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Abstract

This thesis deals with developing improved techniques for speech coding based
on the recent developments in sparse signal representation. In particular, this
work is motivated by the need to address some of the limitations of the well-
known linear prediction (LP) model currently applied in many modern speech
coders.

In the first part of the thesis, we provide an overview of Sparse Linear Predic-
tion, a set of speech processing tools created by introducing sparsity constraints
into the LP framework. This approach defines predictors that look for a sparse
residual rather than a minimum variance one with direct applications to coding
but also consistent with the speech production model of voiced speech, where
the excitation of the all-pole filter can be modeled as an impulse train, i.e., a
sparse sequence. Introducing sparsity in the LP framework will also bring to de-
velop the concept of high-order sparse predictors. These predictors, by modeling
efficiently the spectral envelope and the harmonics components with very few
coefficients, have direct applications in speech processing, engendering a joint
estimation of short-term and long-term predictors. We also give preliminary
results of the effectiveness of their application in audio processing.

The second part of the thesis deals with introducing sparsity directly in
the linear prediction analysis-by-synthesis (LPAS) speech coding paradigm. We
first propose a novel near-optimal method to look for a sparse approximate
excitation using a compressed sensing formulation. Furthermore, we define a
novel re-estimation procedure to adapt the predictor coefficients to the given
sparse excitation, balancing the two representations in the context of speech
coding. Finally, the advantages of the compact parametric representation of a
segment of speech, given by the sparse linear predictors and the use of the re-
estimation procedure, are analyzed in the context of frame independent coding
for speech communications over packet networks.
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Introduction

In speech coding systems, linear prediction (LP) based all-pole modeling is,
arguably, the most used parametric technique for modeling the spectral envelope
and capturing the short-term redundancies of a speech signal [1, 2]. These
features have led LP to become a fundamental part of many coding architectures
since the early works on speech coding [3–5] to the most recent proposals for
unified speech and audio coders (e.g., [6–9]). In these cases, LP is used to remove
most of the correlations present in a segment of speech, rendering a so-called LP
analysis filter and a residual signal. In order to provide a parsimonious bit
representation of this residual signal, a search is usually performed to find the
best possible excitation of the inverse LP analysis filter, the all-pole synthesis
filter, given certain constraints on it. This coding paradigm is referred to as
Linear Predictive Analysis-by-Synthesis (LPAS) and it has set the standard for
speech coding for the past thirty years [10, 11].

The optimization problems encountered in the LPAS speech coding paradigm,
namely the LP analysis and the modeling of the excitation, fall in the more
general mathematical framework of linear inverse problems, where the model
parameters are estimated from a set of observed data [12]. In these problems,
the 2-norm minimization criterion has found a widespread use, mostly for its
amenability of producing an optimization problem that is attractive both the-
oretically and computationally. While the 2-norm minimization is consistent
with producing a representation with minimal energy, in many signal process-
ing applications it is more beneficial to find solutions with the fewest nonzero
coefficients as possible, i.e., a maximal sparse solution [13]. Even if examples
of the applications of the sparsity measure can be found in early literature for
various types of signals and applications (e.g., [14–18]), the use of sparsity in sig-
nal processing has grown significantly in the recent years due to the increasing
use of transform domain representations (notably, wavelets [19] for images and
modified discrete cosine transform, MDCT [20], for audio), for which a concise
signal representation in a given domain is required.

This introductory overview is organized as follows. In Section 1 we first elab-
orate on the speech modeling problem and the popularity of the LP method. In
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2 INTRODUCTION

Section 2 we provide a brief overview of the main stages of the LPAS coding
paradigm. In Section 3, we give a summary of the problem formulation and
applications of sparsity in signal processing. In Section 4, we address our own
contributions where we investigate the properties and applications of sparse sig-
nal representation in the LPAS speech coding paradigm. Finally, in Section 5 we
sum up the conclusions of this work. As an appendix to this introduction, Sec-
tion 6 provides some conjectures on the future challenges that await the speech
coding community and how some of the topics discussed in this thesis could
actually play a role in these challenges.

