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ABSTRACT

We propose a novel algorithm for image reconstruction in radio interferometry. The ill-

posed inverse problem associated with the incomplete Fourier sampling identified by the

visibility measurements is regularized by the assumption of average signal sparsity over

representations in multiple wavelet bases. The algorithm, defined in the versatile framework

of convex optimization, is dubbed Sparsity Averaging Reweighted Analysis. We show through

simulations that the proposed approach outperforms state-of-the-art imaging methods in the

field, which are based on the assumption of signal sparsity in a single basis only.

Key words: techniques: image processing – techniques: interferometric.

1 IN T RO D U C T I O N

Aperture synthesis in radio interferometry is a powerful technique

that dates back more than sixty years (Ryle & Vonberg 1946; Blythe

1957; Ryle, Hewish & Shakeshaft 1959; Ryle & Hewish 1960;

Thompson, Moran & Swenson 2004). It allows observation of the

sky with otherwise inaccessible angular resolution and sensitivity

(i.e. dynamic range), providing a wealth of information for astro-

physics and cosmology. The measurement equation for aperture

synthesis provides incomplete linear information about the signal,

thus defining an ill-posed inverse problem in the perspective of sig-

nal reconstruction. Under restrictive assumptions of narrow-band

(i.e. monochromatic) non-polarized imaging on small fields of view,

the visibilities measured identify with Fourier measurements. Al-

ready powerful calibration and imaging techniques have been de-

veloped in the field. Standard imaging algorithms, such as CLEAN

and its multiscale variants (Högbom 1974; Bhatnagar & Cornwell

2004; Cornwell 2008), regularize the inverse problem through an

implicit sparsity assumption of the signal in the spatial dimensions.

The new science envisaged in astronomy in the coming decades

requires that next-generation radio telescopes, such as the new LOw

Frequency ARray (LOFAR1), or the future Extended Very Large

Array (EVLA2) and Square Kilometer Array (SKA3), achieve much

higher dynamic range than current instruments, also at higher angu-

lar resolution. These telescopes will also have to consider wide-band

(i.e. hyperspectral) polarized imaging on wide fields of view on the

⋆E-mail: rafael.carrillo@epfl.ch
1 http://www.lofar.org/
2 http://www.aoc.nrao.edu/evla/
3 http://www.skatelescope.org/

celestial sphere. Direction-dependent effects further complicate the

measurement equation, and will have to be calibrated and accounted

for in this high-dimensional imaging process. In this context, cal-

ibration and imaging techniques for radio interferometry literally

need to be reinvented, thus triggering an intense research in the

field.

The now famous theory of compressed sensing deals with the

recovery of sparse signals from incomplete linear measurements

(Candès 2006; Donoho 2006; Baraniuk 2007). It acknowledges the

fact that natural signals often exhibit a sparse representation in mul-

tiscale bases. Compressed sensing proposes both optimization of the

acquisition technique and non-linear iterative algorithms for signal

reconstruction regularizing the ill-posed inverse problem through

a sparsity prior. These algorithms are defined either in the context

of convex optimization or greedy approaches. It is also important

to note that, beyond the pure theory of compressed sensing, these

frameworks are particularly versatile and can account for a large

variety of priors.

The first application of compressed sensing to radio interferom-

etry was performed by Wiaux et al. (2009a), where the problem

of image reconstruction from incomplete visibility measurements

was considered. Wiaux et al. (2009a) demonstrated the versatility

of the approach and its superiority relative to standard interferomet-

ric imaging techniques. The spread spectrum phenomenon, which

arises by partially relaxing the small field-of-view (FOV) assump-

tion and including a first-order w term, was introduced by Wiaux

et al. (2009b) as a potential optimization of the acquisition, lead-

ing to enhanced image reconstruction quality for sparsity bases that

are not maximally incoherent with the measurement basis. Further-

more, a compressed sensing approach was developed and evalu-

ated by Wiaux, Puy & Vandergheynst (2010) to recover the signal

induced by cosmic strings in the cosmic microwave background.
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McEwen & Wiaux (2011) generalize the compressed sensing imag-

ing techniques developed by Wiaux et al. (2009a,b) to a wide

FOV, recovering interferometric images defined directly on the

sphere, rather than a tangent plane. All of these works consider

uniformly random and discrete visibility coverage in order to re-

main as close to the theory of compressed sensing as possible. First

steps towards more realistic visibility coverages have been taken by

Suksmono (2009) and Wenger et al. (2010), who consider cover-

ages due to specific interferometer configurations but which remain

discrete. Li et al. (2011) studied a compressed sensing imaging

approach based on the isotropic undecimated wavelet transform

(IUWT), reporting results from discrete simulated coverages of

Australian Square Kilometer Array Pathfinder (ASKAP). These

preliminary works suggest that the performance of compressed

sensing reconstructions is likely to hold for more realistic visibility

coverages.

Convex optimization methods coupled with sparsity priors have

proven to be a powerful framework for radio-interferometric (RI)

imaging. Beyond the versatility that enables one to impose a wide

range of sparsity priors, convex optimization provides significant

improvements in the speed of the reconstruction process relative to

state-of-the-art imaging methods in radio interferometry. This en-

hancement in speed is crucial for the scalability of the techniques

to very high dimensions in the perspective of next-generation tele-

scopes.

In this work, we propose a novel algorithm for RI imaging,

defined in the framework of convex optimization, dubbed the

Sparsity Averaging Reweighted Analysis (SARA) algorithm. The

algorithm relies on the conjecture that astrophysical signals are

simultaneously sparse in various bases, in particular the Dirac

basis, wavelet bases or in their gradient, so that promoting av-

erage signal sparsity over multiple wavelet bases represents an

extremely powerful prior. For comparison, we also study a vari-

ety of fast image reconstruction algorithms designed in the frame-

works of convex optimization and sparse signal modelling, some

of which were identified as providing similar performance such

as CLEAN and its multiscale versions. We show, through realistic

simulations, the superiority of SARA compared to most RI imaging

techniques.

