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Abstract This paper addresses the problem of localizing

people in low and high density crowds with a network of

heterogeneous cameras. The problem is recast as a linear

inverse problem. It relies on deducing the discretized occu-

pancy vector of people on the ground, from the noisy binary

silhouettes observed as foreground pixels in each camera.

This inverse problem is regularized by imposing a sparse oc-

cupancy vector, i.e., made of few non-zero elements, while a

particular dictionary of silhouettes linearly maps these non-

empty grid locations to the multiple silhouettes viewed by

the cameras network. The proposed framework is (i) generic

to any scene of people, i.e., people are located in low and

high density crowds, (ii) scalable to any number of cam-

eras and already working with a single camera, (iii) uncon-

strained by the scene surface to be monitored, and (iv) ver-

satile with respect to the camera’s geometry, e.g., planar or

omnidirectional.

Qualitative and quantitative results are presented on the

APIDIS and the PETS 2009 Benchmark datasets. The pro-

posed algorithm successfully detects people occluding each
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other given severely degraded extracted features, while out-

performing state-of-the-art people localization techniques.
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1 Introduction

Accurate vision-based people detection and tracking has

been of interest for the past decades in applications like sport

game analysis, video-surveillance (e.g., behavior analysis,

automatic pedestrian counting).

Isolated people, in an un-cluttered scene, are successfully

detected with a single static or moving camera based on pat-

tern recognition techniques. A set of features such as Haar

wavelet coefficients [33, 35], histogram of oriented gradi-

ent [16, 40] or covariance matrices of a set of features [4,

42], can be extracted from a large number of training sam-

ples to train a classifier with a support vector machine [13,

33], or boosting approaches [42, 43]. Given a fixed cam-

era, a moving object can also be detected by modeling the

background and tracking becomes simply an object corre-

spondence across frames. Typically, the work of Stauffer and

Grimson [38] can be used to extract the foreground pixels.

Each pixel is modeled as a mixture of Gaussians with an

on-line approximation for the update. Then, detected people

can be tracked using standard approaches [36]. A detailed

survey on object tracking is presented by Yilmaz et al. in

[45]. Porikli in [36] presents a survey on object detection

and tracking methods given a single fixed camera. However,

those algorithms fail to detect a group of people due to their

mutual occlusions. For instance, in sport games such as bas-

ketball, players can strongly occlude each other and have
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Fig. 1 (Color online) A scene observed by four planar cameras and

one omnidirectional camera (extracted from the APIDIS dataset).

The green contours represents the degraded foreground silhouettes

extracted, and the bounding boxes correspond to the output of our pro-

posed detection algorithm

abrupt changes of behavior. In order to handle the occlusion

problem, several cameras should be fused to correctly detect

and track all the people present in the scene.

In this work, a novel framework is proposed to robustly

detect moving people occluding each other given severely

degraded foreground silhouettes from a set of calibrated

pseudo-synchronized cameras (see Fig. 1). The only features

extracted from the cameras are indeed the binary masks,

or foreground silhouettes, representing the connected pixels

belonging to the foreground of the scene. Such feature suf-

fers from two flaws. First, a single silhouette can correspond

to several people due to their dense spatial distribution. Sec-

ond, silhouettes are usually made of many false positives

pixels (e.g., shadows, reflections) and false negatives ones

(i.e., missing foreground pixels). We propose a new mathe-

matical framework to handle such noises.

Our approach relies on an inverse problem formulation

regularized by the assumed “sparsity” of people’s location

points on the ground floor. It relies on deducing an occu-

pancy vector, i.e., the discretized occupancy of people on

the ground from the foreground silhouettes. Reconstruction

methods based on the Basis Pursuit DeNoise (BPDN) [12]

and the Lasso algorithms [41] are evaluated. The sparsity

measure is reinforced by iteratively re-weighting the ℓ1-

norm of the occupancy vector for better approximating its ℓ0

“norm” (referred to RW-BPDN and RW-Lasso in the paper).

A new kind of “repulsive” sparsity is used to adapt further

the Lasso procedure to the occupancy reconstruction (re-

ferred to O-Lasso) outperforming other methods. A dictio-

nary made of atoms representing the silhouettes viewed by

the cameras network is used within the formulation. Finally,

we propose an adaptive process to sample the ground plane

in function of both the cameras’ topology and the scene ac-

tivity. We locate people’s location points on the ground and

propagate the detection results in each camera view.

The proposed approach is (i) generic to any scene of

people and sensing modality, (ii) versatile with respect to

heterogeneous cameras network, i.e., able to merge specific

camera geometries such as planar and omnidirectional cam-

eras, (iii) scalable to any number of cameras and already

working with a single camera, (iv) robust to people having

similar appearance and to abrupt change of behavior (as for

sport players), and (v) this method does not impose any con-

straint on the scene surface to be monitored.

To achieve a complete detection system, we provide also

a simple graph-driven tracking procedure suited to the par-

ticular temporal dynamics of people occupancy vectors.

This tracking is based on an iterative method coined Dijk-

stra Pursuit. It identifies the people tracks by recording the

longest geodesics in a graph connecting the non-zero loca-

tions of the occupancy vectors across time.

The rest of the paper is structured as follows. First, we

recall some important previous works about people detec-

tion given multiple cameras. In Sect. 3, our approach is for-

mulated as the inverse problem of deducing an occupancy

vector from the noisy binary silhouettes observed as fore-

ground pixels in each camera. We show how this problem

can be solved theoretically by regularization, i.e., by using a

sparsity prior on the occupancy grid. In Sect. 4, the dictio-

nary involved in the corresponding forward (or generative)

model, i.e., the generation of the observed silhouettes from

the occupancy vector, is detailed. Section 5 explains the par-

ticular simplifications we bring to the theoretical methods

of Sect. 3 to achieve a solvable people localization. First, a

re-weighting ℓ1-norm is presented. Then, a repulsive spatial

sparsity constraint is considered with a dynamic update. In

parallel, in order to reduce the complexity of the problem,

Sect. 6 presents the process used to reduce the dimension-

ality of the problem, i.e., in the number of observation and

in dimension of the search space. The graph-driven tracking

procedure is detailed in Sect. 8. Finally, the performance of

our approach is evaluated quantitatively and qualitatively in

Sect. 9, on synthetic and real data, in comparison with the

state-of-the art techniques.

2 Previous Work

In order to deal with a dense spatial distribution of peo-

ple, and their mutual occlusions, the output of several cam-

eras are used to detect the objects of interest. Robustness

with respect to the appearance variability between views is

achieved by estimating the object coordinates in a common

reference (typically the ground plane where people are lo-

cated). The unique ‘world’ coordinates, i.e., the coordinates
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of the object on the ground plane, is linked to the view coor-

dinates by a planar homography. The planar homography is

a 3 × 3 matrix transformation obtained by matching at least

four points from two different coordinate systems. Most sys-

tems compute the homographies at an initial calibration step

[31]. Stauffer and Tieu’s method in [39] rely on tracking

data to estimate homography from one camera to another

one (correspondence between trajectories). Note that instead

of projecting each view on a reference ground plane, some

works compute planar homographies between camera views

[7, 31, 39]. However, those approaches suffer to solve the

occlusion problem.

After projecting all detected objects into a common ref-

erence, Mueller et al. in [31] mark with the same label the

nearest object with the same size and center of gravity. Or-

well et al. in [34] and Caspi et al. in [9] match objects by

fusing the estimated trajectories obtained by each camera.

