.6 . . 0.64 . . -0.60 . . 0.63 . . . . . 0.87 . . -0.59 . . 0.66 
. . 0.5 . . 0.75 . . 0.47 . . 0.77 . . . . . 0.91 . . 0.48 . . 0.77 
. . -0.4 . . 0.84 . . -0.52 . . 0.71 . . . . . 0.89 . . -0.53 . . 0.72 
. . . 0.8 . 0.36 . . . 0.77 . 0.39 . 0.31 . 0.72 . 0.36 . . . 0.78 . 0.40 
. . . -0.7 . 0.51 . . . -0.65 . 0.56 . . . -0.63 . 0.56 . . . -0.65 . 0.58 
. . . 0.6 . 0.64 . . . 0.60 . 0.62 . . . 0.57 . 0.62 . . . 0.60 . 0.64 
. . . -0.5 . 0.75 . . . -0.48 . 0.76 . . . -0.49 . 0.74 . . . -0.49 . 0.76 
. . . 0.4 . 0.84 . . . 0.47 . 0.77 . . . 0.40 . 0.79 . . . 0.45 . 0.80 
. . . . 0.7 0.51 . . . . 0.76 0.42 . -0.34 . . 0.62 0.45 . . . . 0.75 0.43 
. . . . -0.6 0.64 . . . . -0.64 0.58 . . -0.56 . -0.64 0.22 . . . . -0.64 0.59 
. . . . 0.5 0.75 . . . . 0.52 0.71 . . . . 0.53 0.68 . . . . 0.53 0.71 
. . . . -0.4 0.84 . . . . -0.53 0.71 . . . . -0.49 0.71 . . . . -0.51 0.74 

Φ  Φ  Φ  Φ   
1.0 0.4 0.3 -0.2 0.3  1.00 0.29 0.32 -0.25 0.33   1.00 . . . .  1.00 0.27 0.32 -0.24 0.34   
0.4 1.0 -0.4 0.3 -0.4  0.29 1.00 -0.46 0.40 -0.47   . 1.00 . . .  0.27 1.00 -0.49 0.40 -0.48   
0.3 -0.4 1.0 -0.3 0.2  0.32 -0.46 1.00 -0.37 0.27   . . 1.00 . .  0.32 -0.49 1.00 -0.38 0.26   

-0.2 0.3 -0.3 1.0 -0.3  -0.25 0.40 -0.37 1.00 -0.37   . . . 1.00 .  -0.24 0.40 -0.38 1.00 -0.35   
0.3 -0.4 0.2 -0.3 1.0  0.33 -0.47 0.27 -0.37 1.00   . . . . 1.00  0.34 -0.48 0.26 -0.35 1.00   

*ρ = 0.26; γ = 1.01 
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true λij being nonzero or vice versa. In this paper, the standard deviations are used which are 

not unbiased. In Table 4, we can find that SSFA shows the smallest average among the 

procedures, which indicates the best recovery, for every case, except for AAD(Ψ2) when m = 

5. Further, it can be considered that the averages of SSFA are satisfactorily small enough and 

the corresponding standard deviations are also small, which implies that a solution with 

exceptionally bad recovery was not obtained. 

    In order to compare SSFA more directly with the others, we subtracted an SSFA index 

value from another procedure’s one for each data set: di = Indexi − Indexi
[SS] was obtained, 

where Indexi
[SS] is the value of an index obtained with SSFA for data set i (=1, … , 15), while 

Indexi is the corresponding value for another procedure. The resulting average d  and 

standard deviation SDd for d1,…, d15 gave the t-statistic t = d /{SDd/(15−1)1/2}, which are 

presented in Table 5. Although it is not obvious whether this statistic follows the t-distribution 

with the degree-of-freedom 15−1, the 95 percentile 1.76 for that distribution can be used as a 

benchmark. Thus, the t-values exceeding 1.76 have been bold-faced in Table 5. It shows that 

SOFA is substantially inferior to SSFA, and FANC with the BIC-based selection is so in the 

 