The organization of the remainder of the paper is as follows. In

Section 2, we review convex optimization methods for sparse in-

verse problems in the compressed sensing framework and discuss

their versatility. In Section 3, we recall the inverse problem for

image reconstruction from radio-interferometric data and concisely

describe the state-of-the-art image reconstruction techniques used

in radio astronomy. Section 4 presents the SARA algorithm. Nu-

merical results of the SARA algorithm compared to state-of-the-art

imaging techniques are presented in Section 5. Finally, we conclude

in Section 6 with closing thoughts.

2 C O M P R E S S E D SE N S I N G A N D C O N V E X

O P T I M I Z AT I O N

Convex optimization provides a powerful and versatile framework

to solve sparse linear inverse problems such as those posed in

radio interferometry. In this section, we concisely recall the in-

verse problem for sparse signals considered in the compressed

sensing framework and proceed further with a discussion of the

versatility offered by convex optimization approaches. Finally, we

review the key ideas behind the methods to solve these convex

problems.

2.1 Compressed sensing

In the framework of compressed sensing (Candès 2006; Donoho

2006; Baraniuk 2007; Donoho & Tanner 2009; Fornasier & Rauhut

2011), the signals probed are first assumed to be sparse or com-

pressible in some basis. Consider a complex-valued signal denoted

by the vector x ∈ C
N . An orthonormal basis � ∈ C

N×N is also

considered, in which the decomposition α ∈ C
N of the signal is

defined by x ≡ �α. The signal is said to be sparse if it contains

only K non-zero coefficients in its decomposition, where K ≪ N,

or compressible if its ordered set of coefficients decays rapidly and

the signal can be well approximated by just the first K coefficients.

Secondly, the signal is assumed to be probed by M linear mea-

surements denoted by a vector y ∈ C
M in some sensing basis

� ∈ C
M×N and possibly affected by independent and identically

distributed noise n ∈ C
M . This defines an inverse problem

y ≡ �α + n with � ≡ �� ∈ C
M×N , (1)

where the matrix � identifies the sensing basis as seen from the

sparsity itself. Typically M < N so the inverse problem is ill-posed.

The ideal approach to recover α from (1) is to find the sparsest

representation ᾱ that is consistent with the measurements, posing

the following problem:

min
ᾱ∈CN

‖ᾱ‖0 subject to ‖ y − �ᾱ‖2 ≤ ǫ, (2)

where the ℓ0 norm, ‖ᾱ‖0, counts the number of non-zero elements

in ᾱ and ǫ is an upper bound on the ℓ2 norm ‖n̄‖2 of the residual

noise, with n̄ ≡ y−�ᾱ. Let us recall that the ℓp norm of a complex-

valued vector a ∈ C
M is defined as ‖a‖p ≡ (

∑M

i=1 |ai |p)1/p , where

|·| represents the modulus of a complex number.

The problem in (2) is combinatorial and NP complete. The most

common approach is to replace the ℓ0 norm by the ℓ1 norm and pose

a convex problem to estimate a solution (Chen, Donoho & Saunders

2001; Candès 2006; Donoho 2006). In the presence of noise, the

so-called basis pursuit (BP) denoise problem is the minimization

of the ℓ1 norm ‖ᾱ‖1 of the coefficients of the signal in the sparsity

basis under a constraint on the ℓ2 norm ‖n̄‖2 of the residual noise:

min
ᾱ∈CN

‖ᾱ‖1 subject to ‖ y − �ᾱ‖2 ≤ ǫ. (3)

The theory shows that the ℓ0 and BP denoise problems are equivalent

under certain properties of the sensing matrix, � (Candès, Romberg

& Tao 2006a; Candès 2006, 2008). The theory also offers various

ways to design suitable sensing matrices, showing in particular

that a small number of measurements are required relative to a

naive Nyquist–Shannon sampling: M ≪ N. Note that, in theory, an

explicit ℓ0 minimization would require fewer measurements, M ≈
2K (Candès et al. 2006a; Candès 2006, 2008).

A family of iterative greedy algorithms are also proposed in the

literature (Mallat & Zhang 1993; Tropp & Gilbert 2007; Needell

& Tropp 2008; Blumensath & Davies 2009). These algorithms are

shown to enjoy similar approximate reconstruction properties, how-

ever, requiring more measurements for exact reconstruction than

convex optimization approaches.

2.2 Convex optimization versatility

While the theory of compressed sensing provides reconstruction

guarantees for the ℓ1 minimization problem, convex optimization is

extremely versatile and can account for many variations, which in

practice can prove more effective for signal reconstruction. In the

following, we briefly describe these variations.

C© 2012 The Authors, MNRAS 426, 1223–1234
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Positivity. One of the main advantages of convex approaches is

the flexibility that they provide to include prior information about

the signal as convex constraints. In the case of image-processing

problems, where most images of interest are intensity images, the

signals are real valued and positive, i.e. x ∈ R
N
+ . This constraint

is convex and can be easily added to the optimization problems

without much computational load increase and without affecting

their convergence. This constraint has proven to be very effective

in improving reconstruction quality in RI imaging (Wiaux et al.

2009a).

Constrained versus unconstrained problems. The least-squares ℓ1

regularized problem is an alternative formulation of the BP denois-

ing problem that recovers a sparse signal as the solution of an un-

constrained problem formulated as minᾱ∈CN
1
2
‖ y −�ᾱ‖2

2 +λ‖ᾱ‖1,

where λ is a regularization parameter that balances the weight be-

tween the fidelity term and the regularization term. It follows that

determining the proper value of λ is akin to determining the power

limit of the noise (Chen et al. 2001). However, there is no optimal

strategy to fix the regularization parameter even if the noise level is

known; therefore, constrained problems, such as (3), offer a stronger

fidelity term when the noise power is known, or can be estimated a

priori.

