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ABSTRACT The power distribution grid is typically unobservable due to a lack of measurements. While

deploying more sensors can alleviate this issue, it also presents new challenges related to data aggregation

and the underlying communication infrastructure. Therefore, developing state estimation methods that

enhance situational awareness at the grid edge with compressed measurements is critical. For this purpose,

a suite of sparsity-based approaches that exploit the correlation among states/measurements in spatial

as well as temporal domains have been proposed recently. This paper presents a systematic comparison

and evaluation of these approaches. Specifically, the performance and complexity of spatial methods (1-D

compressive sensing and matrix completion) and spatio-temporal methods (2-D compressive sensing and

tensor completion) are compared using the IEEE 37 and IEEE 123 bus test systems. Additionally, new

robust formulations of these sparsity-based methods are derived and shown to be robust to bad data and

network parameter uncertainties. Among the sparsity-based approaches, compressive sensing methods tend

to outperform matrix completion and tensor completion methods in terms of error performance.

INDEX TERMS Bad Data, Compressive Sensing, Matrix Completion, Power Distribution, State Estima-

tion

I. INTRODUCTION

T
HE goal of distribution system state estimation (DSSE)

is to infer the system states based on available mea-

surements and network information typically stored in the

distribution management system (DMS) database. Conven-

tional DSSE methods encounter significant challenges with

increasing system uncertainties due to deployments of dis-

tributed energy resources (DERs) and electric vehicles (EVs)

[1]. The poor observability of distribution grids [2] due to

insufficient measurements further impairs the accuracy of

DSSE. Alternatively, an increase in the number of grid edge

sensors and smart meters lead to congestion issues in the

underlying communication network [3]. Recently, there has

been a plethora of efforts to develop sparsity-based DSSE

techniques that can simultaneously deal with the issues of un-

observability and minimal data access [4], [5]. This paper not

only presents a comprehensive comparison of these potential

DSSE solutions but also introduces new robust formulations

to deal with bad data and parameter uncertainties.

A. RELATED WORK

Weighted Least Squares (WLS) has been the traditional

approach for DSSE. In order to guarantee full observability

for the WLS-based state estimation, historical data based

pseudo-measurements have been used to artificially compen-

sate for insufficient data [6]. However, the WLS + pseudo-

measurement state estimation paradigm suffers from huge

data requirements [6] and poor estimation performance [7].

Recently the challenges posed by unobservability and

limited measurement availability at the grid edge have been

addressed by sparsity-based DSSE methods. All these meth-

ods exploit the underlying smoothness or sparsity of the raw

or linearly transformed measurements/system states. These

methods exploit the network structure to perform state esti-

mation at current levels of data availability and observability.

Thus, the requirement of creating pseudo-measurements for

ensuring observability is eliminated. Compressive Sensing

(CS) based DSSE was the first class of solutions proposed

where the sparsity of measured data in a linear transformation

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3035378, IEEE Access

S.Dahale et al.: Sparsity Based Approaches for Distribution Grid State Estimation - A Comparative Study

basis was exploited to compress measurements. The spatio-

temporal correlation between loads and distributed gener-

ation in a single-phase distribution system is exploited in

the estimation strategies proposed in [4]. A noiseless CS

approach is applied to reconstruct the real and reactive power

measurements across the grid and estimate the voltage mag-

nitude and angle. [8] extends this DSSE approach to three-

phase distribution system. A dynamic compression scheme

is employed in [9] on three publicly available datasets for

spatial and spatio-temporal compression. Recursive dynamic

state estimation is implemented in [10] by exploiting the

sparsity in distribution grid data. An efficient dynamic solu-

tion for online smart grid topology identification using CS is

presented in [11]. Recently, [12] and [5] introduced the idea

of implementing DSSE based on matrix and tensor comple-

tion algorithms, respectively. Both these methods utilize the

sparsity or smoothness of raw measurements. Sparsity in CS

indicates the signal of interest is sparse in a specific transform

domain. However, in matrix/tensor completion, it indicates

that the singular vector of the original matrix/tensor is sparse

[13]. Matrix/tensor completion methods impute missing el-

ements in a matrix/tensor by obtaining a suitable low rank

approximation of the incomplete matrix/tensor. The matrix

completion algorithm exploits the underlying spatial correla-

tion in the data. Recently in [12], matrix completion along

with noise-resilient power flow constraints was employed to

estimate states in a distribution grid. A matrix completion

formulation that is robust to bad data is presented in [14].

