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Summary. The lasso penalizes a least squares regression by the sum of the absolute values
(L4-norm) of the coefficients. The form of this penalty encourages sparse solutions (with many
coefficients equal to 0). We propose the ‘fused lasso’, a generalization that is designed for prob-
lems with features that can be ordered in some meaningful way. The fused lasso penalizes the
L 4-norm of both the coefficients and their successive differences. Thus it encourages sparsity
of the coefficients and also sparsity of their differences—i.e. local constancy of the coefficient
profile. The fused lasso is especially useful when the number of features p is much greater than
N, the sample size. The technique is also extended to the ‘hinge’ loss function that underlies the
support vector classifier. We illustrate the methods on examples from protein mass spectroscopy
and gene expression data.

Keywords: Fused lasso; Gene expression; Lasso; Least squares regression; Protein mass
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1. Introduction

We consider a prediction problem with N cases having outcomes y1, y», ..., yy and features x; ,
i=1,2,...,N,j=1,2,..., p. The outcome can be quantitative, or equal to 0 or 1, representing
two classes like ‘healthy’ and ‘diseased’. We also assume that the x;; are realizations of features
X that can be ordered as X1, X»,..., X, in some meaningful way. Our goal is to predict ¥
from X1, X»,...,X,. We are especially interested in problems for which p > N. A motivating
example comes from protein mass spectroscopy, in which we observe, for each blood serum
sample i, the intensity x;; for many time-of-flight values ¢;. Time of flight is related to the mass
over charge ratio m/z of the constituent proteins in the blood. Fig. 1 shows an example that is
taken from Adam ez al. (2003): the average spectra for healthy patients and those with prostate
cancer. There are 48 538 m/z-sites in total. The full data set consists of 157 healthy patients and
167 with cancer, and the goal is to find m/z-sites that discriminate between the two groups.

Address for correspondence: Robert Tibshirani, Department of Health Research and Policy, H R P Redwood
Building, Stanford University, Stanford, CA 94305-5405, USA.
E-mail: tibs@stat.stanford.edu

© 2005 Royal Statistical Society 1369-7412/05/67091



92 R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight

80 100

60

Intensity

20 40

0

10000 20000 30000 40000 50000
m/z

Fig. 1. Protein mass spectroscopy data: average profiles from normal (

o

) and prostate cancer patients

There has been much interest in this problem in the past few years; see for example Petricoin
et al. (2002) and Adam et al. (2003).

In other examples, the order of the features may not be fixed a priori but may instead be
estimated from the data. An example is gene expression data measured from a microarray. Hier-
archical clustering can be used to estimate an ordering of the genes, putting correlated genes
near one another in the list. We illustrate our methods on both protein mass spectroscopy and
microarray data in this paper.

In Section 2 we define the fused lasso and illustrate it on a simple example. Section 3 describes
computation of the solutions. Section 4 explores asymptotic properties. In Section 5 we relate
the fused lasso to soft threshold methods and wavelets. Degrees of freedom of the fused lasso fit
are discussed in Section 6. A protein mass spectroscopy data set on prostate cancer is analysed
in Section 7, whereas Section 8 carries out a simulation study. An application of the method to
unordered features is discussed in Section 9 and illustrated on a microarray data set in Section9.1.
The hinge loss function and support vector classifiers are addressed in Section 10.

2. The lasso and fusion

We begin with a standard linear model

yi=y XijBj+ei (1)

J

with the errors g; having mean 0 and constant variance. We also assume that the predictors are
standardized to have mean 0 and unit variance, and the outcome y; has mean 0. Hence we do
not need an intercept in model (1).

We note that p may be larger then N, and typically it is much larger than N in the applications
that we consider. Many methods have been proposed for regularized or penalized regression,
including ridge regression (Hoerl and Kennard, 1970), partial least squares (Wold, 1975) and
principal components regression. Subset selection is more discrete, either including or excluding
predictors from the model. The lasso (Tibshirani, 1996) is similar to ridge regression but uses
the absolute values of the coefficients rather than their squares. The lasso finds the coefficients

B= (ﬂAl,ﬁAz, ces Bp) satisfying

A . 2 .
B=arg mm{ > (y,- —injﬁj) } subject to Z 161 <s. 2)
j J

1
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The bound s is a tuning parameter: for sufficiently large s we obtain the least squares solu-
tion, or one of the many possible least squares solutions if p > N. For smaller values of s, the
solutions are sparse, i.e. some components are exactly 0. This is attractive from a data analysis
viewpoint, as it selects the important predictors and discards the rest. In addition, since the
criterion and constraints in condition (2) are convex, the problem can be solved even for large
p (e.g. p=40000) by quadratic programming methods. We discuss computation in detail in
Section 3.

Unlike the lasso, ridge regression, partial least squares and principal components regression
do not produce sparse models. Subset selection does produce sparse models but is not a convex
operation; best subsets selection is combinatorial and is not practical for p > 30 or so.