However, special care should be applied when using such

methods. A point from the object region in the image coor-

dinate is selected to be projected in other coordinates. Ide-

ally, the foot region should be used. However, some works

consider that the center of gravity of the detected object is

a reliable approximation. If objects are very far from the

cameras, then the approximation is correct. Otherwise, such

approximation will lead to poor matching performance. In

addition, object segmentation should be perfect. If a person

is extracted with its shadow, again, the matching procedure

will be affected.

Kim and Davis in [27] take special care to extract the

feet region of the foreground people by computing the cen-

ter vertical axes of the people across views. The axes are

mapped to the top-view plane by homography and their in-

tersection point is estimated as the ground point. However,

such approaches do not take full advantage of the multi-view

infrastructure, as each camera detects the objects indepen-

dently without helping each other.

Relevant works have decided to neither detect and track

objects from each camera, but preferred to gather evidences

from all the views and locate in a reference plane. The prob-

lem is reformulated as determining the occupied point in the

occupancy grid defined by Elfes in [19]. The occupancy grid

can be 2-D [22], or even 3-D [23]. It is usually the ground

plane or planes parallel to the ground. Yang et al. in [44]

compute the occupancy grid with a standard visual hull pro-

cedure given an upper and lower bound constraint.

Some works locate people’s head positions instead of

their ground plane locations. Zhao and Nevatia in [46] lo-

cate the head locations given a single camera calibration and

a head detector. Eshel and Moses in [20] use a set of cam-

eras to better handle occlusions. Those approaches require a

good observation of the heads or a good foreground extrac-

tion at the head level.

Khan and Shah in [25] pay attention to extract the feet re-

gion of the foreground people. Each point of the foreground

Fig. 2 (Color online) People localization with a single camera. Left

side: contour (in white) of the foreground silhouette extracted by the

camera. Right hand-side: Located people by our proposed algorithm

given the silhouette extracted

likelihood (foreground silhouettes) from all views is mapped

to the ground plane given a planar homography. Multiply-

ing the mapped points segments the pixel corresponding to

the feet of the people. Their approach can not be applied to

an object viewed by one camera. In addition, a poor fore-

ground segmentation—people detected with their shadow

or missing foreground pixels—affects the performance of

their system. To handle such noisy segmentation, they apply

their approach to multiple planes parallel to the reference

plane in [26]. Delannay et al. in [17] use the same approach,

i.e., they also project the foreground likelihood on multiple

planes parallel to the ground. They combine such process

with a heuristic step to handle the non-linearity induced by

occlusion. However, wrapping the foreground silhouettes on

reference planes do not allow to locate grouped of people

specially when a single camera is used such as in Fig. 2.

More recently, Reddy et al. in [37] use compressed sens-

ing to detect and track people in a multi-view setup. They

use the sparsity of the observations, i.e., the foreground sil-

houettes extracted from the cameras. However, their sparsity

constraint depends on the distance of the objects to the cam-

eras. Objects close to the cameras will unfortunately gener-

ate large foreground silhouettes with poor sparsity. To ac-

curately estimate the position of the objects on the ground

plane multiple cameras are needed. No dictionary is used to

model the presence of a person. Also, the complexity cost

of their algorithm depends on the number of ground plane

points, the grid size, to be evaluated.

Fleuret et al. in [6, 22] take advantage of the multi-

view infrastructure to accurately track people across mul-

tiple cameras given degraded foreground silhouettes. They

develop a mathematical framework to estimate the probabil-

ities of occupancy of the ground plane at each time frame

with dynamic programming to track people over time. They

approximate the occupancy probabilities as the marginals of

a product law minimizing the Kullback-Leibler divergence

from the true conditional posterior distribution (referred to

as Fixed Point Probability Field algorithm). They are able

to detect people occluding each other given noisy observa-

tion. We will consider their work as the state-of-the-art and

compare it with our proposed algorithm in Sect. 9 since both
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approaches have a generative model and try to minimize the

difference between a synthetic image and the observed im-

age. However, their mathematical framework does not ex-

plicitly consider the sparsity of the desired solution leading

to potentially high false positives rate. In addition, the com-

putation cost of their algorithm depends on the number of

ground plane points to be evaluated, leading to a limited area

to be monitored.

We propose a framework to cope with the limitations of

previous works. It scales to any number of cameras. A sin-

gle camera can also be used whereas previous multi-view

approaches could not be applied to group of people viewed

by a single camera. We do not have any constraint on the sur-

face to monitor. Omnidirectional cameras can also be inte-

grated to the system. We used severely degraded foreground

silhouettes representing realistic scenarios. Foreground sil-

houettes are made of many false negative and positive pix-

els. Finally, we explicitly consider the sparsity present in the

desired solution during the detection process similar to other

sparsity-based algorithms used for localization [10, 24, 29].

The strength of the proposed approach is quantitatively and

qualitatively presented in Sect. 9.

3 Conventions and Problem Formulation

The objective of this paper is to deduce the ground plane

points occupied by the people present in the scene given

the foreground silhouettes provided by a set of C calibrated

cameras (planar or omnidirectional).

To simplify notations, we will often refer to two-dimen-

sional objects, e.g., the grid of occupancy or a given camera

view, as 1-D vectors, i.e., the vectors obtained for instance

by the concatenation of the columns of these 2-D objects.

This will allow us to model easily the construction and the

action of some important linear operators such as the Multi-

Silhouettes Dictionary described in Sect. 4.

Up to the selection of an appropriate background sub-

tracting method, we assume that at a given time, each cam-

era is the source of a binary silhouette image yc ∈ {0,1}Mc ,

where Mc ∈ N is the number of pixels (resolution) of each

camera indexed by 1 ≤ c ≤ C. Stacking all these vectors

gives the Multi-Silhouette Vector (MSV)

y = (yT
1 , . . . , yT

C )T ∈ {0,1}M ,

with M =
∑C

c=1 Mc.

The continuous ground plane is discretized in a 2-D grid

of N sub-areas (or cells). The presence (or occupancy) of

people on the ground is therefore represented by the binary

vector x ∈ {0,1}N , coined occupancy vector, with xi = 1

meaning that the ith cell is occupied by somebody. The in-

dex i of each component xi of x is actually linked to a par-

ticular position p(i) ∈ R
2 on the ground plane in the center

Fig. 3 (Color online) To each point p(i) corresponds a silhouette

modeling the presence of a person in a camera view

of one cell. For simplicity, we assume that one and only one

observed person is exactly supported by one subarea of this

grid.

Notice that, as explained in Sect. 6, the 2-D grid un-

derlying the occupancy vector is actually not regular. It is

adaptively built in function of the cameras’ topology and the

scene activity. This adaptive sampling process is described

in Sect. 6.2.

Assuming that a person is represented by an invariant vol-

ume, it is clear that any configuration of x will correspond

to a particular configuration of silhouettes in y. For instance,

if x contains only one non-zero component, all yc observ-

ing the object will contain one silhouette (i.e., a connected

area of non-zero pixels) with size and location related to the

particular projective geometry combining the scene and the

cameras (see Fig. 3).

Our inverse problem is thus to find x from y assuming

that x is a sparse vector, i.e., it is composed of few non-zero

components compared to N . However, the difficulty in the

resolution of this problem arises from its non-linearity, i.e.,

the vector y is binary and it does not contain any informa-

tion about possible occlusion between persons. In addition,

the background subtracting methods leading to the silhou-

ette definition are severely degraded (e.g., light reflection,

shadows, and noise).

To bypass these two difficulties, we propose to handle

them both as a noise on some linear observation obtained by

a generative (forward) model described hereafter.

4 Forward Model and Multi-Silhouette Dictionary

Our forward (or generative) model that associates to the oc-

cupancy vector x ∈ R
N a certain configuration of silhouettes

in the cameras is provided by the quantization of a linear

operator applied on x. As developed hereafter, we obtain it

from the one bit quantization of a dictionary D ∈ R
M×N

multiplied by x.