An algorithm for dealing with data loss in PMU-based power

systems using matrix completion and compressive sensing is

proposed in [15] and [16] respectively. Apart from exploiting

spatial correlation, the existence of inherent spatio-temporal

correlation in states and measurements can be leveraged

using tensor completion algorithms. Tensor completion based

approaches for DSSE estimation is proposed in [5] and is

demonstrated to provide accurate state estimation in low-

observable systems. Using low-rank canonical polyadic de-

composition, [17] presents a model-free state estimation and

energy forecasting framework for distribution systems.

Given that sparsity-based DSSE methods work with lim-

ited data, it is important to understand the impact of bad data

within this limited set. Conventionally, statistical tests, such

as the χ2-test and the largest normalized residual test are em-

ployed for bad data detection and identification, respectively

[18]. Both these tests are post-SE processing techniques

which rely on least-squares estimated residuals. Least abso-

lute value (LAV) [19] [20], least median of squares (LMS)

and least trimmed squares (LTS) [2] estimators have also

been used to detect the bad measurements. However, these

methods have huge computational cost and high measure-

ment redundancy requirements, which limit their applications

in distribution grids with low observability. Therefore, there

is a need to integrate and understand the effect of bad data in

sparsity-based DSSE methods.

It is important to note that DSSE assumes perfect knowl-

edge of the network parameters. However, the underlying

network parameters may be erroneous because of inaccurate

manufacturing data, human data entry error, unreported de-

vice upgrade or ambient/operating condition variations [21].

Several approaches for parameter error identification have

been developed, which are mainly based on residual sensi-

tivity analysis [22] and state vector augmentation [23]. How-

ever, these methods are either post-processing methods or run

into the observability problem with the increasing scale of

the system. The impact of network parameter uncertainties

on sparsity-based DSSE methods is currently unknown.

B. CONTRIBUTIONS

The major contributions of this paper can be summarized as

follows -

1) The DSSE performance using four methods, i.e., 1-D

CS, matrix completion, 2-D CS and tensor completion

are compared in a systematic manner. These methods

do not require measurements from all the buses at all

the times. In particular, two scenarios based on the type

of available measurements are considered:

• Both power and voltage measurements are avail-

able

• Only power measurements are available

Based on the various standard evaluation metrics, 1-

D CS approach estimates the states with higher fi-

delity relative to matrix completion for both the cases

mentioned above. 2-D CS performs better than tensor

completion for low observability situations.

2) New robust formulations of the four sparsity-based

DSSE approaches are derived. This is the first work

that aims to address bad data and system parameter

uncertainties in sparsity-based DSSE. Numerical stud-

ies demonstrate the capability of the proposed formu-

lations. Relative to the classical WLS method, the error

performance of sparsity-based DSSE methods offer

nearly 94% improvement with 10% bad data. Gains of

99% relative to WLS can be seen with 25% network

parameter errors.

3) Extensive simulations are conducted on IEEE 37 and

IEEE 123 bus test systems. The computational com-

plexity associated with the four sparsity-based DSSE

methods are compared and tested. It is shown that ma-

trix completion has a higher computational complexity

than 1-D CS, while 2-D CS is computationally more

complex than tensor completion.

II. SPARSITY-BASED DSSE APPROACHES

DSSE refers to the procedure of obtaining the correct voltage

phasors at all nodes based on real-time measurements and the

power network model. The measurement set includes power

injections at each bus, power flow, and current over each

distribution line, along with bus voltages which are related

to the states (voltage magnitude and voltage angle) by the

non-linear equation (1),

z = h(x) + ǫ (1)
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where, z ∈ C
m represents the vector of measurements, x

∈ C
n denotes the vector of states, and the function h(x)

capture the relationship between states and measurements. ǫ

represents the measurement noise vector. The state estima-

tion task is to estimate x based on z and knowledge of h(.).
This non-linear function h(.) relating the voltage states x and

measurements z can be linearized around an operating point

as in [24] resulting in,

x = Mz+w (2)

where z = ((P )T , (Q)T )T represents the measurement vec-

tor of active and reactive power injections.