The lasso can be applied even if p > N, and it has a unique solution assuming that no two
predictors are perfectly collinear. An interesting property of the solution is the fact that the
number of non-zero coefficients is at most min(N, p). Thus, if p=40000 and N =100, at most
100 coefficients in the solution will be non-zero. The ‘basis pursuit’ signal estimation method of
Chen et al. (2001) uses the same idea as the lasso, but applied in the wavelet or other domains.

One drawback of the lasso in the present context is the fact that it ignores ordering of the
features, of the type that we are assuming in this paper. For this purpose, we propose the fused
lasso defined by

n 2 P p
f=arg min{ Z (y,- — ZX,‘]ﬂj) } subject to z:l 18j] <s1 and 2:2 1Bj — Bj-1] < s52.

i J Jj= Jj=
3
The first constraint encourages sparsity in the coefficients; the second encourages sparsity in
their differences, i.e. flatness of the coefficient profiles 3; as a function of j. The term fusion
is borrowed from Land and Friedman (1996), who proposed the use of a penalty of the form
¥ 18— Bj—11* < s, for various values of a, especially « =0, 1, 2. They did not consider the use
of penalties on both ¥; |3; — 3;_1| and £ | 3;| as in condition (3). Fig. 2 gives a schematic view.
Fig. 3 illustrates these ideas on a simulated example. There are p =100 predictors and N =20
samples. The data were generated from a model y; =X ;x;;3; 4+ ¢; where the x;; are standard

Fig.2. Schematic diagram of the fused lasso, for the case N > p =2: we seek the first time that the contours
of the sum-of-squares loss function (<) satisfy ¥;|6;| = sy (¢) and X;|6; = 3,_1| = 52 (#)
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Gaussian, & ~ N(0, 0%) with o =0.75, and there are three blocks of consecutive non-zero 3 ;S
shown by the black points in each of the panels. Fig. 3(a) shows the univariate regression coeffi-
cients (red) and a soft thresholded version of them (green). Fig. 3(b) shows the lasso solution
(red), using 51 =35.6 and sy = 0o, and Fig. 3(c) shows the fusion estimate (using s; = oo and
s> =26). These values of s; and s, were the values that minimized the estimated test set error.
Finally Fig. 3(d) shows the fused lasso, using s; =X |3;| and s =% |3; — 81|, where 3 is
the true set of coefficients. The fused lasso does the best job in estimating the true underlying
coefficients. However, the fusion method (Fig. 3(c)) performs as well as the fused lasso does in
this example.

Fig. 4 shows another example, with the same set-up as in Fig. 3 except that 0 =0.05 and
has two non-zero areas—a spike at m/z =10 and a flat plateau between 70 and 90. As in the
previous example, the bounds s; and s, were chosen in each case to minimize the prediction
error. The lasso performs poorly; fusion captures the plateau but does not clearly isolate the
peak at m/z =10. The fused lasso does a good job overall.

An alternative formulation would use a second penalty of the form X;(38; — 3;— D?< s in
place of ¥;|3; — Bj—1] < s2 (which was also suggested by a referee). However this has the anal-
ogous drawback that ¥ 5% has compared with ¥ ;1B;l: it does not produce a sparse solution,
where sparsity refers to the first differences 3; — 3;_1. The penalty ¥; (3; — 3 1,1) < sy does not
produce a simple piecewise constant solution, but rather a ‘wiggly’ solution that is less attractive
for interpretation. The penalty 3;|3; — 31| < s2 gives a piecewise constant solution, and this
corresponds to a simple averaging of the features.

3. Computational approach

3.1. Fixed sy and s,

Criterion (3) leads to a quadratic programming problem. For large p, the problem is difficult
to solve and special care must be taken to avoid the use of p? storage elements. We use the
two-phase active set algorithm SQOPT of Gill ez al. (1997), which is designed for quadratic
programming problems with sparse linear constraints.

Letﬂ,_ﬂ -8 wrthﬂJr B; =0. Definef;=3;—3;_1 for j>1and 01 =0;. Let0/_0 —0;
with 9+ 9 > 0. Let L bea p x pmatrix with L;; =1, L;;1,;=—1 and L;; =0 otherwise so that
0= Lﬁ Let e be a column p-vector of 1s, and I be the p x p identity matrix.

Let X be the N x p matrix of features and y and 3 be N- and p-vectors of outcomes and
coefficients respectively. We can write problem (3) as

f=argmin{(y— X3 s(y— X3)} )
subject to
I -1 1 -
0 < 0 eT eT 0 0 §+ < S1 ’ ©)
0 0 0 0 ¢ ¢/ \,p 52

in addition to the non-negativity constraints 37, 37,0%,0~ > 0. The big matrix is of dimen-
sion (2p + 2) x Sp but has only 11p — 1 non-zero elements. Here ay = (00, 0,0, ...,0). Since
(1 =01, setting its bounds at +o00 avoids a double penalty for |3;|. Similarly eg = e with the first
component set to 0.
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Fig. 3. Simulated example, with p =100 predictors having coefficients shown by the black lines: (a) uni-
variate regression coefficients (red) and a soft thresholded version of them (green); (b) lasso solution (red),
using s; =35.6and s, = oo; (c) fusion estimate, using s; = oo and s, =26 (these values of sy and s, mini-
mized the estimated test set error); (d) the fused lasso, using sy =%;|6;| and s, =%;|5; = 8,_4|, where
[ is the true set of coefficients
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The SQOPT package requires the user to write a procedure that computes X T Xv for p-vectors
v that are under consideration. For many choices of the bounds s; and s;, the vector v is very
sparse and hence XT(Xv) can be efficiently computed. The algorithm is also well suited for

‘warm starts’: starting at a solution for a given s and s», the solution for nearby values of these
bounds can be found relatively quickly.

