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Abstract Sparse regression often uses ℓp norm priors

(with p < 2). This paper demonstrates that the intro-
duction of mixed-norms in such contexts allows one to

go one step beyond in signal models, and promote some
different, structured, forms of sparsity. It is shown that
the particular case of the ℓ1,2 and ℓ2,1 norms leads to

new group shrinkage operators. Mixed norm priors are

shown to be particularly efficient in a generalized basis
pursuit denoising approach, and are also used in a con-
text of morphological component analysis. A suitable

version of the Block Coordinate Relaxation algorithm
is derived for the latter. The group-shrinkage operators
are then modified to overcome some limitations of the
mixed-norms. The proposed group shrinkage operators

are tested on simulated signals in specific situations, to

illustrate and compare their different behaviors. Results

on real data are also used to illustrate the relevance of

the approach.
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1 Introduction

Sparse approximation approaches have enjoyed consid-
erable popularity in recent signal processing applica-

tions. Sparsity seems to be a particularly efficient guid-
ing principle in view of a number of tasks such as signal
compression, denoising, image de-blurring, blind source

separation,. . . The guiding principle may be summarized

as follows: for most signal classes, it is possible to find

a basis or a dictionary of elementary building blocks

(or atoms) with respect to which all (or most) signals

in the class may be expanded, so that when the ex-
pansion is truncated in a suitable way, high precision
approximations are obtained even when very few terms

are retained. A large number of signal and image pro-

cessing “success stories” may be described in such a

way, including image compression and denoising using

wavelets, curvelets, or more sophisticated *-lets, au-

dio coding using MDCT bases, and so forth. Several

efficient sparse expansion algorithms have been pro-

posed, including among others simple expansion with

respect to a fixed basis followed by soft or hard co-

efficient thresholding, iterative thresholding strategies

in redundant dictionaries, greedy (pursuit) algorithms,

or more elaborate approaches such as sparse regres-

sion in Bayesian frameworks. Thresholding and iter-

ative thresholding strategies are particularly interest-

ing, mainly because thresholding automatically gener-

ates sparsity. In addition, corresponding algorithms are

easy to implement and generally exhibit fast conver-

gence properties.

A main strength of these thresholding approaches is
that they process the signal representation coefficient-

wise, which results in low complexity algorithms. How-

ever, this may become a weakness when it comes to

applications to real signals. Indeed, the assumption of
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coefficient independence is generally not realistic. For

example, when using wavelet or local cosine bases for

expanding 1D signals, abrupt changes manifest them-

selves by groups of time-localized large coefficients, and

frequency modulated signals exhibit ridges of frequency

localized large coefficients. The same remark applies to
edges and regular textures in wavelet or local cosine

representations of images. Several different approaches
have been considered to handle such dependencies be-
tween coefficients, including structured versions of match-

ing pursuit (for example, harmonic or molecular ver-
sions of matching pursuit), coefficient domain modelling,
or construction of suitable bases. Here, we propose to
keep the coefficient modelling approach. However, rather

than introducing explicit models for coefficients, we fol-

low the thresholding and iterative thresholding approaches

and design new group thresholding methods, associated

with mixed norms in the coefficient domain.

More precisely, we consider the following problem.

Let y ∈ R
T be a noisy observation of a signal s ∈ R

T .

Let D denote a fixed dictionary for R
T , and denote by

A ∈ R
T×N the matrix whose columns are the vectors

from the dictionary D. We assume that s has a sparse

expansion in D, and we want to estimate s from y. A
classical estimate is given by the basis pursuit denois-

ing approach introduced by Donoho and coworkers [5],

also known as Tibshirani’s LASSO estimate [19]. The

estimate is obtained by the following optimization:

x̂ = argmin
x∈RN

‖y − Ax‖2
2 + λ‖x‖1 (1)

where λ ∈ R is a fixed parameter, so that, Ax̂ is the esti-

mate of s. The ℓ1 norm directly leads to soft threshold-
ing strategies. Similar algorithms may be derived using

more general ℓp norms, i.e. replacing ‖x‖1 with ‖x‖p
p.

That estimate treats all coefficients independently. De-

pendencies between selected subsets of coefficients may

be introduced as soon as the latter may be labelled

using a double index (for example, a time-frequency in-

dex), say x = {xab, a = 1, . . . Na, b = 1, . . . Nb}. Then
a new estimate is obtained by replacing the ℓ1 norm

in (1) with a mixed norm, namely by solving for

x̂ = argmin
x∈RN

‖y−Ax‖2
2 +λ





Na
∑

a=1

(

Nb
∑

b=1

|xa,b|
p

)q/p




1/q

.

(2)

Here, the roles of indices a and b are purely conven-

tional. However, permuting a and b corresponds to a

different problem.

The ‖.‖p,1 mixed norms have been used by various

authors to model a “joint sparsity” of coefficients in the

context of multichannel signals, using the FOCUSS al-

gorithm [6], greedy pursuits [20], convex relaxation [21]

or iterative thresholding strategies [12,18].

It is worth noticing that like the LASSO method
and ℓp generalizations, the mixed norm approach ad-

mits a simple Bayesian interpretation, assuming Gaus-

sian white noise (which justifies the choice of the ℓ2
norm for the data fidelity term), and a coefficient prior
of the form

f(x) ∝ exp
{

−λ‖x‖q
p,q

}

,

which explicitly introduces couplings between coeffi-
cients.

This prior still assumes independence between groups

of coefficients. We show that this independence assump-

tion may be relaxed by modifying the design of the

group-shrinkage operators used to solve (2) when A is
orthogonal.

