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Manuel Cáceres1, Massimo Cairo1, Brendan Mumey2, Romeo Rizzi3, and
Alexandru I. Tomescu1

1Department of Computer Science, University of Helsinki, Finland,
{manuel.caceresreyes,alexandru.tomescu}@helsinki.fi

2School of Computer Science, Montana State University, USA, brendan.mumey@montana.edu
3Department of Computer Science, University of Verona, Italy, romeo.rizzi@univr.it

Abstract

A minimum path cover (MPC) of a directed acyclic graph (DAG) G = (V,E) is a minimum-size
set of paths that together cover all the vertices of the DAG. Computing an MPC is a basic polynomial
problem, dating back to Dilworth’s and Fulkerson’s results in the 1950s. Since the size k of an MPC
(also known as the width) can be small in practical applications, research has also studied algorithms
whose complexity is parameterized on k.

We obtain two new MPC parameterized algorithms for DAGs running in time O(k2|V | log |V | + |E|)
and O(k3|V |+|E|). We also obtain a parallel algorithm running in O(k2|V |+|E|) parallel steps and using
O(log |V |) processors (in the PRAM model). Our latter two algorithms are the first solving the problem
in parameterized linear time. Finally, we present an algorithm running in time O(k2|V |) for transforming
any MPC to another MPC using less than 2|V | distinct edges, which we prove to be asymptotically tight.
As such, we also obtain edge sparsification algorithms preserving the width of the DAG with the same
running time as our MPC algorithms.

At the core of all our algorithms we interleave the usage of three techniques: transitive sparsification,
shrinking of a path cover, and the splicing of a set of paths along a given path.
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1 Introduction

A Minimum Path Cover (MPC) of a (directed) graph G = (V,E) is a minimum-sized set of paths such
that every vertex appears in some path in the set. While computing an MPC is NP-hard in general, it is
a classic result, dating back to Dilworth [1] and Fulkerson [2], that this can be done in polynomial time
on directed acyclic graphs (DAGs). Computing an MPC of a DAG has applications in various fields. In
bioinformatics, it allows efficient solutions to the problems of multi-assembly [3, 4, 5, 6, 7], perfect phylogeny
haplotyping [8, 9], and alignment to pan-genomes [10, 11]. Other examples include scheduling [12, 13,
14, 15, 16, 17], computational logic [18, 19], distributed computing [20, 21], databases [22], evolutionary
computation [23], program testing [24], cryptography [25], and programming languages [26]. Since in many
of these applications the size k (number of paths, also known as width) of an MPC is bounded, research
has also focused in solutions whose complexity is parameterized by k. This approach is also related to the
line of research “FPT inside P” [27] of finding natural parameterizations for problems already in P (see also
e.g. [28, 29, 30]).

MPC algorithms can be divided into those based on a reduction to maximum matching [2], and those
based on a reduction to minimum flow [24]. The former compute an MPC of a transitive DAG by finding a
maximum matching in a bipartite graph with 2|V | vertices and |E| edges. Thus, one can compute an MPC
of a transitive DAG in time O(

√
|V ||E|) with the Hopcroft-Karp algorithm [31]. Further developments

of this idea include the O(k|V |2)-time algorithm of Felsner et al. [32], and the O(|V |2 + k
√
k|V |) and

O(
√
|V ||E|+ k

√
k|V |)-time algorithms of Chen and Chen [33, 34].

The reduction to minimum flow consists in building a flow network G from G, where a global source s
and global sink t are added, and each vertex v of G is split into an edge (vin, vout) of G with a demand (lower
bound) of one unit of flow (see Section 2 for details). A minimum-valued (integral) flow of G corresponds to
an MPC of G, which can be obtained by decomposing the flow into paths. This reduction (or similar) has
been used several times in the literature to compute an MPC (or similar object) [24, 35, 36, 22, 37, 38, 39, 17],
and it is used in the recent O(k(|V | + |E|) log |V |)-time solution of Mäkinen et al. [10]. Furthermore, by
noting that a path cover of size |V | is always valid (one path per vertex) the problem can be reduced to
maximum flow with capacities at most |V | (see for example [40, Theorem 4.9.1]) and it can be solved by
using maximum flow algorithms outputting integral solutions. As an example, using the Goldberg-Rao
algorithm [41] the problem can be solved in time Õ(|E|min(|E|1/2, |V |2/3) + k|E|) (the k|E| term is needed
for decomposing the flow into an MPC). More recent maximum flow algorithms [42, 43, 44, 45, 46, 47] provide
an abundant options of trade-offs, though none of them leads to a parameterized linear-time solution for the
MPC problem. Next, we describe our techniques and results.

Sparsification, shrinking and splicing. Across our solutions we interleave three techniques.
Transitive sparsification consists in the removal of some transitive edges1 while preserving the reachability

among vertices, and thus the width of the DAG2. We sparsify the edges to O(k|V |) only, in overall O(|E|)
time, obtaining thus a linear dependency on |E| in our running times. Our idea is inspired by the work
of Jagadish [22], which proposed a compressed index for answering reachability queries in constant time:
for each vertex v and path P of an MPC, it stores the last vertex in P that reaches v (thus using overall
k|V | space). However, three issues arise when trying to apply this idea inside an MPC algorithm: (i) it is
dependent on an initial MPC (whereas we are trying to compute one), (ii) it can be computed in only O(k|E|)
time [10], and (iii) edges in the index are not necessarily in the DAG. We address (i) by using a suboptimal
(but yet bounded) path cover whose gradual computation is interleaved with transitive sparsifications, and
we address (ii) and (iii) by keeping only O(k) incoming edges per vertex in a single linear pass over the
edges.

By shrinking we refer to the process of transforming an arbitrary path cover into an MPC. For example,
using the flow network G built from the given path cover, we can search for decrementing paths, until
obtaining a minimum flow corresponding to an MPC. Given an O(log |V |) approximation of an MPC, both

1Transitive edges are edges whose removal does not disconnect its endpoints.
2Every edge in an MPC removed by a transitive sparsification can be re-routed through an alternative path.
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algorithms of [32, 10] shrink this path cover in a separate step. In both of our algorithms, we do not use
shrinking as a separate black-box, but instead interleave shrinking steps in the gradual computation of the
MPC. Moreover, in the second algorithm we further guide the search for decrementing paths to amortize the
search time to parameterized linear time.

Finally, by splicing we refer to the general process of reconnecting paths in a path cover so that (after
splicing) at least one of them contains a certain path D as a subpath, while working in time proportional to
|D|. In particular, we show how to perform splicing to apply the changes required by a decrementing path
on a flow decomposition for obtaining an MPC (see Section 4.2.2), and also to reconnect paths for reducing
the number of edges used by an MPC (see Section 5).

A simple divide-and-conquer approach. As a first simple example of sparsification and shrinking
interleaved inside an MPC algorithm, in Section 3 we show how these two techniques enable the first divide-
and-conquer MPC algorithm.

Theorem 1. Given a DAG G = (V,E) of width k, we compute an MPC in time O(k2|V | log |V |+ |E|).

Theorem 1 works by splitting a topological ordering of the vertices in half, and recursing in each half.
When combining the MPCs from the two halves, we need to (i) account for the new edges between the two
parts (here we exploit sparsification), and (ii) efficiently combine the two partial path covers into one for
the entire graph (and here we use shrinking). Since this divides the problem in disjoint subgraphs, we also
obtain the first linear-time parameterized parallel algorithm.

Theorem 2. Given a DAG G = (V,E) of width k, we compute an MPC in O(k2|V | + |E|) parallel steps
using O(log |V |) single processors in the PRAM model [48].

The first linear-time parameterized algorithm. Our second algorithm works on top of the minimum
flow reduction, but instead of running a minimum flow algorithm and then extracting the corresponding
paths (as previous approaches do [24, 35, 22, 37, 38, 39, 17, 10]), it processes the vertices in topological
order, and incrementally maintains an MPC (i.e. a flow decomposition) P of the corresponding induced
subgraph. When a new vertex v is processed, P is used to sparsify the edges incoming to v to at most k (see
Section 4). After that, the path cover P ∪{(v)} is shrunk by searching for a single decrementing path in the
corresponding residual graph. The search is guided by assigning an integer level to each vertex. We amortize
the time of performing all the searches to O(k3) time per vertex, thus obtaining the final O(k3|V | + |E|)
running time.

Theorem 3. Given a DAG G = (V,E) of width k, we compute an MPC in time O(k3|V |+ |E|).

The amortization is achieved by guiding the search through the assignment of integer levels to the vertices,
which allows to perform the traversal in a layered manner, from the vertices of largest level to vertices of
smallest level (see Section 4.2.1). If a decrementing path D is found, P ∪ {(v)} is updated by splicing it
along D (see Section 4.2.2).

An antichain is a set of pairwise non-reachable vertices, and it is a well-known result, due to Dilworth [1],
that the maximum size of an antichain equals the size of an MPC. Our level assignment defines a series of
size-decreasing one-way cuts (Lemma 8). Moreover, by noting that these cuts in the network correspond
to antichains (see e.g. [39]), the levels implicitly maintain a structure of antichains that sweep the graph
during the algorithm. The high-level idea of maintaining a collection of antichains has been used previously
by Felsner et al. [32] and Cáceres et al. [49] for the related problem of computing a maximum antichain.
However, apart from being restricted to this related problem, these two approaches have intrinsic limitations.
More precisely, Felsner et al. [32] maintain a tower of right-most antichains for transitive DAGs and k ≤ 4,
mentioning that “the case k = 5 already seems to require an unpleasantly involved case analysis” [32, p. 359].
Cáceres et al. [49] overcome this by maintaining O(2k) many frontier antichains, and obtaining a linear-time
parameterized O(k24k|V |+ k2k|E|)-time maximum antichain algorithm.

