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SPARSITY AND STRUCTURE IN HYPERSPECTRAL IMAGING:
SENSING, RECONSTRUCTION, AND TARGET DETECTION

Rebecca M. Willett, Marco F. Duarte, Mark A. Davenport, and Richard G. Baraniuk

INTRODUCTION

Hyperspectral imaging is a powerful technology for remotely
inferring the material properties of the objects in a scene of in-
terest. Hyperspectral images consist of spatial maps of light
intensity variation across a large number of spectral bands
or wavelengths; alternatively, they can be thought of as a
measurement of the spectrum of light transmitted or reflected
from each spatial location in a scene. Because chemical ele-
ments have unique spectral signatures, observing the spectra
at a high spatial and spectral resolution provides information
about the material properties of the scene with much more ac-
curacy than is possible with conventional three-color images.
As a result, hyperspectral imaging is used in a variety of im-
portant applications, including remote sensing, astronomical
imaging, and fluorescence microscopy.

While hyperspectral imaging has great potential, acquir-
ing and processing hyperspectral data comes with significant
challenges. First, hyperspectral images are extremely high-
dimensional: in remote sensing applications we routinely en-
counter images over 1GB in size. This dimensionality limits
our ability to conduct fast and accurate inference (e.g., re-
moving noise or identifying significant spectral signatures).
Second, designers of hyperspectral imagers face a myriad of
tradeoffs related to photon efficiency, acquisition time, dy-
namic range, and sensor size, weight, power, and cost.

In this paper, we will review how novel sparse (low-
dimensional) image models are enabling sensor designers to
tackle many of the above challenges and create new hyper-
spectral imaging paradigms. We provide an overview the
state-of-the-art of hyperspectral image modeling with an em-
phasis on sparse models that exploit the fact that typical hy-
perspectral images, while high-dimensional, can usually be
represented using just a few elements from a basis or dic-
tionary. We also explain how sparse models facilitate the
design of novel hyperspectral imaging hardware for remote
sensing applications. We will pay special attention to cam-
eras based on the compressive sensing (CS) framework that
achieve sub-Nyquist measurement rates. We then discuss the
imaging design tradeoffs among noise performance, tempo-
ral/spatial/spectral resolution, and dynamic range that are af-
forded by the sensor system, the sparse image model, and
noise and quantization errors. Finally, we conclude by de-
scribing how the combination of sparse image models and CS
architectures can enable fast and accurate target detection.
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Fig. 1. Illustration of hyperspectral image partitions. The hyper-
spectral image spans two spatial dimensions (x,y) and one spectral
dimension (λ).

SPARSE MODELS FOR HYPERSPECTRAL IMAGES

We will consider the problem of acquiring a hyperspectral
datacube f ∈ Rdx×dy×dλ , where fi,j,λ is the intensity of light
in the hyperspectral image at location (i, j) and wavelength
λ. For notational simplicity, we will also let f denote a vec-
torized version of the hyperspectral datacube f , which is just
a vector in Rd where d 4

= dx · dy · dλ. We model the hyper-
spectral imaging process as y = Af + w, where A ∈ Rn×d
represents the imaging process, y ∈ Rn is a collection of
n measurements generated by our imaging system (where n
may be less than d), and w ∈ Rn is noise.

Due to the significant structure present in hyperspectral
datacubes and the linear nature of the aggregation performed
by many hyperspectral imagers, low-dimensional signal mod-
els for f have received significant attention in the hyperspec-
tral imaging community in a variety of applications, including
image compression, denoising, and processing. Most models
operate over a partitioning of the hyperspectral datacube into
patches along a subset of the dimensions (spatial or spectral)
as shown in Figure 1. Spectrum patches collect the intensities
for a single spatial location and all wavelengths; band patches
collect the intensities for a single wavelength at all spatial lo-
cations; and local patches collect the intensities for small in-
tervals of the three dimensions. Denoting the vectorized ver-
sions of the patches by the set {f(1), f(2), . . . , f(l)}, the goal



of a low-dimensional signal model is to represent each one
of these patches using a small number of degrees of freedom:
we search for a representation dictionary D that yields patch
representations θ(i) with a small number of nonzeros so that
we can write f(i) = Dθ(i), i = 1, . . . , l. Below, we discuss
two common choices for the dictionary D.
Principal component analysis (PCA) assumes that the data
vectors f(i) lie within or very close to a k-dimensional sub-
space of Rd/l for some k � d/l. In PCA, one computes the
empirical cross correlation matrix for the centered data C;
the eigendecomposition C = UΣUT contains only up to k
nonzero (or significant) eigenvalues, and so each patch can be
accurately represented as a linear combination of the relevant
eigenvectors. In practice, the number k is chosen to obtain
sufficiently accurate approximations of the patches.