Mixed norms can also be implemented into multilay-

ered type signal expansions, such as the ones used in [2,

8,7] for audio signals, or in the Morphological Compo-

nent Analysis (MCA for short) for images [17,10]. The

goal of MCA is to minimize functionals of the type

Φ(x1,x2) = ‖x1‖1 + ‖x2‖1 + λ‖y−A1x1 −A2x2‖
2
2 (3)

where A1 and A2 are the matrices corresponding to two

dictionaries, chosen to be able to sparsely describe edges
and textures respectively. A similar approach may be

followed to separate transient and tonal layers in au-

dio signals. According to the discussion above, we shall

show that the two ℓ1 norms in the latter expression can

be conveniently replaced with suitable mixed norms, to

enforce relevant dependencies between coefficients.

The paper is organized as follows. Section 2 recalls

the definition of mixed norms and introduces new group-

shrinkage operators associated with these norms. This

section also presents the mixed norm-based multilay-

ered expansion on union of bases. In Section 3, the

shrinkage operators are modified in order to overcome

some limitations of the mixed norms. All these oper-

ators are used on simulated signals to illustrate their

behavior. Some applications are presented in Section 4.

2 Mixed norms and thresholding

We give in this section the definition of the mixed norms

we shall be interested in. For the sake of simplicity,

we shall stick to the case of two indices, even though

extensions are clearly possible.



3

2.1 Mixed norms

We are concerned with doubly labelled sequences xa,b,
a = 1, . . . Na, b = 1, . . . Nb. Let us start by introducing

the mixed norms.

Definition 1 Let x ∈ R
N , labelled by a double index

(a, b) . Let p ≥ 1 and q ≥ 1, then one can define two

mixed norms ℓ1;p,q and ℓ2;p,q on x

‖x‖1;p,q =





Na
∑

a=1

(

Nb
∑

b=1

|xa,b|
p

)q/p




1/q

, (4)

‖x‖2;p,q =





Nb
∑

b=1

(

Na
∑

a=1

|xa,b|
p

)q/p




1/q

. (5)

The cases p = +∞ and q = +∞ are obtained by re-

placing the corresponding norm by the supremum.

Mixed norms have been used extensively by math-

ematicians in functional analysis (see for example [16]

and references therein). Here, we limit ourselves to the

finite dimensional case, and focus on the particular cases

ℓ•;1,2 and ℓ•;2,1. For the sake of simplicity, we will use

the ℓ1;p,q norm for the theoretical study, and then de-

note it simply by ℓp,q. The second case is obtained by
simply switching the roles of a and b. In the numerical

applications described in section 4 the choices will be

specified precisely.

The reader may think of these two indices as the

indices of a time-frequency signal expansion. However,

let us stress that the developments below are not spe-

cific at all to time-frequency signal representations, and

apply to any situation where signals are expanded with

respect to a dictionary with two indices. Another sim-
ple example of that is multichannel signals, where a first
index labels (scalar) dictionary elements and a second
one labels channels. In an even more general situation,

any discrete signal expansion may be re-labelled so as

to be processed by our approach.
The two indices shall be used in hierarchical way:

coefficients are split into independent groups, and co-

efficients within the same group are dependent. In this

work, we will highlight this hierarchy by denoting the

indices by g (for group) and m (for member) respec-

tively. Using these notations, we shall label vectors x ∈
R

N such that the ℓp,q mixed norm of x reads

‖x‖p,q =





G
∑

g=1

(

M
∑

m=1

|xg,m|p

)q/p




1/q

,

with G the number of groups and M the number of

members in each group, so that N = G × M .

Remark 1 Actually, nothing forces the number of mem-

bers to be the same for all groups. However, by adding

“phantom” members equal to zero, one can artificially

come back to the simplest situation where all groups

have the same size. For the sake of simplicity, we only
consider that simple case here.

It is interesting to stress that a ℓp,q mixed norm

can be seen as a “composition” of ℓp and ℓq norms,

and therefore inherits of their properties (in particular
convexity for p, q ≥ 1). With the above notations,

‖x‖p,q =

(

G
∑

g=1

‖xg‖
q
p

)1/q

= ‖(‖x1‖p, . . . , ‖xG‖p)‖q .

(6)

For p < 2, ℓp norms are often used as diversity mea-

sures, and minimizing the ℓp norm of a coefficient se-

quence of a signal generally aims at promoting con-

centration for the expansion: the distribution of coeffi-

cients is more sharply peaked at the origin for p < 2.

For p ≤ 1, concentration becomes sparsity, since small
coefficients are forced to zero. The case p = 1 has a

particular status, since the ℓ1 norm promotes sparsity

and remains convex. The situation with mixed norms is

a bit more tricky, since two exponents have to be taken

into account. However, we shall see below that values of

p (or q) smaller than 2 still yield some form of concen-

tration, in a somewhat structured way. More precisely,
depending on the choice of p and q, concentration is

promoted on each individual variable xg,m if p is close

to 1, and on an entire group of variables if q is close to

1.

2.2 Group-shrinkage operators

We first introduce generalized shrinkage operators, ex-
tending LASSO and Group-LASSO (G-LASSO) esti-

mators, before turning to extensions to the multilayered
case. For the sake of simplicity, we shall concentrate on
the particular values (p, q) ∈ {1, 2}.

Given an observation y ∈ R
N , let us denote, for

x ∈ R
N ,

Φp,q[x] =
1

2
‖y − Ax‖2

2 +
λ

q
‖x‖q

p,q , (7)

We want to solve the following optimisation problem

Pp,q : x̂ = argmin
x∈RN

Φp,q[x]

in the particular case where A is an orthogonal matrix.

For the sake of simplicity, let us introduce the following

notation

ȳ = AT y . (8)
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Then problem Ppq can also be written

min
x∈RN





1

2
‖ȳ − x‖2

2 +
λ

q

G
∑

g=1

(

M
∑

m=1

|xg,m|p

)q/p


 , (9)

Focusing on the case p, q ∈ {1, 2}, and denoting by g
and m the indices as explained before (i.e. x = {xg,m}),
we focus on problems P1,2 and P2,1.