Orthogonal versus overcomplete representations. The techniques

mentioned above hold for signals which are sparse in the standard

coordinate basis or sparse with respect to some other orthonormal

basis. However, there are numerous practical examples in which

a signal of interest is not sparse in a single orthonormal basis but

over several orthonormal bases or over an overcomplete dictionary

(Candès et al. 2010). In the generalized setting, the signal x is now

expressed in terms of a dictionary � ∈ C
N×D (N < D) as x = �α,

α ∈ C
D . Note that the problem is now severely underdetermined

since M ≪ N < D, therefore requiring greater sparsity or com-

pressibility of α. Rauhut, Schnass & Vandergheynst (2008) find

conditions on the compound matrix �� such that α can be recov-

ered accurately, which leads to a good estimate of x. Candès et al.

(2010) extend the compressed sensing theory to redundant dictio-

naries, providing theoretical stability guarantees based on general

conditions on the sensing matrix �.

Analysis versus synthesis problems. The BP denoising problem

defines the optimization in the sparse representation domain find-

ing the optimal representation vector ᾱ and then recovering the

true signal through the synthesis relation x̄ = �ᾱ. These methods

are known as synthesis-based methods in the literature. Synthesis-

based problems may also be substituted by analysis-based problems,

where instead of estimating a sparse representation of the signal,

the methods recover the signal itself (Elad, Milanfar & Rubinstein

2007). In the case of orthonormal bases, �, the two approaches are

equivalent. However, when � is a frame or an overcomplete dictio-

nary, the two problems are no longer equivalent. The geometry of

the two problems are studied by Elad et al. (2007), who show that

because these geometrical structures exhibit substantially different

properties, there is a large gap between the two formulations. One

remark to make is that the analysis problem does not increase the di-

mensionality of the problem relative to solving for the signal itself,

even in the case when overcomplete dictionaries are used. Empirical

studies have shown very promising results for the analysis approach

(Elad et al. 2007). Candès et al. (2010) provide a theoretical analysis

of the ℓ1 analysis problem coupled with redundant dictionaries.

Reweighted ℓ1 versus ℓ1 minimization. As discussed above, the

ℓ1 minimization problem is equivalent to the ℓ0 minimization when

the measurement matrix satisfies certain conditions defined in the

context of compressed sensing. In general, though, the key differ-

ence between the two problems, of course, is that ℓ1 depends on the

magnitudes of the coefficients of a signal, whereas ℓ0 minimization

does not. To reconcile this imbalance, a reweighted ℓ1 minimization

algorithm was proposed by Candès, Wakin & Boyd (2008) to mimic

the ℓ0 minimization behaviour. The algorithm replaces the ℓ1 norm

in (3) by a weighted ℓ1 norm
∑N

i=1 wi |ᾱi |. The idea behind this

formulation is that large weights will encourage small coordinates

of the solution vector, and small weights will encourage larger coor-

dinates. As a motivational example, suppose that the sparse signal α

is known a priori and that we set the weights as wi = |αi|−1. In this

case, the weights are infinite at all locations where the signal is zero,

forcing the coordinates of the solution vector at these locations to

be zero. This set of weights makes the weighted norm independent

of the precise value of the non-zero components and guarantees to

recover the correct solution assuming only K < M.

In practice, the original signal is not known in advance but we can

compute the appropriate weights by solving sequentially weighted

ℓ1 problems, each using as weights essentially the inverse of the

values of the solution of the previous problem. Of course, it is

not possible to have infinite weights where the estimated signal

values are zero, so a stability parameter must also be added to

the signal value in the selection of the weights. This procedure

has been observed to be very effective in reducing the number

of measurements needed for recovery, and to outperform standard

ℓ1 minimization in many situations (see e.g. Candès et al. 2008;

Needell 2009).

2.3 Convex optimization algorithms

Unlike many generic optimization problems, convex optimization

problems can be efficiently solved, both in theory (i.e. via algorithms

with worst-case polynomial complexity) and in practice (Mattingley

& Boyd 2010). There exists a broad range of methods to efficiently

solve convex problems, e.g. interior point methods, primal-dual

methods and proximal splitting methods. Among these, proximal

splitting methods offer great flexibility and are shown to capture

and extend several well-known algorithms in a unifying frame-

work. Douglas–Rachford, iterative thresholding, projected Landwe-

ber, projected gradient, alternating projections, alternating direction

method of multipliers and alternating split Bregman are special

instances of proximal splitting algorithms (Combettes & Pesquet

2011). Such methods offer a powerful framework for solving con-

vex problems in terms of speed and scalability of the techniques to

very high dimensions.

Proximal splitting methods solve optimization problems of the

form

min
x∈RN

f1(x) + · · · + fn(x), (4)

where f1(x), . . . , fn(x) are convex functions from R
N to (−∞, ∞).

Note that any convex constrained problem can be formulated as an

unconstrained problem by using the indicator function of the con-

vex constraint set as one of the functions in (4), i.e. fk(x) = iC(x)

where C represents the constraint set. Also note that complex-valued

vectors are treated as real-valued vectors with twice the dimension

(accounting for real and imaginary parts). A major difficulty that

arises in solving this problem stems from the fact that, typically,

some of the functions are not differentiable, which rules out conven-

tional smooth optimization techniques. The key concept in proximal

splitting methods is the use of the proximity operator of a convex

function, which is a natural extension of the notion of a projection

operator on to a convex set. For example, the proximal operator of

C© 2012 The Authors, MNRAS 426, 1223–1234
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1226 R. E. Carrillo, J. D. McEwen and Y. Wiaux

the ℓ1 norm is the soft-thresholding operator, and the proximal oper-

ator of the indicator function of a constraint is simply the projection

operator on to the constraint set. Proximal splitting methods proceed

by splitting the contribution of the functions f 1, . . . , f n individually

so as to yield an easily implementable algorithm. They are called

proximal because each non-smooth function in (4) is involved via

its proximity operator. In essence, the solution to (4) is reached

iteratively by successive application of the proximity operator as-

sociated with each function. See Combettes & Pesquet (2011) for a

review of proximal splitting methods and their applications in signal

and image processing.