The Multi-Silhouette (MS) dictionary D is one of the key

ingredient of our approach. It is made of atoms modeling the
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Fig. 4 (Color online)

Illustration of the atoms

modeling the given foreground

silhouettes. The grid is only for

visual purposes

presence of a single person at a given location. By construc-

tion, it maps non-empty locations of the occupancy vector

to a linear approximation of the multiple silhouettes viewed

by the cameras network. In other words, each atom approx-

imates the silhouette generated by a single person in all the

camera views. The columns of D, i.e., the atoms, live thus

in the same space as the observed Multi-Silhouette Vector

(MSV), i.e., in a space of M =
∑C

c=1 Mc dimensions.

Mathematically, the Forward Model generating silhou-

ettes is thus the application of D on the occupancy vector

x, i.e., Dx. Of course, by linearity, the components of Dx

are not binary. They are higher than one each time two or

more silhouettes occlude. A more faithful, but non-linear,

forward model, is therefore achieved by applying a quanti-

zation operator Q : R
N → {0,1}N on Dx, with (Q[v])i = 1

if vi �= 0 and 0 else. We will develop further the use of these

two forward models in Sect. 5.

The dictionary D ∈ {0,1}M×N can also be seen as the

merging of all the sub-dictionaries Dc ∈ {0,1}Mc×N made

of the index restriction of the atoms of D to the pixel range

of each camera c for 1 ≤ c ≤ C. Therefore,

D = (DT
1 ,DT

2 , . . . ,DT
C )T (1)

meaning implicitly that there is no theoretical constraint on

the number or on the type of camera used, e.g., planar or

omnidirectional.

Practically, as explained in [1], the atoms of each Dc are

generated (i) thanks to the homographies mapping points in

the 3-D scene to their 2-D coordinates in the planar view,

and (ii) thanks to the approximation of the silhouettes by

simple shapes (e.g., rectangular or elliptical shapes). In-

deed, to cope with the various poses and shapes a person

can generate in a camera view, a half-cylinder-half-spherical

shape is used to approximate the silhouette of a person in

the views (see Fig. 3). Figure 4 illustrates an example of

severely degraded foreground silhouettes (made of shadows,

people’s reflection, missed regions) and the silhouettes used

to model their presence in the set of planar and omnidirec-

tional cameras.

Note that the shape used to generate the atoms does not

affect the computation complexity of the approach since the

dictionary is computed off-line. We do not need to use rec-

tangular shape as in [22] to take advantage of integral im-

ages.

5 Occupancy Reconstructions

5.1 Ideal Formulations

The problem of reconstructing the occupancy vector x from

the observed data y can be of course ill-posed in certain

configurations, e.g., if the discretization of the ground plane

leads to a higher number of sample points than the sum of

all the cameras resolutions. However, even in overcomplete

scenario (more observation than sample points), the pres-

ence of noise in y and the non-linear forward model de-

scribed in the previous section require us to regularize the

reconstruction with the a priori spatial sparsity of x.

A first approach is to use the following theoretical opti-

mization problem, i.e., ℓ0-Regularized problem:

arg min
x∈{0,1}N

‖x‖0 s.t. ‖y − Q(Dx)‖2
2 < ε (2)

where ‖x‖0 = #{i : xi �= 0}, ε is the desired residual error

and the quantization Q is defined in Sect. 4.

Such formulation does not require to know the sparsity

of the vector x but needs an upper bound on the residual

error for the fidelity term. Since the degradations on the
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foreground likelihood are not predictable, another alterna-

tive is to bound the sparsity, i.e., reformulate the reconstruc-

tion method as the ℓ0-Regularized following problem that

can be compared to the Lasso problem [41]:

arg min
x∈{0,1}N

‖y − Q(Dx)‖2
2 s.t. ‖x‖0 < εp (3)

where εp is the maximum number of people to be detected.

These optimizations are non-convex and also NP-hard

[32], i.e., the numerical complexity is combinatorial in the

dimension of the space. This is due to the use of the ℓ0

sparsity term and to the discrete nature of the binary space

{0,1}N . We need therefore to simplify these formulations,

which we do in the next sections.

5.2 Linearized and Re-Weighted Optimizations

In order to linearize (2) and (3), we first remove the quanti-

zation operator Q from their fidelity terms. This amounts to

consider possible object occlusions has an additional noise

on the measured silhouettes, increasing therefore the value

of the desired residual error ε or the maximum number of

people εp in (2) and (3) respectively. Second, the vector x is

now considered in R
N
+ and not in the binary space {0,1}N ,

while the reconstructed vector will be subsequently one-bit

quantized to form the binary occupancy vector x. An adap-

tive threshold T is used driven by the maximum value of x.

The solution x can converge to any real value given our re-

weighted scheme. In addition, our formulation is affected by

the missing quantization operator. Typically, when two peo-

ple occlude each other, the contribution of each atom should

be half in order to best minimize the fidelity term. There-

fore, in order to accept the contribution of two to three atoms

occluding each other, we keep one-fourth of the maximum

value (T = 0.25). Nevertheless a small threshold T leads to

high recall rate with a low precision (see Fig. 11).

Interestingly, in the minimizations (2) and (3), the

ℓ0-norm can be approximated with an iterative reweight-

ed ℓ1-norm [8, 11]. The weights used for the next iteration

are computed from the value of the current solution as in-

troduced by Candès et al. in [8]. Without the re-weighted

scheme, the solution is not sparse enough. It leads to very

high number of false positives as presented in [1, 2].

Explicitly, (2) leads to the Re-Weighted Basis Pursuit De-

Noise (RW-BPDN) program, i.e.

x(l+1) = arg min
u∈R

N
+

‖W (l)u‖1 s.t. ‖y − Du‖2 < ε, (4)

while (3) provides the Re-Weighted Lasso (RW-Lasso), i.e.,

x(l+1) = arg min
u∈R

N
+

‖y − Du‖2
2 s.t. ‖W (l)u‖1 < εp, (5)

where, for both equations, the diagonal weighting matrix is

defined at each iteration l > 0 by W
(l)
ii = (|x

(l)
i | + η)−1, for

1 ≤ i ≤ N , with W 0 = Id and the corresponding previous

solution x(l). The parameter η is added to assure stability

and guarantees that a zero-valued component in x does not

strictly prohibit a nonzero estimate at the next iteration. We

set η = 10−7.

Practically, as explained in Appendices A and B, at each

iteration of the re-weighted process, (4) and (5) are solved

by monotone operator splitting and proximal methods [14,

21].

5.3 Occupancy Lasso (O-Lasso)

In this section, we specialize further the Re-Weighted Lasso

procedure (5) to the particularities of our occupancy recon-

struction. As explained below, this involves the addition of

two processings in the reweighting loop.

5.3.1 Repulsive Spatial Sparsity (RSS)

Although the re-weighted ℓ1-norm provides a sparse solu-

tion close to the one that would have been obtained with

the true ℓ0 “norm”, it does not enforce a certain form of

spatial sparsity desired in our application. Indeed, taking a

simple example, the linearity of our formulation allows two

(or more) neighboring points in x to have non-zero values

so that the generated silhouette Dx fits a single person with

a shape slightly larger than what is prescribed in the dictio-

nary model.

We want however to avoid such situation and allow the

occupancy reconstruction to spend more effort on the recon-

struction of other isolated persons in x. We impose there-

fore that two detected points, i.e., with non-zero components

in x, are never closer than a minimum spatial distance re-

lated to the minimum surface occupied by a person on the

ground.1 This is what we call the concept of Repulsive Spa-

tial Sparsity (RSS).