Table 5. t-statistics indicating the inferiority from SSFA solutions 

m Index SOFA FANC* FANCBIC 

3 

MIS0(Λ) 7.74  1.84  2.78  

AAD(Λ) 54.19  1.41  2.27  

AAD(Ψ2) 24.64  1.65  1.46  

AAD(Φ)  1.27  1.81  

4 

MIS0(Λ) 11.83  1.36  2.05  

AAD(Λ) 77.31  1.20  1.64  

AAD(Ψ2) 33.30  0.73  1.03  

AAD(Φ)  0.59  1.28  

5 

MIS0(Λ) 10.66  0.95  2.36  

AAD(Λ) 43.15  0.98  1.65  

AAD(Ψ2) 38.05  0.37  -0.17  

AAD(Φ)  1.45  2.17  
*ρ = 0.26; γ = 1.01 

 

Table 4. Averages (Ave) and standard deviations (Std) of the differences of solutions from 

the true counterparts.  

m Index 
SSFA SOFA FANC* FANCBIC 

Ave Std Ave Std Ave Std Ave Std 

3 

Mis0(Λ) 0.006 0.015 0.172 0.074 0.028 0.045 0.043 0.050 
AAD(Λ) 0.019 0.006 0.198 0.010 0.028 0.024 0.034 0.025 
AAD(Ψ2) 0.057 0.009 0.171 0.012 0.062 0.016 0.062 0.016 
AAD(Φ) 0.077 0.029  0.000 0.100 0.060 0.164 0.173 

4 

Mis0(Λ) 0.000 0.000 0.100 0.032 0.013 0.037 0.024 0.045 
AAD(Λ) 0.011 0.002 0.146 0.007 0.016 0.019 0.019 0.020 
AAD(Ψ2) 0.050 0.009 0.162 0.010 0.053 0.018 0.054 0.016 
AAD(Φ) 0.063 0.020  0.000 0.067 0.038 0.072 0.037 

5 

Mis0(Λ) 0.011 0.014 0.118 0.039 0.021 0.041 0.048 0.060 
AAD(Λ) 0.014 0.008 0.120 0.007 0.019 0.021 0.031 0.039 
AAD(Ψ2) 0.055 0.011 0.168 0.011 0.056 0.020 0.054 0.015 
AAD(Φ) 0.068 0.029  0.000 0.085 0.055 0.091 0.048 

*ρ = 0.26; γ = 1.01 
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identification of zero/non-zero loadings. Whether FANC with ρ = 0.26 and γ = 1.01 is inferior 

to SSFA is inconclusive, but it is superior in that SSFA does not involve the cumbersome 

procedures for tuning parameters as in FANC, as described often so far. 

            

 

5. Real Data Examples 

 

    For illustration, we use three real data sets. SSFA, SOFA, and FANC are carried out for 

the first of the three sets, as its variables are known to have “population” sparsest loadings. 

For the remaining two data sets, such prior knowledge does not exist. Thus, we performed 

only SSFA to illustrate how useful its variable clustering is. In SSFA, the empty columns (i.e., 

0p included in Λ) described in Section 3.4 occurred in the 1%, 8%, and, 10% of all runs, for 

the data sets in Sections 5.1, 5.2, and 5.3, respectively, but the restart always lead to a solution 

without such a column: the SSFA algorithm never needed cancellation.   

 

5.1. Big-five Data  

In this section, we use the 25 × 25 correlation matrix obtained from the 190-participants 

× 25-items data matrix collected by the first author and available as “Big Five Personality 

Test Data” from http://bstat.jp/en_material/. This data set contains the self-ratings of the 

persons (university students) to what extent they are characterized by the personalities 

described by the 25 items. According to a theory in personality psychology, the items can be 

exclusively classified into the five groups shown in the first column of Table 6 (Costa & 

McCrae, 1992; Goldberg, 1992). Obviously, for this data set, the sparsest Λ should be 

estimated, in which the five items within a group load one of m = 5 factors.  

We set m = 5 to perform SSFA, SOFA, and FANC, with Card(Λ) set to 25 in SOFA. In 

FANC, we took the same procedure as in the last subsection for finding the tuning parameters 

ρ and γ that provide the loadings Card(Λ) = 25: the BIC-based suggested the solution with ρ = 

0.17, γ = 1.01, and Card(Λ) = 49 > 25. Thus, we increased the value of penalty weight ρ with 

keeping γ fixed. But, the solution with Card(Λ) = 25 was not found, though the ones with 

Card(Λ) = 25±1 were found, since ρ cannot take arbitrary real numbers, but distinct values, in 

FANC: ρ could not take a value which exactly corresponds to Card(Λ) = 25. Therefore, we 

change both ρ and γ values, in order to heuristically find a solution with Card(Λ) = 25. The 

resulting solution with Card(Λ) = 25 is presented in Table 6 together with the SSFA and 

SOFA solutions. 