Based on the relation between maximum one-way cuts in the minimum flow reduction and maximum
antichains in the original DAG (see for example [35, 39, 17]), we obtain algorithms computing a maximum
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antichain from any of our existing algorithms, preserving their running times (see Lemma 2). In particular,
by using our second algorithm we obtain an exponential improvement on the function of k of the algorithm
of Cáceres et al. [49].

Edge sparsification in parameterized linear time. Our last result in Section 5 is a structural result
concerning the problem of edge sparsification preserving the width of the DAG. Edge sparsification is a
general concept that consists in finding spanning subgraphs (usually with significantly less edges) while
(approximately) preserving certain property of the graph. For example, spanners are distance preserving
(up to multiplicative factors) sparsifiers, and it is a well-known result that (1 + ε) cut sparsifiers can be
computed efficiently [50]. We show that if the property we want to maintain is the (exact) width of a
DAG, then its edges can be sparsified to less than 2|V |. Moreover, we show that such sparsification is
asymptotically tight (Remark 1), and it can be computed in O(k2|V |) time if an MPC is given as additional
input. Therefore, by using our second algorithm we obtain the following result.

Corollary 1. Given a DAG G = (V,E) of width k, we compute a spanning subgraph G′ = (V,E′) of G with
|E′| < 2|V | and width k in time O(k3|V |+ |E|).

The main ingredient to obtain this result is an algorithm for transforming any path cover into one of the
same size using less than 2|V | distinct edges, a surprising structural result.

Theorem 4. Let G = (V,E) be a DAG, and let P, |P| = t be a path cover of G. Then, we compute, in
O(t2|V |) time, a path cover P ′, |P ′| = t, whose number of distinct edges is less than 2|V |.

We obtain Corollary 1 by using Theorem 4 with an MPC and defining E′ as the edges in P ′. Our
approach adapts the techniques used by Schrijver [51] for finding a perfect matching in a regular bipartite
graph. In our algorithm, we repeatedly search for undirected cycles C of edges joining vertices of high degree
(in the graph induced by the path cover), and splice paths along C (according to the multiplicty of the edges
of C) to remove edges from the path cover.

Paper structure. Section 2 presents basic concepts, the main preliminary results needed to understand the
technical content of this paper, and results related to the three common techniques used in latter sections3.
Sections 3 and 4 present our O(k2|V | log |V |+|E|) and O(k3|V |+|E|) time algorithms for MPC, respectively4.
Section 5 presents the algorithm of Theorem 4. Omitted proofs can be found in the Appendices.

2 Preliminaries

Basics. We denote by N+(v) (N−(v)) the set of out-neighbors (in-neighbors) of v, and by I+(v) (I−(v))
the edges outgoing (incoming) from (to) v. A graph S = (VS , ES) is said to be a subgraph of G if VS ⊆ V
and ES ⊆ E. If VS = V it is called spanning subgraph. If V ′ ⊆ V , then G[V ′] is the subgraph of G induced
by V ′, defined as G[V ′] = (V ′, EV ′), where EV ′ = {(u, v) ∈ E : u, v ∈ V ′}. A directed acyclic graph (DAG)
is a directed graph without proper cycles. A topological ordering of a DAG is a total order of V , v1, . . . , v|V |,
such that for all (vi, vj) ∈ E, i < j. A topological ordering can be computed in O(|V | + |E|) time [52, 53].
If there exists a path from u to v, then it is said that u reaches v. The multiplicity of an edge e ∈ E with
respect to a set of paths P, µP(e) (only µ(e) if P is clear from the context), is defined as the number of
paths in P that contain e, µP(e) = |{P ∈ P | e ∈ P}|. The width of a graph G, width(G), is the size of an
MPC of G. We will work with subgraphs induced by a consecutive subsequence of vertices in a topological
ordering. The following lemma shows that we can bound the width of these subgraphs by k = width(G).

Lemma 1 ([49]). Let G = (V,E) be a DAG, and v1, . . . , v|V | a topological ordering of its vertices. Then,
for all i, j ∈ [1 . . . |V |], i ≤ j, width(Gi,j) ≤ width(G), with Gi,j := G[{vi, . . . , vj}].

3We include the full version of this section in Appendix B for completeness.
4In Appendix C we show that our second algorithm implicitly maintains a structure of antichains.
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Minimum Flow. Given a (directed) graph G = (V,E), a source s ∈ V , a sink t ∈ V , and a function of
lower bounds or demands on its edges d : E → N0, an st-flow (or just flow when s and t are clear from
the context) is a function on the edges f : E → N0, satisfying f(e) ≥ d(e) for all e ∈ E (f satisfies the
demands) and

∑
e∈I−(v) f(e) =

∑
e∈I+(v) f(e) for all v ∈ V \ {s, t} (flow conservation). If a flow exists, the

tuple (G, s, t, d) is said to be a flow network. The size of f is the net amount of flow exiting s, formally
|f | =

∑
e∈I+(s) f(e) −

∑
e∈I−(s) f(e). An st-cut (or just cut when s and t are clear from the context) is a

partition (S, T ) of V such that s ∈ S and t ∈ T . An edge (u, v) crosses the cut (S, T ) if u ∈ S and v ∈ T ,
or vice versa. If there are no edges crossing the cut from T to S, that is, if {(u, v) ∈ E | u ∈ T, v ∈ S} = ∅,
then (S, T ) is a one-way cut (ow-cut). The demand of an ow-cut is the sum of the demands of the edges
crossing the cut, formally d((S, T )) =

∑
e=(u,v),u∈S,v∈T d(e). An ow-cut whose demand is maximum among

the demands of all ow-cuts is a maximum ow-cut.
Given a flow network (G, s, t, d), the problem of minimum flow consists of finding a flow f∗ of minimum

size |f∗| among the flows of the network, such flow is a minimum flow. If a minimum flow exists, then
(G, s, t, d) is a feasible flow network. It is a known result [54, 37, 40] that the demand of a maximum ow-cut
equals the size of a minimum flow.

Given a flow f in a feasible flow network (G, s, t, d), the residual network of G with respect to f is defined
as R(G, f) = (V,Ef ) with Ef = {(u, v) | (v, u) ∈ E} ∪ {e | f(e) > d(e)}, that is, the reverse edges of G,
plus the edges of G on which the flow can be decreased without violating the demands (direct edges). Note
that a path from s to t in R(G, f) can be used create another flow f ′ of smaller size by increasing flow on
reverse edges and decreasing flow on direct edges of the path, such path it is called decrementing path. A
flow f is a minimum flow if and only if there is no decrementing path in R(G, f) (see Appendix B.2). A
flow decomposition of f is a set of |f | paths P in G such that f(e) = µP(e) for all e ∈ E, in this case it is
said that f is the flow induced by P. If P is a flow decomposition of f , then the residual network of G with
respect to P is R(G, f).

MPC in DAGs through Minimum Flow. The problem of finding an MPC in a DAG G = (V,E)
can be solved by a reduction to the problem of minimum flow on an appropriate feasible flow network
(G = (V, E), s, t, d) [24], defined as: V = {s, t}∪{vin | v ∈ V }∪{vout | v ∈ V } ({s, t}∩V = ∅); E = {(s, vin) |
v ∈ V } ∪ {(vout, t) | v ∈ V } ∪ {(vin, vout) | v ∈ V } ∪ {(uout, vin) | (u, v) ∈ E}; and d(e) = 1 if e = (vin, vout)
for some v ∈ V and 0 otherwise. The tuple (G, s, t, d) is the flow reduction of G. Note that |V| = O(|V |),
|E| = O(|E|), and G is a DAG. Every flow f of (G, s, t, d) can be decomposed into |f | paths corresponding
to a path cover of G (by removing s and t and merging the edges (vin, vout) into v, see Appendix B.3).
A minimum flow of (G, s, t, d) has size width(G), thus providing an MPC of G after decomposing it (see
Appendix B.3). Moreover, the set of edges of the form (vin, vout) crossing a maximum ow-cut corresponds
to a maximum antichain of G (by merging the edges (vin, vout) into v, see [35, 38, 39, 17]). By further
noting that if f is a minimum flow of (G, s, t, d), and defining S = {v ∈ V | s reaches v in R(G, f)}, then
(S, T = V \ S) corresponds to a maximum ow-cut, we obtain the following result.

Lemma 2. Given a DAG G = (V,E) of width k and an MPC P, we compute a maximum antichain of G
in time O(k|V |+ |E|).

As such, this allows us to obtain algorithms computing a maximum antichain from any of our MPC
algorithms, preserving their running times.

Sparsification, shrinking, splicing. We say that a spanning subgraph S = (V,ES) of a DAG G = (V,E)
is a transitive sparsification of G, if for every u, v ∈ V , u reaches v in S if and only if u reaches v in G.
Since G and S have the same reachability relations on their vertices, they share their antichains, thus
width(G) = width(S). As such, an MPC of S is also an MPC of G, thus the edges E \ ES can be safely
removed for the purpose of computing an MPC of G. If we have a path cover P of size t of G, then we
can sparsify (remove some transitive edges) the incoming edges of a particular vertex v to at most t in
time O(t + |N−(v)|). If v has more than t in-neighbors then two of them belong to the same path, and
we can remove the edge from the in-neighbor appearing first in the path. We create an array of t elements
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initialized as survivor ← (v−∞)t, where v−∞ 6∈ V is before every v ∈ V in topological order. Then, we
process the edges (u, v) incoming to v, we set i← path(u) (path(u) gives the ID of some path of P containing
u) and if survivor[i] is before u in topological order we replace it survivor[i]← u. Finally, the edges in the
sparsification are {(survivor[i], v) | i ∈ {1, . . . , t} ∧ survivor[i] 6= v−∞}.