1 Background

In this section, we first elaborate on the speech modeling problem, and then
highlight the limitation of the popular LP method in the context of speech
analysis and coding, thus providing a motivation for this research work.

1.1 The Source-Filter Model of Speech Production

The theory behind the widespread use of LP all-pole modeling of speech, arises
from the source-filter model of speech production [21]. The general idea is that
the emitted speech sound is a combination of the excitation process (the air flow)
and the filtering process (vocal tract effect). Historically, the first registered
experimental analysis of this theory was done in 1848 by Johannes Müller by
blowing air through the larynges excised from a human cadavers [22]. While the
experimental evaluation of this theory has evolved since then1, the fundamentals
have not gone through dramatic changes and can be summarized as follows.
Speech production is initiated at the lungs by generating air pressure that flows
through the trachea, vocal folds, pharynx, oral and nasal cavities2.

There are, roughly speaking, two different ways in which speech sounds are
produced, leading to classify them in two main categories, i.e., voiced and un-
voiced [24]. In the case of voiced speech (e.g., vowels /a/, /o/ and /i/, and nasals
/m/ and /n/), the flow of air coming from the lungs excites the vocal folds in an
oscillating motion, periodically inhibiting the airflow for a short interval. The
periodicity of these intervals determines the fundamental frequency of the source
and contributes to the perceived pitch of the produced sound and it is then called
pitch period [24]. Consequently, voiced speech sounds consist of a strong peri-
odic component rich in harmonics. Secondly, for unvoiced speech, airflow is
constricted (e.g., fricatives /f/, /s/ and /h/) or completely stopped for a short

1Some of the most recent approaches to the analysis of the speech model includes magnetic
resonance imaging (MRI) (see, e.g., [23])

2In general, cavities above the vocal folds are collectively called the vocal tract.



1. BACKGROUND 3

interval (e.g., stops /t/, /p/ and /k/). Therefore, unvoiced speech is of either
noise-like or impulsive-like characteristics, without harmonic structure [21, 25].

The clear relation between the physics of speech production and the theory
of sound wave propagation [26], has led to some of the first attempts to provide
a mathematical model for speech production in acoustics rather than signal pro-
cessing [27–31]. In fact, like any acoustic cavity, the vocal tract has resonances
that attenuate and amplify different frequency regions. These resonances, in
speech science, are called the formants and can be modified by movements of
the vocal organs, such as tongue, lips and pharynx [32]. While these early works
on this topic suffered quite consistently from high requirements on specific a pri-
ori knowledge of the voice, Bishnu Atal, in [33], greatly simplified the model by
approximating the vocal tract with a lossless tube made by cylindrical sections
of equal length but different diameter. In particular, exploiting the relations of
the lossless tube model with digital filters, he demonstrated that the formant
frequencies and bandwidths are sufficient to uniquely determine the tube model
parameters and that this model can always be represented as a transfer function
with K poles when the number of sections of the lossless tube is K. This was
(and still is) remarkable since it also proved to be also consistent with his early
work. Specifically, in [3] Atal first used the concept of predictive coding [34] in
digital speech processing to decorrelate a speech segment by applying a order
K prediction filter. In [33], Atal therefore linked these two theories by showing
that the prediction filter is theoretically consistent with the speech production
model, since the corresponding order K all-pole model carries the information of
the tube model of the vocal tract. In [5], Atal also introduced the discrete speech
production model. In this model, the speech signal is analyzed and synthesized
as the output of a discrete linear all-pole time-varying filter, which is excited by
a periodic pulse train (in the case of voiced speech) or by white noise (in the
case of unvoiced speech).