It is found in Table 6(A), that SSFA gives the sparsest Λ predicted by the theory in 

personality psychology. On the other hand, SOFA and FANC are found to fail providing such 

loadings, see Table 6(B) and (C). In the SOFA solution, only two items load the third factor, 
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and four variables do not load any factor, which implies that their variations are not explained 

by any factor. In the FANC solution, one variable does not load any factor and two variables 

load the factors, which are not predicted by the theory. Here, the possibility remains that 

another combination of ρ and γ values may lead to the predicted sparsest Λ in FANC. 

However, it is unknown how to choose the ρ and γ values that give such a solution: we must 

resort to a heuristic procedure to select those values. This is disadvantageous for FANC. 

Therefore, we can conclude that this real data example demonstrated the superiority of SSFA 

in finding the sparsest loadings that cluster variables. 

The comparisons of nonzero loadings among (A), (B), and (C) show that the values in 

(A) and (B) are mutually similar and larger than the corresponding ones in (C), with some 

nonzero loadings in (C) close to zero. It suggests that the use of penalty functions might 

shrink non-zero values in FANC. However, this problem is out of the scope and remains for 

the studies of penalized sparse FA.   

 

5.2. Intelligence Test Data 

    The second example is Holzinger and Swineford’s (1939) students × items matrix of the 

test scores which resulted in the intelligence test with 24 items administered for the students. 

Their raw scores are available at the website for Izenman (2008, p. 587). This data set has 

often been used for illustrating FA, as found in Harman (1976) and Izenman (2008), for 

example. Following the authors, we set m = 4 to carry out SSFA for the 24 × 24 inter-variable 

Table 6. Solutions for big-five data 

Variable 
(A) SSFA (B) SOFA (C) FANC 
Λ Ψ2 Λ Ψ2 Λ Ψ2 

worry 0.75 . 
 

. 
 

. 
 

. 
 

0.40 0.71 . 
 

 . 
 

. 
 

0.41 0.41 . 
 

. 
 

. 
 

. 
 

0.57 
sensitive 0.65 . . . . 0.52 0.70 . 0.35 . . 0.37 0.23 . . . . 0.78 
pessimistic 0.79 . . . . 0.34 0.72 .  . . 0.37 0.52 . . . . 0.41 
unrest 0.42 . . . . 0.71 0.48 . 0.26 . -0.31 0.57 . . . . . 1.00 
careful 0.71 . . . . 0.45 0.66 . . 

 
. . 0.47 0.44 . . . . 0.53 

sociable . 
 

0.85 . 
 

. 
 

. 
 

0.26 . 
 

0.83 . . 
 

. 
 

0.26 . 
 

0.58 . 
 

. 
 

. 
 

0.29 
talkative . 0.75 . . . 0.38 . 0.80 . . 

 
. 
 

0.34 . 0.45 . . . 0.49 
voluntary . 0.76 . . . 0.39 . 0.73 . . . 0.41 . 0.47 . . . 0.46 
cheerful . 0.83 . . . 0.27 . 0.79 . . . 0.29 . 0.55 . . . 0.33 
showy . 0.64 . . . 0.55 . 0.64 . 

 
. . 0.55 . 0.33 . . . 0.66 

creative . 
 

 0.73 . 
 

. 
 

0.41 . 
 

 . . . 0.78 . 
 

 0.41 . 
 

. 
 

0.59 
adventurous .  0.78 . . 0.36 .  . . 

 
. 
 

0.72 .  0.65 . . 0.25 
progressive .  0.68 . . 0.50 .  . . . 0.78 .  0.29 . . 0.73 
flexible .  0.54 . . 0.65 . 0.36 . . . 0.76 . 0.11  . . 0.90 
imaginative .  0.41 . . 0.75 . . . 

 
. 
 

. 
 

0.86 . . 
 