M =
(

Y−1

LL
diag(w̄)−1,−jY−1

LL
diag(w̄)−1

)

and,

w = −Y−1

LL
YL0v0 is the zero-load voltage

where, v0 denote the complex vectors collecting the three

phase nodal voltage at the slack bus. Here, YLL ∈ C
3m×3m

and YL0 ∈ C
3m×3 with m number of buses are the subma-

trices of the three-phase admittance matrix,

Y =

[

Y00 Y0L

YL0 YLL

]

∈ C
3(m+1)×3(m+1) (3)

In order to solve (1), the conventional state estimation

method uses a WLS approach. An invertible Jacobian ma-

trix is required to implement WLS. However, this condition

cannot be satisfied due to insufficient measurements at the

grid edge. In other words, the low observability in distribu-

tion grids hinders the applicability of the conventional WLS

method for DSSE. To address the low observability issue

in DSSE, the correlations among states and measurements

are exploited. Specifically, a spatial correlation exists among

DERs based on their geographical proximity [4]. Moreover,

power injection/consumption patterns of nodes may exhibit

temporal correlation. The presence of spatial and/or temporal

correlation results in the sparsity of states/measurements in

a linear transformation basis. Thus, very few measurements

from network buses are required for state estimation. The

sparsity characteristics can be exploited by the following

DSSE methods.

A. SPATIAL METHODS

Spatial methods such as 1-D CS and matrix completion aim

to estimate the voltage states of all nodes at a given time

instant.

1) 1-D Compressive Sensing

This technique exploits the sparsity of the signal of interest

in a linear transformation basis. It is used to efficiently

reconstruct a signal by finding sparse solutions to an under-

determined linear system. Let x ∈ R
N be the original state,

compressible in a linear transformation basis such that,

x = Ψa (4)

where a has at most K ≪ N significant coefficients i.e., x is

K-sparse in sparsifying basis Ψ. If the sensing mechanism is

such that,

y = Φx;y ∈ R
M ,Φ ∈ R

M×N , (5)

where, Φ is a random measurement/projection matrix (e.g.,

matrix elements distributed as i.i.d. Gaussian random vari-

able with mean 0 and variance 1/M or Bernoulli random

variables), then the original state x can be reconstructed by

solving the following l1 minimization problem

â = min
s

‖s‖1

subject to y = ΦΨs
(6)

Ψs = Mz+w (7)

Here, (7) represents the linearized power-flow constraints.

This formulation can be modified to include noisy measure-

ments as shown in [25]. The reconstructed state is

x̂ = Ψâ (8)

The result of the optimization problem in (6) provides an

exact reconstruction with overwhelming probability [25] if

there exists a δ ∈ (0, 1) such that,

(1− δ)‖s‖22 ≤ ‖ΦΨs‖22 ≤ (1 + δ)‖s‖22, (9)

holds for all K-sparse signal s. This is called the Restricted

Isometry property (RIP) of order K. The ratio M/N is

termed as Compressed Measurement Ratio (CMR). More

details regarding 1-D CS based DSSE can be found in [4].

2) Matrix Completion

To utilize the matrix completion approach for DSSE, a

structured matrix X whose rows correspond to measurement

locations and columns correspond to measurement types (e.g.

power or voltage) is constructed for a given time. For exam-

ple, each row represents a bus and each column represents

a measurement associated with the bus [12]. Therefore, for

every bus b ∈ B, the corresponding row in the matrix X

∈ R
n1×n2 contains:

[ℜ(vb),ℑ(vb), |vb|,ℜ(sb),ℑ(sb)] (10)

where n1 = |B| and n2 = 5 quantities per row. Since the

distribution grid is unobservable, X will be an incomplete

matrix. The smoothness in spatial variation of the physi-

cal power system quantities (voltage, power, etc) translates

into low rank property for this matrix X. This low rank

property can be exploited to impute the unknown entries

of X. Specifically, matrix completion aims to determine the

unknown elements in the matrix by minimizing the rank of

the matrix. The convex relaxation for rank of a matrix is the

nuclear norm. The sampling operator PΩ(X) represents the

observation matrix as,

[PΩ(X)]ij =

{

Xij , (ij) ∈ Ω

0, otherwise
(11)
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Therefore, the optimization formulation (12) recovers the

complete low rank matrix, as

L̂ = min
L∈Rn1×n2

‖L‖∗

subject to PΩ(X) = PΩ(L)
(12)

x = Mz+w (13)

where, (13) captures the linearized power-flow constraint

relating voltage states x to power measurements z. More

information on matrix completion based DSSE can be found

in [12].

B. SPATIO-TEMPORAL METHODS

In addition to the correlation in the spatial dimension, tempo-

ral correlation is exploited in 2-D CS and tensor completion

methods for DSSE.

1) 2-D Compressive Sensing

2-D CS aims at reconstructing the signal with insufficient

data using the underlying sparsity across both space and time.

Let X ∈ R
Nspace×Ntime be the spatio-temporal state over

Nspace nodes and for Ntime number of observations. It has

been shown that X is sparse in sparsifying basis ΨNspace
and

ΨNtime
such that [4],

X = ΨNspace
AΨT

Ntime
(14)

The spatio-temporal compressed sensing of X corresponds

to,

Y = ΦspaceXΦT
time (15)

where, Φspace ∈ R
mspace×Nspace and Φtime ∈ R

mtime×Ntime

with entries that are i.i.d. Gaussian random variables with

zero mean and respective variance of 1/m2
space and 1/m2

time

with mspace ≪ Nspace and mtime ≪ Ntime. The spatio-

temporal data is recovered by solving the following l1
minimization problem

â = min
s

‖s‖1

subject to

vec(Y) = (Φspace ⊗Φtime)(ΨNspace
⊗ΨNtime

)s

x = Mz+w
(16)

Here, vec(.) represents the vectorized version of a matrix

and ⊗ represents the kronecker product.The reconstructed

state is therefore,

vec(X̂) = (ΨNspace
⊗ΨNtime

)â (17)

More details on 2-D CS based DSSE can be found in [4].

2) Tensor Completion

Similar to matrix completion, the starting point for tensor

completion approach is the construction of a tensor corre-

sponding to system states and measurements. In essence,

the matrix corresponding to the state/measurement at one

time instant can be extended to a sequence of matrices each

corresponding to one time instant. The resulting tensor T will

be of dimension R
m×5×Nt with m buses, Nt time instants

and 5 physical variables as stated in (10). T is a 3-way tensor

indexed by two spatial variables and one temporal variable.

The goal of tensor completion is to fill in the missing

entries of T by exploiting the sparsity in the data. Tensor

completion utilizes tensor trace norm minimization formula-

tions with linearized power-flow constraints. The tensor trace

norm can also be expressed as the convex combination of

trace norms of all matrices obtained by unfolding the tensor

along all its modes [26]. Additional matrices M1, M2,...,

Mn are introduced to eliminate the interdependency in the

elements across the different unfoldings. In [5], a simple low

rank tensor completion (SiLRTC) approach is considered that

uses block coordinate descent to obtain the n matrices Mi

and tensor X . The suffix (i) denotes the unfolding operation

applied on the tensor along the mode i. The optimal Mi

can be obtained by applying a shrinkage operator DT (X(i)),
where DT (X(i)) = UΣT V

T and ΣT = diag(max(σj −
τ, 0)). X is obtained by solving the optimization problem for

certain positive values of βis,

min
X

n
∑

i=1

βi

2
‖Mi −X(i)‖

2
F

subject to XΩ = TΩ

x = Mz+w

(18)

The M′
is and X are alternatively updated until X converges.

More details on tensor completion based DSSE can be found

in [5].