1.2 LP Based Speech Analysis

To understand fully the digital implementations of the source-filter model, it is
first useful to distinguish between the power spectrum and the spectral enve-
lope of a speech signal. The goal of the all-pole models is to define a spectral
envelope that provides a model of the vocal tract in speech production. For un-
voiced speech, considering the excitation of the all-pole filter as white noise, the
envelope is the same as the power spectrum. For voiced speech, the connection
is more complex. The power spectrum of the voiced speech signal has a clear
harmonic structure that can be approximated as a line spectrum. The line fre-
quencies are located at the multiples of the pitch frequency and their amplitude
is given by the shape of the spectral envelope.

In the above mentioned pioneering work done by Atal, the all-pole coefficients



4 INTRODUCTION

are identified by minimizing the mean-squared (2-norm) error of the difference
between the observed signal and the predicted signal [5]. This forms a set of
equation known in time series literature as the Yule-Walker equations for autore-
gressive (AR) model fitting [35] for which, at that time, already existed a com-
putationally efficient algorithm, the Levinson recursion3 [36]. In the source-filter
model, this approach yields the LP all-pole filter, thus the prediction error (the
residual signal) represents the source. Unvoiced speech, which can be modeled as
white noise passed through an all-pole filter, lends itself readily to the principles
of the 2-norm error criterion as mean of estimating the model parameters [40].
Also, considering the statistical interpretation of the 2-norm minimization with
the fitting of the error in a Gaussian i.i.d. distribution [38, 39].

The quality of the LP all-pole model in the context of voiced speech, which
is approximately two-thirds of speech4, is questionable and, theoretically, is not
well founded. In particular, the all-pole spectrum does not provide a good
spectral envelope and sampling the spectrum at the line frequencies does not
provide a good approximate of their amplitudes.

In general, the shortcomings of LP in spectral envelope modeling can be
traced back to the 2-norm minimization. In particular, analyzing the the good-
ness of fit between a given harmonic line spectrum and its LP model5, as done
in [40], two major flaws can be derived. The LP tries to cancel the input voiced
speech harmonics causing the resultant all-pole model to have poles close to the
unit circle. Consequently, the LP spectrum tends to overestimate the spectral
powers at the formants, providing a sharper contour than the original vocal tract
response. A wealth of methods have been proposed to mitigate these effects.
Some of the proposed techniques involve a general rethinking of the spectral
modeling problem (notably [41–44]) while some others are based on changing
the statistical assumptions made on the prediction error in the minimization
process (notably [45, 46]). Many other formulations for finding the parameter
of the all-pole model exist, a special mention is for methods that include percep-
tual knowledge into the estimation process (e.g., [47–51]). Non-linear prediction
methods have also been developed, the most successful attempts are based on
the application of neural networks [52] and Volterra filters [53, 54].

1.3 LP Based Speech Coding

The first attempts documented on the application of predictive coding to speech
were based on the idea of reducing the first-order entropy [55] of the distribution

3In Levinson’s own words, a “mathematically trivial procedure.”
4Of the phonemes in standard English prose, vowels and diphthongs form approximately

38%, voiced consonants 40% and unvoiced consonants 22% [24]
5This can be done due to the correspondence of the 2-norm error minimization in time and

frequency domain given by Parseval’s theorem.
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of digital speech so to produce a representation that would require a lower bit
rate. According to Atal [56], he was able to reduce the entropy of a 5 ms
speech segment sampled at 6.67 kHz from 3.3 b/sample to 1.3 b/sample by
applying a 10th order predictor. While almost 60 years have passed, the idea
is still present today in speech coding, i.e., the 2-norm based LP is used to
decorrelate the input leaving a residual that is ideally white, and therefore easier
to quantize. This approach is also consistent with the fundamental theorem of
predictive quantization. This states that the mean squared reproduction error
in predictive encoding is equal to the mean squared quantization error when
the residual signal is presented to the quantizer [57]. Therefore, by minimizing
the 2-norm of the residual, these variables have a minimal variance whereby the
most efficient coding is achieved.