PCA provides an effective and simple way to approximate
hyperspectral data. Consider the case in which the image f
corresponds to a scene with only a small number k � dλ
of different types of spectra present across all pixels. In this
case, it is clear that the spectral patches {f:,:,λ} will lie within
a k-dimensional subspace of Rdxdy . PCA has been applied in
this manner for hyperspectral image compression [1], classi-
fication, segmentation [2], and denoising under Gaussian [3]
and Poisson noise models [4, 5]. Furthermore, PCA models
can be estimated directly from a sufficiently large number of
compressive measurements given enough training data [6].
Sparse signal models are able to capture more elaborate
structure than PCA alone. Sparse signal models assume that
the data vectors {f(i)} lie within (or close to) a union of

(
d/l
k

)
subspaces of dimension k, where each subspace is spanned
by a different choice of k functions from the transforma-
tion D. More precisely, these models rely on a sparsity-
inducing orthogonal transform D to obtain coefficient vec-
tors θ(i) = DT f(i). In words, the coefficient vector has a
small number k of nonzero (or significant) coefficients, and
so we can represent the vector f(i) exactly (or approximately)
as the linear combination of k components of the transform
D. Sparsity models can significantly outperform PCA mod-
els in terms of approximation fidelity and are predominant in
processing and compression of natural images. Examples of
sparsity-inducing transforms include the discrete cosine and
wavelet transforms. Such transforms can be applied straight-
forwardly to band patches, as they correspond to intensity im-
ages for different light wavelengths.

An additional contribution from the sparsity literature is
the application of dictionary learning algorithms to hyper-
spectral imaging [7]. These methods use a training dataset
of image patches to learn a dictionary D which yields sparse
(albeit high-dimensional) representations. However, in con-
trast to the transformations discussed earlier, the dictionar-
ies learned here do not have orthogonal elements and require
the application of custom algorithms for sparse approxima-
tion, described in the sidebar Sparse recovery: Methods and
guarantees. In recent years, sparsity has also been studied in

contexts where the types of spectra (called endmembers) are
known a priori and that each particular pixel is a linear com-
bination of only a few of the endmembers [7, 8]. The sparse
representation of the spectrum effectively identifies the com-
ponent endmembers and their concentrations at each pixel, a
process referred to as hyperspectral unmixing [8].

Various global sparsifying transforms, to be applied to
the entire image rather than its patches, have also been pro-
posed [9–11]. Unfortunately, the corresponding increase in
dimensionality also increases the computational complexity
of the transformation and approximation; furthermore, the
improvements in approximation error are often not found to
be significant enough to warrant the additional computational
load. Nonetheless, it is possible to formulate global trans-
formations with higher computational efficiency using com-
binations of patch transformations; a common example is
to select a spectrum patch transform Dλ and a band patch
transform Dx,y and combine them using a Kronecker product
D = Dx,y ⊗ Dλ [11–13]. PCA models for spectral patches
can also be integrated with sparsity models for band patches
through the use of Kronecker product matrices [11, 12].

SPARSE MODELS AND HYPERSPECTRAL IMAGERS

The CS framework has received significant attention in the
remote sensing community due to the complexities in hyper-
spectral imaging hardware designs, the high dimensionality
of hyperspectral datasets, and the significant degree of struc-
ture and redundancy present in hyperspectral images. In this
section, we review baseline designs for hyperspectral imagers
and describe several approaches for hyperspectral imaging
that, inspired by CS, leverage the low-dimensional models in-
troduced earlier to address some of the tradeoffs in traditional
designs.
Conventional hyperspectral imagers must address a funda-
mental problem in their design: the transformation of a 3-D
signal (in the spatial and spectral domain) into measurements
obtained by optical sensing hardware, which is limited to two
spatial dimensions. Thus, a fundamental choice in the de-
sign of a hyperspectral imager is the selection of a scheme to
translate spatial and spectral dimensions into a 1-D stream of
measurements (in time, using a single sensor), a 2-D stream of
measurements (in space using optical hardware or in time and
space using a sensor array), or a 3-D stream of measurements
(in time and space using a sensor array). In this section, we
describe the most common designs as illustrated in Figure 2.

Whiskbroom designs feature optics that focus on a specific
spatial location and record either a sequence in time of voxel
spectral measurements (using a tunable filter and a single sen-
sor) or an array of samples of the spectra (using a diffraction
grating and a linear sensor array). The optical components in
whiskbroom designs select a single pixel/spatial location at
a time. Whiskbroom designs require a raster scan across the
entire field of view and have higher capture latency than other
designs; their dwell time on each specific pixel is reduced in
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Fig. 2. Hyperspectral imager architectures. Top: A spectrome-
ter consists of a diffractor (grating or prism) and a sensor array
that records light intensities at a variety of wavelengths. Bottom:
Whiskbroom designs move the spectrometer spatially throughout the
image, scanning one location at at time. Pushbroom designs scan the
image along a spatial direction using a spectrometer array.

comparison with other architectures with matching latency.
Pushbroom designs feature optics that focus along one of

the two spatial dimensions (using slit apertures, in compari-
son with pinhole apertures used by whiskbroom designs) and
record a 2-D array of voxels corresponding to a spectral/1-D-
spatial cut of the hyperspectral image (using a diffraction grat-
ing and a 2-D sensor array). The optical components are usu-
ally translated along one spatial dimension to scan the field
of view. Although the latency of pushbroom designs is lower
than that for whiskbroom designs and their mechanical com-
plexity is comparatively lower, both types of imagers intro-
duce motion in the optics that can result in spatial distortion.