3.2. Search strategy
For moderate-sized problems (p ~ 1000 and N ~ 100 say), the above procedure is sufficiently
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Fig. 4. Simulated example with only two areas of non-zero coefficients (black points and lines; red points,
estimated coefficients from each method): (a) lasso, s =4.2; (b) fusion, s, =5.2; (c) fused lasso, s; =56.5,
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Fig. 5. Simulated example of Fig. 3: (a) attainable values of bounds s; and sy; (b) schematic diagram of the
search process for the fused lasso, described in the text

fast that it can be applied over a grid of s;- and s>-values. For larger problems, a more restricted
search is necessary. We first exploit the fact that the complete sequence of lasso and fusion
problems can be solved efficiently by using the least angle regression (LAR) procedure (Efron
et al., 2002). The fusion problem is solved by first transforming X to Z=XL~! with § =L,
applying LAR and then transforming back.

For a given problem, only some values of the bounds (s1, s2) will be attainable, i.e. the solution
vector satisfies both ¥;| B jl=s1and ¥ j|ﬁj - ﬁj_l| =s7. Fig. 5(a) shows the attainable values
for our simulated data example.

Fig. 5(b) is a schematic diagram of the search strategy. Using the LAR procedure as above, we
obtain solutions for bounds (si(i), o), where s(i) is the bound giving a solution with i degrees
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Table 1. Timings for typical runs of
the fused lasso program

)4 N Start Time (s)
100 20 Cold 0.09
500 20  Cold 1.0

1000 20 Cold 2.0

1000 200 Cold 30.4

2000 200 Cold 120.0
2000 200 Warm 16.6

of freedom. (We discuss the ‘degrees of freedom’ of the fused lasso fit in Section 6.) We use the
lasso sequence of solutions and cross-validation or a test set to estimate an optimal degrees of
freedom i. Now let

samax {10} =S 1B 1D} = B,-1{s1 D},
J

This is the largest value of the bound s, at which it affects the solution. The point ¢, in Fig. 5(b)
is [s1(), szmax{sl(?)}]. We start at ¢, and fuse the solutions by moving in the direction (1, —2).
In the same way, we define points c¢| to be the solution with degrees of freedom i/2 and c3 to
have degrees of freedom {f + min(N, p)}/2, and we fuse the solutions from those points. The
particular direction (1,—2) was chosen by empirical experimentation. We are typically not
interested in solutions that are near the pure fusion model (the lower right boundary), and this
search strategy tries to cover (roughly) the potentially useful values of (s1,s7). This strategy is
used in the real examples and simulation study that are discussed later in the paper.

For real data sets, we apply this search strategy to a training set and then evaluate the pre-
diction error over a validation set. This can be done with a single training—validation split, or
through fivefold or tenfold cross-validation. These are illustrated in the examples later in the
paper.

Table 1 shows some typical computation times for problems of various dimensions, on a
2.4 GHz Xeon Linux computer. Some further discussion of computational issues can be found
in Section 11.

4. Asymptotic properties

In this section we derive results for the fused lasso that are analogous to those for the lasso
(Knight and Fu, 2000). The penalized least squares criterion is

Al T2 (D & @ ¢

2i=x; BT+ DB+ AN X 18— Bj-1 (6)
i=1 j=1 j=2

with 6= (04, B, . .. ,6p)T and x; = (x;1, X2, . . .xip)T, and the Lagrange multipliers )\2) and )\5\3)

are functions of the sample size N.

For simplicity, we assume that p is fixed with N — oco. These are not particularly realistic
asymptotic conditions: we would prefer to have p= py — 0o as N — co. A result along these
lines is probably attainable. However, the following theorem adequately illustrates the basic
dynamics of the fused lasso.
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Theorem 1. 1EAY / /N — A >0 (1=1,2) and

. 1 N
C= th (N 1%:1 xixiT>
is non-singular then
VN(By = B)— argmin(V),

where

Vi) =—2uTW +uCu-+ )" il{uj sen(B;) 18, #0) +uj| 1(8;=0)}
]:

)4
5 2 {(uj =) 50 () = Bio1) 1B B0+l =1 | 15 =Bi)
]:

and W has an A (0, 02C) distribution.
Proof. Define Vy (u) by

N T 22y ()
VN(u):Zl{(ei—u Xi//N) =&t + Ay Zl(wj"""j/\/N'_'ﬁj')
= I=
P
+AY 2 16 = B+ g =0 [NI= 15 = Bl
J=

with u= (ug, uy,... ,up)T, and note that Vy is minimized at \/N(BN — ). First note that