Nevertheless, the 2-norm based LP shows severe shortcomings also in the
speech coding scenario. Firstly, traditional usage of LP is confined to model-
ing only the spectral envelope, capturing the short-term redundancies of speech.
Hence, in the case of voiced speech, the predictor does not fully decorrelate
the speech signal because of the long-term redundancies of the underlying pitch
excitation. This means that the residual will still have pitch pulses present. Fur-
thermore, while the 2-norm criterion is consistent with achieving minimal vari-
ance of the residual for efficient coding, the excitation is usually estimated with
some constrained structure on it. In particular, sparse techniques are employed
to model the excitation for efficient coding [56]. Examples of this can be seen
since early works on speech coding with the introduction of multipulse excitation
(MPE [58]) and regular-pulse excitation (RPE [59]) methods and, more recently,
in sparse algebraic codes in code-excited linear prediction (ACELP [11]). Early
contributions (notably [46, 60, 61]) have followed this line of thought questioning
the fundamental validity of the 2-norm criterion with regards to speech coding.

1.4 Why is 2-norm based LP still so popular?

Despite such a rich literature addressing the deficiencies of 2-norm based LP in
speech analysis and coding, one might wonder why, to the author’s best knowl-
edge, the 2-norm minimization is the only criterion used in commercial speech
codecs. There are several explanation that we address below, going around the
same concept: simplicity.

• Mathematical tractability. The minimization of the 2-norm of the
prediction error results in the Yule-Walker equations and can be efficiently
solved via the Levinson recursion. The 2-norm cost function is strongly
convex allowing for a unique solution [62]. The roots of the corresponding
all-pole filter are guaranteed to be inside the unit circle, since stability is
intrinsically guaranteed by the construction of the problem [63].
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• Statistical Interpretation. This method corresponds to the maximum
likelihood (ML) approach when the error signal is considered to be a set of
i.i.d. Gaussian variables. The Gaussian p.d.f. is arguably the most used
and well know distribution for tractable mathematics [64, 65]. In [39], the
Yule-Walker equations are derived from the maximum likelihood approach.

• Frequency-Domain Interpretation. According to the Parseval’s theo-
rem, minimizing the 2-norm of the error in the time-domain is equivalent
to minimizing the error ratio between the true and estimated spectra [40].
It is also interesting to notice that minimizing the squared error in the time
domain and in the frequency domain leads in both cases to the Yule-Walker
equations [66].

2 Linear Prediction Based Analysis-by-Synthesis

Coding

In this section, we will give an overview of the the three main stages of the LPAS
coding paradigm: LP analysis, pitch analysis, and modeling of the excitation.
While several other stages make up the LPAS coding scheme and should not be
overlooked for an efficient implementation of a speech coder (i.e., pre-processing,
post-processing, quantization, and other implementation issues [67]), in these
three stages the three main contributions to the parametrization of a speech
signal are estimated.

2.1 Linear Predictive Analysis

The fundamental idea behind LP is that a speech sample x(n) can be approxi-
mated as a linear combination of past samples [40]:

x(n) =
K

∑

k=1

akx(n− k) + e(n), (1)

where {ak} are the prediction coefficients, e(n) is prediction error. Assuming
that x(n) = 0 for n < 1 and n > N , the speech production model (1) for a
segment of N speech samples in matrix form becomes:

x = Xa + e, (2)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






, (3)
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the weights used to compute the linear combination are found by minimizing
the prediction error:

â = arg min
a
‖x−Xa‖pp, (4)

where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






, (5)

and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for p ≥ 1. The
starting and ending points N1 and N2 can be chosen in various ways assuming
that x(n) = 0 for n < 1 and n > N [66]. The most common approach is to
choose N1 = 1 and N2 = N +K, equivalent, when p = 2, to the autocorrelation
method :

â = arg min
a
‖x−Xa‖22 = (XT X)−1XT x. (6)

We can rewrite the system of equation as:

â = (XT X)−1XT x = R−1r, (7)

where R = XT X is the autocorrelation matrix and r = XT x is the cross-
correlation vector. In general, the inversion of R is not necessary, since finding
â in (7) corresponds to solving the Yule-Walker equations, and this can be done
efficiently with the Levinson recursion (also called Levinson-Durbin algorithm)
[40].