III. ROBUST ESTIMATION

The basic sparsity-based DSSE methods were introduced in

the previous section. In this section, formulations to system-

atically ensure robustness are derived.

A. ROBUSTNESS TO BAD DATA

“Bad data” refers to the data measurements that significantly

deviate from the underlying actual behavior. They occur

due to instrument failures, impulsive communication noises,

infrequent instrument calibration, or jammed sensors. In the

smart grid context, bad data can also refer to some form of

malicious data injections [27], [28], [29], [30]. The sparsity

of bad data reflects the fact that cyber-attacks, impulsive

noise or faulty sensors are infrequent as compared to the total

number of measurements. In practise, prior research efforts

[31], [32] have also affirmed that at most 10% of total data

ends up being bad. The presence of bad measurement data

can degrade state estimation accuracy [33]. This section dis-

cusses the robust formulations of sparsity-based approaches

in the presence of bad data.

1) Robust CS

Considering bad data and measurement noise, the sensing

matrix y in (5) can be defined as,

y = Φx+ o+ e (19)
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where, o ∈ R
M and e ∈ R

M represent outlier noise and

measurement noise respectively. o is an unknown vector with

its entry o(i) being non-zero only if y(i) is a bad datum. The

joint reconstruction of both x and o essentially reveals the

state and identifies the faulty measurements. It is reasonable

to assume that the presence of bad data in measurement

dataset is sparse. Hence, by exploiting the sparsity of o,

we can recover both the states and bad data. The robust

optimization formulation corresponds to,

min
a,o

‖a‖1 + λ1‖o‖1 + λ2‖y −ΦΨa− o‖2

subject to Ψa = Mz+w
(20)

where λ1 and λ2 are the tuning parameters. The reconstructed

signal is x̂ = Ψâ. A similar robust formulation is obtained

for 2-D CS by incorporating the l1 minimization of bad data

vector in (16).

2) Robust Matrix Completion

As mentioned earlier, the partially observed matrix X serves

as the starting point for matrix completion. However, entry-

wise measurement noise and outlier noise could exist. This

in turn may degrade the performance of matrix completion

based state estimation. A robust formulation is proposed

to withstand these errors. The key idea behind the robust

formulation is to recover the low rank matrix as well as

outlier matrix from the observed matrix X at different levels

of system observability. The partially observed matrix X is,

X = L+ S+ Z (21)

where L – low rank matrix, S – sparse bad data matrix and Z

– measurement noise matrix

Accordingly, the optimization problem (12) is reformulated

to incorporate bad data and measurement noise as,

min
L,S

‖L‖∗ + λ1‖vec(S)‖1 + λ2‖X− L− S‖F

subject to x = Mz+w
(22)

where λ1 and λ2 are the tuning parameters. By solving (22),

the low rank matrix (L) and corrupted matrix (S) is jointly

recovered [34].

3) Robust Tensor Completion

In the tensor completion formulation (18), we need to remove

outliers and recover the low rank tensor based on the global

structure of the tensor [35]. Therefore, similar to the matrix

completion case, the robust tensor completion formulation of

tensor L corresponds to,

(L̂, Ŝ) = min
L,S

N
∑

i=1

‖L(i)‖∗ + λ‖vec(S)‖1

subject to X = L+ S

x = Mz+w

(23)

where λ is the tuning parameter. L, S are low rank and bad

data tensor respectively.

B. ROBUSTNESS TO NETWORK PARAMETER

UNCERTAINTY

In all the DSSE methods discussed above, accurate knowl-

edge of the power network is assumed. The network model

parameters include series resistances, reactances, tap values

and suseptances. Parameter errors may create serious bias in

the state estimate solutions that tend to last for a long time

[36]. However, it is reasonable to assume that such errors

in network parameters does not exist universally. That is,

only a subset of these values may be erroneous i.e., these

parameter errors occur sparsely [36]. Consider a general

norm minimization problem with objective ‖Ax− b‖ and

variable x along with uncertainty for set of possible values

of A ∈ A ⊆ R
m×n. The worst case robust approximation

formulation [37] can be applied here. i.e., the goal is to

minimize the worst-case error ewc,

minimize
x

ewc(x)

where ewc(x) = sup {‖Ax− b‖ | A ∈ A}.
(24)