N
S {(ei—u"xi/ YN — 7} 2 —2u'W+u'Cu

i=1

with finite dimensional convergence holding trivially. We also have
P P
Ay > (1B +u;//NI= 1)~ A 2 {u; sen()) 13, #0)+1us| 13, =0)}
j= j=
and

P
AP 3185 = Bty =)/ NI =15 = -1} =
]:

p p
AY > ) —uj-1) sgn( = fj-) 18;%# 8-} + Ay > {luj =yl 18;= ).
J= J=

Thus Vy(u) —4 V(u) (as defined above), with finite dimensional convergence holding trivially.
Since Vy is convex and V has a unique minimum, it follows (Geyer, 1996) that

argmin(VN)zJN(BN—ﬁ)—d>argmin(V). O
As a simple example, suppose that 8; =3, #0. Then the joint limiting distribution of

(WNB1y = B1), /N(Bay — $2)

will have probability concentrated on the line u; =u, when )\(()2) > (0. When )\(()1) > 0, we would
see a lasso-type effect on the univariate limiting distributions, which would result in a shift of
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probability to the negative side if 5] =3, > 0 and a shift of probability to the positive side if
pr=p02 <0.

5. Soft thresholding and wavelets

5.1. Soft thresholding estimators

Consider first the lasso problem with orthonormal features and N > p, i.e. in the fused lasso
problem (3) we take s» = oo and we assume that XT X = 1. Then, if 3 ; are the univariate least
squares estimates, the lasso solutions are soft threshold estimates:

B =sgn(B) - (1Bl — 1)+ @)

where v satisfies 2 |[§j(71)| =5].

Corresponding to this, there is a special case of the fused problem that also has an explicit
solution. We take s; = oo and let § =L and Z= XL~'. Note that L~! is a lower triangular
matrix of 1s, and hence the components of Z are the ‘right’ cumulative sums of the x;; across j.
This gives a lasso problem for (Z, y) and the solutions are

0;(v2)=sgn(@;)- (10,1 —72)+, ®)

provided that ZTZ =1, or equivalently XT X = LT L. Here 7, satisfies X |0AA,~ (72)] =s2. The matrix
LTL is tridiagonal, with 2s on the diagonal and —Is on the off-diagonals.

Of course we cannot have both XTX =17 and XTX =LTL at the same time. But we can con-
struct a scenario for which the fused lasso problem has an explicit solution. We take X = UL ™!
with UTU = I and assume that the full least squares estimates 3’ = (X' X)~! XT y are non-decreas-
ing:0<f) <B<...< ﬂ;,. Finally, we set s; =55 =s. Then the fused lasso solution soft-thresholds
the full least squares estimates 3’ from the right:

B= (6,501 A,0,0,...0), )

where Z’l‘ ﬁ} + A =s. However, this set-up does not seem to be very useful in practice, as its
assumptions are quite unrealistic.

5.2. Basis transformations

A transform approach to the problem of this paper would go roughly as follows. We model
(8= W=, where the columns of W are appropriate bases. For example, in our simulated example
we might use Haar wavelets, and then we can write X = X(W~) = (XW)~. Operationally, we
transform our features to Z = X W and fit y to Z~, either by soft thresholding or by lasso, giving
5. Finally we map back to obtain 3= W#. Note that soft thresholding implicitly assumes that
the Z-basis is orthonormal: ZTZ =1.

This procedure seeks a sparse representation of the (s in the transformed space. In contrast,
the lasso and simple soft thresholded estimates (7) seek a sparse representation of the (s in the
original basis.

The fused lasso is more ambitious: it uses two basis representations X and Z= XL~ and
seeks a representation that is sparse in both spaces. It does not assume orthogonality, since this
cannot hold simultaneously in both representations. The price for this ambition is an increased
computational burden.

Fig. 6 shows the results of applying soft thresholding (Fig. 6(a)) or the lasso (Fig. 6(b)) in the
space of Haar wavelets coefficients, and then transforming back to the original space. For soft



100

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight

< A = < 4

- ° ’. afy

g o

§ N A c— = 5 D -

£ - 2 o o o -

[5) ji=] -

8 o— o— § P ) .. o -
O | con» cossss—— e———— U O e m— ~ -
o o . =

0 20 40 60 80 100 0O 20 40 60 80 100
Predictor Predictor
(a) (b)

Fig. 6. Simulated example of Fig. 3: (a) true coefficients (black), and estimated coefficients (red) obtained
from transforming to a Haar wavelet basis, thresholding and transforming back; (b) same procedure, except
that the lasso was applied to the Haar coefficients (rather than soft thresholding)

thresholding, we used the level-dependent threshold o,/{2 log(N;)}, where N; is the number
of wavelet coefficients at the given scale and o was chosen to minimize the test error (see for
example Donoho and Johnstone (1994)). For the lasso, we chose the bound s; to minimize the
test error. The resulting estimates are not very accurate, especially that from the lasso. This may
be partly due to the fact that the wavelet basis is not translation invariant. Hence, if the non-zero
coefficients are not situated near a power of 2 along the feature axis, the wavelet basis will have
difficulty representing it.