2.2 The Excitation Model

In this subsection we describe the most common encoding strategies for the
excitation signal. This is the key of the analysis-by-synthesis procedure, in
fact, while the previous stage to determine the LP coefficients â is done in
an open-loop configuration, the choice of the excitation r̂ is done in a close-
loop configuration (so the name analysis-by-synthesis) where the perceptually
weighted error between the true speech segment and its synthesized version is
minimized. Since r̂ has usually some structural constraints on it, our problem
formulation becomes:

r̂ = arg min
r
‖W(x−Hr)‖22, s.t. struct(r); (8)

where H is a N × N lower-triangular convolution matrix, called the synthesis
matrix, created from the impulse response of the LP synthesis filter and W is the
N ×N perceptual weighting matrix. In speech coding, W is adaptively chosen
according to the prediction filter parameter in order to “concentrate” the error
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in the frequency regions perceptually less sensitive, i.e., where the formants are
located. Hence the choice of making W dependent from the prediction filter
parameters a that represent them [68]. It should be noted that, in general, to
take into consideration the previous frames of speech, a non-square H matrix
can be used so to include the previous samples of the excitation. The operator
struct(·) we have introduced in (8), represents the structural constraints usually
imposed on the excitation, i.e., the modeling strategy used for efficient coding.
There are mainly two approaches to model the excitation. The first approach is
the multipulse encoding, where only few samples are selected in the excitation,
setting to zero most of the other samples. The second approach is to model the
excitation from a codebook of predefined possible excitations.

Multipulse Excitation

In multipulse encoding (MPE) coders, the excitation consists of K freely located
pulses in each segment of length N . This problem is made impractical by its
combinatorial nature and a suboptimal algorithm was proposed in [58] where the
sparse residual is constructed one pulse at a time. Starting with a zero residual,
pulses are added iteratively adding one pulse in the position that minimizes the
error between the original and reconstructed speech. The pulse amplitude is
then found minimizing the distortion in the analysis-by-synthesis scheme. The
procedure can be stopped either when a maximum fixed number of amplitudes is
found or when adding a new pulse does not improve the quality. MPE provides
an approximation to the optimal approach, when all possible combinations of K
positions in the approximated residual of length N are analyzed, i.e.:

r̂ = arg min
r
‖W(x−Hr)‖22 s.t. ‖r‖0 = K. (9)

The main problem of the MPE procedure is that the K pulses by being freely
located, they also require a significant amount of bits to be spent on describing
their location on the excitation sequence. The regular-pulse encoding (RPE) [59]
addressed exactly this issue, in this case the pulses are constrained on a grid with
spacing S. It also allows S possible shifts of the grid and therefore only S possible
configuration of the location of the pulses.

Codebook Excitation

The RPE can be considered as the first idea to include a predetermined structure
on the excitation [69]. This idea has also been developed, around the same
time, in code-excited LP (CELP) [70, 71]. Ideally, the excitation should be
a white random sequence and therefore the sequence could be selected by a
predetermined codebook populated by “random white noise” sequences. The
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problem in (8), would then become:

r̂ = arg min
c
‖W(x−Hc)‖22, s.t. c ∈ C; (10)

where C is the codebook and c is a codeword. The general idea, is also to have the
sequences pre-quantized, thus truly selecting the optimal sequence to be sent to
the encoder. However the basic scheme led to huge computational loads [56]. The
introduction of algebraic codebooks, and its corresponding paradigm (algebraic
code-excited LP, ACELP), posed a remedy to this. Algebraic codebooks are
deterministic codebooks in which the codebook vectors are determined from the
transmitted index using simple algebra rather than lookup tables or predefined
codebooks. This structure has advantages in terms of storage, search complexity,
and robustness [72, 73].