0.02 . . 0.98 
mild . 

 
. 
 

. 
 

0.51 . 
 

0.68 . 
 

. . 0.58 . 0.62 . 
 

. . 0.04 . 
 

0.96 
tenderhearted . . . 0.59 . 0.60 . . . 0.57 . 0.60 . . 

 
. 
 

0.11 . 0.90 
altruistic . . . 0.70 . 0.48 . . . 0.68 . 0.48 . . . 0.32 . 0.70 
cooperative . . . 0.68 . 0.50 . . . 0.64 . 0.50 . . . 0.41 . 0.59 
sympathetic . . . 0.79 . 0.35 . . . 

 

0.74 . 
 

0.37 . . . 0.61 . 0.32 
deliberate . 

 
. 
 

. 
 

. 
 

0.61 0.59 . 
 

. 
 

. . 0.59 0.60 . 
 

. . 
 

. 
 

0.26 0.75 
reliable . . . . 0.60 0.53 . 0.34 . . 0.56 0.50 . 0.13 . . 0.21 0.72 
diligent . . . . 0.77 0.38 . . . . 0.78 0.35 . . . . 0.46 0.50 
systematic . . . . 0.64 0.55 . . . . 0.66 0.52 . . . . 0.39 0.60 
methodical . . . . 0.77 0.35 . . . . 

 

0.73 0.39 . . . . 0.56 0.37 
 Φ  Φ  Φ  
Factor 1 1 -0.29 -0.43 0.15 0.24  1.00 . . . .  1.00 -0.33 -0.40 0.23 0.39  
Factor 2 -0.29 1 0.41 0.25 0.13  . 1.00 . . .  -0.33 1.00 0.29 0.26 0.08  
Factor 3 -0.43 0.41 1 0.1 -0.18  . . 1.00 . .  -0.40 0.29 1.00 -0.02 -0.28  
Factor 4 0.15 0.25 0.1 1 0.36  . . . 1.00 .  0.23 0.26 -0.02 1.00 0.30  
Factor 5 0.24 0.13 -0.18 0.36 1  . . . . 1.00  0.39 0.08 -0.28 0.30 1.00  

*ρ = 0.41; γ = 3.75 
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correlation matrix obtained form the scores. 

    In intelligence tests, the items (variables) need to be clustered so that those in a cluster 

can be associated with a specific intellectual ability. Such needs are satisfied by the resulting 

SSFA solution in Table 7 as follows: a number of the ten items that form a cluster with 

loading the first factor (the first column of Λ) involve visual and recognition tasks. It implies 

that those items can be regarded as measuring the ability for the visual and recognition task 

performances. The cluster of items loading the second factor is found related to the verbal 

ability. The item cluster loading the third factor involves the simple tasks and how fast they 

are completed. The items for which problem solving with thinking is needed form the fourth 

cluster. The nonzero loadings for the second factor are found to be larger than the others, 

which implies that the verbal ability can be measured better by the corresponding test items as 

compared with the other abilities.  

     

5.3. Geochemical Data 

    The third example is Sampson’s (1968) 11 × 11 inter-variable correlation matrix, which 

was obtained from the measurements on 11 geochemical variables for 122 brine samples. For 

that matrix, Reyment and Jöreskog (1996) have performed the standard orthogonal FA with m 

= 4. We also set m = 4 to carry out SSFA. 

    The resulting SSFA solution is presented in Table 8, together with the original one 

obtained by Reyment and Jöreskog (1996). Considering their loadings of large magnitudes, 