6. Degrees of freedom of the fused lasso fit

It is useful to consider how many ‘degrees of freedom’ are used in a fused lasso fit $= X/ as
s1 and sy are varied. Efron et al. (2002) considered a definition of degrees of freedom using the
formula of Stein (1981):

N
A1) =5 3 covC 30 (10
i=

where o2 is the variance of y; with X fixed and cov refers to covariance with X fixed. For a stan-
dard multiple linear regression with p < N predictors, df(y) reduces to p. Now, in the special
case of an orthonormal design (XTX = 1), the lasso estimators are simply the soft threshold
estimates (7), and Efron et al. (2002) showed that the degrees of freedom equal the number of
non-zero coefficients. They also proved this for the LAR and lasso estimators under a ‘positive
cone condition’, which implies that the estimates are monotone as a function of the L;-bound
s1. The proof in the orthonormal case is simple: it uses Stein’s formula

1 X )
> COV(yi,gi):E{Z 90) }
0% i i Oy

(I

where y=(y1, y2, ..., yn) is amultivariate normal vector with mean p and covariance I, and g(y)
isan estimator, an almost differentiable function from R" to R" . For the lasso with orthonormal
design, we rotate the basis so that X = I, and hence from equation (7) g(y) =sgn(y;)(|y:| —1).
The derivative dg(y)/dy; equals 1 if the ith component is non-zero and 0 otherwise. Hence the
degrees of freedom are the number of non-zero coefficients.
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For the fused lasso, the natural estimate of the degrees of freedom is
df($) =#{non-zero coefficient blocks in 3}. (12)

In other words, we count a sequence of one or more consecutive non-zero and equal 3 ;-values
as 1 degree of freedom. Equivalently, we can define

df(9) = p—#{B; =0} —#{B; — Bj-1=0, B, Bj—1 #0}. 13)

It is easy to see that these two definitions are the same. Furthermore, the objective function can
be made 0 when df () > min(N, p), and hence min(N, p) is an effective upper bound for the
degrees of freedom. We have no proof that df (9) is a good estimate in general, but it follows
from the Stein result (11) in scenarios (7)—(9).

Fig. 7 compares the estimated and actual degrees of freedom for the fused lasso and the lasso.
The approximation for the fused lasso is fairly crude, but it is not much worse than that for
the lasso. We used this definition only for descriptive purposes, to obtain a rough idea of the
complexity of the fitted model.

6.1. Sparsity of fused lasso solutions

As was mentioned in Section 2, the lasso has a sparse solution in high dimensional modelling,
i.e.,if p > N, lasso solutions will have at most N non-zero coefficients, under mild (‘non-redun-
dancy’) conditions. This property extends to any convex loss function with a lasso penalty. It is
proven explicitly, and the required non-redundancy conditions are spelled out, in Rosset et al.
(2004), appendix A.

The fused lasso turns out to have a similar sparsity property. Instead of applying to the num-
ber of non-zero coefficients, however, the sparsity property applies to the number of sequences
of identical non-zero coefficients. So, if we consider the prostate cancer example in Section 7 and
Fig. 8, sparsity of the lasso implies that we could have at most 216 red dots in Fig. 8(b). Spar-
sity of the fused lasso implies that we could have at most 216 black sequences of consecutive
m/z-values with the same coefficient.

The formal statement of the sparsity result for the fused lasso follows.

Theorem 2. Set By =0. Let nseq(ﬂ)_ _1 {8 #Bj-1}. Then, under ‘non- redundancy con-
ditions on the design matrix X, the fused lasso problem (3) has a unique solution 3 with

nseq(ﬁ) <N.
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Fig. 8. Results for the prostate cancer example: , o, fused lasso non-zero coefficients; .- , o, lasso

non-zero coefficients

The proof is very similar to the sparsity proof for the lasso in Rosset et al. (2004), and is
based on examining the Karush—Kuhn-Tucker conditions for optimality of the solution to
the constrained problem (3). The non-redundancy conditions mentioned can be qualitatively
summarized as follows.

(a) No N columns of the design matrix X are linearly dependent.
(b) None of a finite set of N + 1 linear equations in N variables (the coefficients of which
depend on the specific problem) has a solution.

7. Analysis of prostate cancer data

As mentioned in Section 1 the prostate cancer data set consists of 48538 measurements on
324 patients: 157 healthy and 167 with cancer. The average profiles (centroids) are shown in
Fig. 1. Following the original researchers, we ignored m/z-sites below 2000, where chemical
artefacts can occur. We randomly created training and validation sets of size 216 and 108
patients respectively. To make computations manageable, we average the data in consecutive
blocks of 20, giving a total of 2181 sites. (We did manage to run the lasso on the full set of sites,
and it produced error rates that were about the same as those reported for the lasso here.) The
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Table 2. Prostate data results

Method Validation — Degrees of ~ Number of sy 52
errors/108 freedom sites

Nearest shrunken centroids 30 227

Lasso 16 60 40 83 164

Fusion 18 102 2171 16 32

Fused lasso 16 103 218 113 103

results of various methods are shown in Table 2. In this two-class setting, the ‘nearest shrunken
centroids’ method (Tibshirani et al., 2001) is essentially equivalent to soft thresholding of the
univariate regression coefficients.