Observation 1. Let G = (V,E) be a DAG, P a path cover, |P| = t, v a vertex of G, and path : V →
{1, . . . , t} a function that answers in constant time path(v), the ID of some path of P containing v. We can
sparsify the incoming edges of v to at most t in time O(t+ |N−(v)|).

By first computing a path function, and then applying Observation 1 to every vertex we obtain.

Lemma 3. Let G = (V,E) be a DAG, and P, |P| = t, be a path cover of G. Then, we can sparsify G to
S = (V,ES), such that P is a path cover of S and |ES | ≤ t|V |, in O(t|V |+ |E|) time.

The following lemma shows that we can locally sparsify a subgraph and apply these changes to the
original graph to obtain a transitive sparsification.

Lemma 4. Let G = (V,E) be a graph, S = (VS , ES) a subgraph of G, and S′ = (VS , ES′) a transitive
sparsification of S. Then G′ = (V,E \ (ES \ ES′)) is a transitive sparsification of G.

As explained before, shrinking is the process of transforming an arbitrary path cover P into an MPC,
and it can be solved by finding |P| − width(G) decrementing paths in R(G,P), and then decomposing the
resulting flow into an MPC. Mäkinen et al. [10] apply this idea to shrink a path cover of size O(k log |V |).
We generalize this approach in the following lemma.

Lemma 5. Given a DAG G = (V,E) of width k, and a path cover P, |P| = t, of G, we can obtain an MPC
of G in time O(t(|V |+ |E|)).

As said before, splicing consists in reconnecting paths in a path cover P so that (after reconnecting) at
least one of the paths contains as a subpath a certain path D, in time O(|D|). Splicing additionally requires
that for every edge e of D there is at least one path in P containing e.

Lemma 6. Let G = (V,E) be a DAG, D a proper path, and P path cover such that for every edge e ∈ D
there exists P ∈ P, e ∈ P . We obtain a path cover P ′ of G such that |P ′| = |P| and there exists P ∈ P ′
containing D as a subpath, in time O(|D|). Moreover, µP(e) = µP′(e) for all e ∈ E.

Because of the last property of P ′, the flow induced by P is the same as the flow induced by P ′. As such,
if P is a flow decomposition of a flow f , then P ′ is also a flow decomposition of f .

3 Divide and Conquer Algorithm

Theorem 1. Given a DAG G = (V,E) of width k, we compute an MPC in time O(k2|V | log |V |+ |E|).

Proof. Before starting the recursion compute a topological ordering of the vertices v1, . . . , v|V | in time O(|V |+
|E|). Solve recursively in the subgraph G` = (V`, E`) induced by v1, . . . , v|V |/2, obtaining an MPC P` of
a sparsification G′` = (V`, E

′
`) of G` with |E′`| ≤ 2|P`||V`|, and in the subgraph Gr = (Vr, Er) induced by

v|V |/2+1, . . . , v|V |, obtaining an MPC Pr of a sparsification G′r = (Vr, E
′
r) of Gr with |E′r| ≤ 2|Pr||Vr|. By

Lemma 1, |P`| ≤ k and |Pr| ≤ k. Applying Lemma 4 with G′` and G′r we obtain that G′ = (V,E′ =
E′` ∪ E′r ∪ E`r) is a sparsification of G with |E′| ≤ 2|P`||V`| + 2|Pr||Vr| + |E`r| ≤ |E`r| + 2k|V |, where E`r

are the edges in G from V` to Vr. We consider the path cover P` ∪ Pr of G′ and use Lemma 3 to obtain
a sparsification G′′ = (V,E′′) of G′ in time O(|E′| + (|P`| + |Pr|)|V |) = O(|E`r| + k|V |) such that |E′′| ≤
(|P`|+ |Pr|)|V | ≤ 2k|V |. Finally, we shrink P` ∪Pr in G′′ to P of size k in O((|P`|+ |Pr|)k|V |) = O(k2|V |)
time (Lemma 5).

The complexity analysis considers the recursion tree of the algorithm. Note that the complexity of a
recursion step is O(k2|V | + |E`r|), that is, every vertex of the corresponding subgraph costs O(k2) and
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(a) Input graph (b) Result of recursion (c) Result of sparsification (d) Result of shrinking

Figure 1: Main steps of the divide-and-conquer algorithm applied to a DAG G. Figure 1a shows the input graph,
a maximum antichain, and the division into G` and Gr. Figure 1b shows the resulting graph G′ after applying
the algorithm recursively into G` and Gr, the corresponding sparsifications G′

` and G′
r, and path covers P` and Pr.

Figure 1c shows the result G′′ of the sparsification algorithm run on G′ with the paths P` ∪Pr. Figure 1d shows the
result P after shrinking.

every edge going from the left subgraph to the right subgraph costs O(1). Since the division of the graph
generates disjoint subgraphs, every vertex appears in O(log |V |) nodes in the recursion tree, and every edge
going from left to right appears in exactly one node in the recursion tree. Therefore, the total cost is
O(|E|+ k2|V | log |V |). Figure 1 illustrates the algorithm.

Since our algorithm is based on divide and conquer, we can parallelize the work done on every sub-part
of the input, and obtain a linear-time parallel algorithm for the MPC problem.

Theorem 2. Given a DAG G = (V,E) of width k, we compute an MPC in O(k2|V | + |E|) parallel steps
using O(log |V |) single processors in the PRAM model [48].

4 Progressive Flows Algorithm

In this section we prove Theorem 3. To achieve this result we rely on the reduction from MPC in a DAG to
minimum flow (see Section 2). We process the vertices of G one by one in a topological ordering v1, . . . , v|V |.
At each step, we maintain a set of st-flow paths Pi that corresponds to a flow decomposition of a minimum
flow of Gi = (Vi, Ei) (the flow reduction of Gi = G[{v1, . . . , vi}]), that is, an MPC of Gi. When the next
vertex vi+1 is considered, we first use Pi to sparsify its incoming edges to at most |Pi| = O(k) in time
O(k + |N−(vi+1)|) (see Observation 1 and Lemma 1). Then, we set Ti+1 ← Pi ∪ {(vini+1, v

out
i+1)}, where

(vini+1, v
out
i+1) corresponds to the edge representing vi+1 in the flow reduction (we represent st-flow paths

either as a sequence of vertices or edges excluding the extremes for convenience). Ti+1 represents a path
cover of Gi+1, and we use it to try to find a decrementing path in R(Gi+1, Ti+1). If such decrementing path
D is found, some flow paths along D are spliced to generate Pi+1, such that |Pi+1| = |Pi| (see Section 4.2.2).
Otherwise, if no decrementing path is found, we set Pi+1 ← Ti+1.

We guide the traversal for a decrementing path by assigning an integer level `(v) to each vertex v in
Gi. The search is performed in a layered manner: it starts from the highest reachable layer (the vertices
of highest level according to `), and it only continues to the next highest reachable layer once all reachable
vertices from the current layer have been visited (see Section 4.2.1). To allow the layered traversal and to
achieve amortized O(k3) time per vertex, we maintain three invariants in the algorithm (see Section 4.1) and
update the level assignment accordingly (see Section 4.2.3).

4.1 Levels, layers and invariants

We define the level assignment given to the vertices of Gi, ` : Vi → {0, 1, . . . ,width(Gi)} ∪ {−∞,+∞}, and
the invariants maintained on `. A layer is a maximal set of vertices with the same level, thus layer l is
{v ∈ V (Gi) | `(v) = l}. All layers form a partition of Vi. We extend the definition of level assignment to
paths, the level of a path is the maximum level of a vertex in the path, that is, if P is a path of Gi, then

6



`(P ) = maxv∈P `(v). We define P≥li ⊆ Pi, as the flow paths whose level is at least l, P≥li = {P ∈ Pi | `(P ) ≥
l}. Note that |P≥li | ≥ |P

≥l′
i | if l′ > l.

At the beginning we fix `(s) = −∞ and `(t) = +∞. We also maintain that 0 ≤ `(v) ≤ width(Gi) for all
v ∈ Vi \ {s, t}. Additionally, we maintain the following invariants:

Invariant A : If (u, v) is an edge in R(Gi,Pi) and {u, v} ∩ {s, t} = ∅, then `(u) ≥ `(v).

Invariant B : If (uin, uout) is the last edge of some P ∈ Pi, then `(uin) < `(uout).

Invariant C : If l, l′ are positive integers with l′ > l, then |P≥li | > |P
≥l′
i |.

Note that, since we do not include s and t in the representation of flow paths, 0 ≤ `(P ) ≤ width(Gi) for

all P ∈ Pi, moreover, by Invariant B, `(P ) ≥ 1, thus P≥1i = Pi. Also note that Invariant C implies that
every layer l ∈ {1, . . . , L}, L = maxv∈Vi\{t} `(v) is not empty.

4.2 Progressive flows algorithm

Our algorithm starts by using Pi to obtain at most |Pi| edges incoming to vi+1 in time O(|Pi|+|N−(vi+1)|) =
O(k + |N−(vi+1)|) (see Observation 1). This procedure requires to answer path(v) (the ID of some path
of Pi containing v) queries in constant time. To satisfy this requirement, we maintain path IDs on every
vertex/edge of every flow path P ∈ Pi. In each iteration of our algorithm, these path IDs can be broken by the
splicing algorithm (Section 4.2.2) but are repaired before the beginning of the next iteration (Section 4.2.3).
The following lemma states that the sparsification of incoming edges in Gi+1 produces an sparsification of
outgoing edges in the residual.