Framing or staring designs feature optics similar to stan-
dard imaging cameras that capture 2-D images with additional
optics that focus on a single wavelength or band of wave-
lengths using tunable filters. Their spatial resolution matches
that of the sensor array, while spectral resolution is dependent
on the tunable filter and latency requirements. The overall de-
sign of a staring camera is much simpler than its pushbroom
and whiskbroom counterparts. However, the latency due to
the tuning of the optical filter is often longer than that of a
pushbroom design’s scanning system. Furthermore, filtering
significantly limits the quantity of light captured at the sensor.
Compressive hyperspectral imagers address a common
theme in the design descriptions above: the high number of
samples in the spectral datacube results either in high acqui-
sition latency or in significant requirements for the size of the
sensor array in the imager. Thus, it can be desirable to re-
duce the number of measurements necessary for acquisition
of the hyperspectral image at a target spatial and spectral res-
olution. Since one of the central goals in CS is to minimize
the required number of measurements (see the sidebar Sparse

recovery: Methods and guarantees for more details), this has
naturally led to its application to hyperspectral imaging. In a
compressive hyperspectral imager, we continue to model the
imaging system as y = Af + w where A is an n× d matrix,
but here we will be specifically interested in the case where n
is as small as possible (and hopefully n� d).

In all of the cases below, the reduction in measurements
is achieved through the multiplexing of the voxels of the dat-
acube during acquisition through the optical path. The re-
duction in measurements can potentially translate to a reduc-
tion in acquisition latency; this will be in tradeoff with the
additional latency of nonlinear recovery, which in general is
costlier than linear methods applied to fully sampled data. Al-
though the sequel focuses on staring designs, the architectures
can be modified to pushbroom or whiskbroom designs in a
straightforward fashion [14].

The single pixel camera [14–17], like whiskbroom de-
signs, relies on a single spectrometer. However, the mea-
surements do not focus on a single spatial location; rather,
each measurement aggregates the intensities from a randomly
selected subset of pixels of the image. Such selection is
performed by programming an optical modulator (such as a
digital micromirror device) to reflect light from a subset of
the pixels into the spectrometer while masking the light re-
flected from the rest of the pixels away from the spectrom-
eter. Choosing this configuration for the optical modulator
effectively causes the measurement at the single sensor at in-
stance i to correspond to the projection of each spectral band
f:,:,λ onto a vector As,i, where As,i is a binary 0/1 pattern
encoding the masking sequence applied by the modulator. By
stacking the m vectors as rows of a matrix As, the result-
ing measurement matrix can be expressed as the Kronecker
product A = I⊗As, where I is the identity matrix; this mea-
surement operator acts separately on each band.

The compression achieved by the single pixel camera
can significantly reduce the acquisition latency compared to
whiskbroom designs; however, depending on the number of
measurements required for recovery (which is dependent on
the complexity of the scene), this design may not outperform
pushbroom designs in terms of latency. The spatial resolution
of this camera design is given by the resolution of the spatial
light modulator, while the spectral resolution of this architec-
ture is given by the characteristics of the single spectrometer.

The coded aperture snapshot spectral imager
(CASSI) [18] employs a combination of diffraction prisms,
coded apertures, and an optical sensor array to perform
multiplexing of the voxels in the hyperspectral image. A
dispersive element shears the hyperspectral datacube by
enacting a distinct spatial translation for the light field at
each wavelength; a coded aperture then masks certain pixels
(spatial locations) of the sheared datacube, and a second
dispersive element reverses the shearing caused by the spatial
translation to result in a modified datacube with masked
voxels. This masked datacube is acquired using an optical



sensor that effectively flattens the hyperspectral image
into a single snapshot. The imager is a completely static,
single-shot design, resulting in a mechanically robust and
inexpensive system.

The spatial resolution of this design is affected by the sen-
sor array and the coded aperture (which should have matching
resolutions), while the spectral resolution is governed by the
degree of dispersion and feature size of the coded aperture.
A simplified version of CASSI requires only a single disper-
sive element and captures the sheared datacube, but requires
the sensor array size to be dx × (dy + dλ) [19]. This linear
acquisition system can be effectively represented by a highly
structured dx(dy + dλ)× dxdydλ matrix with binary entries.
CASSI is discussed in additional detail in a companion paper
in this issue [20], including coded aperture design and exten-
sions in hyperspectral image sensing and modeling.

CMOS-based compressive sensing approaches have re-
cently emerged for optical imaging [11, 21, 22]. In addition
to the aforementioned optics-based designs, it is possible to
combine these CMOS-based approaches with standard push-
broom or framing designs to reduce the number of measure-
ments taken with respect to the number of voxels. The re-
sulting designs, however, do not change the latency, spec-
tral, or spatial resolution of the resulting compressive cam-
era (when compared to a standard sensor-array camera of
the same size and count). Existing implementations of com-
pressive optical sensor arrays perform the computation of the
required projections using metal-oxide-semiconductor elec-
tronics and are based on random convolution [22], separable
transformations [21], block-based transforms [22], structured
incoherent transforms like noiselets [11], and randomized in-
tegration via Sigma-Delta ADCs [23]. The resulting measure-
ment matrices are expressed in terms of a Kronecker product
I ⊗ ACMOS , where ACMOS denotes the measurement op-
erator implemented by the CMOS design and the Kronecker
product represents the replication of the measurement process
among the snapshots required by the particular camera de-
sign (e.g., across spectral bands for a staring camera or across
shifts in a spatial dimension for a pushbroom camera).