Mathematically, if j, k ∈ supp{x} = {i : xi �= 0} with j �=

k, we should have

�jk � ‖p(j) − p(k)‖2 > τ (6)

where p(k) is the location of the kth cell in the discrete

ground plane. We choose a typical value of 70 cm, i.e., the

average width of a standing person, for the minimal spatial

distance τ between two occupied ground points.

We achieve this result by inserting in the iterative algo-

rithm, the non-convex projection

p = ProjRτ
z � arg min

x∈Rτ

‖x − z‖2,

1Notice this approach applies to other objects detection, e.g., cars or

traffic, with non-zero ground-surface.
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Table 1 Greedy RSS projection

Input: A sparse vector z.

Output: An approximation of ProjRτ
z.

Program:

1. Initialize: r ← z, p ← 0 ∈ R
N .

2. Pick the index i∗ = arg maxi |ri |.

3. Set pi∗ ← ri∗ , and then ri∗ ← 0.

4. For all j ∈ supp{r}, if �i∗j < τ , set rj ← 0.

5. If supp{r} = ∅, return p and stop; else, return to Step 2.

of the current solution z on the Repulsive Spatial Sparsity

(RSS) set

Rτ = {x ∈ R
N : ∀ j, k ∈ supp{x} s.t. j �= k,�jk > τ }.

Practically, we approximate p = ProjRτ
z by the suboptimal

greedy method detailed in Table 1.

This method converges in at most n = ‖z‖0 iterations,

i.e., when we have already z ∈ Rτ , and by construction

the output belongs to Rτ . In addition, this greedy method

implicitly preserves the highest non-zero component of z

amongst two or more non-zero components within a dis-

tance τ of the highest. This guarantees a sub-optimal min-

imization of the distance ‖z − p‖2. Notice that the Step 2

can be efficiently realized by sorting the non-zero elements

of z by decreasing magnitudes, a process that takes at most

O(N logN) operations. Indeed, Step 3 in Table 1 inserts just

some zeros in the sorted z and the selection of the maximum

in Step 2 can be realized sequentially, taking each time the

next non-zero element in the sequence.

5.3.2 Adaptive Sparsity Level

The Lasso formulation requires the knowledge of the num-

ber of people present in the scene. In order to make the

algorithm generic enough, we propose an adaptive sparsity

constraint selection in (5). Since the sparsity constraint, εp ,

bounds the potential number of detected people, an iterative

approach is proposed to choose the constraint independently

of the number of people present in the scene. First, εp is high

enough in order to have a first approximated solution. Typ-

ically, εp is initialized to the dimension of x (see Sect. 6).

Then, εp is set to the number of non-zeros values obtained

after each iteration. Experiments show that the algorithm

converges towards the right number of people present in the

scene when the Repulsive Spatial Sparsity constraint is used.

The final iterative algorithm, including both the Repul-

sive Spatial Sparsity and the Adaptive Sparsity level, is sum-

marized in Table 2. It is coined the Occupancy Lasso (O-

Lasso). We will see in Sect. 9 that it outperforms RW-BPDN,

RW-Lasso and the state-of-the-art method.

Table 2 Occupancy Lasso

Inputs:

– The Multi-Silouettes Vector y = (yT
1

, . . . , yT
C

)T ∈ R
M .

– A set of ground point locations (cell):

{p(j) : 1 ≤ j ≤ N}.

– A stopping tolerance Tol (e.g., Tol = 10−4).

Output: The occupancy vector x ∈ R
N .

Program:

1. Initialize: l = 0, x(0) = 0, W (0) = Id, ε(0) = ‖x‖0

2. Solve:

z(l+1) = arg min

u∈R
N
+

‖y − Du‖2
2 s.t. ‖W (l)u‖1 < ε(l),

3. RSS Projection:

x(l+1) = ProjRτ
z(l+1)

4. Re-weight: Define the diagonal matrix W (l+1) by

W
(l+1)
ii

=
(

|x
(l+1)
i

| + η
)−1

, 1 ≤ i ≤ N

5. Dynamic constraint: ε(l+1) = ‖x(l+1)‖0

6. Stop if

‖x(l+1) − x(l)‖2

‖x(l+1)‖2

< Tol,

else, set l ← l + 1 and return to Step 2.

6 Dimensionality Reduction

If many cameras are used, the dimensions of y and x become

an issue in (4) and (5). These sizes define indeed both the di-

mensionality of D, which requires a large memory storage,

and the total computational time of the algorithms. There ex-

ist however some possibilities of dimensionality reductions

that we detail below.

6.1 Dimensionality Reduction on the Observations

The dimension of the observation vector y is by default

equal to the sum of each camera resolution. To reduce the

computation cost, all images are first down scaled to a

QVGA resolution (320×240). A background subtraction al-

gorithm extracts foreground silhouettes on the QVGA reso-

lution. Then the image plane of each camera view is cropped

to the region where people can occur. Finally, all images, yc,

are normalized to the same size (107 × 80).

6.2 Dimensionality Reduction in the Search Space

The complexity cost depends on the number N of ground

plane points to locate as occupied or not. Fleuret et al. in [22]



J Math Imaging Vis

Fig. 5 (Color online)

Illustration of the adaptive

sampling process. Top row:

sample points given a regularly

spaced grid. Bottom row:

proposed non-regular grid

Fig. 6 (Color online) Overview of the adaptive sampling process

discretize the visible part of the ground into a fixed number

of points regularly spaced. They do not consider the resolu-

tion of the cameras and the sparsity of the people present in

the scene to discretize the ground. In this work, we address

these considerations.

Two different ground plane points can correspond to the

same pixel in the image plane of a camera. A translation of

one pixel in the image plane can be equivalent to a trans-

lation of a few meters on the ground plane for far away re-

gions, just as a translation of a few centimeters on the ground

plane can correspond to a shift of several pixels for closer

regions, depending on the resolution of the camera and the

distance of the objects to the camera. Therefore, we pro-

pose a non-regularly spaced sampling process to discretize

the ground (see Fig. 6). Points regularly spaced in the image

plane of all cameras are mapped to the ground to form the

sample points. The mapped location points are quantized to

avoid points spaced with less than few centimeters. Figure 5

compares a regularly spaced grid with our proposed non-

regular grid. Although our proposed grid has less number

of points, regions of interest have higher density of points,

i.e., higher spatial resolution. In order to have the same spa-

tial resolution in the region of interest with a regular grid,

42777 are needed compared to 5644 with our proposed non-

regular grid. A further reduction in the search space can be

achieved by measuring the activity of a sample point accord-

ing to three possible assumptions.

Assumption 1 (Foreground pixels only) Sample points are

ground plane points belonging to the foreground pixels of at

least one camera.

In this assumption, each foreground pixel represents the

potential feet location of the people. Each image plane is

downscaled to reduce the sample points as explained in

Sect. 6.1. Given the calibration data, each point of each cam-

era is mapped to a ground plane point sampling x. In order

to be certain to not miss a potential ground point, each fore-

ground pixel is also considered as the upper limit (the head)

of a person. Therefore, missing the feet region in the fore-

ground will not affect the sampling process.

Assumption 2 (Intersecting foreground pixels) Sample

points are ground plane points belonging to the foreground

pixels of all the cameras observing the corresponding points.

Assumption 2 is similar to the work of Khan and Shah in

[26]. However, such step may be affected by degraded fore-

ground silhouettes extraction, e.g., including shadows (see

Fig. 7). Missing foreground pixels in some views can lead to

missing people whereas high false positive foreground pix-

els induce high false positive rates.