Lemma 7. For every x ∈ Vi+1 \ {s, t}, |N+(x)| = O(|Pi|), in R(Gi+1, Ti+1).

Proof. If x is of the form vin, then its only direct edge could be (vin, vout) (only if (vin, vout) appears in
more than one path in Pi+1), its reverse edges are of the form (vin, uout), such that (u, v) is an edge in
Gi+1, thus there are at most |Pi| of such edges because of sparsification (recall that |Pj | ≤ |Pi| for j < i, by
Lemma 1). On the other hand, if x is of the form uout, then the only reverse edge is (uout, uin). To bound
the number of direct edges consider the st-ow-cut (S, T ), with S = {v ∈ Vi+1 : v reaches uout in Gi+1}. The
flow induced by Ti+1 crossing the cut cannot be more that |Ti+1| = |Pi|+ 1, and thus the number of direct
edges (uout, vin) is at most |Pi|+ 1.

4.2.1 Layered traversal

Our layered traversal performs a BFS in each reachable layer from highest to lowest. If t is reached, the
search stops and the algorithm proceeds to splice the flow paths along the decrementing path found. Since
Pi represents a minimum flow of Gi, every decrementing path D in R(Gi+1, Ti+1) starts with the edge
(s, vini+1) and ends with an edge of the form (uout, t) such that some flow path of Pi ends at uout. Moreover,
since (vini+1, v

out
i+1) does not exist in R(Gi+1, Ti+1), the second edge of D must be a reverse edge of the form

(vini+1, u
out), such that u is an in-neighbor of vi+1 in Gi+1.

We work with |Pi|+1 queues Q0, Q1, . . . , Q|Pi| (one per layer), where Qj contains the enqueued elements
from layer j, therefore it is initialized as Qj ← {uout | (uout, vini+1) ∈ Ei+1 ∧ `(uout) = j}. By Lemma 7, this
initialization takes O(|Pi|) = O(k) time, and it is charged to v. We start working with Q|Pi|. When working
with Qj , we obtain the first element u from the queue (if no such element exists we move to layer j − 1
and work with Qj−1), then we visit u and for each non-visited out-neighbor v we add v to Q`(v). Adding
the out-neighbors of v to the corresponding queues is charged to v, which amounts to O(|Pi|) = O(k) by
Lemma 7. Since edges in the residual do not increase the level (Invariant A), out-neighbors can only be
added to queues at an equal or lower layer. As such, this traversal advances in a layered manner, and it
finds a decrementing path if one exists.

Note that the running time of the layered traversal can be bounded by O(|Pi|) = O(k) per visited vertex.
If no decrementing path is found we update the level of the vertices as explained in Section 4.2.3. Otherwise,
we first splice flow paths along the decrementing path D (Section 4.2.2).
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<latexit sha1_base64="zUZBooFIJzrv9LXJJOChfCsdhCk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YmuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2VmrpfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1arXzVqlfpfHUYQTOIVz8OAS6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f51WNEw==</latexit>

t

<latexit sha1_base64="V5LitINIRan65AxuDL3Ppi+5cfM=">AAAB6HicbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjy2YmuhDWWznbRrN5uwOxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFR28Sp5tDisYx1J2AGpFDQQoESOokGFgUSHoLxzcx/eAJtRKzucZKAH7GhEqHgDK3UxH654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfjY/dErPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6K4ZWfCZWkCIovFoWppBjT2dd0IDRwlBNLGNfC3kr5iGnG0WZTsiF4yy+vkvZF1atVr5u1Sv0uj6NITsgpOSceuSR1cksapEU4AfJMXsmb8+i8OO/Ox6K14OQzx+QPnM8f6NmNFA==</latexit>

vout
i+1

<latexit sha1_base64="0fF199YOnfPEDIFLanydI1c4P+I=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRZBEMquFNRbwYvHCvYD2rVk02wbmk3WJFsoy/4OLx4U8eqP8ea/MW33oK0PBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD48ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H49uZ355QpZkUD2YaUz/CQ8FCRrCxkj/pp+zCyx5TmZisX664VXcOtEq8nFQgR6Nf/uoNJEkiKgzhWOuu58bGT7EyjHCalXqJpjEmYzykXUsFjqj20/nRGTqzygCFUtkSBs3V3xMpjrSeRoHtjLAZ6WVvJv7ndRMTXvspE3FiqCCLRWHCkZFolgAaMEWJ4VNLMFHM3orICCtMjM2pZEPwll9eJa3Lqler3tzXKvVGHkcRTuAUzsGDK6jDHTSgCQSe4Ble4c2ZOC/Ou/OxaC04+cwx/IHz+QMHX5JW</latexit>

vin
i+1

<latexit sha1_base64="wef0/GVmgp4Euv0ZPxXjTfOvFF0=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWsB/QxrLZbtqlm03YnRRK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrdce9TFx606dMqGmvVHYr7hxklXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Wu6nhCWUjOuAdSxWNuPGz+c1Tcm6VPgljbUshmau/JzIaGTOJAtsZURyaZW8m/ud1UgxvfPtPkiJXbLEoTCXBmMwCIH2hOUM5sYQyLeythA2ppgxtTEUbgrf88ippXlW8auX2oVqu1fM4CnAKZ3ABHlxDDe6hDg1gkMAzvMKbkzovzrvzsWhdc/KZE/gD5/MHGfyRyw==</latexit>

(a) Before splicing

s

<latexit sha1_base64="zUZBooFIJzrv9LXJJOChfCsdhCk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YmuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2VmrpfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1arXzVqlfpfHUYQTOIVz8OAS6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f51WNEw==</latexit>

t

<latexit sha1_base64="V5LitINIRan65AxuDL3Ppi+5cfM=">AAAB6HicbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjy2YmuhDWWznbRrN5uwOxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFR28Sp5tDisYx1J2AGpFDQQoESOokGFgUSHoLxzcx/eAJtRKzucZKAH7GhEqHgDK3UxH654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfjY/dErPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6K4ZWfCZWkCIovFoWppBjT2dd0IDRwlBNLGNfC3kr5iGnG0WZTsiF4yy+vkvZF1atVr5u1Sv0uj6NITsgpOSceuSR1cksapEU4AfJMXsmb8+i8OO/Ox6K14OQzx+QPnM8f6NmNFA==</latexit>

vout
i+1

<latexit sha1_base64="0fF199YOnfPEDIFLanydI1c4P+I=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRZBEMquFNRbwYvHCvYD2rVk02wbmk3WJFsoy/4OLx4U8eqP8ea/MW33oK0PBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD48ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H49uZ355QpZkUD2YaUz/CQ8FCRrCxkj/pp+zCyx5TmZisX664VXcOtEq8nFQgR6Nf/uoNJEkiKgzhWOuu58bGT7EyjHCalXqJpjEmYzykXUsFjqj20/nRGTqzygCFUtkSBs3V3xMpjrSeRoHtjLAZ6WVvJv7ndRMTXvspE3FiqCCLRWHCkZFolgAaMEWJ4VNLMFHM3orICCtMjM2pZEPwll9eJa3Lqler3tzXKvVGHkcRTuAUzsGDK6jDHTSgCQSe4Ble4c2ZOC/Ou/OxaC04+cwx/IHz+QMHX5JW</latexit>

vin
i+1

<latexit sha1_base64="wef0/GVmgp4Euv0ZPxXjTfOvFF0=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWsB/QxrLZbtqlm03YnRRK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrdce9TFx606dMqGmvVHYr7hxklXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Wu6nhCWUjOuAdSxWNuPGz+c1Tcm6VPgljbUshmau/JzIaGTOJAtsZURyaZW8m/ud1UgxvfPtPkiJXbLEoTCXBmMwCIH2hOUM5sYQyLeythA2ppgxtTEUbgrf88ippXlW8auX2oVqu1fM4CnAKZ3ABHlxDDe6hDg1gkMAzvMKbkzovzrvzsWhdc/KZE/gD5/MHGfyRyw==</latexit>

s

<latexit sha1_base64="zUZBooFIJzrv9LXJJOChfCsdhCk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YmuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2VmrpfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1arXzVqlfpfHUYQTOIVz8OAS6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f51WNEw==</latexit>

t

<latexit sha1_base64="V5LitINIRan65AxuDL3Ppi+5cfM=">AAAB6HicbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjy2YmuhDWWznbRrN5uwOxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFR28Sp5tDisYx1J2AGpFDQQoESOokGFgUSHoLxzcx/eAJtRKzucZKAH7GhEqHgDK3UxH654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfjY/dErPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6K4ZWfCZWkCIovFoWppBjT2dd0IDRwlBNLGNfC3kr5iGnG0WZTsiF4yy+vkvZF1atVr5u1Sv0uj6NITsgpOSceuSR1cksapEU4AfJMXsmb8+i8OO/Ox6K14OQzx+QPnM8f6NmNFA==</latexit>

vout
i+1

<latexit sha1_base64="0fF199YOnfPEDIFLanydI1c4P+I=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRZBEMquFNRbwYvHCvYD2rVk02wbmk3WJFsoy/4OLx4U8eqP8ea/MW33oK0PBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD48ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H49uZ355QpZkUD2YaUz/CQ8FCRrCxkj/pp+zCyx5TmZisX664VXcOtEq8nFQgR6Nf/uoNJEkiKgzhWOuu58bGT7EyjHCalXqJpjEmYzykXUsFjqj20/nRGTqzygCFUtkSBs3V3xMpjrSeRoHtjLAZ6WVvJv7ndRMTXvspE3FiqCCLRWHCkZFolgAaMEWJ4VNLMFHM3orICCtMjM2pZEPwll9eJa3Lqler3tzXKvVGHkcRTuAUzsGDK6jDHTSgCQSe4Ble4c2ZOC/Ou/OxaC04+cwx/IHz+QMHX5JW</latexit>

vin
i+1

<latexit sha1_base64="wef0/GVmgp4Euv0ZPxXjTfOvFF0=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWsB/QxrLZbtqlm03YnRRK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrdce9TFx606dMqGmvVHYr7hxklXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Wu6nhCWUjOuAdSxWNuPGz+c1Tcm6VPgljbUshmau/JzIaGTOJAtsZURyaZW8m/ud1UgxvfPtPkiJXbLEoTCXBmMwCIH2hOUM5sYQyLeythA2ppgxtTEUbgrf88ippXlW8auX2oVqu1fM4CnAKZ3ABHlxDDe6hDg1gkMAzvMKbkzovzrvzsWhdc/KZE/gD5/MHGfyRyw==</latexit>