2.3 Modeling the Pitch Periodicity

In speech coding, the LP analysis is usually performed to remove short-term
correlation, however, voiced speech segments exhibits strong long-term correla-
tion components due to the presence of a pitch excitation. To account for these
correlations, two strategies are usually implemented. The first one is to find a
long-term linear predictor, the second one is to model the periodicity directly in
the excitation model.

Pitch Prediction

This interpretation is similar to modeling the short-term correlations, and it is
the first strategy implemented to account for long-term correlations [4]. The
pitch predictor has a small number of taps Np (usually 1 to 3) and the cor-
responding delays associated are usually clustered around a value which corre-
sponds to the estimated integer pitch period Tp. The more general form for
Np = 1 is:

P (z) = 1− gpz
−Tp . (11)

The parameters gp and Tp are determined by minimizing the residual error signal
after the LP predictor, similarly to the minimization problem occurring in esti-
mating the short-term prediction. In order to reduce the computational effort,
usually Tp is estimated before the error minimization to find the pitch predictor
coefficients [74]. In general, Tp is not integer, thus a noninteger pitch period
Tp is usually incorporated in the prediction model in two ways: either by using
a multitap pitch prediction model for interpolation (see, e.g., [75]) or by us-
ing a fractional delay filter [74], for which numerous design methods exist [76].
The frequency response of P (z) is a comb-like structure, thus resembling a line
spectrum, consistent with the harmonic structure of the voiced speech sounds.
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Adaptive Codebook

The other interpretation is the one that is currently mostly used in LPAS speech
coding. The strategy is to account for the periodicity in the modeled excitation.
In particular, the excitation can be seen as a linear combination between a
pseudo-random component cf , and a periodic component given by the pitch
excitation ca [77]:

r̂ = gfcf + gaca (12)

where cf is now called the fixed codeword (cf ∈ Cf ) and ca is the so-called adap-
tive codeword (ca ∈ Ca), gf and ga are their respective gains. While including
the structure of (12) in (10) is impractical, the common approach is to begin
with the search for the adaptive codebook, based on a open-loop estimate of
the pitch period Tp, and then determine the fixed codeword [78]. The adaptive
codeword is built up based on the pitch period Tp and its gain, similarly to what
it is done in (11).

3 Sparsity in Signal Processing

Sparse approximation approaches have enjoyed considerable popularity in recent
signal processing applications. The use of sparsity has shown to be particularly
efficient in many applications such as signal compression [79], denoising [80],
image restoration [81, 82], and, blind source separation [83, 84], etc. Depending
on the application, sparsity can be sought on the residual being minimized, or on
the solution being computed. In this brief overview, we concentrate on this latter
problem, which is also the one mainly covered in the sparse signal processing
literature. However, these ideas do have relevance to the problem of computing
a sparse residual, as we shall see throughout the contributions of this thesis.

The idea behind sparse approximation is that many natural signals have a
concise representation when expressed in the proper basis. In other words, for
most signal classes, it is possible to find a basis or a dictionary of elementary
building blocks with respect to which most signals in the class may be expanded,
so that when the expansion is truncated in a suitable way, high precision approx-
imations are obtained even when very few terms are retained. A large number
of signal processing “success stories” may be described in such a way, including
image compression and denoising using wavelets [79] (or more sophisticated -lets,
such as curvelets [86]) audio coding using MDCT bases [85], and so forth.

It is interesting to notice that some of the first works where sparsity was
successfully applied was indeed speech coding. In particular, one of the first ideas
for efficient coding was that one could produce speech of any desired quality by
providing a sufficient number of pulses at the input of the synthesis filter [58].
Finding the location and amplitudes of the pulses, resulted to solving a linear
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inverse problem with the sparsity constraints (9). In this case, the basis is
represented by the synthesis matrix and the domain where sparsity is sought
after is the excitation domain.