PERFORMANCE LIMITS AND TRADEOFFS FOR
RECONSTRUCTING HYPERSPECTRAL IMAGES

The compressive hyperspectral imagers described above
enable a range of design tradeoffs among noise perfor-
mance, temporal/spatial/spectral resolution, and dynamic
range. These tradeoffs take different forms depending upon
what assumptions we can reasonably make about the sensing
matrix A, the sparse or low-dimesional structure of the hy-
perspectral image f , and the distribution of the noise w. We
will first consider the classical CS setting with white Gaussian
noise, and then discuss effects such as nonnegativity, quanti-
zation, and photon-counting noise.
Limits of CS in Gaussian noise. We begin with the sim-
ple observation model y = Af + w but where the noise w,

instead of being arbitrary, is i.i.d. Gaussian with mean zero
and variance σ2. This leads to slightly different results than
those described in the sidebar Sparse Recovery: Methods and
Guarantees. Specifically, since the noise w is now random,
we consider the expected recovery error. While we could di-
rectly apply (2) and replace ‖w‖2 with E[‖w‖2] =

√
nσ, it

is possible to get a somewhat tighter result (that does not in-
crease if we take more measurements). In particular, under
the assumption that ‖Af‖2 ≈ β‖f‖2, one can show that most
standard sparse recovery algorithms yield an estimate satisfy-
ing a guarantee of the form

E
[
‖θ − θ̂‖2

]
≤ C ′1

√
k log d

β
σ + C2

‖θ − θk‖1√
k

, (3)

where C ′1 and C2 are absolute constants. Note that we have
replaced the standard RIP assumption (that ‖Af‖2 ≈ ‖f‖2)
with the more relaxed assumption that ‖Af‖2 ≈ β‖f‖2 for
some constant β, which is equivalent to saying that A/β sat-
isfies the RIP. This can be quite useful since the RIP induces a
particular scaling of the matrix A (unit-norm columns), while
other scalings of A may be more natural in practice. Natu-
rally, either an increase in β or a decrease in σ (which are
essentially equivalent) leads to improved estimation of θ.

One might wonder whether the first term in (3), which
represents the impact of the noise w on the recovery error,
can be substantially improved. It turns out that this depen-
dence is essentially optimal. In fact, one can show that given
the freedom to pick any matrix A (not necessarily satisfying
the RIP, but with the same energy as above, i.e., ‖A‖2F = βd)
and use any recovery procedure, there is no method that can
improve on (3) by more than a constant factor [28]. In other
words, when it comes to sensing a sparse signal in the pres-
ence of Gaussian noise, standard CS algorithms are operating
at the limit of what any system could achieve given a fixed
set of nonadaptive, linear measurements (subject to some en-
ergy/SNR constraint on the sensing system A). Moreover, at
least if we wish to have an error bound that holds for arbitrary
sparse f , we cannot substantially improve this situation even
if we pick the rows of this sensing matrix A in a sequential or
adaptive fashion [29, 30].

While the bulk of the CS literature has focused on the
cases of bounded noise, as in (2), or white Gaussian noise,
as in (3), these may not necessarily be the most natural in
the context of hyperspectral imaging. In particular, Gaussian
noise is not a particularly realistic model for photon noise in
low-light imaging. We will address this more realistic noise
model below. But first, we discuss an important difference
between the standard CS framework and the problem of com-
pressive hyperspectral imaging that arises due to the fact that
our measurements are constrained to be nonnegative.
Effects of nonnegativity. Consider the mechanism described
in the sidebar Sparse recovery: Methods and guarantees for
constructing the sensing matrixA, where we set each element



[SIDEBAR] SPARSE RECOVERY: METHODS AND GUARANTEES

There are a number of algorithmic approaches to the problem of sparse signal recovery from compressive measurements. We
will not provide a complete overview of the possible recovery algorithms here. Instead, we will merely provide a rough outline
of what is possible. For further details, we refer the reader to [24] and references therein.
Perhaps the most popular method for sparse recovery is the basis pursuit algorithm (also known as `1-norm minimization):

θ̂ = arg min
θ
‖θ‖1 subject to ‖y −ADθ‖2 ≤ ε, (1)

where ‖θ‖1 =
∑
i |θi| denotes the sum of the magnitudes of the entries of θ and ε denotes the tolerable approximation distortion.