(24) can be cast as a LP with variables x and t when A is the

singleton A = {A},

minimize
x,t

t

subject to − t1 � Ax− b � t1
(25)

For DSSE, uncertainties in the network parameter values

results in uncertainties in submatrices of admittance matrix

YLL ∈ C
3m×3m where m is the number of buses. The robust

formulation of the power-flow constraints with voltage x̃ as

the optimization variable corresponds to,

minimize
x̃,t

t

subject to − t1 � ℜ{YLLx− (MYLz−YL0v0)} � t1

− t1 � ℑ{YLLx− (MYLz−YL0v0)} � t1
(26)

where

MYL :=
(

diag(w̄)−1,−jdiag(w̄)−1
)

Thus, by minimizing the maximum residual error of the

powerflow constraint, we can get robust solutions for x̃. The

complete robust formulation of CS with network parameter

uncertainty corresponds to,

minimize
s,t

‖s‖1 + λt

subject to y = ΦΨs

− t1 � ℜ{YLL(Ψs)− (MYLz−YL0v0)} � t1

− t1 � ℑ{YLL(Ψs)− (MYLz−YL0v0)} � t1

(27)

where λ is the tuning parameter. Similar robust formulation

can be derived for matrix completion and tensor completion

approaches. Due to space constraints, those formulations

have been omitted.
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IV. COMPUTATIONAL COMPLEXITY

1-D CS based method involves an l1 minimization which

is solved by linear programming. Let m be the number of

variables and n the number of constraints. The computational

complexity of solving one newton step is O(mn.min(m,n))
[38]. 2-D CS involves Kronecker product [39] of its sparsify-

ing basis and measurement matrics for each of its d-sections.

It solves a single higher dimensional optimization problem of

complexity O(
∏D

d=1(mn.min(m,n))d).

In matrix completion, matrix of dimension R
m×5 is re-

covered by minimizing the nuclear norm. The semi-definite

optimization problem solved by interior point methods [40]

has computational complexity of computing step direction

O(m3Ni) for Ni iterations. The linearized power-flow con-

straints involves solving of 5m equations whose complexity

is O(m3Ni).

For tensor completion, consider a state measurement ten-

sor X of size R
m×5×Nt . This tensor can grow along its first

and third mode. Thus, the resulting tensor will have O(mNt)
elements. SiLRTC requires O(mNtNi max(m,Nt)) com-

putations where Ni is the number of iterations for each

frame of X . The linearized power flow constraints require

O(m3NtNi) computations. Based on these complexity com-

putations, 1-D CS has lower computational complexity than

matrix completion and 2-D CS approach has higher com-

putational complexity than tensor completion. The exact

time complexity associated with these sparsity-based DSSE

methods are discussed in the next section.

V. SIMULATION RESULTS AND DISCUSSION

In this section, the four DSSE approaches introduced earlier

are evaluated and compared on IEEE 37 and 123 bus test

systems. These test systems are standard three-phase unbal-

anced distribution grids [41]. IEEE 37 test system is a highly

unbalanced delta connected system with an operating voltage

of 4.8 kV and spot loads. IEEE 123 test system is a Wye

connected network operating at nominal voltage of 4.16 kV

and spot loads. The CVX solver [42] is utilized to solve

the involved optimization formulations. For quantifying the

performance of sparsity-based DSSE methods, MAPE (Mean

Absolute Percentage Error) and MIAE (Mean Integrated

Absolute Error) metrics are used for voltage magnitude and

voltage angle, respectively. They are defined as,

MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

xi − x̂i

xi

∣

∣

∣

∣

(28)

MIAE =
N
∑

i=1

|θi − θ̂i|

N
(29)

where xi and θi represent the true magnitude and angle at

bus i respectively. x̂i and θ̂i are the estimated magnitude and

angle, respectively. Different case studies are presented for

evaluating the performance of these methods.