In this section, we introduce the original problem formulation and an overview
of the current literature on the several efficient sparse expansion algorithms that
have been proposed throughout the years. In particular, we will focus our atten-
tion on greedy algorithms [87] and parallel basis selection methods based on the
minimization of different diversity measures [88]. While other methods are avail-
able in literature to find sparse representation (notably, Bayesian methods [89]
and nonconvex optimization [90]), these two approaches are computationally
practical and lead to provably correct solutions [91].

3.1 Problem Formulation

The canonical form of the problem of sparse signal representation from a redun-
dant dictionary or basis, is given by:

min
x
‖x‖0, s.t. Ax = b (13)

where A ∈ R
N×M is a matrix whose columns Ai represent an overcomplete or

redundant basis (i.e., rank(A) = N and M > N) determined from the physics
of the problem. The goal is to solve for x ∈ R

M vector, from the measurements
vector (or given signal) b ∈ R

N . The cost function being minimized ‖ · ‖0 is
the 0-norm of x, i.e. the cardinality of x. The general idea is that x is K-
sparse (K ≪M), i.e., only K entries in x are sufficient to reconstruct b without
distortion. An alternative formulation to (13), popular when accounting for
modeling errors or measurement noise is:

min
x
‖x‖0, s.t. ‖Ax− b‖22 ≤ ǫ (14)

Unfortunately, both (13) and (14) are combinatorial problem, and the search for
the optimal K-sparse representation would require solving up to

(

M
K

)

linear sys-
tems, making it impractical for even modest values of M and K. Consequently,
in practical situations, there is a need for approximate methods that efficiently
solve (13) or (14).

3.2 Algorithms

As mentioned above, winnowing through the all
(

M
K

)

possibilities to determine
the optimal K-sparse solution is impractical. In this subsection, we will describe
the general concepts behind the most used methods for determining a sparse
solution. The methods can be divided in two classes. Greedy methods that
“break” the optimization problem in a sequence of smaller problems in which
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a optimal solution can be easily found. Convex optimization relaxations that
replace the combinatorial problem with a related convex program.

Greedy Algorithms

The first approaches to solve (13) and (14), are the one based on greedy algo-
rithms, iteratively solving the sparse approximation problem applying a sequence
of locally optimal choices in an effort to determine a globally optimal solution.
In this category, notably falls the matching pursuit (MP) algorithm [92], a tech-
nique which involves finding the “best matching” projections of multidimensional
data onto an overcomplete dictionary (A in our formulation). This is a recursive
strategy that involves choosing, at a given iteration, the column Ai that is most
aligned with the current residual vector. The procedure usually terminates when
the given sparsity level K is achieved.

The main deficiency of MP type algorithms is related to the general limits
of greedy algorithms, i.e., if the algorithms picks a wrong column at a given
iteration, there is no possibility of correcting this error in the following iterations
[93]. To cope with this problem, an alternative method to MP, but based on the
same concept, was developed. This is the orthogonal matching pursuit (OMP)
[94–96]. The main idea behind OMP is to add a least-square minimization in
the selection of the basis so to obtain a better approximation over the columns
of A that have already been chosen. Following this line of thought, the cyclic
matching pursuit (CMP) was also developed [97].

Minimizing Diversity Measures

Backed up by significant improvements in convex optimization algorithms [100,
101], this category is certainly the one that has received the most interest lately.