In addition to (1), there are also a variety of greedy or iterative strategies, including state-of-the-art methods like CoSaMP [25]
or iterative hard thresholding (IHT) [26], that treat the vectorAT y as a rough estimate of f and obtain θ̂ by iteratively identifying
likely nonzeros. In general, any standard sparse recovery algorithm can be applied to reconstruct a hyperspectral data cube from
compressive measurements. However, as we will see, it is important to exercise some caution due to the challenges posed by
certain characteristics of practical compressive hyperspectral imagers.
Together with the development of efficient sparse recovery algorithms, there has also been significant recent progress on con-
ditions that ensure that these algorithms obtain provably accurate estimates of the original signal f . One of the more com-
mon assumptions is that the sensing matrix A satisfies the restricted isometry property (RIP), which essentially requires that
‖Af‖2 ≈ ‖f‖2 for any k-sparse f (i.e., for any f such that we can write f = Dθ where θ has at most k nonzeros). Directly
constructing a matrix A that satisfies this property turns out to be rather difficult, but it is possible to show that if we construct
A at random, then with high probability it will satisfy the RIP. While a variety of random constructions exist, perhaps the
simplest (and most relevant to practical compressive hyperspectral imaging systems) is the so-called “Rademacher ensemble,”
where each entry of A is set to be either 1/

√
n or −1/

√
n with equal probability. Constructing A in this fashion will, with high

probability, lead to a matrix satisfying the RIP, provided that n = O(k log(d/k)) [27]. Given such an A and measurements
y = Af + w, both the approach in (1) as well as methods like CoSaMP and IHT satisfy a performance guarantee of the form

‖θ − θ̂‖2 ≤ C1‖w‖2 + C2
‖θ − θk‖1√

k
, (2)

where θk is the best possible k-sparse approximation to the original θ and C1, C2 are absolute constants. From θ̂, we can then
obtain the estimate f̂ = Dθ̂, and when D is an orthonormal basis we can translate this guarantee on θ̂ into one on f̂ . Further
discussion regarding what can be proven for more specific noise models and in the specific context of compressive hyperspectral
imagers is provided below.

of A to be ±1/
√
n with equal probability. Unfortunately, in

the context of compressive imaging, such a sensing matrix
cannot be implemented. In particular, we can think of A as
describing how light is propagated through a linear optical
system, so thatAi,j denotes the fraction of the total amount of
light from the jth voxel in the hyperspectral image that con-
tributes to the ith measurement. Clearly, the fractions cannot
have negative values, so Ai,j ≥ 0. Furthermore, the total
amount of light sensed cannot be greater than the amount of
light incident upon the system (i.e., photon flux must be pre-
served); mathematically, this has several consequences. Most
generally, this means that if aj denotes the jth column of A,
then we must have ‖aj‖1 ≤ 1, since the entries in aj corre-
spond to fractions of fj . This ensures that the total photon
flux is preserved, i.e., ‖Af‖1 ≤ ‖f‖1 for all f (where f ,
denoting the intensity of light at different locations and wave-
lengths, also consists solely of nonnegative elements). In par-
ticular imaging systems, there are additional constraints on
the entries Ai,j . For instance, in the single pixel camera ar-

chitecture, if we assume that each measurement is allocated
an equal amount of time, then the maximum possible value
for Ai,j is 1/n (since only 1/n of the total amount of light is
available during each measurement period).

These restrictions lead to a small gap between the hyper-
spectral imaging setting and the standard theoretical treatment
of CS. While it is possible to develop a specially tailored the-
ory for certain classes of matrices with nonnegative entries,
and ultimately obtain bounds similar to (2) or (3), it is per-
haps more instructive to consider how to relate the desired
RIP matrix A with ±1/

√
n entries to a physically realizable

matrix Ã with entries of zero or 1/n (with equal probabil-
ity). Specifically, one can imagine constructing Ã by adding
1/
√
n to each element of A to make each element either zero

or 2/
√
n, and then rescaling by 1/(2

√
n) to obtain a matrix

with entries of zero or 1/n. In the i.i.d. Gaussian measure-
ment noise model from above, the impact of this shifting and



renormalization is that we can write our measurements as

y = Ãf + w =
Af

2
√
n

+
‖f‖1
2n

+ w; (4)

that is, we observe a scaled version of what we would ideally
like to measure (Af ) plus a constant (DC) offset proportional
to the total amount of light in the scene. The constant off-
set introduces some unique and non-trivial challenges. As we
describe below, it has a significant impact on the noise vari-
ance in photon-limited settings. However, even in photon-rich
settings, where we may accurately adopt a Gaussian noise as-
sumption, the constant offset may cause challenges.

First, consider recovering f from y using the standard
sparse recovery methods described in the sidebar Sparse re-
covery: Methods and guarantees. The nonnegativity ofA can
lead to some important algorithmic challenges when the re-
covery algorithm has been specifically designed under the as-
sumption thatA satisfies the RIP. In particular, one of the con-
sequences of the RIP is that ATA acts like an isometry when
applied to sparse vectors. This fact is explicitly exploited
by greedy algorithms which make decisions based on AT y,
and sometimes implicitly exploited by some `1-minimization
solvers to speed convergence. Unfortunately, this is no longer
the case when the entries of A are nonnegative, since in this
case all the columns of A are correlated with each other. For
the algorithms that rely on this fact, simply plugging y into
the algorithm without any modifications will yield inaccurate
reconstructions and/or slow convergence.

Fortunately, in many cases it is possible to sidestep this is-
sue. For example, in the context of (4), if we can use the data y
to accurately estimate ‖f‖1 (or can directly obtain an estimate
of this value in advance), then we can set y′ = y−‖f‖1/(2n)
and then feed y′ into standard sparse recovery methods. This
fix can significantly improve the speed and accuracy of recon-
struction (although this approach can have significant noise
implications in the low-light regime, see [31] for details).