The solution is given in Proposition 1 below. Let us

first introduce some notations. For x ∈ R, we shall set
x+ = x if x ≥ 0 and x+ = 0 if x ≤ 0. For τ ∈ R

+, we

denote by Sτ : R → R the soft thresholding operator

Sτ (x) =

{

sgn(x)(|x| − τ) if |x| ≥ τ

0 otherwise

Also, given a vector ȳg = {ȳg,1, . . . ȳg,M}, denote by

y̌g = {y̌g,1, . . . y̌g,M} the vector whose components are
the absolute values of coefficients ȳg,m, sorted in de-

scending order: y̌g,1 ≥ y̌g,2 ≥ · · · ≥ y̌g,M . Finally, for

a given λ ∈ R
+, denote by Mg(λ) the positive integer

such that

y̌g,Mg(λ)+1 ≤

Mg(λ)+1
∑

m=1

(y̌g,m − y̌g,Mg(λ)+1)

and

y̌g,Mg(λ) > λ

Mg(λ)
∑

m=1

(y̌g,m − y̌g,Mg(λ)) ,

and set

‖|ȳg‖| =

Mg(λ)
∑

m=1

y̌g,m = ‖y̌g,1:Mg(λ)‖1 ,

where y̌g,1:Mg(λ) denotes the vector {y̌g,1, . . . y̌g,Mg(λ)}.

Proposition 1 Let A be an orthogonal matrix.

(a) The solution x̂ of problem P1,2 is given by the fol-

lowing shrinkage operation: for all g,m

x̂g,m = Sτg
(ȳg,m) ,

where the group dependent threshold τg reads

τg =
λ

1 + λMg(λ)
‖|ȳg‖|

(b) The solution x̂ of problem P2,1 is given by the fol-

lowing shrinkage operation: for all g,m

x̂g,m = ȳg,m

(

1 −
λ

‖ȳg‖2

)+

.

Remark 2 The solution of P2,1 is known in the statis-

tical community as the G-LASSO estimate, and the re-
sult was given in [23]. The solution of problem P1,2 is

obtained in [14] as a part of a more general result. In
contrast with the G-LASSO, we call the problem P1,2

the Elitist-LASSO (E-LASSO, see below). Notice that
in both cases, the result is a generalized soft threshold-

ing, or shrinkage, that is applied to a group of coeffi-
cients rather than single coefficients. Hence, coefficients
are not processed independently any more.

It is important to stress the striking difference be-

tween the two new shrinkage operators. In the second
case (the G-LASSO case), a 1D group of coefficients is
either globally retained or discarded. This may be un-

derstood as an united group shrinkage, since the same

threshold applies to all members of a given group. In
the first case, each coefficient is shrunk individually, but

the corresponding threshold depends on its 1D neigh-
borhood. That one can be understood as an elitist group

shrinkage, since most members of a given group are

thresholded, and only the emerging coefficients of each
group (it may be shown that at least one coefficient is
kept, see [14]) remain. The difference between these two
situations will appear clearly in the numerical results

below. There, we also present an approximate solution
of P1,2, which turns out to be computationally simpler.

It is also interesting to remark that the solution of

P1,2, which only involves soft thresholdings with vari-

able threshold values, is also the solution of the problem

min
x∈RN

[

G
∑

g=1

1

τg

M
∑

m=1

|yg,m − [Ax]g,m|2 + λ‖x‖1

]

, (10)

i.e. a sparse regression problem, with ℓ1 sparsity prior,

and in which the data fidelity term involves a data

dependent weighting. From a Bayesian point of view,

such a re-interpretation shows that beyond the Gaus-
sian white noise case, the so obtained solution may also
be expected to perform well in situations where a sparse

signal is embedded into a noise whose variance varies

as a function of g in the coefficient domain.

2.3 Multilayered expansion on union of bases

After having found the solution of problem Ppq in the

simple case where A is an orthogonal matrix (corre-
sponding to an orthonormal basis), we now address

similar problems, in which A is a concatenation of or-

thogonal matrices (corresponding to an union of or-

thonormal bases), and the coefficient priors are dif-

ferent for each basis. A motivation for this problem

is the decomposition of audio signals into three lay-

ers Transient + Tonal + Noise, using MDCT bases
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with different time-frequency resolutions. Similar prob-

lems may also be found in image processing, under the

name of Cartoon + Texture + Noise image decom-

positions. Such problems have been studied by vari-

ous authors and a few algorithms are already avail-

able. Probability-based approaches have been used in

the audio domain (see [15,11], that exploit simultane-

ously sparsity and persistence. Variational approaches
(such as the so-called Morphological Component Anal-
ysis) were generally preferred in the image processing

literature, that did not so far integrate the notion of

persistence. The mixed norm approach we focus on rep-

resents a good compromise between the other two ap-

proaches, as it allows one to incorporate persistence in

variational formulations.

We start from an optimization problem similar to
the one given by MCA, but, instead of using two ℓ1
norms to estimate the tonal and transient layers, we will

use suitable mixed-norms. So that, we will minimize the

following functional

Φ(x, x̃) = ‖y − A(x, x̃)T ‖2
2 + λ‖x‖q

p,q + µ‖x̃‖q̃
p̃,q̃ (11)

where the ℓp,q and ℓp̃,q̃ norms will be chosen adequately.

To decompose a signal into several layers, one chooses

a suitable dictionary for each layer. In the audio signal

example, the transient layer is known to be sparsely rep-

resented in dictionaries of wavelets, or time-frequency

dictionaries (like Gabor or MDCT) with a narrow win-

dow. At the opposite, the tonal layer is known to be
sparsely represented in time-frequency dictionaries with
a wide window.

Here we choose the special case where each dictio-

nary is an orthonormal basis, for example, two MDCT

bases with two different sizes for the windows, and ap-

ply the Block Coordinate Relaxation method [4] (BCR

for short) which inspired the Morphological Compo-

nent Analysis (MCA) algorithms [17]. BCR is specially

adapted to unions of orthogonal bases, and is known to

converge to a minimum of the basis-pursuit denoising

objective functional (3).