10 20 30 40 50 60 70 80 90

CMR (%)

10
-1

10
0

M
A

P
E

 (
%

)

Voltage magnitude estimation- 1-D CS and Matrix Completion

1-D CS

Matrix Completion

FIGURE 1. Case I: Voltage magnitude performance of spatial approaches
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FIGURE 2. Case I: Voltage angle performance of spatial approaches
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FIGURE 3. Case I: Voltage magnitude performance of spatio-temporal

approaches

A. CASE I- POWER AND VOLTAGE MEASUREMENTS

Fig. 1 and Fig. 2 show the comparative performance of spatial

approaches with a subset of both power and voltage measure-

ments in the IEEE 37 bus test system. The results illustrate

that 1-D CS based approach outperforms matrix completion

when we find a proper transformation basis (here, DCT basis

is used). This is because, using the transformation basis

allows 1-D CS to better exploit the sparsity of states, which

in turn aids in effective state recovery from a smaller number

of measurements. Similarly, from Fig. 3 and Fig. 4, it can
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FIGURE 4. Case I: Voltage angle performance of spatio-temporal approaches

be inferred that the 2-D CS outperforms tensor completion

at low CMRs. However, at higher CMR, the system becomes

more observable and tensor completion perform better than

2-D CS since the smoothness across raw measurements is

more pronounced and better exploited.

B. CASE II- ONLY POWER MEASUREMENTS

In distribution grids, the substation bus is selected as the

slack bus and the remaining buses are usually modeled as

PQ buses [43]. In reality, sensors with voltage measuring

capability may not be deployed because of additional infras-

tructure costs. Therefore, voltage measurements at non-slack

buses are normally unavailable. To simulate this scenario, we

compare the performance of DSSE methods with traditional

measurements [44] (only power measurements at the non-

slack bus). It can be inferred from Fig. 5 and Fig. 6 that the

matrix completion method delivers a poor performance since

the entries of voltage columns in the observed matrix are all

unfilled. Similarly, tensor completion in Fig. 7 and Fig. 8 also

performs poorly in estimating the voltage states. Both 1-D CS

and 2-D CS based methods, however, reconstruct the states

with high fidelity even at 40% CMRs.
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FIGURE 5. Case II : Voltage magnitude performance of spatial approaches
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FIGURE 6. Case II : Voltage angle performance of spatial approaches

10 20 30 40 50 60 70 80 90

CMR (%)

10
-1

10
0

10
1

10
2

M
A

P
E

 (%
)

Voltage magnitude estimation- 2-D CS and Tensor Completion

2-D CS

Tensor Completion

FIGURE 7. Case II : Voltage magnitude performance of spatio-temporal

approaches
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FIGURE 8. Case II : Voltage angle performance of spatio-temporal

approaches

C. CASE III - ROBUSTNESS TO BAD DATA

The robustness of DSSE methods is evaluated on the IEEE

37 bus test system with power and voltage measurement data.

The percentage of bad data is increased from 0% to 10% of

the total measurements with a fixed CMR of 75%. For each

percentage, 50 cases are generated with different randomly

generated bad data. We assume that the measurement noise

distribution has mean zero and standard deviation of 1% of

the actual parameter value, and the standard deviation of bad

measurements is 100% of the actual value. The performance
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of WLS, robust 1-D CS and matrix completion is illustrated

in the presence of bad data and measurement noise in Fig. 9

and Fig. 10. It can be inferred that WLS is more sensitive to

bad data than the sparse-aware approaches. For instance, with

the presence of 10% of bad data, the magnitude performance

of the matrix completion approach is 94% better compared to

the WLS method.
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FIGURE 9. Case III: Voltage magnitude performance of spatial approaches for

different bad data
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FIGURE 10. Case III: Voltage angle performance of spatial approaches for

different bad data
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FIGURE 11. Case III: Voltage magnitude performance of spatio-temporal

approaches for different bad data

Fig 11 and Fig 12 illustrate the performance of robust ver-

sions of tensor completion and 2-D CS based DSSE. These
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FIGURE 12. Case III: Voltage angle performance of spatio-temporal

approaches for different bad data

methods deliver comparable performance in terms of voltage

magnitude estimation. However, 2-D CS based method has

improved accuracy in voltage angle estimation, compared

to tensor completion. This is because, tensor completion

focuses more on voltage magnitude error reduction relative

to voltage angle accuracy due to the different scales of those

constituent tensor elements.