Alternatively, it is also often relatively straightforward to
modify the algorithm to rely less heavily on the RIP assump-
tion. For example, greedy algorithms can be modified by
replacing AT with the pseudoinverse A† = AT (AAT )−1.
More generally, this can be viewed as a special case of pre-
conditioning the data y, which is shown to significantly im-
prove reconstruction accuracy [32, 33]. Note that it is also
possible to modify standard sparse recovery methods to en-
force nonnegativity in f as well [34].
Quantization and dynamic range. A more significant chal-
lenge posed by nonnegativity arises due to the fact that phys-
ical systems must ultimately also quantize the measurements
y. Typically a quantizer will have a fixed number of quantiza-
tion levels arranged to cover the entire range of different val-
ues that elements of y may take. When this range is precisely
known in advance, each quantization level corresponds to a
small interval of different values, yielding accurate measure-
ments. In the context of the model in (4), however, note that
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Fig. 3. Illustration of dynamic range and quantization challenges
in compressive hyperspectral imaging. Left: Depiction of the same
sparse signal at three different intensity levels (brightnesses). Mid-
dle: Depiction of unquantized compressive measurements of the sig-
nals on the left using the sensing matrix construction in (4). Right:
The quantized measurements, rescaled for easy visual comparison.
We apply the same 4-bit uniform quantizer, designed to quantize
values between 0 and 30, to each set of measurements. Clearly de-
signing a quantizer capable of quantizing measurements from bright
sources limits the accuracy of quantized measurements at lower in-
tensities.

we are actually trying to quantize small fluctuations (deter-
mined by Af ) around a constant offset (determined by ‖f‖1)
that will, in general, be unknown a priori. This poses a chal-
lenge when using a traditional quantizer since, if the range
of the quantizer is set to be too small, the elements of y may
fall outside the range of the quantizer, but if the range is too
large, the small fluctuations determined by Af will fail to use
the full quantization range and the system will lose precision.
This is especially problematic when using a quantizer with
low bit-depth. Thus, in the context of compressive hyperspec-
tral imaging, quantization noise can be a significant source of
error. A toy example illustrating this effect is presented in
Figure 3, which demonstrates the challenge associated with
designing a single mechanism for uniformly quantizing a sig-
nal with an unknown intensity or brightness, and hence an
unknown constant offset.

We would like to be able to address this challenge in an
automatic fashion, without resorting to manual tuning of the
quantizer range for each scene of interest. One approach is
to simply use very high bit-depth quantizers, but this can be
costly and ultimately fails to fully address the challenge. A
more robust approach is to compensate for the offset in hard-
ware before quantizing [23, 35]. While this requires special-
ized sensor circuitry and can be somewhat costly, when de-
signing a system which will be used to image scenes of widely
varying brightness the improvement in performance may be



worth this increased cost.
Yet another approach to this problem relies on some of

the rather unique properties of randomized measurements. In
particular, the randomized measurements typically used in
CS are democratic, roughly meaning that they each contain
roughly the same amount of information, and hence by taking
additional measurements we can be robust to having large er-
rors (or even erasures) on a subset of the measurements [36].
This has a number of consequences in the context of quan-
tization. First, while classical systems typically try to set
the quantizer range to ensure that saturation occurs with ex-
tremely low probability, it has been shown empirically that in
CS systems one can obtain improved performance by allow-
ing a nontrivial number of saturation events (e.g., on the order
of 5–10%) [36]. Second, it allows for a particularly elegant
method for automatically adjusting a quantizer to mitigate the
problem described above. In particular, if the measurements
are obtained sequentially in time (as in the single pixel cam-
era architecture) then one can perform automatic gain control
to dynamically adjust the pre-quantization gain to ensure that
some desired fraction of the measurements saturate the quan-
tizer (on both ends of the quantization range). This approach
ensures that the full range of the quantizer is exploited with-
out the need to manually measure the offset in (4), but it has
the drawback of requiring a certain amount of “burn-in time”
before stabilizing.

Finally, it is worth noting that as long as we can compen-
sate for the unknown constant offset in (4), CS actually has the
potential to result in significant gains over non-compressive
systems in terms of quantization error and dynamic range. In
particular, in a non-compressive system, we typically would
quantize each voxel using the same fixed quantization range,
but voxel intensity can vary dramatically both spatially and
across spectra. This causes saturation and loss of detail in
bright and dark regions of the datacube. In contrast, by com-
bining random combinations of voxels into a single measure-
ment, compressive systems dramatically reduce the dynamic
range over which the measurements that we must quantize
can fluctuate. This has been studied in the context of analog-
to-digital conversion in [37] and is apparent in comparing the
first and second columns of Figure 3. For a given bit-depth,
this reduced range can allow for reduced quantization error in
the compressive case. Exploiting this, along with the fact that
by taking fewer measurements in a given time window we
can use a lower-rate quantizer with a higher bit depth, there
is potential for compressive systems to be more effective at
mitigating quantization error than traditional systems.
Photon counting noise. Up to this point, we have considered
the impact of noise, nonnegativity, and quantization, but only
when the noise vector w is signal-independent. However, in
many hyperspectral imaging contexts we are in fact photon-
limited, so that the total number of photons detected by our
system is small relative to the desired resolution. In photon-
limited settings, we may model the observations as obeying a

Poisson distribution, which has a mean equal to its variance.
This effect introduces serious limitations. In particular, in (4)
we saw that the signal of interest was added to a constant
offset. Since the mean and variance of the noise are equal, this
offset plays a critical role in controlling the noise variance.