Let us introduce some notations. We denote by U

and V the two bases under consideration, and by U

and V the corresponding matrices. We denote by xU

the coefficients corresponding to the basis U and xV

the coefficients corresponding to the basis V. So that,

UxU corresponds to the tonal layer and V xV to the
transient layer. To obtain estimates for the two layers,

we then choose to minimize the following functional

Φ(xU,xV) =
1

2
‖y−UxU−V xV‖2

2+
λ

q
‖xU‖q

p,q+
µ

q̃
‖xV‖q̃

p̃,q̃

(12)

The BCR algorithm is then slightly modified in order

to yield a minimizer of (12):

Algorithm 1

– Let x
(0)
U

∈ R
N and x

(0)
V

∈ R
N

– Do

1. r
(i)
U

= y − V x
(i)
V

2. Find an estimate x
(i+1)
U

by solving

x
(i+1)
U

= argmin
x∈RN

1

2
‖y − Ux‖2

2 +
λ

q
‖x‖q

p,q

using Proposition 1

3. r
(i)
V

= y − Ux
(i+1)
U

4. Find an estimate x
(i+1)
V

by solving

x
(i+1)
V

= argmin
x∈RN

1

2
‖y − V x‖2

2 +
µ

q̃
‖x‖q̃

p̃,q̃

using Proposition 1

Until convergence

Following the proof given in [4] for the BCR algo-

rithm, one can exploit the results of [22] and state

Theorem 1 Let U, V ∈ R
N×N be two orthogonal ma-

trices. Let y ∈ R
N and p ≥ 1, q ≥ 1 p̃ ≥ 1, and q̃ ≥ 1.

Then Algorithm 1 converges to a minimum of (12).

Remark 3 Here, we do not deal with the more general

case where the dictionary is an arbitrary frame or even
an union of frames. This case was studied in [14], where

convergence of a corresponding iterative thresholded
Landweber algorithm was proven. However, let us point
out that the approach used in the MCA algorithm could

also be used if U and V are two frames. The heuristics

of this algorithm is to decrease the parameters λ and µ

in (3) during the iterations. Numerical results seem to
indicate convergence to the global minimum, though no

formal proof has been given so far (to our knowledge).
This heuristics was then generalized by the Stagewise
Matching Pursuit [9].

3 Group shrinkage in practice: simulations

The main goal of this section is to illustrate and com-

ment on the choice of the shrinkage operator, for spe-

cific problems on simulated signals. To this end, we limit

ourselves to decompositions on an orthogonal basis (i.e.

A is an orthogonal matrix). We introduced in the pre-

vious section two particular generalized shrinkage oper-

ators (G-LASSO and E-LASSO), with two completely

different behaviors in an orthogonal basis. Here we ana-

lyze and illustrate the behaviors of these two approaches,

and propose alternatives that overcome some potential

shortcomings in specific situations.
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To this end, we applied G-LASSO and E-LASSO

and variants to simulated signals, specifically designed
to illustrate their behavior. The simulated signals were
obtained as follows. First, the time-frequency map Λ

was simulated, using the Hidden Markov Model studied
in [15], that generates persistence along the time axis.
This map was then used to simulate a signal of the form

y[t] =
∑

ℓ∈Λ

xℓuℓ[t] . (13)

The index set Λ = {ℓ : xℓ 6= 0} is called the significance

map or time-frequency map. The corresponding (i.i.d)

time-frequency coefficients xℓ were simulated using a

normal law N (0, 1).
An example of so-generated significance map is dis-

played in Fig. 1. The map has 8.5% non zero coeffi-

cients. In the numerical examples shown below, we will

consider maps with 8.5% and 1% non zero coefficients

respectively, to study the behavior of the algorithms at

different sparsity levels.

Fig. 1 Time-Frequency map with 8.5% non-zero coefficients,
generated using fixed frequency Markov chains.

3.1 Selection of relevant groups

3.1.1 Relabelling

In some situations, all the members of a given group

need not be active at the same time. When subgroups

that are simultaneously active or inactive are known in

advance, coefficients may be re-labelled so that the clas-

sical G-LASSO estimate may be used. A trivial example

of such re-labelling is shown in Fig. 2, in the context of

a multichannel signal. There, the re-labelling is simply

a splitting of groups into subgroups, but more complex

re-labellings can also be considered.

However, this is not the most general situation, and

subgroups of active coefficients are generally neither

known in advance, nor even fixed. For that reason, a

“sliding window” alternative of the above described ap-

proach is desirable.

Fig. 2 An example of coefficient re-labelling.

3.1.2 Windowing

For this purpose, let us now assume that some extra

information about the coefficients is available, telling

us for each coefficient of index k = (g, m) which are the
other coefficients that are likely to be “active” or “inac-

tive” simultaneously with k. This generates a neighbor-
hood system, associating to any “group-member” index

k = 1, . . . N a group N (k) of “close” indices. Now, for

a given index k, it seems reasonable to use only its

neighbors in N (k) to estimate its sparse expansion, ex-

ploiting persistence within N (k). Using the G-LASSO
estimate in Proposition 1-(b), this suggests to compute

x̂g,m = ȳg,m

(

1 −
λ

‖ȳk‖ℓ2(N (k))

)+

, (14)

where we have denoted by ȳk the subsequence

ȳk = {ȳk′ , k′ ∈ N (k)} .

We call this estimate the Windowed Group-LASSO (WG-
LASSO). Notice that unlike the re-labelling approach

alluded to above, each coefficient k uses its own neigh-

bors, instead of the whole group. Compared to Proposi-

tion 1-(b), the estimated coefficients x̂g,m are obtained

from the observations ȳg,m = [Ay]g,m by pointwise mul-

tiplication with a mask function, which now depends

on the index k = (g,m). Notice also that this new gen-
eralized thresholding is not any more associated to a

simple variational problem. Fig. 3 shows an example

of a sliding window used to group a channel with its

neighborhood, where m is the channel index and g the

time-frequency index.