(b) After splicing

Figure 2: Effect of the splicing along a decrementing path D of R(Gi+1, Ti+1). We only show vertices s, t, vini+1, v
out
i+1,

just four flow paths in blue, green, brown and purple (with some overlap), and two red vertices where splicing of flow
paths occurs (splicing points). Figure 2a shows the four flow paths before splicing. Path D is highlighted in dashed
red (direct segments) and solid red (reverse segment). Figure 2b shows that splicing along D transforms the four
flow paths into three. The reverse segment creates a subpath (black) of one of these. The direct segments remove
subpaths of previous flow paths. The splicing points now join subpaths of the previous brown and blue, and purple
and brown, paths respectively.

4.2.2 Splicing algorithm

Given a decrementing path D in R(Gi+1, Ti+1), we splice flow paths along D to obtain Pi+1. Reverse edges
in D indicate that we should push 1 unit of flow in the opposite direction, thus an edge representing this
flow unit should be created. On the other hand, direct edges in D indicate that we should subtract 1 unit
of flow from that edge, in other words, that this edge should be removed from some flow path containing it.
As explained in Section 4.2.1, D starts by a direct edge (s, vini+1), followed by a reverse edge (vini+1, u

out) such
that (u, vi+1) is an edge in Gi+1. It then continues by a (possibly empty) sequence of reverse and direct
edges, and it finishes by a direct edge (uout, t), such that some flow path of Pi ends at uout.

A direct (reverse) segment is a maximal subpath of direct (reverse) edges of D. The splicing algorithm
processes direct and reverse segments interleaved as they appear in D. It starts by processing the first reverse
segment (the one starting with (vini+1, u

out)). The procedure that process reverse segments receives as input
the suffix of a flow path (the first call receives ((vini+1, v

out
i+1))). It creates the corresponding flow subpath (the

reverse of the segment), appends it to the path that received as input, and provides the resulting path as
input of the procedure handling the next direct segment. The procedure that handles direct segments S,
also receives as input the suffix of a flow path. It splices the paths of the flow decomposition along S using
the procedure of Lemma 6, obtaining a new flow decomposition such that one of the paths P contains S as
a subpath. It then removes S from P and reconnects the prefix of P before S with the path given as input,
and provides the suffix of P after S as input of the procedure handling the next reverse segment.

Note that both procedures run in time proportional to the corresponding segment (see Lemma 6 for direct
segments). As such, the splicing algorithm takes O(D) time. Moreover, since all vertices in the decrementing
path are also vertices visited by the traversal, the running time is bounded above by the running time of the
layered traversal, that is, O(k) per visited vertex.

Figure 2 illustrates the effect of the splicing algorithm on flow paths.

4.2.3 Level and path updates

After obtaining Pi+1, we update the level of some vertices of Vi+1 to maintain the invariants (Section 4.1)
of the level assignment `. Moreover, to sparsify (Section 4.2) in the next iteration, we also repair the path
IDs on the vertices/edges of Pi+1 that could be in an inconsistent state after running the splicing algorithm.

If the smallest layer visited during the traversal is layer l, then we set `(vini+1) = l, `(vouti+1) = l + 1 (to
maintain Invariant B, see Section 4.4), and change the level of every vertex u visited during the traversal
to `(u) = l (to maintain Invariant A, see Section 4.4).

If a decrementing path was found (and the splicing algorithm was executed) we first repair the path IDs
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(a) Layered traversal (b) Level updates (c) Merge of layer l

Figure 3: Execution of our second algorithm in an abstract example graph. Edges and flow paths are absent for
simplicity. Layers are divided by dotted vertical strokes, L = maxv∈Vi\{t} `(v). Figure 3a shows a decrementing path
in R(Gi+1, Ti+1) (red) found by the layered traversal as well as all vertices visited (red and orange), l is the smallest
layer visited. Figure 3b shows the updates to the level assignment, all vertices visited by the traversal get level l, and
vouti+1 gets level l + 1. Figure 3c shows the result of merging layer l, all vertices of level l or more decrease their level
by one.

by traversing every flow path of Pi+1 backwards from the last vertex, until we arrive to a vertex of level less
than l, from which we obtain the corresponding path ID that we then update by going back (forwards) in
the flow path. After that, the following observations hold.

Observation 2. Let Ei = {uout ∈ Vi | ∃P ∈ Pi, u
out is the last vertex of P}, and Ai+1 the singleton set

containing the last vertex in the decrementing path found by the layered traversal in R(Gi+1, Ti+1), or the
empty set if no decrementing path was found. Then, Ei+1 = Ei ∪ {vouti+1} \Ai+1.

Proof. If no decrementing path was found the observation easily follows. On the other hand, if a decrementing
path D is found, the observation follows from the fact that the only edge in D of the form (uout, t) with
uout ∈ Ei, comes from Ai+1.

Observation 3. If l is the smallest level visited by the layered traversal in R(Gi+1, Ti+1), then |P≥l
′

i | =

|P≥l
′

i+1| for every l′ ∈ {1, . . . ,width(Gi) + 1} \ {l + 1}, and |P≥l+1
i+1 | = |P

≥l+1
i |+ 1.

Therefore, this is the only way Invariant C can be broken by the algorithm. As such, after the level
and path ID updates, we check if |P≥li+1| = |P

≥l+1
i+1 |, and in that case we decrease the level of every vertex u,

`(u) ≥ l, by 1. If this happens, we say that we merge layer l.
The running time of all these updates is bounded by O(|Pi|) = O(k) per vertex of level l or more, which

dominates the running time of an step of the algorithm (except the initial sparsification).
Figure 3 illustrates the evolution of the level assignment in a step of the algorithm.

4.3 Running time

Note that the running time of step i + 1 is bounded by O(|N−(vi+1)|) (from sparsification) plus O(|Pi|) =
O(k) per vertex whose level is l or more, where l is the smallest level visited by the layered traversal
in R(Gi+1, Ti+1). The first part adds up to O(|E|) for the entire algorithm, whereas for the second part
we show that every vertex is charged O(k) only O(k2) times in the entire algorithm, thus adding up to
O(k3|V |) in total. Every time a vertex u is charged O(k), then the minimum level visited in that step

must be l ≤ `(u). Consider the sequence (|P≥1i |, |P
≥2
i |, . . . , |P

≥`(u)+1
i |) and its evolution until its final

state (|P≥1|V ||, |P
≥2
|V ||, . . . , |P

≥`′(u)+1
|V | |) (where `′ is the level assignment when the algorithm finishes). By

Observation 3, any update that charges u changes exactly one value in this sequence (|P≥l+1
i | is incremented

by one), and possibly truncates the sequence on the right due to u’s level being lowered (levels can only

decrease over time). By Invariant C, this sequence is always strictly decreasing, and since |P≥1i | ≤ k, it can
be updated at most O(k2) times until it reaches its final state; hence u is charged O(k) only O(k2) times.
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4.4 Invariants

In this section we show that the invariants of the algorithm (Section 4.1) are maintained for the next step,
namely that the invariants hold for Gi+1,Pi+1 and the modified level assignment `.

Invariant A : Let us consider the residual network after level updates have been made to all visited
vertices in Vi+1 and vouti+1, but prior to possibly merging layer l (if called for). Consider an edge (u, v)
in R(Gi+1,Pi+1) with {u, v} ∩ {s, t} = ∅. If both u and v are visited, their levels are each set to l,
so `(u) ≥ `(v) in Gi+1. If neither u nor v are visited, both vertices exist in Vi and the flow between
these vertices is not modified by the decrementing path D, so (u, v) in R(Gi,Pi). Thus `(u) ≥ `(v) in
Gi+1 by the invariant of the previous iteration, since their levels are unchanged. If u is visited and v is
not, then again (u, v) cannot belong to D, so either u = vini+1, or (u, v) in R(Gi,Pi). In any case (u, v)
in R(Gi, Ti+1), thus it must be that `(v) ≤ l in Gi, otherwise v would be visited during the layered
traversal, so again `(v) ≤ `(u) in Gi+1, once `(u) has been updated. If v is visited and u is not, again
(u, v) cannot belong to D, so either (u, v) = (vouti+1, v

in
i+1) and the invariant is maintained by the level

assignment, or (u, v) in R(Gi,Pi), in which case l ≤ `(v) ≤ `(u) prior to setting `(v) = l. Thus, the
invariant is maintained in all cases. Finally, it is easy to see that a merge of layer l does not break the
invariant.

Invariant B : By Observation 2 the last edges of the paths of Pi+1 are (vini+1, v
out
i+1), or of the form (u, v)

with v ∈ Ei \ Ai+1. As such, after splicing but before a possible merge of layer l, the invariant is
maintained because the algorithm sets `(vini+1) = `(vouti+1)− 1 = l, and it can only decrease the level of
u for the rest of the edges (since the vertices in Ei \Ai+1 are not visited by the layered traversal). If a
merge of layer l happens then both extremes of each edge decrease their level by 1, thus not breaking
the invariant.