Assumption 3 (Least significant silhouette) Sample points

are ground plane points corresponding to a significant fore-

ground silhouette in all the cameras observing the corre-

sponding points.
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Fig. 7 (Color online) Illustration of the sample points used given the

three strategies. (a) Camera view examples. (b) Corresponding fore-

ground silhouettes. (c) People exact locations (top view). Sampled

points are given in (d) for “Foreground pixels only” assumption (top

view), in (e) for “Intersecting foreground pixels” and in (f) for “Least

significant silhouette”

In this last assumption, the sample points x are kept if

∀c ∈ C :
yT
c Q(Dcx)

‖Dcx‖0
> δ. (7)

Typically, δ is set to 20%. The operator Q is the one

bit quantizer defined in Sect. 4. The constraint δ represents

the minimum amount of foreground pixels needed to keep a

sample point.

Figure 7 presents the three strategies used to reduce the

search space. As expected from their definition, we observe

that these assumptions have different impact on the dimen-

sionality reduction, i.e., we have approximately Assump-

tion 3 ⊂ Assumption 2 ⊂ Assumption 1. When an assump-

tion further reduces the search space, it may have the counter

part of potentially removing correct locations. However, re-

ducing the search space increases the likelihood to better lo-

calize people. In the next section, we evaluate the influence

of all 3 assumptions on the performance of the system.

7 Computational Complexity

The computational complexity is mostly dominated by the

reweighted minimization step. Given the number of points

N in the occupancy grid, the size M of the MSV vector y,

the complexity of O-Lasso (Table 2) is COL = O(L Citer),

where:

– L stands for the number of O-Lasso iterations (indexed

by l); typically, the tolerance Tol > 0 set in the stopping

criterion in step (6) leads to about L = 30 iterations in our

experiments;

– Citer is the complexity of each iteration, that is, the total

complexity of steps 2 to 5.

From Table 2, the value Citer is mainly the sum of:

– the Lasso complexity CLasso (in step 2);

– the RSS projection (in step 3) which complexity is

dominated by this of vector component ordering in

O(N logN) (see Sect. 5.3.1);

– the reweighting with O(N) (in step 4).

The complexity CLasso of (12) is related to the complex-

ity CD of applying D∗ or D to vectors times the number

NFB (two order of magnitude) of Forward-Backward iter-

ations described in Appendix A. The complexity related

to computing Dx and D∗y for x ∈ R
N and y ∈ R

M are

bounded by O(NM). In reality, the various dimensional-

ity reductions explained in Sect. 6.2, reduce the size of

the occupancy grid by restricting the search to the visible

part of the ground (according to three possible assumptions

explained in Sect. 6.2). In order to have an estimation of

the reduction effect, which depends on the foreground sil-

houettes extracted, we observed that each person induces

about N /100 sampling points in the occupancy grid (un-

der Assumption 3). Therefore, for reasonable crowds of

about 10 persons, the reduction is of order 10. This can

reduce significantly the proportionality factor integrated in

CD = O(NM).

We can finally conclude that CLasso = O(NFBMN) and,

considering only the more complex tasks above, we deduce

that COL = O(LNFBMN).

8 Tracking People

In this section, we present a simple tracking algorithm that

suits the temporal evolution of the occupancy vectors as

computed above. We do not aim at presenting here the best

tracking method. The proposed approach is similar to [6]

where they use Viterbi to estimate the trajectories whereas

we use Dijkstra. With the Dijkstra method, shortest paths

(used as track candidate in the Dijkstra pursuit) can inte-

grate connections between close but non-consecutive video

frames. This allows tracking when few frames have miss-

ing or corrupted information. This could be somehow in-

terpreted as a second order Hidden Markov Model in the

Viterbi formalism. Our objective is simply to prove that the

non-empty locations of the occupancy vectors detected at

each time of a video, i.e., the positions of the spatio-temporal

occupancy vector, can be tracked across time according to a

simple spatio-temporal connectivity criterion. The output of

this procedure is also a sorting of people trajectories by de-

creasing tracking-period.
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8.1 Spatio-Temporal Graph

Our tracking method relies on the definition of a directed

graph on the spatio-temporal occupancy vector x(t) ∈ R
N ,

where t is taken in the discrete time interval {t1, . . . , tNt }

composed of Nt instants tj < tj+1.

The graph G = (V , E , dG ) of interest corresponds to:

(i) a set of spatio-temporal vertices

V =
{(

q, tj
)

∈ R
3 : 1 ≤ j ≤ Nt , q ∈ p

(

x(tj )
)}

,

with p(u) = {p(i) : 1 ≤ i ≤ Nt , ui �= 0} and p(i) ∈ R
2

is as before the location of the ith cell in the discrete

ground plane,

(ii) an edge set E = V × V defining the connectivity be-

tween vertices in V ,

(iii) and a distance dG : E → R+ weighting these edges.

In this graph G , the length |P | of a given connected path

P = v1v2 · · ·vK of K − 1 “hops” between K distinct ver-

tices vj ∈ V following K − 1 edges (vj ,vj+1) ∈ E is simply

defined as the sum |P | =
∑K−1

j=1 dG (vj ,vj+1).

The vertex set V contains at most NNt elements. How-

ever, in our case the graph is essentially empty compared to

its potential dimensionality. Indeed, as a result of our meth-

ods, for each time tj the occupancy vector x(tj ) is spatially

sparse inducing a small coordinate set p(x(tj )).

Moreover, as described hereafter, the proposed connec-

tivity follows a particular causal geometry that prevents too

long or unrealistic connections. First, we consider a directed

connectivity where the vertex v = (q, t) is connected to

v′ = (q′, t ′) only if t ′ > t . Second, given a prior maximal

speed Vmax > 0 for the people motion, two vertices v and v′

in V cannot be connected if ‖q − q′‖2 > Vmax (t ′ − t) > 0.

This induces a causality in the connectivity preventing con-

nections between events that cannot result of a valid people

motion. Third, for vertices respecting this causality, the cor-

responding edge (v,v′) is weighted by

dG (v,v′) = ‖q − q′‖2 + γ ϕ(t ′ − t), (8)

for a certain factor γ > 0 balancing the influence of the

spatial and time domains, and given a particular increasing

function ϕ.

The role of this function ϕ is to allow us a certain flexibil-

ity in the selection of paths of minimal length in G , i.e., what

will define our tracking procedure described in Sect. 8.2. For

instance, for ϕ(t) = t , a direct path v1v3 joining v1 = (q, tj )

to v3 = (q, tj+2), with both vertices sharing the same spa-

tial coordinate q, will always have a smaller length, i.e.,

|v1v3| = γ (tj+2 − tj ), than an indirect path v1v2v3 with

v2 = (q′, tj+1) of length |v1v2v3| = γ (tj+2 − tj ) + 2‖q −

q′‖2. We consider however that the indirect path is valid in

our tracking if the causality between v1 and v2 is respected.

Table 3 Dijkstra pursuit

Input: A graph G = (V, E, dG ).

Output: A set of tracks T of decreasing length.

Program:

1. Initialize: R ← V , T ← ∅.

2. Pick v∗ = arg maxv∈R |P(v)|.

3. Store: T ← T ∪ P(v∗).

4. Update: R ← R \ P(v∗), and recompute connectivity.

5. If # R = 0, return T and stop; else, return to Step 2.

It is easy to prove that taking a ϕ that increases quicker

than the linear function prevents such a case. We took ϕ(t) =

exp t , a choice that also penalizes temporally too long “1-

hop” path. The factor γ is set in function of Vmax so that

the indirect path in the example above is selected against

the direct one as soon as the causality between vertices is

respected.

8.2 Dijkstra Pursuit

Given the directed graph defined above, our tracking method

uses iteratively the well known fast Dijkstra algorithm com-

puting the shortest paths in a graph, or geodesics, between

one source v ∈ V and all the other vertices of V [18].