3.1.3 Simulations

Here we consider decomposition of multichannel signals

(sampled at 44100 Hz) on a given MDCT basis (with

23.3 millisecond long window):

ym[t] =
∑

m∈Λ

xg,mug[t] , (15)

where g is a time-frequency index and m labels chan-

nels. Λ = {g : xg,m 6= 0} is the significance map, or
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Fig. 3 An example of sliding window.

time-frequency map, and is assumed to be the same for

all channels. Then we denote by y = (y1, . . . ,yM ) ∈
R

N×M the multichannel signal, organized as an N ×M

matrix whose columns are the channels, and x ∈ R
N×M

the unknown coefficient sequences. As before, we set

y = Ay ∈ R
N×M (we recall that here A is an N × N

orthogonal matrix).

In this context, the groups labelled by g and the

members labelled by m in the previous section corre-
spond respectively to the time-frequency indices and

the channels. In other words, the model involves “be-
tween channels” dependencies.

Two multichannel signals were simulated as follows

1. Choose a percentage of non-zero coefficients, and

generate two time frequency maps Λ1 and Λ2 with

that prescribed percentage.

2. Simulate two sets of i.i.d. N (0, 1) time-frequency

coefficients xg,m, m = 1, . . . 4 and g ∈ Λ1 (resp.
m = 5, . . . 8 and g ∈ Λ2).

3. Synthesize the signals using model (15).

The simulated signals have then M = 8 channels. The

first four channels share time-frequency map Λ1 and

the last four share time-frequency map Λ2.

The various generalized thresholding estimators de-

scribed above are compared in the context of a denois-
ing problem. A Gaussian white noise is added to the

multichannel signals so as to obtain a SNR equal to
10 dB. For the sake of simplicity, the SNR is not calcu-
lated channelwise, but on the the entire multichannel
signal:

SNR(x, x̂) = 20 log10

(

‖x‖2

‖x − x̂‖2

)

(16)

where ‖.‖2 denotes the Fröbenius norm of the multi-

channel signal. This SNR may differ from the mean of
SNR of all the channel, but this difference is less than

1 dB and does not influence the behavior of the dis-
played curves.

The estimators under study are the following

– LASSO, corresponding to the problem

x̂ = argmin
x∈RN×M

‖ȳ − x‖2
2 + λ‖x‖1 .

All “channel-time-frequency” coefficients are inde-

pendent, the estimate is obtained by soft-thresholding.
– G-LASSO 1, corresponding to the problem

x̂ = argmin
x∈RN×M

‖ȳ − x‖2
2 + λ

G
∑

g=1

(

M
∑

m=1

|xg,m|

)2

.

For a given time-frequency index, all the channels
are gathered to create the groups of G-LASSO. The
groups are independent. This corresponds of the

grouping given on Fig. 2 (left).

– G-LASSO 2, which exploits prior information on the

two time-frequency maps Λ1 and Λ2, corresponds to

min
x∈RN×M

‖ȳ−x‖2
2+λ

G
∑

g=1





(

4
∑

m1=1

|xg,m1
|

)2

+

(

8
∑

m2=5

|xg,m2
|

)2


 .

For a given time-frequency index, the first four chan-

nels are gathered into a group, and the last four into

an another group. The groups are independent and

correspond of the regrouping given on Fig. 2 (right).
– The WG-LASSO, corresponding to the estimate given

in Equation (14). The two nearest neighbors of a

channel are gathered using a sliding window to give

the estimate. This corresponds to the grouping given

in Fig.3.

Different estimates were computed for various values of

λ. The range of values for λ was chosen so as to obtain

estimates with different degrees of sparsity, i.e. with

various numbers of coefficients set to zero: the bigger

the λ, the sparser the estimate.

The curves in Fig. 4 show the evolution of SNR as a

function of the number of non zero coefficients (which

depends on the value of λ) of the different estimates

for the simulated signals using the map displayed in

Fig. 1 (i.e. 8.5% nonzero coefficients). Similar results,

obtained using sparser significance maps (1% nonzero
coefficients) are displayed in Fig. 5.

The behavior of the estimates clearly depends on

the degree of sparsity of the input signal. In the two

considered cases, G-LASSO 2 (which uses more prior

information than the others) reaches the best SNR, and

provides an higher SNR than the other estimates when

the number of selected coefficients is close to the true
number of non zero coefficients.

WG-LASSO outperforms LASSO on the two curves,

except for large values of the sparsity penalty (when

many coefficients are set to zero); however this case

must be avoided to obtain a good estimate, as the SNR

collapses quickly.

Despite their globally different aspects, the curves

in Fig. 4 and Fig. 5 show very similar behaviors. In
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Fig. 4 Comparison between LASSO, 2 types of G-LASSO and
WG-GLASSO.

Fig. 5 Comparison between LASSO, 2 types of G-LASSO and
WG-GLASSO.

both cases, best results are obtained when the group-

ings are known a priori. When such a prior informa-

tion is unavailable, the WG-LASSO is definitely a good

alternative to exploit dependences between some coef-

ficients. In addition, if coefficients cannot be clustered

into groups, but possess some neighboring relationships,

WG-LASSO is able to exploit the latter.

3.2 Coefficient selection within sparse groups

Let us now turn to E-LASSO estimates. We show in

this subsection some numerical results obtained using

E-LASSO, a simplified version of E-LASSO, and a vari-

ant proposed in order to introduce across groups per-

sistence.