One remark to make is that there also exist proximal splitting

algorithms that offer a parallel implementation structure where all

the proximity operators can be computed in parallel rather than

sequentially. Examples of these algorithms are the proximal paral-

lel algorithm and the simultaneous-direction method of multipliers

(Combettes & Pesquet 2011). Such a structure is useful when imple-

menting the algorithms in multicore architectures, thus providing a

significant gain in terms of speed.

3 R I IM AG IN G

In this section, we recall the general form of the visibility mea-

surements and also pose the corresponding interferometric inverse

problem for image reconstruction under small FOV considerations.

We also review the state-of-the-art imaging algorithms in radio in-

terferometry.

3.1 Visibilities

In order to image a region of the sky, all radio telescopes of an

interferometric array point in the same direction ŝ0 ∈ R
3 on the

unit celestial sphere. We consider a Cartesian coordinate system

centred on the Earth aligned with the pointing direction. At each

instant of observation, each telescope pair measures a complex vis-

ibility defined as the correlation between incoming electric fields at

the positions of the two telescopes. This visibility only depends on

the relative position between the two telescopes, defined as a base-

line. We consider a monochromatic signal x made up of incoherent

sources. Also we consider non-polarized radiation and a small FOV

such that the signal on the celestial sphere is well approximated

by its projection on to the plane orthogonal to ŝ0. In this context,

each visibility corresponds to the measurement of the Fourier trans-

form of a planar signal at the spatial frequency u = (u, v) where

(u, v) identifies the baseline components in the image plane, and

in units of the observation wavelength. This result is known as the

van Cittert–Zernike theorem (Thompson et al. 2004). The measured

visibility reads

y (u) =
∫

A (l) x (l) e−2iπu·l d2l, (5)

where l = (l, m) denotes the coordinates on the image plane and

A (l) is the so-called primary beam, which limits the observed FOV.

The total number of points u probed by all telescope pairs of the

array during the observation provides some incomplete coverage in

the Fourier plane characterizing the interferometer.

3.2 Inverse problem in matrix form

In a practical setting we want to represent the map x by a discretized

image. The band-limited functions considered are completely iden-

tified by their Nyquist–Shannon sampling on a discrete uniform grid

of N = N1/2 × N1/2 points l i ∈ R
2 in real space with 1 ≤ i ≤ N and

by their corresponding discrete spatial frequencies ui . The sampled

intensity signal and primary beam are denoted by the vectors x and

A ∈ R
N , respectively.

As in Wiaux et al. (2009a), we assume that the spatial frequen-

cies u probed by all telescope pairs during the observation belong

to the discrete uniform grid of points ui , thus bypassing gridding

considerations for the sake of simplicity. The Fourier coverage pro-

vided by the M spatial frequencies probed can simply be identified

by a binary mask in the Fourier plane equal to 1 for each spa-

tial frequency probed and 0 otherwise. The visibilities measured

may be denoted by a vector of M complex Fourier coefficients

y ∈ C
M ≡ {yb ≡ y(ub)}1≤b≤M , possibly affected by complex

noise of astrophysical or instrumental origin, identified by the vec-

tor n ∈ C
M . Since the signal x is real valued, we could only take

measurements in half of the plane and infer the measurements of

the other half through conjugate relations.

In this discrete setting, the Fourier coverage is in general incom-

plete in the sense that the number of real constraints 2M is smaller

than the number of unknowns N; complete coverage of the Fourier

plane corresponds to M = N/2. An ill-posed inverse problem is thus

defined for the reconstruction of the signal x from the measured

visibilities y:

y ≡ �x + n with � ≡ MFA, (6)

where the matrix � ∈ C
M×N identifies the complete linear rela-

tion between the signal and the visibilities. The matrix A ∈ R
N×N

is the diagonal matrix implementing the primary beam. The uni-

tary matrix F ∈ C
N×N implements the discrete Fourier transform

providing the Fourier coefficients. The matrix M ∈ R
M×N is the

rectangular binary matrix implementing the mask characterizing

the interferometer. The inverse transform of the binary mask, i.e.

F
T
M

T1M with 1M ∈ R
M defining the vector of ones, identifies the

dirty beam and the inverse transform of the Fourier measurements

with all non-observed visibilities set to zero, i.e. FT
M

T y, is the dirty

image.

For signal reconstruction, a regularization scheme that encom-

passes enough prior information on the original signal is needed in

order to find a unique solution. All image reconstruction algorithms

will differ through the kind of regularization considered.

3.3 State-of-the-art imaging algorithms

The most standard and otherwise already very effective image

reconstruction algorithm from visibility measurements is called

CLEAN, which is a non-linear deconvolution method based on local

iterative beam removal (Högbom 1974; Schwarz 1978; Thompson

et al. 2004). A sparsity prior on the original signal in real space is im-

plicitly introduced. Multiscale versions of CLEAN (MS-CLEAN)

have also been developed (Cornwell 2008), where the sparsity is im-

proved by multiscale decomposition, hence enabling better recovery

of the signal. The MS-CLEAN method was shown to perform bet-

ter than the standard CLEAN, but it still suffers from an empirical

choice of basis profiles and scales. An adaptive scale pixel decompo-

sition method called ASP-CLEAN was also introduced to improve

on multiscale CLEAN by relying on an adaptive choice of scales

(Bhatnagar & Cornwell 2004). Note that these approaches are

known to be slow, sometimes prohibitively. Another approach to

the reconstruction of images from visibility measurements is the

maximum entropy method (MEM). In contrast to CLEAN, MEM

solves a global optimization problem in which the inverse problem

is regularized by the introduction of an entropic prior on the signal,

C© 2012 The Authors, MNRAS 426, 1223–1234
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but sparsity is not explicitly required (Ables 1974; Gull & Daniell

1978; Cornwell & Evans 1985). In practice, CLEAN is often pre-

ferred to MEM.