More precisely, let us first define P (v) ⊂ V as the longest

geodesic initiated from v ∈ V in G , i.e., the longest of all the

shortest paths between v and any other point v′ ∈ V .

At the first iteration, our method removes from the initial

graph G the vertices of the path P (v∗), with v∗ the vertex

providing the longest P , i.e.,

v∗ = arg max
v

|P (v)|.

The next iterations are then defined by applying the same

process on the residual graphs until reaching an empty one.

This iterative procedure, coined Dijkstra Pursuit, is summa-

rized in Table 3 and Fig. 8.

9 Performance Evaluation

9.1 Experiments

Synthetic and real challenging data are used to evaluate the

proposed framework.

Real data have been obtained from the APIDIS dataset2

and from the PETS 2009 Benchmark dataset.3

The APIDIS dataset consists in seven cameras monitor-

ing a basketball game, including one omnidirectional cam-

era. The dataset has the following challenges:

2The dataset is publicly available at http://www.apidis.org/Dataset/.

3http://winterpets09.net/.

http://www.apidis.org/Dataset/
http://winterpets09.net/
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Fig. 8 Spatio-temporal graph-based tracking

Fig. 9 (Color online) Detecting and tracking people given the PETS dataset. White contours represents the degraded foreground silhouettes used

– Basketball players have abrupt changes of behavior, e.g.,

they run, jump, crouch, change suddenly their motion

path, etc.

– Players on the same team have the same appearance.

– In some camera views, players greatly occlude each other.

– Some cameras have very similar viewpoints, affecting the

resolution of the ambiguities arising with the occlusion

problem.

– The reflection of the players on the floor and their strong

shadows lead to severely degraded foreground silhou-

ettes. Many false positives silhouettes are extracted with a

standard background subtraction algorithm (e.g., the work

of Stauffer and Grimson [38]).

– Players interact strongly with each other and their spatial

distribution on the ground can be very dense and compact

or spatially scattered.

All videos are scaled to a QVGA resolution with approx-

imately 25 fps. Performance over the left-half of the basket-

ball court is measured since it is the side where the most

number of cameras are monitoring the game, i.e., camera’s

id 1, 2, 4, 5, and 7.

The PETS 2009 Benchmark datasets are multisensor se-

quences containing different crowd activities filmed from

multiple cameras and involve up to approximately forty ac-

tors [3]. We evaluate our algorithm on sparse crowd, as well

as medium and high density crowd (Fig. 9). Our detection

scheme is able to count people in high density crowds given

multiple or even single camera (Fig. 10). Videos are avail-

able at the following website: http://lts2www.epfl.ch/~alahi/

pets.htm.

Synthetic data are constructed given the same scene

geometry as the APIDIS dataset. Random vectors x are cre-

ated given a spatial sparsity constraint, i.e., location points

http://lts2www.epfl.ch/~alahi/pets.htm
http://lts2www.epfl.ch/~alahi/pets.htm
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Fig. 10 (Color online) Locating people with either 3 cameras (left hand-side) or a single camera (right hand-side) given the PETS dataset. White

contours represents the degraded foreground silhouettes used

have a minimum spatial distance with respect to each other

(> 70 cm). Five to fifteen people are randomly triggered

for each frame (a few hundred frames are generated). The

synthetic data will allow us to evaluate the performance

of our algorithms with controlled foreground silhouettes,

hence measuring how well the noise or occlusion problem

is solved.

The performance of the detection process is quantita-

tively evaluated by computing the precision and the re-

call measures given by the ratios T P/(T P + FP) and

T P/(T P + FN) respectively, where T P , FP and FN are

the number of True Positive, False Positive and False Nega-

tive. A true positive is when a person is correctly located on

the ground plane.

The foreground silhouettes are extracted using the work

of Stauffer and Grimson [38]. The outcome of the back-

ground subtraction algorithm is noisy. The silhouettes are

severely degraded. Only part of the people are extracted,

their shadow and reflections are considered, and random

false positives are generated due to lighting conditions, cam-

era noise.

9.2 Results

All three reconstruction methods, i.e., RW-BPDN, RW-

Lasso, and O-Lasso are compared with the state-of-the-art

POM approach proposed by Fleuret et al. in [22]. Their al-

gorithm depends on two parameters: the maximum number

of iterations and a constant σ accounting for the quality of

the background subtraction. We set the maximum number

of iterations to 1500, and measure the performance of their

algorithm for various σ .

Figure 11 illustrates all performances given four cameras

monitoring the APIDIS dataset (camera’s id 2, 4, 5, and 7).

The proposed Occupancy Lasso (O-Lasso) clearly outper-

forms other approaches in term of both recall and precision

rate. The Re-Weighted Lasso (RW-Lasso) with a fixed spar-

sity bound outperforms the RW-BPDN with various resid-

ual error ε. The performance of the BPDN formulation is

affected by the difficulty to estimate the residual error, i.e.,

the degradation occurring in the foreground silhouettes. Fi-

nally, the state-of-the-art approach (POM) has a much lower

precision rate for a given recall rate than the sparsity driven

methods. Considering the sparsity of the desired solution al-

low us to reduce the false positive rate consequently.

Figure 12 presents all performances given four planar

cameras on the synthetic data. It is interesting to notice

that both formulation BPDN with ε = 0 and Lasso with

εp = ppl, i.e., the number of people present in the scene,

leads to the same performance. Since they are equivalent

problem and the foreground silhouettes are not noisy, it co-

incides with our expectations to obtain the same perfor-

mance. However, relaxing the formulations influences the
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Fig. 11 (Color online) Precision and recall rate on the APIDIS dataset

given four cameras monitoring the scene (camera’s id 2, 4, 7, and 1).

Our proposed approaches (RW-BPDN, RW-Lasso, and O-Lasso) are

compared with the state-of-the-art probability of occupancy (POM) by

Fleuret et al. in [22]

Fig. 12 (Color online) Precision and recall rate with the synthetic data

given four cameras. Our proposed approaches (RW-BPDN, RW-Lasso,

and O-Lasso) are compared with the state-of-the-art probability of oc-

cupancy (POM) by Fleuret et al. in [22]

performances accordingly. Relaxing the fidelity term with

the BPDN increases the precision and reduce its recall rate.

High fidelity constraint allows to miss some people hence

reduces the recall rate. With the Lasso formulation, increas-

ing εp increases the number of false positives hence reduces

the precision rate. Interestingly, the state-of-the-art outper-

forms the RW-BPDN and RW-Lasso given the synthetic

data. Since noise is not present in the data, better perfor-

mances are achieved with POM. However, our proposed O-

Fig. 13 (Color online) Precision and recall rate of our proposed algo-

rithm (O-Lasso) given four cameras monitoring the scene (camera’s id

2, 4, 5, and 7 in the APIDIS dataset) and various search space reduction

assumptions

Lasso outperforms again other methods. The recall rate is

above 90% with roughly perfect precision rate (> 98%).

The strength of our proposed formulation is emphasized

with real data, i.e., when noise is present on the data. BPDN

is useful when we can bound the noise. However, in our ap-

plication, the noise can severely degrade the observations.

Hence, the Lasso formulation suits best our problem. Note

that the adaptive formulation (O-Lasso) does not need any

prior on the number of people present in the scene. It cor-

rectly updates the constraint to reach the right number of

people. We are able to approximately count and locate high

density crowd given multiple or even single camera. Table 4

presents the performance of counting people on high den-

sity crowd. The Average Frame Error (AFE) represents the

number of people missed (or wrongly count) per frame. For

the level 1 and 2 (“L1” and “L2”), we locate less number of

people compared to the ground truth whereas for the most

difficult level (“L3”), more number of people are detected

since a very high density crowd of people is present in the

scene.