3.2.1 An approximation of the E-LASSO estimate

As may be seen from Proposition 1, E-LASSO involves

a sorting of coefficients ȳ, and the determination of

numbers Mg(λ) prior to the actual shrinkage opera-

tion. When these operations are skipped, this yields an

approximation of the estimator, obtained by replacing

the threshold

τg =
λ

1 + λMg(λ)
‖|ȳg‖|

by the approximation

τ ′
g =

λ

1 + λM
‖ȳg‖1 . (17)

This approximation called AE-LASSO (for Approxi-

mate E-LASSO), is simpler to compute, and has a prac-

tical interpretation, in particular in the limit of large λ

values. Indeed, letting λ → ∞ in Equation (17), the

coefficient are thresholded by ‖ȳg,m‖1/M , which is the

average of the coefficients |ȳg,m| for a fixed group index
g. The main shortcoming of this approximation is that

the threshold is bounded by this average value, which

bounds from below the number of retained coefficients.

An advantage of this approximation, is that the role of

the regularization parameter is much easier to under-

stand. We shall see in the numerical examples below

that when the number of retained coefficients is large
enough, AE-LASSO is actually a good approximation
of E-LASSO.

3.2.2 Introduction of persistence

As we have seen above, the ℓ1,2 coefficient penalty is

significantly different from the ℓ2,1 one, that leads to G-

LASSO regression: it promotes sparsity within groups

of coefficients instead of sparsity across groups. For ex-
ample, the thresholding formula (17) selects a small
number of coefficients within each group. To fix the
ideas, let us assume that a single coefficient is retained

within each group. This coefficient is likely to vary from

a group to another, since nothing in the norm pre-

vents it from doing so. If one wants to promote persis-

tence in the retained coefficients, an approach similar
to the previous one may be developed, taking into ac-
count neighbors of the considered coefficients. We start

by associating to any group index g a family N (g) of

neighbors. Then, for fixed g, we can solve the minimiza-

tion problem with ℓ1,2 coefficient penalty on the vector
ȳN (g) = {ȳg′,m, m = 1, . . . M, g′ ∈ N (g)}

Applying the same approach as before, the general-

ized thresholding formula (17) is now replaced with
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τ ′′
g =

λ

1 + λ|N (g)|
‖ȳN (g)‖1 , (18)

|N (g)| being the cardinality of the set N (g). Again, this

generalized thresholding is not associated with a simple

variational approach. The corresponding estimator is

termed PE-LASSO (for Persistent Elitist LASSO).

3.2.3 Simulations

To illustrate the behavior of the estimators described
above, we simulated a signal as follows. First, a time-

frequency map was generated as before (the map 1 of
the previous subsection was chosen); then coefficients
were generated from a normal law N (0, 1). To follow

the model given by Equation (10), at each time index,

we added a Gaussian white noise, whose variance was
randomly taken from a uniform distribution (between
1 and 128). Then denoising was performed using the

E-LASSO, AE-LASSO, PE-LASSO, WG-LASSO and

LASSO estimates, with various values of the λ parame-

ter. The PE-LASSO estimate was done by introducing

time persistence, taking nearest neighbors into account

(1 time index before and one after). WG-LASSO was

performed by gathering the 4 time-neighbors of a given

time-frequency coefficient.

We display in Fig. 6 and 7 the SNR as a function of

the number of retained non-zero coefficients for the pre-

vious estimators, for two different values of input SNR.

As expected, the E-LASSO estimate performs best in

this situation. The AE-LASSO estimate is close of the

E-LASSO estimate, but does not allow for very small

numbers of retained coefficients (as explained before).
WG-LASSO performs quite well when the number of
non zero coefficients is over-estimated. Finally, the PE-

LASSO estimate is quite disappointing, as it only out-

performs the classical LASSO. Introducing persistence

into the estimator does not seem to pay, even in situa-

tions where persistence is present in the signal.

4 Results on real signals

We now illustrate the various approaches described above

with three different problems:

– Denoising of multichannel signals, in an additive

Gaussian white noise situation.

– Denoising of a single channel signal, with non sta-

tionary random noise

– Multilayered signal decomposition.

Fig. 6 Comparison between LASSO, E-LASSO, AE-LASSO
(approximation of E-LASSO), PE-LASSO (E-LASSO with per-
sistence) and WG-LASSO; input SNR=3dB.

Fig. 7 Comparison between LASSO, E-LASSO, AE-LASSO,
PE-LASSO and WG-LASSO; input SNR=5dB.

4.1 Multichannel denoising

Sparse approximation techniques have been extended

recently to multichannel signals (see [3,13] and refer-

ences therein). We address such a problem directly via

a generalized basis pursuit denoising approach, using

the ℓ1 norm in the time-frequency direction, and the ℓ2
norm across channels.

Let us consider a multichannel signal y = {ygm, g =

1, . . . G, m = 1, . . . M}, g denoting the time index and
M the channel index. Consider an orthonormal basis

U = {ug, g = 1, . . . G} (here, g labels the atoms of the
basis) for the single channel signal space. We are inter-

ested in expansions of the form y =
∑

g xgug (where

multichannel vectors are denoted with bold symbols),

in cases where the observations are noisy, and the basis

U has been chosen in such a way that the coefficient
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Fig. 8 Multichannel denoising of the train signal. SNR as a func-
tion of the number of retained coefficients; full curve: LASSO;

dashed curve: G-LASSO; dashed-dotted curve: WG-LASSO.

sequences x are sparse in the g direction, and persistent

across channels. Then, we are close to the case described

in Section 3.1.

In this case, A is an orthogonal matrix and the op-

timization problem is formulated as before:

min
x∈RN×M

(

‖y − Ax‖2
2 + λ‖x‖q

p,q

)

,

M being the number of channels. Since the matrix A

remains orthogonal, the results above may then be ap-

plied directly.

Since we aim at privileging groups of coefficients

(persistence across channels), we choose the G-LASSO

estimate provided in Proposition 1-(b). We illustrate

this problem with a sound example recorded in a run-

ning train.