Some of the major theoretical challenges associated with
the application of CS to linear optical systems in the pres-
ence of Poisson noise have been addressed in the recent lit-
erature [38, 39]. These works considered two novel sens-
ing paradigms, based on either pseudo-random dense sensing
matrices (akin to the shifted and scaled dense sensing ma-
trix described above) or expander graph constructions, both
of which satisfy the nonnegativity and flux preservation con-
straints. In these settings, for a fixed signal intensity (i.e.,
fixed ‖f‖1), the error bound actually grows linearly with
the number of measurements or sensors, n, since a limited
amount of light is spread across an increasing number of de-
tectors, each with a decreasing signal-to-noise ratio (SNR).
In other words, keeping n as small as possible (a central goal
in CS) helps maximize SNR and reconstruction accuracy in a
way not reflected in conventional CS bounds. Thus incorpo-
rating real-world constraints into the measurement model has
a significant impact on the expected performance of a com-
pressive hyperspectral imager, and these constraints should
be considered carefully throughout any design process.
Imperfect system models. A major challenge in the design
of compressive hyperspectral imagers is accurate knowledge
of the projection operator A. While we might design a sys-
tem to have a particular sensing matrix A, calibration errors
and optical effects will always introduce inaccuracies. Even
if we had the ability to estimate A precisely, there are set-
tings where using an approximation of A has advantages; for
instance, when we can approximately compute Af using fast
Fourier transforms, conducting sparse recovery is much faster
than with a dense matrix representation of A.

When we run a sparse recovery algorithm with an inaccu-
rate sensing matrixA, it corresponds to the observation model
yi = Af + Ef + w, where Ef represents the difference
between the true projections collected by hyperspectral im-
ager and the assumed projections in A. The term Ef can be
thought of as signal-dependent noise. Analysis of the theoret-
ical ramifications of these kinds of errors allow the designers
of spectral imagers to accurately assess tradeoffs between ac-
curate calibration of A and computational efficiency [40].
Additional tradeoffs. One of the advantages of compressive
methods for hyperspectral imaging is that they also enable a
range of new design tradeoffs. For example, the single pixel
camera architecture allows us to achieve high spectral resolu-
tion while trading off between spatial resolution and temporal
resolution by adjusting the resolution of the patterns used by
the optical modulator (a higher-resolution pattern will also re-
quire a larger total number of measurements, increasing spa-
tial resolution at a cost of lower temporal resolution). Alterna-
tively, the CASSI system allows for high temporal resolution



while trading off between spatial and spectral resolution. For
all architectures, however, we have a fundamental tradeoff be-
tween resolution and the SNR. If we fix the temporal resolu-
tion (i.e., the total acquisition time, and hence the total amount
of light incident upon a hyperspectral imager), then increas-
ing either spatial or spectral resolution means decreasing the
amount of light measured for each voxel in the hyperspectral
image. As resolution increases, measurements become more
photon-limited and hence noisy.

HYPERSPECTRAL TARGET DETECTION FROM
PROJECTION MEASUREMENTS

In addition to enabling the design of new hyperspectral imag-
ing hardware and acquisition methods, sparsity and other low-
dimensional structures provide for new ways to efficiently
process the data produced by these new sensors, in some cases
without ever explicitly estimating the high-dimensional hy-
perspectral image [41, 42].

In this section, we address the question of whether projec-
tions of hyperspectral images of the form y = Af +w can be
used to accurately and efficiently infer whether f belongs to
some target class without estimating f directly. As a motivat-
ing example, consider the CASSI system discussed earlier: it
collects one coded projection of each spectrum in the scene.
One projection per spectrum is sufficient for reconstructing
spatially homogeneous spectral images, since projections of
neighboring locations can be combined to infer each spec-
trum. Significantly more projections are required for detect-
ing targets of unknown strengths without the benefit of spatial
homogeneity. One might ask how several such systems can be
used in parallel to reliably detect spectral targets and anoma-
lies from different coded projections.

Hyperspectral imaging introduces several unique chal-
lenges. For instance, in remote sensing applications each
measured spectrum reflects the mixing of multiple spectra
across a relatively large physical area – so that the spectrum
of interest may be mixed with other spectra in unknown pro-
portions. A mixed pixel model accounts for such interferences
by modeling every spatial location as either a target material
corrupted by background, or just background [43]. This back-
ground may be modeled using a multivariate Gaussian distri-
bution: b ∼ N (0,Σb), so that we have mixed observations
according to

ym = A(f + b) + w = y +Ab. (5)

Thus in the mixed pixel setting our ideal compressive ob-
servations are contaminated by Ab, which suggests that the
statistics of b must be considered when choosing A.

One approach to this challenge is to apply a pre-whitening
filter P ∈ Rn×n to the mixed observations ym, with the goal
of mitigating the effects of the background b. The pre-whited
observations can be expressed as z = Pym = Ãf+ w̃, where
w̃ is white Gaussian noise with variance one and Ã = PA.