Table 7. SSFA solution for intelligence test data 

Variable Λ Ψ2 

Visual Perception 0.64  . . . 0.55  
Cubes 0.38  . . . 0.83  
Paper Form Board 0.38  . . . 0.83  
Flags 0.54  . . . 0.67  
General Information . 0.83  . . 0.30  
Paragraph Comprehension . 0.82  . . 0.32  
Sentence Completion . 0.86  . . 0.23  
Word Classification . 0.75  . . 0.42  
Word Meaning . 0.85  . . 0.26  
Addition . . 0.57  . 0.61  
Code . . 0.72  . 0.45  
Counting Dots . . 0.63  . 0.58  
Straight-Curved Capitals . . 0.69  . 0.50  
Word Recognition 0.40  . . . 0.79  
Number Recognition 0.36  . . . 0.81  
Figure Recognition 0.60  . . . 0.62  
Object-Number 0.38  . . . 0.78  
Number-Figure 0.43  . . . 0.78  
Figure-Word . . . 0.47  0.75  
Deduction . . . 0.59  0.62  
Numerical Puzzles . . . 0.65  0.55  
Problem Reasoning . . . 0.67  0.53  
Series Completion 0.73  . .  0.42  
Arithmetic Problems . . . 0.66  0.53  
 Φ  
Factor 1 1.00  0.53  0.59  0.84   
Factor 2 0.53  1.00  0.39  0.69   
Factor 3 0.59  0.39  1.00  0.60   
Factor 4 0.84  0.69  0.60  1.00   
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we see that the corresponding loadings in SSFA’s first, second, and fourth factors also show 

non-zero values, except the third factor. For this third factor Reyment and Jöreskog write that 

it is not easy to interpret. However, in the SSFA solution, this is straightforward: the richness 

in sulfate and low temperature load the third factor to form a cluster, where the adjective 

“low” is attached to “temperature”, since its loading is negative. The other factors can be 

interpreted in a similar way: the lack in bicarbonate and the richness in calcium and 

magnesium are classified into the same cluster; the resistance property and the richness in 

sodium and salts forms a cluster, and the remaining one consists of pH, chloride, and gravity. 

It can also be found that the variables loading any particular factor are either high or low in 

magnitude. For example, calcium and magnesium load the first factor heavily, while 

bicarbonate does not.         

 

6.  Concluding Remarks 

 

We proposed the sparsest factor analysis (SSFA) for finding the optimal sparsest loading 

matrix, which has a single nonzero entry in every row and zeros elsewhere. For obtaining the 

SSFA solution, we presented an alternating least squares algorithm in which the matrix of 

common factor scores is re-parameterized using QR decomposition. In the simulation study, 

SSFA was shown to recover the true sparsest loadings very well.    

    In the existing sparse FA procedures, the number of nonzero loadings can take any value. 

In SSFA their number is restricted to p, the number of the input variables. This may also be a 

weakness of SSFA. However, sparsest loadings are usually required, when variables are 

anticipated clustered, as illustrated by the real data examples in Section 5. There, it was 

demonstrated that SSFA is genuinely useful for clustering variables.  

    In this paper, model selection problems were out of the scope. The problems include 

 

Table 8. SSFA and the standard orthogonal FA solutions for geochemical data, where bold 

font is used for the latter loadings whose absolute values exceed 0.5.  

Variable 
SSFA Reyment & Jöreskog (1996) 

Λ Ψ2 Λ Ψ2 

calcium 0.99  . . . 0.01  0.81  0.10  0.36  0.45  0.00  
magnesium 0.79  . . . 0.37  0.81  0.17  0.10  0.19  0.28  
sodium . 0.29  . . 0.91  0.04  0.26  0.05  0.12  0.91  
bicarbonate -0.18  . . . 0.96  -0.10  -0.09  -0.32  -0.03  0.88  
sulfate . . 0.79  . 0.37  -0.01  0.41  -0.06  0.01  0.83  
chloride . . . 0.98  0.03  0.48  0.34  0.03  0.78  0.04  
salts . 0.89  . . 0.21  0.38  0.77  -0.05  0.27  0.19  
gravity . . . 0.88  0.22  0.42  0.30  0.02  0.72  0.21  
temperature . . -0.20  . 0.95  -0.06  -0.05  0.24  -0.01  0.94  
resistance . -0.79   . 0.33  -0.17  -0.77  -0.57  -0.24  0.00  
pH . .  -0.34  0.87  -0.43  -0.04  0.16  -0.14  0.77  
 Φ  Φ  
Factor 1 1.00  0.61  0.03  0.81   1.00 . . .  
Factor 2 0.61  1.00  0.44  0.72   . 1.00 . .  
Factor 3 0.03  0.44  1.00  0.22   . . 1.00 .  
Factor 4 0.81  0.72  0.22  1.00   . . . 1.00  
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assessing whether the sparsest constraint on loadings is appropriate for the particular data and 

the selected number of factors. It remains for future studies to consider indices useful for such 

model selection.  
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