The considered signal features low frequency noise,

phone ringings, voice, clicks and additional transient

components. The signal is a four channels signal, recorded

using three directional and one omni-directional micro-

phones. Gaussian white noise was added to the four

channels, yielding input SNR equal to 6 dB. The sig-

nal was denoised by applying LASSO (corresponding

to the ℓ1 norm prior on the set of coefficients), and

G-LASSO (corresponding to ℓ2,1 norm prior on coeffi-

cients). As stressed before, this choice is motivated by

the desire of using the same significance map (i.e. the

set of labels of nonzero coefficients) for all channels.

Simulations were run with various values of the thresh-

old (i.e. the Lagrange parameter). Corresponding SNR

curves are displayed in Fig. 8.

The mixed norm based approach clearly outperforms
the ℓ1 norm approach significantly. Similar results (not

shown here) were also obtained on different multichan-

nel audio signals. The improvement appears to increase

with the number of channels, as may be expected. In

the particular example considered here, we remark that

even though the four microphones are different (three

being directional), the four signals are coherent enough

for G-LASSO to improve significantly the LASSO re-

sults.
Let us finally stress that the same approach may be

developed in many other multichannel signal denoising

contexts, such as color image denoising, multispectral

imaging,...

4.2 Denoising a “vinyl recording” like noisy signal

The E-LASSO and AE-LASSO estimates are now com-

pared to the LASSO in the context of single channel de-

noising. In the standard additive Gaussian white noise
benchmark, the soft-thresholding provided by LASSO

is a better choice than the generalized shrinkage oper-
ators obtained using mixed-norms. However, based on
Equation (10), we also remark that E-LASSO and AE-
LASSO are valuable alternatives when going beyond

the Gaussian white noise assumption, in cases where

the noise variance varies with the group index g (this
was already visible in the experiments of Section 3.2).

Here we consider the case of (single channel) au-
dio signal, perturbed by additive non-stationary noise,

whose variance varies significantly with time. The con-

sidered example was taken from vinyl recordings1. Vinyl

recording noise (including many “cracks” and other non-

stationary noises) was added to a musical signal (ex-

cerpt of about 6 s, 218 samples at 44100 Hz sampling

rate, of the song “Mamavatu” from Susheela Raman),

the resulting input SNR being about 1 dB only. This

noisy signal was then expanded in a MDCT basis (with

512 samples -about 11 ms- long windows). The group

index g (see Section 2) was chosen as the time index

of the MDCT basis functions, and m as the frequency
index.

Fig. 9 displays the evolution of the output SNR as a
function of the number of non-zero coefficients for the

LASSO, E-LASSO, AE-LASSO, PE-LASSO and WG-

LASSO. The behavior of the curves is close to the one

observed on Fig. 6 and 7 of Section 3.2, even though

the SNR improvement is not large.

4.3 Multilayered audio signal expansion

We now consider the problem of decomposing (single

channel) signals into layers of different nature, focus-

ing again on the case of audio signals, from which we

1 Samples of vinyl recordings noise are available at the web site
www.universal soundbank.com/audio.htm
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Fig. 9 Comparison between LASSO, E-LASSO, AE-LASSO,
PE-LASSO and WG-LASSO, on the single channel audio signal

with additive “vinyl recording type” noise.

aim at extracting transient and tonal components. This
problem has received increasing interest recently, as
such a separation proves useful both by itself (for ex-

ample for denoising [11] or compression [15], and as

pre-processing step for various sound processing tasks

(such as, signal analysis, for which different layers are

analyzed using different approaches, or sound transfor-

mation, e.g. pitch shifting, for which the transformation

has to be different for different layers). An intrinsic diffi-

culty is the absence of ground truth that could be used
for validating the proposed approaches. However, we
shall see that the approach developed here is suitable
for multilayered signal decomposition, and that differ-

ent choices for the coefficient priors yield significantly

different results.

Multilayered separation may be performed using var-

ious approaches [11,15] (see also the MCA algorithm for

cartoon + texture separation in images [17]). Here we

illustrate the influence of the mixed-norm in the regres-

sion problem (12), in comparison to the usual ℓ1 norm

used in the MCA regression problem (3).

We choose a musical signal taken from the “Mama-

vatu” song (see above), that involves percussive instru-

ments, voice and guitar. The signal duration is about 6 s

(218 samples). Keeping the notations of subsection 2.3,

one then expects to obtain an estimate V x̂V of the tran-

sient layer, and an estimate Ux̂U of the tonal layer. We

compare the estimates given by choosing two ℓ1 norms
(as in MCA), and several mixed norms, to be specified

below. We choose for U a MDCT basis with a 4096 sam-
ples window length, and for V a MDCT basis with a

128 samples window length. The representations of the

MDCT coefficients of the tonal (resp. transient) layer in

U (res. V) are shown in Fig. 10. The particular struc-

Fig. 10 MDCT coefficients of th signal. Top: in U, bottom: in

V.

tures of both layers, with their persistence properties,

appear clearly there.

The tonal layer is expected to be sparsely repre-

sented in the frequency domain, with emergent frequen-

cies that may evolve slowly with time (i.e. almost hori-

zontal lines of large MDCT coefficients). Possible choices

for the estimates are E-LASSO (sparse within group)

with the time label as group label, or G-LASSO (sparse

across groups) with the frequency label as group label.

However, the latter choice turns out to be a poor strat-

egy for the tonal layer, because of the slow evolution

in time of the frequencies. Furthermore, experiments

show that for this example, LASSO and E-LASSO per-

forms very similarly to estimate the tonal layer. We
thus limit the present illustration to LASSO estimates
for the tonal layer.

In a similar spirit, the transient layer is expected

to be sparse in time, but spread out in the frequency

domain. Then, for the transient layer, while E-LASSO

with the frequency label as group label still seems a rel-

evant choice, G-LASSO (with the time label as group

label) is also interesting because of the particular struc-
tures of transients, which are most often sharply time-
localized.

Then, in order to show the differences between the

ℓ1, ℓ12 and ℓ21 mixed-norms, we fixed the ℓ1 norm to

estimate the tonal layer, and we compared the results
with the three different choices for the transient layer.