This suggests choosing the hyperspectral camera optical de-
sign, described by A, in a way that depends on the back-
ground covariance Σb, so that the product PA facilitates ac-
curate compressive signal classification and detection (e.g., a
random n × d matrix with i.i.d. N (0, 1) entries, commonly
considered in the CS literature) [44]. This approach naturally
leads to constraints on the amount of background tolerated by
a target detection method.
Target dictionaries. The goal of hyperspectral target detec-
tion is, in the context of mixed observations, to determine
whether f = 0 (i.e., no target and only background is present)
or which f in a dictionary of target spectral signatures D cor-
responds to the observations.

Theoretical performance bounds provide key insight into
how error rates scale with the number of measurements col-
lected, the spectral resolution of targets, the amount of back-
ground signal present, the signal-to-noise ratio, and properties
of D. In particular, let ρ denote the minimum Euclidean dis-
tance between any two target spectra in the target classD, and
let |D| denote the size of the dictionary. Performance can be
characterized in terms of a method’s positive false discovery
rate (pFDR), which measures the fraction of declared targets
that are false alarms and is a useful metric in multiple testing
scenarios such as this.

A target detection method based on a nearest-neighbor
approach applied to pre-whited measurements z yields the
bound

pFDR = O

 1

|D|

([
1 +

ρ2

4n

]n/2
− 1

|D|

)−1 , (6)

which decays with the number of measurements n and the
size of the target dictionary, but increases with ρ. Thus intro-
ducing new candidate targets which are very similar to ex-
isting candidate targets can significantly deteriorate perfor-
mance, regardless of the spectral resolution d. Experimental
results show that using these theoretically-supported designs
of A yields significantly better target detection accuracy than
simply measuring low-resolution hyperspectral images [44].
Target manifolds. The fixed-dictionary hyperspectral target
detection problem formulation above is accurate if the sig-
nals in the dictionary are faithful representations of the target
signals that we observe. In reality, however, the target sig-
nals will differ from those in the dictionary due to the dif-
ferences in the experimental conditions under which they are
collected. For instance, in remote sensing applications, the
observed spectrum of a material will not match the reference
spectrum observed in a laboratory due to differences in atmo-
spheric and illumination conditions. In this case, one could
reasonably model the target signals observed under different
experimental conditions as lying in a low-dimensional sub-
manifold of the high-dimensional ambient signal space; this
has been shown to be true for hyperspectral images in [45].

Thus in many practical settings, rather than differentiate



among a finite collection of candidate spectra, we must dif-
ferentiate among a collection of candidate target manifolds.
Target detection in this setting has two key components: (a) a
search for the closest point in each candidate target manifold
to the observation, followed by (b) a minimum distance-based
detection step controlled by the desired false alarm probabil-
ity. It is now known that the randomized projections com-
mon in compressive sensing also preserve the structure of the
manifold; this can be shown by adapting the earlier Johnson-
Lindenstrauss lemma argument to a sufficiently dense sam-
pling of the manifold [46]. In this case, nearest-neighbor
target detection can be executed in the compressive domain.
This approach has been dubbed smashed filtering in [41].
Anomaly detection. While in many settings target dictio-
naries can be formed in a laboratory or using “ground truth”
data (usually collected at considerable expense and time), at
times target dictionaries are simply unavailable. In such set-
tings, one might be interested in detecting objects not in the
dictionary. Here, the target signals of interest are anomalous
and are not known a priori to the user. The target detection
methods discussed above can be extended to anomaly detec-
tion by exploiting the distance preservation property of the
sensing matrix A to detect anomalous targets from projection
measurements, as detailed in [44, 47, 48].

CONCLUSIONS AND FUTURE DIRECTIONS

Due to the enormous size of hyperspectral images with high
spatial and spectral resolution, approaches that enable effi-
cient data collection, signal reconstruction, and target detec-
tion tasks have enormous practical potential. The good news
is that typical hyperspectral images have significant structure
that can be exploited within the context of sparse models and
CS. Armed with such models, we can engineer novel com-
pressive sensors and reconstruction algorithms.

On the surface, the application of the CS theory and al-
gorithms to hyperspectral imaging appears very promising.
However, one of the central themes of this article is that these
theories and methods cannot be applied blindly to this ap-
plication arena. For a compressive hyperspectral imaging de-
sign to be truly effective, it must account for the physical con-
straints of the measurements system, use appropriate quanti-
zation methods, accommodate realistic noise models (includ-
ing photon noise, background signal effects, and calibration
errors), and use reconstruction algorithms that specifically ac-
count for all of these effects. None of these aspects can be
considered in isolation, and any system design which ignores
these issues has limited potential.

Despite these caveats, researchers are pushing the bound-
aries of our collective knowledge of how to exploit signal
structure for improved sensing and inference. For example,
while sequentially selecting the rows ofA in an adaptive fash-
ion is of limited benefit in some of the hardest possible sparse
recovery problems [29, 30], in high SNR regimes or settings
where we have structured or group sparsity (common in hy-

perspectral imaging), adaptivity can potentially yield signifi-
cant gains. Exploring the applications of these ideas to practi-
cal imaging systems is an important area of ongoing research.
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