Interestingly, reducing the search space according to

the three assumptions of Sect. 6.2 not only increases the

processing speed since fewer number of points are evalu-

ated, but it also increases the performance of the detection.

Figure 13 shows that for each proposed reduction step, the

recall and precision rate increases with O-Lasso (given cam-

era’s id 2, 5, 7 in the APIDIS dataset).

Finally, to reach a full detection picture, the proposed

graph-driven tracking increases the performance of the sys-

tem. Table 5 illustrates its impact. First, the located points

obtained with the severely degraded foreground silhouettes

are used. Then, the located points obtained with the syn-

thetic foreground silhouettes (i.e., perfect silhouettes) are
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Table 4 Performance of people counting on the scenarios proposed

by the PETS organizers given 1 camera (id = 1) and 3 cameras (id =

1,2,3): GT = Ground Truth, PC = People Counted by our O-Lasso

algorithm, AFE = Average Frame Error. The dataset “S1” is used with

various level of difficulty (“L1”: medium density crowd, “L2” and

“L3” correspond to high density of people

Sequences R0 R1 R2

GT PC AFE GT PC AFE GT PC AFE

S1-L1-2 2861 2186|2305 4.2 |3.8 1237 908|981 2.3|1.9 1130 848|895 1.8|1.8

S1-L2-1 – – – 1279 558|710 10.0|8.0 1622 814|940 6.8|6.0

S1-L3-1 – – – 230 163|196 2.0|1.2 – – –

S1-L3-2 – – – 2632 2084|1550 10.1|10.5 – – –

Table 5 Impact of the proposed graph-based tracking

Located points given No tracking Tracking

Recall Precision Recall Precision

Severely degraded FS 0.82 0.92 0.88 0.91

Synthetic FS 0.93 0.965 0.96 0.967

tested. With both scenarios, the recall rate is increased with-

out strongly degrading the precision rate.

9.3 Validation

Given the proposed approach based on the O-Lasso, we an-

alyze its performance when (i) the number of cameras is in-

creased, (ii) when people are occluding each other, and (iii)

when the silhouettes extracted are degraded.

One of the advantages of our framework is that it scales

to any number of cameras. Therefore, the performance of

the system with various number of cameras is compared in

Fig. 14. Note that a precise temporal window is selected

having all players in the field of view of all cameras. It is

interesting to see that even when a single camera is used,

we can locate as many people as using multiple cameras.

Nevertheless, adding cameras reduces the number of false

positives due to a degraded foreground silhouettes. Shad-

ows and reflected players on the ground have a strong im-

pact on the precision rate. In addition, merging an omni-

directional camera with other planar cameras have the best

performance. Surprisingly, if the omnidirectional camera is

monitoring the scene alone, a poor detection is achieved due

to the severely degraded foreground silhouette: R = 0.47

and P = 0.55 (not shown in Fig. 14). Most of the time, the

people’s shadow is much bigger than its silhouette affecting

considerably the performance. In addition, in some areas,

people are almost missed by the background subtraction al-

gorithm since they occupy only few pixels (small surface).

Finally, due to the small bounding box of the people, a small

offset in the detection considerably affects the performance

and leads to a missed person. Figure 17 presents the fore-

ground silhouettes extracted and the detected people given

various number of cameras.

Fig. 14 (Color online) Precision and recall rate when the number of

cameras monitoring the scene are increased. The number in each bub-

ble represents the number of cameras used. (The sequence of cameras

id 7, 2, 4, 1 is used for planar cameras, and camera id 5 for the omni-

directional one)

One of the main challenges we want to handle is the mu-

tual occlusions generated by the people. The proposed relax-

ation step (Sect. 5.2) wrongly considers the occlusion prob-

lem as a linear operator. Indeed, according to our model,

overlapping silhouette are not quantized but summed (Dx).

Hence, whenever people are occluding each other, their sil-

houettes are overlapped and generate noise in our fidelity

term. We evaluate the performance of our algorithm with re-

spect to the Percentage of Overlap (or PO) present in each

MSV:

PO =
Number Of Pixels Overlapping

Number Of Pixels Visible
. (9)

We cluster each person present in our synthetic dataset

given their PO with other people and measure how well we

have detected them. Figure 15 illustrates the recall rate with

respect to the PO present in the people.4 When half of the

4Remark that the PO cannot be defined for false-positives. This pre-

vents a plot of the precision in function of the PO.
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Fig. 15 (Color online) Recall rate with respect to the PO present for

the people given the O-Lasso approach

MSV is overlapping with other MSVs, the recall rate is still

higher than 90%. Then, it decreases to reach in the worst

case (when overlap is more than roughly 90%) a recall of

65% which is very satisfying. Therefore, we have a generic

measurement about the performance of the algorithm to de-

tect occluded people regardless of the scene geometry and

people’s density.

Finally, we measure the performance of our approach

with respect to the percentage of degradation present in the

foreground silhouettes. The degraded foreground silhouette

is made of false positive pixels or false negative ones. Set-

ting to zero a percentage of the MSV is equivalent to de-

grading the foreground silhouettes with false negative pix-

els. Figure 16 illustrates the recall rate when we degrade the

silhouettes accordingly. Note that it also informs the per-

centage of foreground silhouettes needed to trigger a posi-

tive detection although the silhouettes are only made of false

positive pixels. The recall rate remains higher than 90% al-

though 30% of the silhouettes are removed. Then, the per-

formance decreases considerably with respect of the degra-

dation applying to the silhouettes. Such information informs

us about the sensitivity of our Forward Model generating sil-

houettes: 30% of the generated silhouette can be discarded.

In other words, if our silhouettes are fitting a person with a

height of 1 m 70 cm, we can still detect people in the range

of 1 m 20 till 2 m 20 with the same performance. Moreover,

we can also say that only 70% of the silhouette model is

relevant. Hence, the proposed approximated shape, i.e., half

rectangular and half ellipsoid can handle 30% of a ‘shape’

approximation error. Note that other shapes can be used. Ta-

ble 6 illustrates the performance of using other shape. The

rectangular shape is used by Fleuret et al. in [22] to effi-

ciently compare their generative model with the foreground

silhouettes based on integral images. However, in our frame-

work, the Forward Model is used to create the atoms of the

dictionary. Such atoms are computed off-line hence allow

Table 6 Precision and Recall rate using various shape in the Forward

Model given the O-Lasso method and 4 planar cameras

Shape Recall Precision

Rectangular 0.64 0.87

Ellipsoid 0.7156 0.85

Half rectangular and half ellipsoid 0.6938 0.9001

Fig. 16 (Color online) Recall rate with respect to percentage of miss-

ing silhouette region extracted for each people given the adaptive

O-Lasso approach

the use of any shape. Therefore, using an ellipsoid shape for

instance has the same computational cost as using a rectan-

gular one.

10 Future Works

In this work, we promote the sparsity driven formulation

based on re-weighted ℓ1-norm schemes. Although we have

reduced the complexity cost with the dimensionality re-

duction strategies in Sect. 6, the current implementation is

still computationally costly due to the re-weighted strategy.5

Therefore, as further work, we will investigate other alter-

natives such as greedy algorithms to reconstruct the sparse

solution like a modified version of the matching pursuit al-

gorithm.