In the numerical simulations presented here, the λ

and µ parameters were tuned to obtain approximately

the same number of coefficients for each functional, to
well illustrate the differences between the norms. Ta-
ble 1 summarizes the results obtained using the three

possible functionals. The first line of the table gives the

choices that were made for norms for the tonal layer

and the transient layer. The second and the third (resp

fourth and fifth) lines give respectively the numbers of

retained coefficients for xU (resp xV) and SNR of this



12

norms L / L L / EL L / GL

nbcoeff xU 16.4% 16.5% 16.7%

SNR xU 7.6 dB 17.8 dB 20.2 dB

nbcoeff xV 7.4% 7.5% 7.4%

SNR xV 2.8 dB 0.22 dB 0.12 dB

nbcoeff xU + xV 23.8% 24.1 24.2%

SNR xV + xV 26.1 dB 25.4 dB 24.1 dB

Table 1 Results obtained for three different choices of estimates.
number of retained coefficients in each layer and reconstruction,
and corresponding SNR values. L stands for LASSO, G-L for
G-LASSO and E-L for E-LASSO.

layer, defined as 20 times the base two logarithm of
the ratio of the energy of the signal by the energy of
the layer. The last two lines give the total number of

retained coefficient and the SNR of the reconstruction

xU + xV, defined as above. Here, SNRs should not be

interpreted as a performance measure, but rather as

a way to compare the behaviors of the three estimates.
Hence, one can see that with the LASSO/LASSO choice,
the transient layer is closer to the original signal than
with the other two choices, but does not yield the best

expected results for this layer (see figures and discus-

sion below).

Together with this table, Fig. 11 and 12 clearly show

the different behaviors of the estimators. Obviously, E-

LASSO promotes persistence in comparison to LASSO.

For the transient layer, the vertical structures are bet-

ter preserved by E-LASSO. In comparison, the LASSO

transient estimate catches a lot of low frequency com-

ponents, which is generally not desirable.

The G-LASSO transient estimate (Fig. 12) performs

quite differently. Like E-LASSO, it is not affected by

low frequency components. In addition, it provides a

very simple map of nonzero coefficients, which may be

interesting for some tasks such as transient or onset de-

tection. However, this estimate may also be considered
an over simplification of the transient layer.

Even though the reconstructions obtained with the
three decompositions are very similar (in terms of SNR

and listening2), the behaviors of the layers are com-

pletely different. With the LASSO/LASSO choice, the

low frequencies are shared between the two layers, while

the partials are better preserved in the tonal layer with

the LASSO/E-LASSO and LASSO/G-LASSO estimates.

Fig. 11 shows the differences between the time-frequency

coefficients for the three estimates of the tonal layer.

We also tried to replace E-LASSO estimate by its
AE-LASSO approximation (17) (even though the con-

vergence proof of Algorithm 1 is not valid any more in

this case, we always observed numerical convergence).

2 Soundfiles of the different estimates can be listened from the

website [1].

Fig. 11 MDCT coefficients of the three estimates of the tonal
layer. From top to bottom: LASSO/LASSO, LASSO/E-LASSO,
LASSO/G-LASSO

As suggested by the simulation of the previous section,
results are similar to the E-LASSO, if one does not look

for a very sparse estimate.

Let us stress that the main shortcoming of E-LASSO

is the sensitivity to the regularization parameters λ and

µ: slight changes to the parameters may affect the solu-

tion significantly. AE-LASSO appears to be much less

sensitive to the choice of the regularization parameter.
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Fig. 12 MDCT coefficients of three estimates of the transient
layer. From top to bottom: LASSO/LASSO, LASSO/E-LASSO,
LASSO/G-LASSO.

5 Conclusion

We have shown in this paper the relevance of mixed

norm priors in the framework of sparse regression prob-

lems. Such mixed norms have been extensively used in

the mathematical analysis literature, but their use in

practical situations are limited to some particular ones

such as the G-LASSO and in the context of joint spar-

sity for multichannel signals. For the sake of simplicity,

the mixed norms discussed here are the ℓ1,2 and ℓ2,1

norms, but similar results may be obtained using more

general ℓp,q norms, and several standard sparse approx-

imation algorithms may be extended to that situation.

We refer to the forthcoming paper [14] for a thorough

analysis of the latter.

Mixed norms yield generalised shrinkage operators;

we also proposed new generalizations of the latter, that

allow one to refine signal modelling, and overcome some

shortcomings of standard thresholding operations. The

E-LASSO estimate (and its approximation AE-LASSO)

is a solution for the “over-sparsifying” behavior of the

ℓ1 norm. The WG-LASSO is a valuable alternative to

G-LASSO when no well-defined group of coefficients is

available. We applied these operators on simulated sig-

nal to illustrate as clearly as possible their respective

behaviors.

Here, we have only emphasized a couple of appli-

cations, in the domain of audio signal processing, for

which the results were encouraging. Let us stress that

our point was not to compare to state of the art ap-

proaches, but rather to show what can be done using

very simple techniques, that can be refined further. We

would also like to point out that this approach is not

at all specific to audio signals, and may be applied mu-

tatis mutandis to image decomposition, for example in
the framework of the MCA approach of [10], or multi-

channel signals such as EEG/MEG signals.

To conclude, it is worth coming back to the behav-

ior of mixed norms in the present context. The ratio-

nale of our approach is to use a combination of ℓ1 and
ℓ2 norms, to promote sparsity in the direction of one

of the two indices, and persistence in the direction of

the other. Now, as we have stressed at the beginning

of this paper, a doubly labelled coefficient sequence can

be obtained by arbitrary re-labelling of a given coeffi-

cient sequence. Therefore, mixed norm approaches can

be used to introduce models for coefficients involving a

small number of clusters of significant coefficients. Such

a representation features both sparsity (in the domain

of coefficient groups) and persistence (within a group).

We believe that the potential of such approaches can

be very important in a number of practical situations.
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