Reconstruction techniques based on convex optimization and

sparse models have also been proposed. Approaches based on ℓ1

minimization coupled with the Dirac basis have been previously

studied in the field (Marsh & Richardson 1987; Wiaux et al. 2009a,b;

Li et al. 2011; McEwen & Wiaux 2011). The equivalence between

CLEAN and ℓ1 minimization has been studied in Marsh & Richard-

son (1987). Wiaux et al. (2009a) and Li et al. (2011) report that

ℓ1 minimization yields similar reconstruction quality to CLEAN,

while including a positivity constraint in a convex formulation sig-

nificantly enhances the reconstruction quality relative to CLEAN.

Extended structures do not have an optimal sparse representation

in Dirac basis. Thus, wavelet bases have also been considered in or-

der to provide a sparser representation. Synthesis-based approaches

with redundant representations have been proposed by Wiaux et al.

(2009a) and Li et al. (2011). Wiaux et al. (2009a) use a reweighted

ℓ1 approach coupled with a steerable wavelet frame as sparsity dic-

tionary. Li et al. (2011) use a least-squares ℓ1 regularized problem

with the IUWT as sparsity dictionary. The reconstruction quality of

the IUWT method was reported to be superior to those of CLEAN

and MS-CLEAN.

Many signals in nature are also sparse or compressible in the

magnitude of their gradient space, in which case the total variation

(TV) minimization problem has been shown to yield superior re-

construction results (Rudin, Osher & Fatemi 1992). The TV norm

is defined by the ℓ1 norm of the magnitude of the gradient of the

signal ‖x̄‖TV = ‖∇ x̄‖1, where ∇ x̄ denotes the gradient magni-

tude (Rudin et al. 1992). From this formulation, it can be seen that

the TV problem might be modelled as an analysis ℓ1 minimization

problem with the discrete gradient operator as the sparsity inducing

transform. TV minimization was already proposed for RI imaging

by Wiaux et al. (2010) and McEwen & Wiaux (2011) showing

promising results. Moreover, Wiaux et al. (2010) used a reweighted

TV minimization approach to recover the signal induced by cosmic

strings in the cosmic microwave background.

4 SPA R S I T Y AV E R AG I N G R E W E I G H T E D

A NA LY S I S

In this section, we propose a novel algorithm for RI imaging

based on the prior of average signal sparsity over multiple wavelet

bases. We start by discussing our conjecture of average signal spar-

sity. Then, we propose the reweighted ℓ1 analysis method as a

means to promote average sparsity. Finally, we present the resulting

algorithm.

4.1 Sparsity average conjecture

As already discussed in the previous sections, while point and com-

pact sources have a sparse representation in the Dirac basis, piece-

wise smooth structures exhibit gradient sparsity, and continuous

extended structures are better encapsulated in wavelet bases. Astro-

nomical images are often complex and all these types of structures

can be present at once. Therefore, we here conjecture that promot-

ing average sparsity or compressibility over multiple bases rather

than single bases represents an extremely powerful prior. Note on

a theoretical level that a single signal cannot be arbitrarily sparse

simultaneously in any pair of bases, due to the incoherence between

these bases (see Wiaux et al. 2009a and references therein for a def-

inition of incoherence). For illustration, a signal extremely sparse

in the Dirac basis is completely spread in the Fourier basis. We hy-

pothesize that, for any pair of bases, there might exist a lower bound

on the average sparsity of a signal, which identifies a generalized

‘uncertainty relation’. In essence, our prior consists of assuming

that the signals of interest are those that saturate this uncertainty

relation between multiple pairs of bases.

We propose using a dictionary composed of a concatenation of

orthonormal bases, i.e.

� =
1

√
q

[�1, �2, . . . , �q ]; (7)

thus, � ∈ R
N×D with D = qN. Given the previous considerations

on astronomical images, the dictionary should be composed of the

Dirac basis and wavelet bases. In particular, the Haar wavelet basis

can be used as an alternative to gradient sparsity (usually imposed by

a TV prior) to promote piecewise smooth signals.4 See Section 5.1

for further details on a practical selection of these bases.

4.2 Reweighted ℓ1 analysis problem

In the light of our previous discussions on the versatility of convex

optimization, we promote this average sparsity through a reweighted

ℓ1 analysis method. Let us define the weighted ℓ1 problem

min
x̄∈RN

‖W�T x̄‖1

subject to ‖ y − �x̄‖2 ≤ ǫ

and x̄ ≥ 0,
(8)

where W ∈ R
D×D is a diagonal matrix with positive weights and

the constraint x̄ ≥ 0 represents the positivity prior on x. Assuming

i.i.d. complex Gaussian noise with variance σn, the ℓ2 norm term in

(8) is identical to a bound on the χ2 distribution with 2M degrees of

freedom governing the noise level estimator. Therefore, we set this

bound as ǫ2 = (2M + 4
√

M)σ 2
n /2, where σ 2

n /2 is the variance of

both the real and imaginary parts of the noise. This choice provides

a likely bound for ‖n‖2, since the probability that ‖n‖2
2 exceeds ǫ2

is the probability that a χ2 with 2M degrees of freedom exceeds

its mean, 2M, by at least two times the standard deviation, 2
√

M ,

which is very small. The solution to (8) is denoted as �( y,�,W, ǫ),

which is a function of the data vector y, the measurement and weight

matrices � and W, respectively, and the bound ǫ on the noise level

estimator.

Recall that in the reweighting approach, a sequence of weighted

ℓ1 problems is solved, each using as weights essentially the inverse

of the values of the solution of the previous problem. In practice,

we update the weights at each iteration, i.e. after solving a complete

weighted ℓ1 problem, by the function

f (γ, x) ≡
γ

γ + |x|
, (9)

where γ plays the role of a stabilization parameter (ideally zero).

Note that as γ → 0 the weighted ℓ1 norm approaches the ℓ0 norm.