Invariant C : By Observation 3, the only possibility to break the invariant is that |P≥li+1| = |P
≥l+1
i+1 |, but if

this happens it is fixed by merging layer l.

5 Support Sparsification Algorithm

We present an algorithm that transforms any path cover P, |P| = t of a DAG G = (V,E) into one of the
same size and using less than 2|V | distinct edges, in O(t2|V |) time (Theorem 4). The main approach consists
of splicing paths so that edges are removed from the support EP = {e ∈ P | P ∈ P}. It maintains a path
cover P ′, |P ′| = t of G′ = (V,EP′) (thus also a path cover of G). At the beginning we initialize P ′ ← P, and
we splice paths so that at the end |EP′ | < 2|V |.

To decide how to splice paths, we color the vertices of v ∈ V based on their degree, that is, if degG′(v) ≤ 2
we color v blue, and red otherwise. We also color the edges (u, v) ∈ EP′ according to the color of their
endpoints, that is, if both u and v are blue, we color (u, v) blue, likewise if both u and v are red, we color
(u, v) red, otherwise we color (u, v) purple. We traverse the underlying undirected graph of G′ in search of
a red cycle (cycle of red edges) C and splice paths along C so that at least one red edge is removed from
G′. We repeat this until no red cycles remain, thus at the end we have that red vertices and edges form a
forest, blue vertices and edges form a collection of vertex-disjoint paths and cycles, and purple edges connect
red vertices with the extreme vertices of blue paths. As such, if the number of blue and red vertices is nb
and nr, respectively, and the number of blue paths is p, there are nb − p blue edges, less than nr red edges,
and at most 2p purple edges. Therefore, |EP′ | < nb − p+ nr + 2p ≤ 2|V |, as desired. The following remark
shows that the factor 2 from the bound is asymptotically tight.

Remark 1. Consider the DAG G = (V,E) from Figure 4, with |V | = n + n(n + 1) = n(n + 2), |E| = 2n2

and width(G) = n. Note that any path cover P of size n must use every edge of the graph, then |EP |/|V | =
|EP′ |/|V | = 2− 4/(n+ 2).

Recall that the multiplicity of an edge e, µ(e), is the number of paths in P ′ using e, that is, µ(e) =
|{P ∈ P ′ | e ∈ P}|. When processing a red cycle C = v1, . . . , vl, vl+1 = v1, we partition the corresponding
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Figure 4: A DAG G showing that the factor 2 from the bound of Theorem 4 is asymptotically tight. The figure
shows the example graph, as well as the result of applying Theorem 4 on an MPC of it. The algorithm colors vertices
vi,j blue, vertices ui red, and edges purple, thus it does not find any red cycle.

edges of G′ in either forward F = {(vi, vi+1) ∈ EP′} or backward B = {(vi+1, vi) ∈ EP′} edges. We splice
either along forward or backward edges depending on the comparison between

∑
e∈F µ(e) and

∑
e∈B µ(e). If∑

e∈F µ(e) ≥
∑

e∈B µ(e), we only splice along backward edges, otherwise only along forward edges. Here we
only describe the former case, the later is analogous. The splicing procedure considers the backward segments
of the cycle, namely, maximal subpaths of consecutive backward edges in C. For each backward segment
b, it generates a path Pb ∈ P ′ that traverses b entirely, by splicing paths along b. For this we apply the
splicing procedure of Lemma 6 on every backward segment, which runs in total time O(|B|) = O(|C|). After
that, for every Pb we remove b and reconnect the parts of Pb entering and exiting b to their corresponding
adjacent forward segments. Note that vertices of b are still covered by some path after splicing since they
are red, and the splicing procedure preserves the multiplicity of edges. Also note that the net effect is that
the number of paths remains unchanged but the multiplicity of forward edges has increased by one and the
multiplicity of backward edges has decreased by one, thus the condition

∑
e∈F µ(e) ≥

∑
e∈B µ(e) will be

valid again after the procedure. As such, we repeat the splicing procedure until some backward edge has
multiplicity 0, removing C in this way.

To analyze the running time of all splicing procedures during the algorithm, we consider the function
Φ(G′) =

∑
e∈EP′

µ(e)2. We study the change of Φ(G′) of applying the splicing procedure, ∆Φ. Since the
only changes on multiplicity occur on forward and backward edges we have that

∆Φ =
∑
e∈F

(
(µ(e) + 1)2 − µ(e)2

)
+
∑
e∈B

(
(µ(e)− 1)2 − µ(e)2

)
= |F |+ |B|+ 2

(∑
e∈F

µ(e)−
∑
e∈B

µ(e)

)
≥ |C|.

As such, each splicing procedure takes O(|C|) time, and increases Φ(G′) by at least |C|. Since at the end
Φ(G′) ≤ t2|EP′ | ≤ t22|V |, the running time of all splicing procedures amounts to O(t2|V |).

Finally, we describe how to traverse the underlying undirected graph of G′ while detecting red cycles in
linear time, which is O(t|V |). We perform a modified DFS traversal of the graph. We additionally mark the
edges as processed either when the edge is removed (gets multiplicity 0), or when the traversal pops this edge
from the DFS stack5. Since our graph is undirected, all edges are between a vertex and some ancestor in the
DFS tree (no crossing edges), thus cycles can be detected by checking if the vertex being visited already is
in the DFS stack (and it is not the top of the stack)6. When a red cycle is detected, then we pop from the
DFS stack all vertices of the cycle, but without marking as processed the corresponding edges. The cost of
these pops plus the additional cost of traversing the edges of the cycle again in a future traversal is linear
in the length of the cycle, thus these are charged to the corresponding splicing procedures of this cycle, and
the cost of the traversal remains proportional to the size of the graph.

5When an edge is marked as processed we move it at the end of the adjacency list of the corresponding vertex. Therefore,
the first edge in the adjacency list of a vertex is always not marked as processed, unless all of them are.

6We can maintain an array in-stack indicating whether a vertex is in the DFS stack.
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[19] Jakub Gajarskỳ, Petr Hlinenỳ, Daniel Lokshtanov, Jan Obdralek, Sebastian Ordyniak, MS Ramanujan,
and Saket Saurabh. FO model checking on posets of bounded width. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 963–974. IEEE, 2015.

[20] Alexander I Tomlinson and Vijay K Garg. Monitoring functions on global states of distributed programs.
Journal of Parallel and Distributed Computing, 41(2):173–189, 1997.

[21] Selma Ikiz and Vijay K Garg. Efficient incremental optimal chain partition of distributed program
traces. In 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06), pages
18–18. IEEE, 2006.

[22] H. V. Jagadish. A compression technique to materialize transitive closure. ACM Transactions on
Database Systems (TODS), 15(4):558–598, 1990.
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A Proof of Theorem 2

Theorem 2. Given a DAG G = (V,E) of width k, we compute an MPC in O(k2|V | + |E|) parallel steps
using O(log |V |) single processors in the PRAM model [48].

Proof. We use our algorithm from Theorem 1. Since the algorithm divides the problem into two disjoint
subgraphs we can easily solve each sub-part by using separate processors, and then join the solutions in
O(|E| + k2|V |) parallel steps. We first subdivide the problem into O(log |V |) separate processors, that is,
when the size of the input is O(|V |/ log |V |). We then we run the algorithm in the O(log |V |) inputs in
parallel, running in O(|E| + k2 (|V |/ log |V |) log (|V |/ log |V |)) = O(|E| + k2|V |) parallel steps. Finally, all
merges (sparsifying and shrinking) from the O(log |V |) processors up to the root of the recursion tree are
performed level by level. We execute the merges of a level in parallel, thus adding up to O(|E| + k2|V |)
parallel steps in total.

B Full version of Section 2

This section is a full version of Section 2. For the sake of completeness, since there is no definitive reference
for some of these notions and results (with some of them considered folklore), we include their full definitions
and proofs here.

B.1 Basics

A directed graph is a tuple G = (V,E), where V is a set of vertices and E is a set of edges, E ⊆ V 2. For
an edge e = (u, v) ∈ E, it is said that e goes from u to v, that u and v are neighbors, and that e is incident
to both u and v. In particular, u is an in-neighbor of v, v is an out-neighbor of u, e is an edge incoming to
v and outgoing from u. We denote N+(v) (N−(v)) to the set of out-neighbors (in-neighbors) of v, and by
I+(v) (I−(v)) the edges outgoing (incoming) from (to) v. A graph S = (VS , ES) is said to be a subgraph of
G if VS ⊆ V and ES ⊆ E. If VS = V it is called spanning subgraph. If V ′ ⊆ V , then G[V ′] is the subgraph
of G induced by V ′, defined as G[V ′] = (V ′, EV ′), where EV ′ = {(u, v) ∈ E : u, v ∈ V ′}. A path P in G
is a sequence of vertices v1, . . . , v` of G, such that (vi, vi+1) ∈ E, for all i ∈ [1 . . . ` − 1], and vi 6= vj , for
all i 6= j. For every i, j ∈ {1, . . . , `}, i ≤ j, vi, . . . , vj is a subpath of P . If v1 = v` it is called cycle, and we
denote it by C. If ` ≥ 2 it is said that the path is proper. A directed acyclic graph (DAG) is a directed
graph without proper cycles. A topological ordering of a DAG is a total order of V , v1, . . . , v|V |, such that
for all (vi, vj) ∈ E, i < j. A topological ordering can be computed in O(|V | + |E|) time [52, 53]. If there
exists a path P = v1, . . . , v` in G, with u = v1 and v = v`, it is said that u reaches v. A path cover P of G
is a set of paths such that every vertex v ∈ V appears in some path of P. If P has maximum size among
all path covers, then it is a minimum path cover (MPC), and its size corresponds to the width of G, that is,
width(G) = minP,path cover |P| . An antichain A is a set of vertices such that for each u, v ∈ A u 6= v u, does
not reach v, a maximum antichain is an antichain of maximum size. Dilworth’s theorem [1] states that the
size of a maximum antichain equals the size of an MPC. The multiplicity of an edge e ∈ E with respect to a
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set of paths P, µP(e) (only µ(e) if P is clear from the context), is defined as the number of paths in P that
contain e, µP(e) = |{P ∈ P | e ∈ P}|.