Adam et al. (2003) reported error rates around 5% for a four-class version of this problem,
using a peak finding procedure followed by a decision tree algorithm. However, we (and at least
one other group that we know of) have had difficulty replicating their results, even when using
their extracted peaks.

Fig. 8 shows the non-zero coefficients from the two methods. We see that the fused lasso puts
non-zero weights at more sites, spreading out the weights especially at higher m/z-values. A
more careful analysis would use cross-validation to choose the bounds, and then report the test
error for these bounds. We carry out such an analysis for the leukaemia data in Section 9.1.

8. A simulation study

We carried out a small simulation study to compare the performance of the lasso and the fused
lasso. To ensure that our feature set had a realistic correlation structure for protein mass spec-
troscopy, we used the first 1000 features from the data set that was described in the previous
section. We also used a random subset of 100 of the patients, to keep the feature to sample
size ratio near a realistic level. We then generated coefficient vectors 3 by choosing 1-10 non-
overlapping m /z-sites at random and defining blocks of equal non-zero coefficients of lengths
uniform between 1 and 100. The values of the coefficients were generated as N(0, 1). Finally,
training and test sets were generated according to

y=Xp+Z,
2.5Z~N(0,1).

The set-up is such that the amount of test variance that is explained by the model is about
50%.

For each data set, we found the lasso solution with the minimum test error. We then used
the search strategy that was outlined in Section 3 for the fused lasso. Table 3 summarizes the
results of 20 simulations from this model. Sensitivity and specificity refer to the proportion of
true non-zero coefficients and true zero coefficients that are detected by each method. Shown
are the minimum test error solution from the fused lasso and also that for the true values of the
bounds s; and s5.

We see that the fused lasso slightly improves on the test error of the lasso and detects a
much large proportion of the true non-zero coefficients. In the process, it has a lower specificity.
Even with the true s;- and sy-bounds, the fused lasso detects less than half the true non-zero
coefficients. This demonstrates the inherent difficulty of problems having p > N.

(14)
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Table 3. Results of the simulation studyf

Method Test error Sensitivity Specificity

Lasso 265.194 (7.957)  0.055(0.009)  0.985(0.003)

Fused lasso 256.117 (7.450)  0.478 (0.082)  0.693 (0.072)

Fused lasso 261.380 (8.724)  0.446 (0.045)  0.832(0.018)
(true s1, 52)

tStandard errors are given in parentheses.

9. Application to unordered features

The fused lasso definition (3) assumes that the features x; ;, and hence the corresponding param-
eters 3;, have a natural order in j. In some problems, however, the features have no prespecified
order, e.g. genes in a microarray experiment. There are at least two ways to apply the fused lasso
in this case. First, we can estimate an order for the features, using for example multidimensional
scaling or hierarchical clustering. The latter is commonly used for creating heat map displays
of microarray data.

Alternatively, we notice that definition (3) does not require a complete ordering of the features
but only specification of the nearest neighbour of each feature, i.e. let k(j) be the index of the
feature that is closest to feature j, in terms, for example, of the smallest Euclidean distance or
maximal correlation. Then we can use the fused lasso with difference constraint

2185 = Br(p| < s2.
J

Computationally, this just changes the p linear constraints that are expressed in matrix L in
expression (5). Note that more complicated schemes, such as the use of more than one near
neighbour, would increase the number of linear constraints, potentially up to p?. We illustrate
the first method in the example below.

9.1. Leukaemia classification by using microarrays

The leukaemia data were introduced in Golub ez al. (1999). There are 7129 genes and 38 samples:
27 in class 1 (acute lymphocytic leukaemia) and 11 in class 2 (acute mylogenous leukaemia). In
addition there is a test sample of size 34. The prediction results are shown in Table 4.

The first two rows are based on all 7129 genes. The procedure of Golub ez al. (1999) is similar
to nearest shrunken centroids, but it uses hard thresholding. For the lasso and fusion meth-
ods, we first filtered down to the top 1000 genes in terms of overall variance. Then we applied
average linkage hierarchical clustering to the genes, to provide a gene order for the fusion
process.

All lasso and fusion models were fitted by optimizing the tuning parameters using cross-
validation and then applying these values to the test set. The pure fusion estimate method (6)
did poorly in the test error: this error never dropped below 3 for any value of the bound s,.