To approximate the ℓ0 norm by the reweighted ℓ1 algorithm, we use

a homotopy strategy (Nocedal & Wright 2006) and solve a sequence

of weighted ℓ1 problems using a decreasing sequence {γ (t)}, with t

denoting the iteration time variable. Under this scheme, a weighted

ℓ1 problem is first solved and then its solution is used as the warm

start initialization for the next problem that is geometrically closer

4 In fact, the compressibility of Haar wavelet coefficients is controlled by

the image TV norm (DeVore, Jawerth & Lucier 1992).
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1228 R. E. Carrillo, J. D. McEwen and Y. Wiaux

to the ℓ0 problem. This process is then repeated until the solution

becomes stationary (Nocedal & Wright 2006).

4.3 The SARA algorithm

The resulting algorithm, dubbed SARA, is defined in Algorithm 1.

Algorithm 1 SARA algorithm for RI imaging.

Require: y, �, ǫ, σc, β, η and Nmax.

Ensure: Reconstructed image x̂.

1: Initialize t = 1, W(0) = I and ρ = 1.

2: Compute

x̂(0) = �( y,�,W(0), ǫ),

γ (0) = σs

(

�T x̂(0)
)

.

3: while ρ > η and t < Nmax

4: Update the weight matrix

W
(t)
ij = f

(

γ (t−1), α̂
(t−1)
i

)

δij , for i, j = 1, . . . , D

with α̂
(t−1) = �T x̂(t−1)

5: Compute a solution

x̂(t) = �( y, �,W(t), ǫ).

6: Update γ (t) = max(βγ (t−1), σc).

7: Update ρ = ‖x̂(t) − x̂(t−1)‖2/‖x̂(t−1)‖2

8: t ← t + 1

9: end while

10: return x̂

A rate parameter β, with 0 < β < 1, controls the decrease of the

sequence γ (t) = βγ (t −1) = β tγ 0 such that γ (t) → 0 as t → ∞.

Ideally, γ (t) should decrease to zero, but since we have noise, we set

a lower bound as γ (t) ≥ σc. The standard deviation of the noise in

the representation domain is computed as σc =
√

M/qNσn, which

gives a rough estimate for a baseline above which significant signal

components could be identified. As a starting point, we set x̂(0) as

the solution of the ℓ1 problem and γ (0) = σs

(

�T x̂(0)
)

, where σs(·)
stands for the empirical standard deviation of the signal, fixing the

signal scale. The reweighting process ideally stops when the relative

variation between successive solutions ‖x̂(t) − x̂(t−1)‖2/‖x̂(t−1)‖2 is

smaller than some bound η, with 0 < η < 1, or after the maximum

number of iterations allowed, Nmax, is reached. In our implemen-

tation, which will be detailed in Section 5.1, we fix η = 10−3 and

β = 10−1.

5 SI M U L AT I O N S A N D R E S U LT S

In this section, we evaluate the performance of the SARA algo-

rithm through numerical simulations. First, we describe the practi-

cal implementation of SARA and state-of-the-art algorithms used

as benchmarks. Secondly, we describe the simulation set up in the

context of the inverse problem associated with (6). Thirdly, we re-

port the results of the comparison of SARA to the state of the art.

Finally, we present an illustrative example of the performance of

SARA in the presence of the spread spectrum phenomenon.

5.1 SARA implementation and benchmark algorithms

For all the experiments, we consider a concatenation of nine bases

(q = 9); thus, � ∈ R
N×D with D = 9N, as the dictionary for SARA.

The first basis is the Dirac basis. The eight remaining bases are the

first eight Daubechies wavelets, Db1–Db8 (Daubechies 1992). The

first Daubechies wavelet basis, Db1, is the Haar wavelet basis. We

use a fourth-order decomposition depth for all wavelet bases.5

We compare SARA to state-of-the-art algorithms for ℓ1 and

TV minimization problems, as well as their reweighted versions,

in terms of reconstruction quality and computation time. First,

the reweighted ℓ1 problems considered are defined through the

reweighting procedure described in Section 4.2 based on (8), with

specific choices of the sparsity dictionary �. We consider three dif-

ferent options for �: the Dirac basis, the Daubechies 8 wavelet basis

and the isotropic undecimated wavelet redundant dictionary. The as-

sociated methods are respectively denoted as R-BP, R-BPDb8 and

R-BPIU. The (non-reweighted) ℓ1 problems are defined through (8)

with W = I and again with different choices of the sparsity dictio-

nary �. We here consider four different options for �: the Dirac

basis, the Daubechies 8 wavelet basis, the isotropic undecimated

wavelet dictionary and the concatenation of nine bases described

above for SARA. The associated methods are respectively denoted

as BP, BPDb8, BPIU and BPSA.

Secondly, the TV minimization problem is formulated as

min
x̄∈RN

‖x̄‖TV

subject to ‖ y − �x̄‖2 ≤ ǫ

and x̄ ≥ 0.

(10)

We have also implemented a reweighted version of TV (still through

the procedure defined in Section 4.2), denoted as R-TV. Finally, we

also use as benchmark the synthesis-based IUWT method of Li et al.

(2011) and we denote it as IUWT. In the light of the discussion in

Section 3.3, we assume that the reconstruction quality provided

by BP is essentially equivalent to that of the standard CLEAN

algorithm, and that the reconstruction quality provided by IUWT

is an upper bound on the reconstruction quality of any multiscale

implementation of CLEAN.

To solve (8) and (10), we use the Douglas–Rachford splitting

algorithm, which is tailored to solve problems of the form (4) for n =
2 and with the additional property of not requiring differentiability

of any of the functions (Combettes & Pesquet 2007).