The proposed Repulsive Spatial Sparsity can be com-

pared to a recent trend in the field of sparse representation

of signals, and in particular in these new developments sur-

rounding the recovery of structurally-sparse signals in lin-

ear inverse problems. In [5], the concept of block-sparsity is

for instance successfully introduced to improve the recov-

ery of sparse signal from random measurements, i.e., in a

5Typically, given a non-optimized Matlab implementation, O-Lasso

takes currently in average 10 seconds per video frame on an Apple

Macbook-Pro laptop.
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Fig. 17 (Color online) Illustration of the detected people with various number of cameras given the APIDIS dataset. The green contours represents

the degraded foreground silhouettes used

Compressed Sensing scenario. Another approach followed

in [28] plays on the sparsity measure replacing the com-

mon ℓ1-norm of Lasso or BPDN programs by other “mixed-

norms” on the vector components organized in group and

elements. In the future, we plan to explore the connections

between the RSS and these alternative sparsity variations.

11 Conclusions

We propose a framework to efficiently deal with simple and

very noisy features to locate people in a well defined math-

ematical formulation. The strength of our approach is quan-

titatively and qualitatively illustrated on challenging real

world scenarios as well as on synthetic data outperforming

the state-of-the-art. We show the advantage afforded by the

sparsity driven framework. The approach is generic enough

to be used with any calibrated camera. Planar and omnidi-

rectional cameras are naturally merged. Any number of cam-

eras can be used. The multi-view infrastructure is fully taken

into consideration during the detection process and does not

impose any constraint on the scene surface to be monitored.

Furthermore, detected people are perfectly matched across

cameras so that their reconstruction from all the views can

be performed. Since the coordinates of the people are com-

puted in the ground floor, each person can have a flag in-

forming if a clear visualization is available in a view, i.e.,

other people are not occluding. Therefore, further process-

ing such as identification can be performed.

In that perspective, a simple tracking module to match

people across frames is explained in Sect. 8. It detects people

tracks by finding the longest geodesics in the graph connect-

ing non-zero occupancy location across time. In future work,

we plan to improve this graph-driven tracking by attaching

more information (e.g., silhouette intensity histograms) on

the nodes of the corresponding graph and by redefining its

connectivity in function of these features.
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Appendix A: Proximal Methods

In order to solve our different minimization problems,

we use a powerful proximal operator-based iterations and

monotone operator splitting theory introduced by Moreau

in 1962 [30] and brought to light in the signal processing

community by Combettes [14, 15].

Thanks to this theory, very efficient methods can be de-

signed to solve general convex optimization problems of the

form

arg min
x

f (x) + g(x).

In the case of the Re-Weighted BPDN (4), f = ‖W ·‖1

is convex, and g = ιC = ιB2
ε

◦ A(·) where ι is the indicator

function and A is the affine function such that A = D · −y.

The convex sets B2
ε and C are such that B2

ε = {x ∈ R
N :

‖x‖2 ≤ ε} and C = {x ∈ R
N : ‖Ax‖2 = ‖y − Dx‖2 ≤

ε}. As f and g are both non-differentiable, the Douglas-

Rachford splitting method [15, 21] is used. The Douglas-

Rachford recursion to solve the reweighted ℓ1-BPDN can

be written in the compact form

x(t+1) = x(t) + μt [SW ◦ (2PC − Id) − PC](x(t)), (10)

where SW is the component-wise soft-thresholding operator

with threshold vector W , and PC is the orthogonal projec-

tion onto the closed convex set C. When D is a bounded lin-

ear operator with a bound 0 ≤ c < ∞ such that 0 ≤ DD∗ ≤

c Id, the numerical implementation of this projection is de-

fined as described in [21]. Let {βt }t∈N be a sequence with

0 < inft βt ≤ supt βt < 2/c, and define the two sequences

{ut }t∈N and {pt }t∈N by

u(t+1) = βt (Id−PB2
ε
)(β−1

t u(t) + D(x − D∗u(t)) − y),

(11)

p(t+1) = x − D∗u(t+1).

Then from [21] we get that u(t) → u and p(t) → PC(x).

In the case of the Re-Weighted Lasso problem (5), f =

‖y − D · ‖2
2 is convex and differentiable with a β-Lipschitz

gradient, and g = ιB1
W,εp

with B1
W,εp

= {x ∈ R
N : ‖Wx‖1 ≤

εp}. More precisely, as the ℓ1-norm is non-differentiable,

the Forward-Backward splitting is used [15, 21]. Forward-

backward (FB) splitting is essentially a generalization of the

classical gradient projection method for constrained convex

optimization. It can be written in the compact form

x(t+1) = PB1
W,εp

◦ (Id−μt∇f ) (x(t)), (12)

where 0 < inft μt ≤ supt μt < 2/β for the iteration to con-

verge (weakly in general), ∇ is the gradient operator, and

PB1
W,εp

is the orthogonal projection onto the convex set

B1
W,εp

. This projection can be efficiently computed thanks

to the developments of Appendix B. From [14], one can

show that in the both cases presented above, the sequence

(x(t))t∈N converges to some point x∗, which is the solution

of the problem.

Appendix B: Projection onto a ℓ1 Weighted Ball

We present in this section an algorithm and its numerical

implementation that solves the problem

y = arg min
u∈Rn

‖u − x‖2
2 s.t. ‖Wu‖1 ≤ ε, (13)

for a non-negative diagonal matrix W ∈ R
n×n. This problem

can be seen as the projection of the point x ∈ R
n on the

weighted ℓ1 ball B1
W,ε = {u : ‖Wu‖1 ≤ ε}.

If ‖Wx‖1 ≤ ε, there is nothing to do and y = x. In the

other case, the solution is clearly on the surface of B1
W,ε , so

that we must solve

y = arg min
u∈Rn

‖u − x‖2
2 s.t. ‖Wu‖1 = ε. (14)

In addition, since this ball is convex and centered on the

origin, it is clear that signxi = signyi , therefore, up to the

appropriate flipping of some coordinate axis in R
n, we can

assume xi, yi ≥ 0.

The Lagrangian form of problem (14) is

L(u, θ) =
1

2
‖x − u‖2

2 + θ

(

n
∑

i=1

wiui − ε

)

, (15)

where θ ∈ R
n is a Lagrange multiplier. For a given θ , the

minimum of L is reached when

ui = xi − wiθ + ζi = xi − wiθ = wi

(

xi

wi
− θ

)

, (16)

if xi

wi
> θ , and ui = 0 otherwise. In other words,

ui = Swiθ (xi),

where Sλ(v) = signv(|v| − λ)+, is the soft-thresholding of

v ∈ R by the threshold λ > 0, with (v)+ = v if v ≥ 0 and

0 else. The minimum of L with respect to θ is thus reached

when ‖WSwiθ (xi)‖1 = ε, i.e., when

∑

i

w2
i

(∣

∣

∣

∣

xi

wi

∣

∣

∣

∣

− θ

)

+

= ε. (17)

This can be computed very efficiently by the following sim-

ple method.
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Let the vector z ∈ R
n be the vector obtained by sorting

the values |
xi

wi
| by decreasing order, a process that can be

realized in O(n logn) operations.

If we set θ = zn−k+1 for some index k, we get

n
∑

i=1

w2
i (zi − θ)+ =

n−k
∑

i=1

w2
i (zi − zn−k+1).

Let the index i∗ be such that

i∗ = max

{

1 ≤ k ≤ n :

n−k
∑

i=1

w2
i (zi − zn−k+1) ≥ ε

}

.

Therefore, by construction the θ satisfying (17) belongs to

the interval I = [zn−i∗+1, zn−i∗ ] ⊂ R. In that range, (17) be-

comes

n−i∗
∑

i=1

w2
i (zi − θ) = ε,

so that finally,

θ = θ(i∗) =
(
∑n−i∗

i=1 w2
i zi) − ε

∑n−i∗

i=1 w2
i

.
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