D. CASE IV - ROBUSTNESS TO NETWORK PARAMETER

UNCERTAINTY
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FIGURE 13. Case IV: Voltage magnitude performance of spatial approaches

in presence of network parameter uncertainty

The performance of the robust formulation in (27) is

compared against WLS for different CMRs in Fig. 13 and

Fig. 14. The measurement set includes real power (3m),

reactive power (3m) and voltage phasors (3m). The states to

be estimated are voltage magnitude (3m) and voltage angle

(3m). Since implementing the WLS approach requires a full

rank jacobian matrix, i.e., the number of measurements needs

to be equal to the number of states, this approach is not fea-

sible with less than 66% measurements. Therefore, pseudo-

measurements based on historical data of the network are

added to make the system observable for CMR less than 66%.

To simulate network parameter uncertainties, the resistance

in the branch 2-3 for phase A is intentionally made erroneous

by 10 p.u. Also, the reactance in the branch 12-13 for phase
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FIGURE 14. Case IV: Voltage angle performance of spatial approaches in

presence of network parameter uncertainty

B is modified from 0.29 p.u to 4.65 p.u. The measurements

are generated with this perturbed model whereas the model

known to the estimator remains unchanged. It can be inferred

that the states estimated using the WLS approach is not

robust to parameter uncertainty. However, the 1-D CS based

approach reconstructs the states with high fidelity even at

low CMR values. Also, the WLS estimates are poor as the

pseudo-measurements are inaccurate compared to the real-

time measurements.

E. CASE V - IEEE 123 BUS TEST SYSTEM

To demonstrate the scalability of the four sparsity-based

approaches, they are implemented on the IEEE 123 bus test

system. In this case, both power and voltage measurements

are assumed available and the accuracy of DSSE using spatial

and spatio-temporal approaches are depicted in Fig. 15-16

and Fig. 17-18 respectively. It can be inferred that 1-D CS

performs better at all observability conditions compared to

matrix completion. Tensor completion performs better for

higher data availabilities than 2-D CS. These results are

consistent with the findings for the IEEE 37 bus test system.
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FIGURE 15. Case V: Voltage magnitude performance of spatial approaches

The time required for each of these sparsity-based methods

for one Monte-Carlo simulation and one CMR is tabulated

in Table 1. These time calculations are performed on intel
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FIGURE 16. Case V: Voltage angle performance of spatial approaches
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FIGURE 17. Case V: Voltage magnitude performance of spatio-temporal

approaches
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FIGURE 18. Case V: Voltage angle performance of spatio-temporal

approaches

i5 core, 8 GB RAM processor with CVX Mosek package.

In accordance with the complexity analysis in section IV,

the time complexity of 1-D CS is lowest than all other

methods. Matrix completion and tensor completion methods

have higher time complexity than 1-D CS but lower than 2-D

CS.

VI. CONCLUSION

This paper provides a comparative study of four sparsity-

based DSSE approaches. In addition to the comparison of
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TABLE 1. Time requirement for 1 run, 1 CMR

Sparsity-based methods Time (IEEE 37 bus) Time (IEEE 123 bus)

1-D CS 3.6s 20.5s
Matrix Completion 10.7s 65.1s
2-D CS 83.9s 411.9s
Tensor Completion 21.1s 132.2s

error performance, new robust formulation for these ap-

proaches are derived to tackle the presence of bad data and

network parameter uncertainties. Numerical studies show

the superior performance of compressive sensing based ap-

proaches, compared to matrix completion and tensor com-

pletion based methods. The performance gains of CS based

methods are especially pronounced in low observability

conditions. Furthermore, the proposed robust optimization

formulations of sparse-aware approaches are compared with

conventional WLS based estimation method and shown to

offer significant performance improvements. Future efforts

will focus on developing low complexity and distributed

implementations of 2-D CS and tensor completion based

DSSE methods.
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