5.2 Simulations

We evaluate the reconstruction performance of SARA by recover-

ing well-known test images from simulated incomplete visibilities

following the model in (6) with A = I. The test images used in all

simulations are based on an H II region in M31 and the 30 Doradus

(30Dor) in the Large Magellanic Cloud. We use discrete models

of size 256 × 256 as ground truth images.6 The test images with

brightness values in the interval [0.01, 1] are shown in Fig. 1 in

a log10 scale. We consider incomplete visibility coverages gener-

ated by random variable density sampling profiles. Such profiles are

characterized by denser sampling at low spatial frequencies than at

high frequencies. This choice allows one to take into account the fact

that most of the signal energy is usually concentrated around low

frequencies, also mimicking common generic sampling patterns in

radio interferometry (see Puy, Vandergheynst & Wiaux 2011 for the

exact shape of the density profile). In order to make the simulated

5 Experimental results have shown that the performance of SARA degrades

if one of the bases is withdrawn from the dictionary. We do not present these

results in detail here for the sake of space.
6 Available at http://casaguides.nrao.edu/index.php.
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SARA for radio-interferometric imaging 1229

Figure 1. Test images with brightness values in the interval [0.01, 1] shown in a log10 scale. Left: M31. Right: 30Dor.

Figure 2. Example of a simulated visibility coverage. Left-hand panel: variable density sampling pattern for 30 per cent of coverage of the Fourier plane. The

mask is symmetrized for visualization purposes: each pair of symmetric points represents one measured visibility. The real parts of the corresponding dirty

images for M31 and 30Dor are shown in the middle and right-hand panels, respectively, in a log10 scale.

coverages more realistic, we suppress the (0, 0) component of the

Fourier plane from the measured visibilities. This generic profile

approach allows us to evaluate the reconstruction quality for ar-

bitrary percentages of visibility coverage and without concern for

various telescope configurations. Let us recall that, accounting for

image reality, we only take measurements in the half Fourier plane.

A complete coverage of the half-plane is referred to as a 100 per

cent coverage. The left-hand panel in Fig. 2 shows an example of

a sampling pattern for 30 per cent of coverage of the Fourier plane

(symmetrized mask for visualization purposes). The middle and

right-hand panels in Fig. 2 show the real part of the dirty images

generated by this sampling pattern for M31 and 30Dor, respectively.

We numerically evaluate the reconstruction quality and computa-

tional speed of the algorithms considered for coverages between 10

and 90 per cent.

We use as reconstruction quality metric the signal-to-noise ratio

(SNR), which is defined as

SNR = 20 log10

(

σx

σx−x̂

)

, (11)

where σx and σx−x̂ denote the standard deviation of the original

image and the standard deviation of the error image, respectively.

The visibilities are corrupted by complex Gaussian noise with a

fixed input SNR of 30 dB, with the input SNR defined as in (11)

with σx−x̂ substituted by the standard deviation of the noise on each

visibility.

5.3 Results

The left-hand panels in Figs 3 and 4 show, for M31 and 30Dor,

respectively, the SNR results against percentage of coverage for BP,

BPDb8, TV, IUWT and SARA. Average values over 100 simula-

tions and associated one standard deviation error bars are reported.

The results demonstrate that SARA outperforms state-of-the-art

methods for all coverages. Moreover, the results for M31 show con-

siderable enhancement provided by SARA, with a gain of more than

6 dB for 10 per cent of coverage and at least 3 dB for the rest of the

coverages relative to other methods. The results for 30Dor, which is

a more complicated image with both extended structures and com-

pact structures, show an SNR improvement of SARA of at least

2 dB over all other methods. These results confirm the conjecture

that average sparsity over multiple orthonormal bases represents a

stronger prior than sparsity over a single representation.

It was found that the reweighting process never enhances the

results for the benchmark algorithms significantly. R-BP provides

worse results than BP for both test images achieving an SNR at

least 3 dB below BP. R-TV does not show any improvement over

TV for 30Dor. For M31, R-TV reconstructions exhibit a gain of at

most 1 dB for coverages above 70 per cent, and lower SNRs than

TV for coverages below 70 per cent. The reconstruction quality of

R-BPDb8 is worse than that obtained by BPDb8 for 30Dor. For

M31, R-BPDb8 provides an SNR improvement of at most 1 dB

over BPDb8 for coverages above 50 per cent and lower SNRs than

BPDb8 for coverages below 50 per cent. The analysis-based BPIU

and R-BPIU did not show any improvement with respect to IUWT

for 30Dor. For M31, BPIU and R-BPIU provide a gain of at most 1

and 3 dB, respectively, compared to IUWT. Also the reconstruction

quality of BPSA is always worse than that achieved by SARA, being

at least 3 dB below. Therefore, results for R-BP, R-BPDb8, R-TV,

R-BPIU, BPIU and BPSA are not shown in Figs 3 and 4.

Computation times (on a 2.4 GHz Xeon quad core) are reported

in the right-hand panels of Figs 3 and 4 for M31 and 30Dor, respec-

tively, in a log10 scale, for the same algorithms as those considered

in the left-hand panels. Again, average values over 100 simulations

C© 2012 The Authors, MNRAS 426, 1223–1234
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1230 R. E. Carrillo, J. D. McEwen and Y. Wiaux

Figure 3. Reconstruction results for M31. Left: average reconstruction SNR against percentage of coverage. Right: average computation time. The vertical

bars identify one standard deviation errors around the mean over 100 simulations. The input SNR is set to 30 dB.

Figure 4. Reconstruction results for 30Dor. Left: average reconstruction SNR against percentage of coverage. Right: average computation time. The vertical

bars identify one standard deviation errors around the mean over 100 simulations. The input SNR is set to 30 dB.

and associated one standard deviation error bars are reported. Even

though the concatenation of multiple bases and the reweighting

process render the algorithm structure more costly, we see that the

computation times are of the order of minutes for SARA, and very

similar to those required for TV minimization and those reported

for MS-CLEAN in the literature (Cornwell 2008; Li et al. 2011).

Note that all the preliminary implementations for these experiments

are made in MATLAB. Therefore, significantly faster implementations

can be achieved using a lower level programming language with a

custom-optimized code. Also the versatile framework of convex op-

timization offers a lot of room for improvement in terms of compu-

tational speed and efficiency. The Douglas–Rachford algorithm pro-

vides nice properties but, as emphasized in Section 2, other proximal

splitting methods exist that offer a parallel implementation struc-

ture, such as the proximal parallel algorithm and the simultaneous-

direction method of multipliers, where all the proximity operators

can be computed in parallel rather than sequentially (Combettes &

Pesquet 2011). Furthermore, the simultaneous-direction method of

multipliers offers a distributed implementation structure.