We see that in row (4) fusing the lasso solution gives about the same error rate, using about
four times as many genes. Further fusion in row (5) seems to increase the test error rate. Table 5
shows a sample of the estimated coefficients for the lasso and fused lasso solution method (4).
We see that in many cases the fusion process has spread out the coefficient of a non-zero lasso
coefficient onto adjacent genes.
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Method 10-fold cross- Test  Number of
validation error  error genes

(1) Golub et al. (1999) (50 genes) 3/38 4/34 50

(2) Nearest shrunken centroid 1/38 2/34 21
(21 genes)

(3) Lasso, 37 degrees of freedom 1/38 1/34 37
(s1=0.65,50,=1.32)

(4) Fused lasso, 38 degrees of freedom 1/38 2/34 135
(s1=1.08,5,=0.71)

(5) Fused lasso, 20 degrees of freedom 1/38 4/34 737
(s1=1.35,5,=1.01)

(6) Fusion, 1 degree of freedom 1/38 12/34 975

Table 5. Leukaemia data example: a sample of the non-zero coefficients for the lasso and fused lasso, with
contiguous blocks delineatedt

Gene Lasso Fused lasso Gene Lasso Fused lasso Gene Lasso Fused lasso
9 0.00000 0.00203 421 —0.08874  —0.02506 765 0.00000 0.00361
10 0.00000 0.00495 422 0.00000  —0.00110 766 0.00000 0.00361
11 0.00000 0.00495 767 0.00000 0.00361
12 0.00000 0.00495 475  —0.01734 0.00000 768 0.00000 0.00361
13 0.00000 0.00495 769 0.00102 0.00361
14 0.00000 0.00495 522 0.00000  —0.00907 770 0.00000 0.00361
15 0.00000 0.00495 523 0.00000  —0.00907 771 0.00000 0.00361
524 0.00000 —0.00907 772 0.00000 0.00361
22 0.01923 0.00745 525 0.00000  —0.00907
23 0.00000 0.00745 526 0.00000  —0.00907 788 0.04317 0.03327
24 0.00000 0.00745 527 0.00000  —0.00907
25 0.00000 0.00745 528 0.00000  —0.00907 798 0.02476 0.01514
26 0.00000 0.00745 799 0.00000 0.01514
27 0.01157 0.00294 530 0.01062 0.00000 800 0.00000 0.01514
31 —0.00227 0.00000 563 0.00000  —0.02018 815  —0.00239 0.00000
564 0.00000  —0.02018
39 —0.00992 0.00000 565 0.00000  —0.02018 835 0.00000 —0.01996
566 0.00000 —0.02018 836 0.00000 —0.01996
44 —0.00181 0.00000 567 0.00000  —0.02018 837 0.00000 —0.01996
838 0.00000 —0.00408

+The full table appears in Tibshirani ez al. (2004).

10. Hinge loss

For two-class problems the maximum margin approach that is used in the support vector classi-
fier (Boser et al., 1992; Vapnik, 1996) is an attractive alternative to least squares. The maximum
margin method can be expressed in terms of the ‘hinge’ loss function (see for example Hastie

et al. (2001), chapter 11). We minimize

N
J(ﬁo:ﬁaf)ngi

5)
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Table 6. Signs of fused
lasso coefficients (rows)
versus signs of fused lasso
support vector coefficients
(columns)

-1 0 1

0 17 822 26
1 0 60 35

subject to
yi(Bo+BTx)>1-¢, &>0, foralli.

The original support vector classifier includes an Lj;-constraint E’;l ﬂf <s. Recently there has
been interest in the L-constrained (lasso) support vector classifier. Zhu et al. (2003) developed
an LAR-like algorithm for solving the problem for all values of the bound s.

We can generalize to the fused lasso support vector classifier by imposing constraints

P
Do 1B <81,
j=1

» (16)
> 1Bj = Bj-11< 5.
j=2
The complete set of constraints can be written as
£
1 I y yIJx 0 0 0 0 Bo 00
—ap 0 0 L 0 0 -1 1 B ao
0 |[g]0O0 I -1 I 0 O BT l<] 0], (17
0 00 0 e T 0 0 B~ 51
0 00 0 0 0 e 1/ |of 52
o-

in addition to the bounds &;, 5;& ﬁj_, 0;’, 0]-_ > 0. Since the objective function (15) is linear, this
optimization is a linear (rather than quadratic) programming problem. Our implementation uses
the SQOPT package again, as it handles both linear and quadratic programming problems.

We applied the fused lasso support vector classifier to the microarray leukaemia data. Using
s1 =2 and s, =4 gave a solution with 90 non-zero coefficients and 38 degrees of freedom. It
produced one misclassification error in both tenfold cross-validation and the test set, making it
competitive with the best classifiers from Table 4. Table 6 compares the signs of the fused lasso
coefficients (rows) and the fused lasso support vector coefficients (columns). The agreement is
substantial, but far from perfect.

One advantage of the support vector formulation is its fairly easy extension to multiclass
problems: see for example Lee ez al. (2002).

11. Discussion

The fused lasso seems a promising method for regression and classification, in settings where
the features have a natural order.
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One difficulty in using the fused lasso is computational speed. The timing results in Table 1
show that, when p > 2000 and N > 200, speed could become a practical limitation. This is espe-
cially true if five or tenfold cross-validation is carried out. Hot starts can help: starting with large
values of (s, s2), we obtain solutions for smaller values in a constant (short) time. (Initially we
used increasing values of (s1, s3) because each solution is sure to be a feasible starting-point for
the next values. However, with decreasing values of (s1, s2), SQOPT achieves feasibility quickly
and has tended to be more efficient that way.)