In our algorithms we work with subgraphs induced by a consecutive subsequence of vertices in a topo-
logical ordering. As such, the following lemma, proven by Cáceres et.al [49], shows that we can bound the
width of these subgraphs by k = width(G).

Lemma 1 ([49]). Let G = (V,E) be a DAG, and v1, . . . , v|V | a topological ordering of its vertices. Then,
for all i, j ∈ [1 . . . |V |], i ≤ j, width(Gi,j) ≤ width(G), with Gi,j := G[{vi, . . . , vj}].

B.2 Minimum Flow

The problem of minimum flow with lower and upper bounds on edges has been studied before (see for example
[54, 37, 40]). The concept of maximum ow-cuts has been studied before but only in the context of some
specific problem solved by a reduction to minimum flow (see for example [35, 39, 17]). For completeness, in
this section we include a proof for the case when only lower bounds on the edges are considered. The proof
shown is an adaptation of the proof of the maximum flow/minimum cut theorem given in [55].

Given a (directed) graph G = (V,E), a source s ∈ V , a sink t ∈ V , and a function of lower bounds
or demands on its edges d : E → N0, an st-flow (or just flow when s and t are clear from the context)
is a function on the edges f : E → N0, satisfying f(e) ≥ d(e) for all e ∈ E (f satisfies the demands)
and

∑
e∈I−(v) f(e) =

∑
e∈I+(v) f(e) for all v ∈ V \ {s, t} (flow conservation). If a flow exists, the tuple

(G, s, t, d) is said to be a flow network. The size of f is the net amount of flow exiting s, formally |f | =∑
e∈I+(s) f(e)−

∑
e∈I−(s) f(e). An st-cut (or just cut when s and t are clear from the context) is a partition

(S, T ) of V such that s ∈ S and t ∈ T . An edge (u, v) crosses the cut (S, T ) if u ∈ S and v ∈ T , or vice versa.
If there are no edges crossing the cut from T to S, that is, if {(u, v) ∈ E | u ∈ T, v ∈ S} = ∅, then (S, T ) is
a one-way cut (ow-cut). The demand of an ow-cut is the sum of the demands of the edges crossing the cut,
formally d((S, T )) =

∑
e=(u,v),u∈S,v∈T d(e). An ow-cut whose demand is maximum among the demands of

all ow-cuts is a maximum ow-cut.
From these definitions the following properties can be derived:

Basic Properties. For a flow network (G, s, t, d):

(a) For any cut (S, T ) and flow f :

|f | =
∑

e=(u,v)∈E,u∈S,v∈T

f(e)−
∑

e=(v,u)∈E,u∈S,v∈T

f(e).

(b) For any ow-cut (S, T ) and flow f , |f | ≥ d((S, T )).
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Proof. (a) By definition of size, flow conservation and the fact that (S, T ) is a partition of V .

|f | =
∑

e∈I+(s)

f(e)−
∑

e∈I−(s)

f(e)

=

 ∑
e∈I+(s)

f(e)−
∑

e∈I−(s)

f(e)

+
∑

u∈S\{s}

 ∑
e∈I+(u)

f(e)−
∑

e∈I−(u)

f(e)


︸ ︷︷ ︸

=0

=
∑
u∈S

 ∑
e∈I+(u)

f(e)−
∑

e∈I−(u)

f(e)


=
∑
u∈S

 ∑
e=(u,u′)∈E,u′∈S

f(e) +
∑

e=(u,v)∈E,v∈T

f(e)−
∑

e=(u′,u)∈E,u′∈S

f(e)−
∑

e=(v,u)∈E,v∈T

f(e)


=
∑
u∈S

 ∑
e=(u,v)∈E,v∈T

f(e)−
∑

e=(v,u)∈E,v∈T

f(e)

+
∑
u∈S

 ∑
e=(u,u′)∈E,u′∈S

f(e)−
∑

e=(u′,u)∈E,u′∈S

f(e)


︸ ︷︷ ︸

=0

=
∑
u∈S

 ∑
e=(u,v)∈E,v∈T

f(e)−
∑

e=(v,u)∈E,v∈T

f(e)


=

∑
e=(u,v)∈E,u∈S,v∈T

f(e)−
∑

e=(v,u)∈E,u∈S,v∈T

f(e)

(b) By using the previous property, the fact that ow-cuts do not have edges crossing from T to S and the
lower bounds on the edges.

|f | =
∑

e=(u,v)∈E,u∈S,v∈T

f(e)−
∑

e=(v,u)∈E,u∈S,v∈T

f(e)

=
∑

e=(u,v)∈E,u∈S,v∈T

f(e)

≥
∑

e=(u,v)∈E,u∈S,v∈T

d(e)

= d((S, T ))

Given a flow network (G, s, t, d), the problem of minimum flow consists of finding a flow f∗ of minimum
size |f∗| among the flows of the network, such flow is a minimum flow. If a minimum flow exists, then
(G, s, t, d) is a feasible flow network. The following theorem relates the maximum demand of a ow-cut with
the size of a minimum flow [54, 37, 40].

Theorem 5. Let (G, s, t, d) be a feasible flow network. Then,

max
(S,T ),st-ow-cut

d((S, T )) = min
f,st-flow

|f |.

Proof. Given a flow f in (G, s, t, d), the residual network ofG with respect to f is defined asR(G, f) = (V,Ef )
with Ef = {(u, v) | (v, u) ∈ E} ∪ {e | f(e) > d(e)}, that is, the reverse edges of G, plus the edges of G
on which the flow can be decreased without violating the demands (direct edges). Note that a path from
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s to t in R(G, f) can be used to create another flow f ′ of smaller size by increasing flow on reverse edges
and decreasing flow on direct edges of the path, such path its is called decrementing path. Therefore, for a
minimum flow f∗ there is no decrementing path in R(G, f∗). Taking S as the vertices reachable from s in
R(G, f∗) (and T its complement), (S, T ) is an ow-cut (s ∈ S, t ∈ T , and there is no edge in G from T to
S, since there is no edge in the opposite direction in R(G, f∗) by definition of S). Moreover, for every edge
e ∈ E from S to T , f(e) = d(e), since otherwise this edge would appear in R(G, f∗), which is not possible
by definition of S. Therefore, the inequality of Property (b) is an equality and |f∗| = d((S, T )). Finally,
since the demand of any ow-cut is a lower bound for the size of the flow, (S, T ) is maximum ow-cut.

B.3 MPC in DAGs through Minimum Flow

The reduction from MPC in DAGs to minimum flow has been stated several times in the literature [24, 35,
36, 22, 37, 38, 39, 17, 10], we include it here for completeness.

The problem of finding an MPC in a DAG G = (V,E) can be solved by a reduction to the problem of
minimum flow on an appropriate feasible flow network (G = (V, E), s, t, d), defined as: V = {s, t}∪ {vin | v ∈
V }∪ {vout | v ∈ V } ({s, t}∩V = ∅), that is, the source s, the sink t and two vertices vin, vout representing a
division of every vertex v ∈ V ; E = {(s, vin) | v ∈ V }∪{(vout, t) | v ∈ V }∪{(vin, vout) | v ∈ V }∪{(uout, vin) |
(u, v) ∈ E}, that is, s is connected to all vertices vin, t from all vertices vout, the split vertices are connected
from vin to vout if v ∈ V , and also the topology of G is represented by connecting from uout to vin if
(u, v) ∈ E. The demands are defined as d(e) = 1 if e = (vin, vout) for some v ∈ V and 0 otherwise. The
tuple (G, s, t, d) is the flow reduction of G. Note that |V| = O(|V |), |E| = O(|E|), and G is a DAG.

A path cover P = P1, . . . , P` of G directly translates into a flow f for G, s, t, d of size |f | = `. Starting
with a function f(e) = 0, e ∈ E and iteratively increasing it. For every path Pi, it suffices to attach s and
t at the ends and to replace every v ∈ Pi by vin, vout, then the flow through the edges of the resulting
path is increased by 1. Since the flow is increased through paths from s to t this procedure maintains the
flow conservation constrains, furthermore, since P is a path cover, the flow through every edge (vin, vout) is
increased by at least 1 for every v ∈ V , thus f corresponds to a flow of size |P|.

Moreover, every flow f of (G, s, t, d) can be decomposed into |f | paths corresponding to a path cover of
G. Iteratively, starting from f , a path P from s to t whose edges have positive flow is found, and then the
flow on the edges of P is decreased by 1. By flow conservation, P can be found while |f | > 0, and since |f | is
decreased by 1 at each iteration, exactly |f | paths are obtained. By construction of G these paths can easily
be transformed into a path cover of size ` of G, by removing s and t and merging the split vertices.