Next we present a visual assessment of the reconstruction quality

of SARA compared to the benchmark algorithms. Figs 5 and 6 show

the results from M31 and 30Dor, respectively, for a coverage of 30

per cent. The results are shown from top to bottom for BP, BPDb8,

IUWT, TV and SARA, respectively. The first column shows the

reconstructed images in a log10 scale, the second column shows the

error images, defined as x − x̂, in linear scale, and the third column

shows the real part of the residual images, defined as the difference

between dirty images and dirty images constructed from recovered

images, i.e. r = F
T
M

T y − F
T
M

T �x̂, also in linear scale. We

use the residual images as a visual quality measure because it is

commonly used in radio interferometry. In a few words, beyond a

significant SNR increase, SARA provides an impressive reduction

of visual artefacts relative to the other methods.

More specifically, for M31 we can see that BP and BPDb8 yield

a good reconstruction of the inner structures but also give a lot

of artefacts in the constant background, with BP having a lot of

point-like errors as expected. TV also yields a good reconstruc-

tion quality, since the original image has well-defined edges, even

though TV suffers from bias problems and is not capable of esti-

mating the correct background having a slight shift in the brightness

value. The IUWT method yields a nearly flat residual map. How-

ever, this does not necessarily translate into a better reconstruction

C© 2012 The Authors, MNRAS 426, 1223–1234
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SARA for radio-interferometric imaging 1231

Figure 5. Reconstruction example of M31. The results are shown from top to bottom for BP (SNR = 32.82 dB), BPDb8 (SNR = 33.70 dB), IUWT (SNR =
32.12 dB), TV (SNR = 33.89 dB) and SARA (SNR = 38.43 dB), respectively. The first column shows the reconstructed images in a log10 scale, the second

column the error images in linear scale and the third column the residual images also in linear scale.
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1232 R. E. Carrillo, J. D. McEwen and Y. Wiaux

Figure 6. Reconstruction example of 30Dor. The results are shown from top to bottom for BP (SNR = 16.67 dB), BPDb8 (SNR = 24.53 dB), IUWT (SNR =
17.87 dB), TV (SNR = 26.47 dB) and SARA (SNR = 29.08 dB), respectively. The first column shows the reconstructed images in a log10 scale, the second

column the error images in linear scale and the third column the residual images also in linear scale.
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SARA for radio-interferometric imaging 1233

Figure 7. Reconstruction example of Cygnus A with spread spectrum acquisition for 30 per cent coverage and 30 dB of input SNR. The results are shown

from top to bottom for BPDb8 (SNR = 36.0 dB) and SARA (SNR = 40.2 dB). The first column shows the reconstructed images in a log10 scale and the second

column the error images in linear scale.

quality as can be observed in the error image. This highlights the

fact that the common criterion of flatness of residual image is not

an optimal measure of reconstruction fidelity. SARA yields a re-

stored image with few artefacts in the background and small errors

in the inner structures, showing the advantage of multiple basis

representations.

For 30Dor, we see that BP and IUWT do not yield good results,

with reconstructions having a lot of spurious point-like structures.

BPDb8 not only yields a good reconstruction but also yields a lot

of visual artefacts. TV achieves a fair reconstruction of the origi-

nal image. However, the resulting image has a piecewise structure

(leading to a cartoon-like visual effect) due to the TV prior. SARA

yields the best recovery of the original image, being able to recover

point-like structures as well as continuous extended structures. Note

that all methods yield noise-like residual maps for this example but

the actual reconstruction quality differs for all methods.

5.4 Spread spectrum illustration

In this subsection, we present an illustrative example of the per-

formance of SARA in the presence of the spread spectrum phe-

nomenon. Recall that the spread spectrum phenomenon arises by

partially relaxing the small FOV assumption and including a first-

order w term. It was introduced by Wiaux et al. (2009b) as a po-

tential optimization of the acquisition, leading to enhanced image

reconstruction quality for sparsity bases that are not maximally in-

coherent with the measurement basis. Spread spectrum incorporates

a modulating sequence in the measurement operator redefining it as

� ≡ MFAC, where C is a diagonal matrix with diagonal elements

with unit norm. For the sake of simplicity, we consider sequences

with random phase instead of quadratic phase as considered by

Wiaux et al. (2009b). For our illustration, we use Cygnus A as a test

image (Carilli & Barthel 1996) for 30 per cent coverage and 30 dB of

input SNR. We compare SARA against BP, BPDb8, BPIU and TV.

The SNR of the recovered image for each algorithm is as follows:

BP (16.6 dB), BPDb8 (36.0 dB), BPIU (29.9 dB), TV (28.7 dB) and

SARA (40.2 dB). The superior reconstruction quality of SARA is

again clear. In Fig. 7, we show reconstructed images for SARA and

BPDb8.

6 C O N C L U D I N G R E M A R K S

In this paper, we have proposed a novel algorithm for image re-

construction in radio interferometry-dubbed SARA. The algorithm

relies on the conjecture that astrophysical signals are simultane-

ously sparse in multiple bases, in particular the Dirac basis, wavelet

bases or in their gradient, so that promoting average signal sparsity

over multiple wavelet bases represents an extremely powerful prior.

Experimental results demonstrate that SARA outperforms state-of-

the-art imaging methods in the field, all based on the assumption of

signal sparsity in a single basis or signal gradient sparsity.

In future work, we plan to focus on extending the current al-

gorithm to handle continuous visibilities. In this respect, a stable

version of the algorithm must be implemented in a low-level pro-

gramming language. Also the final evolution should take advan-

tage of proximal splitting algorithms with parallel and distributed

structures allowing implementation in multicore architectures or in

computer clusters. Such approaches are crucial for the scalability of

the proposed algorithm to very high dimensions when dealing with

continuous visibilities.
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