The LAR algorithm of Efron et al. (2002) solves efficiently the entire sequence of lasso prob-
lems, for all values of the L{-bound s;. It does so by exploiting the fact that the solution profiles
are piecewise linear functions of the Lj-bound, and the set of active coefficients changes in a
predictable way. One can show that the fused lasso solutions are piecewise linear functions as
we move in a straight line in the (A1, A2) plane (see Rosset and Zhu (2003)). Here (A1, A») are
the Lagrange multipliers corresponding to the bounds s; and s,. Hence it might be possible to
develop an LAR-style algorithm for quickly solving the fused lasso problem along these straight
lines. However, such an algorithm would be considerably more complex than LAR, because of
the many possible ways that the active sets of constraints can change. In LAR we can only add
or drop a variable at a given step. In the fused lasso, we can add or drop a variable, or fuse or
defuse a set of variables. We have not yet succeeded in developing an efficient algorithm for this
procedure, but it will be a topic of future research.

Generalizations of the fused lasso to higher dimensional orderings may also be possible. Sup-
pose that the features x;  are arranged on a two-way grid—e.g. in an image. Then we might
constrain coefficients that are 1 unit apart in any direction, i.e. constraints of the form

o181 <1,
Yo 1Bik—=Bial+ >0 1Brj— Bl <s2. (18)

lk=1]=1 lk=ij=1

This would present interesting computational challenges, as the number of constraints is of the
order p?.

Acknowledgements

Tibshirani was partially supported by National Science Foundation grant DMS-9971405 and
National Institutes of Health contract NO1-HV-28183. Saunders was partially supported by
National Science Foundation grant CCR-0306662 and Office of Naval Research grant N00014-
02-1-0076. Philip Gill’s continuing work on the quadratic programming solver SQOPT is also
gratefully acknowledged.

References

Adam, B.-L., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares, L. H., Semmes, O. J., Schellhammer,
P F, Yasui, Y., Feng, Z. and Wright, Jr, G. L. W. (2003) Serum protein fingerprinting coupled with a pattern-
matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy mean. Cancer
Res., 63, 3609-3614.

Boser, B., Guyon, 1. and Vapnik, V. (1992) A training algorithm for optimal margin classifiers. In Proc. Compu-
tational Learning Theory II, Philadelphia. New York: Springer.

Chen, S. S., Donoho, D. L. and Saunders, M. A. (2001) Atomic decomposition by basis pursuit. STAM Rev., 43,
129-159.

Donoho, D. and Johnstone, 1. (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425-455.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2002) Least angle regression. Technical Report. Stanford
University, Stanford.

Geyer, C. (1996) On the asymptotics of convex stochastic optimization. Technical Report. University of Minnesota,
Minneapolis.



108 R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight

Gill, P. E., Murray, W. and Saunders, M. A. (1997) Users guide for SQOPT 5.3: a Fortran package for large-scale
linear and quadratic programming. Technical Report NA 97-4. University of California, San Diego.

Golub, T., Slonim, D., Tamayo, P,, Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J.,
Caligiuri, M., Bloomfield, C. and Lander, E. (1999) Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science, 286, 531-536.

Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statistical Learning; Data Mining, Inference
and Prediction. New York: Springer.

Hoerl, A. E. and Kennard, R. (1970) Ridge regression: biased estimation for nonorthogonal problems. Techno-
metrics, 12, 55-67.

Knight, K. and Fu, W. (2000) Asymptotics for lasso-type estimators. Ann. Statist., 28, 1356-1378.

Land, S. and Friedman, J. (1996) Variable fusion: a new method of adaptive signal regression. Technical Report.
Department of Statistics, Stanford University, Stanford.

Lee, Y., Lin, Y. and Wahba, G. (2002) Multicategory support vector machines, theory, and application to
the classification of microarray data and satellite radiance data. Technical Report. University of Wisconsin,
Madison.

Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V., Steinberg, S. M., Mills, G. B., Simone,
C., Fishman, D. A., Kohn, E. and Liotta, L. A. (2002) Use of proteomic patterns in serum to identify ovarian
cancer. Lancet, 359, 572-5717.

Rosset, S. and Zhu, J. (2003) Adaptable, efficient and robust methods for regression and classification via piecewise
linear regularized coefficient paths. Stanford University, Stanford.

Rosset, S., Zhu, J. and Hastie, T. (2004) Boosting as a regularized path to a maximum margin classifier. J. Mach.
Learn. Res., 5, 941-973.

Stein, C. (1981) Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9, 1131-1151.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2001) Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proc. Natn. Acad. Sci. USA, 99, 6567-6572.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2004) Sparsity and smoothness via the fused
lasso. Technical Report. Stanford University, Stanford.

Vapnik, V. (1996) The Nature of Statistical Learning Theory. New York: Springer.

Wold, H. (1975) Soft modelling by latent variables: the nonlinear iterative partial least squares (NIPALS)
approach. In Perspectives in Probability and Statistics, in Honor of M. S. Bartlett, pp. 117-144.

Zhu, J., Rosset, S., Hastie, T. and Tibshirani, R. (2003) L1 norm support vector machines. Technical Report.
Stanford University, Stanford.