As such, a minimum flow of (G, s, t, d) provides an MPC of G. Moreover, the set of edges of the form
(vin, vout) crossing a maximum ow-cut corresponds to a maximum antichain of G (by merging the edges
(vin, vout) into v, see Appendix C). By further noting that if f is a minimum flow of (G, s, t, d), and defining
S = {v ∈ V | s reaches v in R(G, f)}, then (S, T = V \ S) corresponds to a maximum ow-cut, we obtain the
following result.

Lemma 2. Given a DAG G = (V,E) of width k and an MPC P, we compute a maximum antichain of G
in time O(k|V |+ |E|).

Proof. We build the flow reduction (G, s, t, d) of G, and R(G,P) in time O(k|V | + |E|). Then, we traverse
R(G,P) and find all vertices reachable from s, those vertices form a maximum ow-cut, the edges of the form
(vin, vout) crossing this cut represent a maximum antichain of G (see Appendix C).

B.4 Sparsification, shrinking, splicing

Transitive sparsification. We say that a spanning subgraph S = (V,ES) of a DAG G = (V,E) is
a transitive sparsification of G, if for every u, v ∈ V , u reaches v in S if and only if u reaches v in G.
Since G and S have the same reachability relations on their vertices, they share their antichains, thus
width(G) = width(S). As such, an MPC of S is also an MPC of G, thus the edges E \ ES can be safely
removed for the purpose of computing an MPC of G. If we have a path cover P of size t of G, then we
can sparsify (remove some transitive edges) the incoming edges of a particular vertex v to at most t in time
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O(t + |N−(v)|). If v has more than t in-neighbors then two of them belong to the same path, and we can
remove the edge from the in-neighbor appearing first in the path. We create an array of t elements initialized
as survivor = (v−∞)t, where v−∞ 6∈ V is before every v ∈ V in topological order. Then, we process the
edges (u, v) incoming to v, we set i ← path(u) (path(u) gives the ID of some path of P containing u)
and if survivor[i] is before u in topological order we replace it survivor[i] ← u. Finally, the edges in the
sparsification are {(survivor[i], v) | i ∈ {1, . . . , t} ∧ survivor[i] 6= v−∞}.

Observation 1. Let G = (V,E) be a DAG, P a path cover, |P| = t, v a vertex of G, and path : V →
{1, . . . , t} a function that answers in constant time path(v), the ID of some path of P containing v. We can
sparsify the incoming edges of v to at most t in time O(t+ |N−(v)|).

By first computing a path function, and then applying Observation 1 to every vertex we obtain.

Lemma 3. Let G = (V,E) be a DAG, and P, |P| = t, be a path cover of G. Then, we can sparsify G to
S = (V,ES), such that P is a path cover of S and |ES | ≤ t|V |, in O(t|V |+ |E|) time.

Proof. Let P = P1, . . . , Pt. First, we traverse each path in time O(t|V |) and compute for every vertex
path(v), which is the ID of some path containing v. We also initialize v.survivor[i] = u if (u, v) is an edge
of path Pi and v−∞ if such edge does not exist (v−∞ 6∈ V , is before every v ∈ V in topological order).
Then, we process the edges e = (u, v) in time O(|E|), set i = path(u), and if v.survivor[i] is before u
in topological order, we set v.survivor[i] = u. Finally, ES will be the edges (v.survivor[i], v) such that
v.survivor[i] 6= v−∞, thus there are at most t|V |. Note that S contains all the edges in the paths because we
initialized v.survivor[i] = u for every edge (u, v) in path Pi, and these are not updated during the algorithm,
thus P is also a path cover of S. Now we prove that S is a transitive sparsification of G. If an edge appears
in S, is of the form (u = v.survivor[i], v) for some edge (u, v) of G, thus S is a subgraph of G. Finally, if an
edge (u, v) is not considered in S it means that there is an edge (x, v) such that, u, x ∈ Pi with u before x
in Pi. Therefore, there is a path from u to v using the corresponding edges of Pi followed by (x, v).

The following lemma shows that we can locally sparsify a subgraph and apply these changes to the
original graph to obtain a transitive sparsification.

Lemma 4. Let G = (V,E) be a graph, S = (VS , ES) a subgraph of G, and S′ = (VS , ES′) a transitive
sparsification of S. Then G′ = (V,E \ (ES \ ES′)) is a transitive sparsification of G.

Proof. Since S′ is a transitive sparsification of S, ES′ ⊆ ES thus E \ (ES \ ES′) ⊆ E and then G′ is a
subgraph of G. Now, suppose by contradiction that u and v are connected in G by a path P , but they are
not connected in G′. Then, P contains an edge e = (a, b) ∈ ES \ES′ disconnecting b from a in S′, but since
S′ is a transitive sparsification of S, a is connected to b in S′, which is a contradiction.

Shrinking. As explained before, shrinking is the process of transforming an arbitrary path cover P into an
MPC, and it can be solved by finding |P|−width(G) decrementing paths in R(G,P), and then decomposing
the resulting flow into an MPC. Mäkinen et al. [10] apply this idea to shrink a path cover of size O(k log |V |).
We generalize this approach in the following lemma.

Lemma 5. Given a DAG G = (V,E) of width k, and a path cover P, |P| = t, of G, we can obtain an MPC
of G in time O(t(|V |+ |E|)).

Proof. We build the flow reduction (G, s, t, d) of G, and R(G,P) in time O(|V |+ |E|). Then, we shrink the
corresponding flow to minimum by finding t− k decrementing paths in t− k traversals of G, and finally, we
decompose the minimum flow into an MPC in additional k traversals (one per path) of G. In total this takes
O(t(|V |+ |E|)) time.

This lemma is used by our first MPC algorithm. Our second algorithm also uses the concept of shrinking
to obtain an MPC, but refines the search for decrementing paths so that it can be amortized to parameterized
linear time (see Section 4).
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Splicing. Our last technique consists in reconnecting paths in a path cover P so that (after reconnecting)
at least one of the paths contains as a subpath a certain path D, in time O(|D|). We call this process
splicing of P through D, and it is used to apply the changes required by a decrementing path in our second
MPC algorithm (Section 4.2.2), and also to reconnect paths for reducing the number of edges used by an
MPC (Section 5). Splicing additionally requires that for every edge e of D there is at least one path in P
containing e.

Lemma 6. Let G = (V,E) be a DAG, D a proper path, and P path cover such that for every edge e ∈ D
there exists P ∈ P, e ∈ P . We obtain a path cover P ′ of G such that |P ′| = |P| and there exists P ∈ P ′
containing D as a subpath, in time O(|D|). Moreover, µP(e) = µP′(e) for all e ∈ E.

Proof. We process the edges of D one by one, and maintain a path P of the path cover that contains as
subpath a prefix of D, at the end of the algorithm P will contain the whole D as a subpath as required. We
initialize P to be some path of P containing the first edge of D. Then, when processing the next edge e of
D, we first check if e is the next edge of P, if so we continue to the next edge of D. Otherwise, let P ′ be a
path of the path cover containing e, then we connect the prefix of P ′ until e (excluding) with the suffix of
P from the edge previous to e in D (excluding), and we also connect the prefix of P until the edge previous
to e in D (including) with the suffix of P ′ from e (including). Note that each these new connections can be
made by manipulating pointers in O(1) time, also note that the new set of paths forms a path cover, and the
edges of G preserve their multiplicity, as edges in the path cover are never created or removed, only change
of path.

Because of the last property of P ′, the flow induced by P is the same as the flow induced by P ′. As such,
if P is a flow decomposition of a flow f , then P ′ is also a flow decomposition of f .

C Structure of antichains

Recall that in Section 4.1 we defined P≥li ⊆ Pi, as the flow paths whose level is at least l, P≥li = {P ∈ Pi |
`(P ) ≥ l}. We also define V≥li ⊆ Vi to be the vertices in the paths of P≥li , V≥li = {v ∈ P | P ∈ P≥li }, and

G≥li the graph induced by those vertices, G≥li = Gi[V≥li ]. Note that P≥li induces a flow in G≥li . Finally, we

define S<l
i ⊆ V

≥l
i to be those vertices whose level is less than l, S<l

i = {v ∈ V≥li | `(v) < l}.

Lemma 8. In G≥li , (S<l
i ,V≥li \ S<l

i ) is a maximum ow-cut and P≥li induces a minimum flow.

Proof. By definition of S<l
i and Invariant A, there are no edges in R(G≥li ,P≥li ) exiting S<l

i . As such, there

cannot be edges crossing from V≥li \S<l
i to S<l

i in G≥li as these imply reverse residual edges, thus is a ow-cut.

Moreover, the flow on every edge crossing the cut from S<l
i to V≥li \ S<l

i must be exactly the demand of

the edge, otherwise it implies a direct residual edge. Therefore, it is a maximum ow-cut and P≥li induces a
minimum flow.

There exists a close relation between maximum antichains of a DAG G and maximum ow-cuts on its flow
reduction (G, s, t, d) (Appendix B.3), which has been studied before (see for example [35, 38, 39, 17]). If A is
a maximum antichain of G, then the cut (S, T ), defined by S = {u ∈ V | ∃v ∈ A, u reaches vin}, T = V \S is
a maximum ow-cut (since its demand is |A| = width(G), and the size of a minimum flow of the flow reduction
is exactly width(G), see Appendix B.3). Moreover, if (S, T ) is a maximum ow-cut, then the edges of the
form (vin, vout) crossing the cut, form (after merging every edge in the corresponding vertex) a maximum
antichain of G (a path between two vertices implies an edge crossing the cut from T to S). As such, each of

the maximum ow-cuts (S<l
i ,V≥li \S<l

i ) corresponds to a maximum antichain of an induced subgraph of G. In
particular, Lemma 8 implies that our second algorithm implicitly (through the layer assignment) maintains
a sequence of size-decreasing antichains.
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