The first ideas was introduced in [98] with the development of the basis
pursuit (BP) principle. Differing substantially from MP and OMP, BP was based
on the idea that the number of terms in a representation (i.e., the cardinality),
can be approximated by the absolute sum of coefficients. Thus, the idea is to
perform a convex relaxation of the 0-norm, replacing the combinatorial sparse
approximation with a problem solvable with convex tools that also lead to sparse
solutions. Differently from greedy algorithms, it is based on global optimization,
thus, in general, finds improved sparse solutions [91]. The 1-norm is arguably
chosen for this purpose as the closest convex approximation to the non-convex
0-norm [99]. The problems (13) will then become:

min
x
‖x‖1, s.t. Ax = b (15)

and (14) equivalently:

min
x
‖x‖1, s.t. ‖Ax− b‖22 ≤ ǫ (16)
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Furthermore, many recent algorithms have exploited the sparsity inducing prop-
erties of the 1-norm to find more focal solutions to the original problems by
iteratively reweighting the minimization process [102–104]. The choice of the
weights, as the inverse of the magnitude of the coefficients, is made to penalize
every nonzero coefficient equally, as done by the 0-norm. In [102] and [104], it
is also shown that the reweighted 1-norm algorithm, at convergence, is equiv-
alent to the minimization of the log-sum penalty function. This is relevant to
the original problem formulation in (13) and (14): the log-sum cost function
has a sharper slope near zero compared to the 1-norm, providing more effective
sparsity inducing properties. Furthermore, since the log-sum is not convex, the
iterative algorithm corresponds to minimizing a sequence of linearizations of the
log-sum around the previous solution estimate, providing at each step a sparser
solution (until convergence). In the class of methods to compute sparse solutions
through reweighting, thus by emphasizing and de-emphasizing the different con-
tributions of the columns of A in the solution x, a distinctive mention is for the
FOcal Underdetermined System Solver (FOCUSS) algorithm [105] based on the
reweighted 2-norm algorithm.

4 Summary of Contributions

The main contributions of the work that is documented in this thesis is to
propose new approaches to the optimization problems encountered in LPAS
coding by introducing the sparsity constraint. Papers A through F deal with
sparse speech modeling, obtained introducing sparsity constraints directly in the
LP based all-pole modeling of speech. Paper G extends the use of sparsity in
the LP framework to the analysis of monophonic and polyphonic audio signals.
In Paper H sparsity is introduced in the stage of selection the approximated
excitation in the analysis-by-synthesis equations that follow the all-pole modeling
stage. Paper I defines a new approach to LPAS coding, taking into account the
approximated excitation in deriving a new set of LP parameters; in paper J, we
apply this method to define a two-layered speech coder for packet networks. We
will now go through the contributions of the individual papers that constitute
the main body of this thesis.

Paper A

This paper introduces a generalized LP framework and provides some prelimi-
nary numerical experiments and conjectures on the use of sparsity constraints
in it. Two classes of LP schemes are presented for voiced speech analysis. The
first class aims at finding a predictor that outputs a sparse residual rather than
a minimum variance one. Its use produces a residual with a clearer spiky behav-
ior compared to traditional LP. The second class aims at finding a high-order
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sparse predictor. The estimated sparse high-order predictor exhibits a clear re-
semblance to the high-order predictor obtained by convolving the short-term
and long-term predictors obtained in two different stages.

Paper B

The objective of this paper is to investigate the use of the high-order sparse
predictor for the joint estimation of short-term and long-term predictor. In
particular, the high-order sparse predictor can be factorized into a short-term
predictor and long-term predictor that offer a better estimate compared to the
traditional multistage approach. The high-order predictor is also more effective
in finding a prediction error that is also spectrally whiter and therefore easier
to model and quantize through pseudo-random codewords. This method is im-
plemented into an ACELP scheme and offer improvements in coding efficiency,
also compared to other joint estimation methods.

Paper C

This paper describes a novel speech coding concept created by introducing spar-
sity constraints in the linear prediction scheme both on the residual and on
the high-order prediction vector. The sparse residual obtained allows a more
compact representation, while the sparse high-order predictor engenders a ro-
bust joint estimation of short-term and long-term predictors. Thus, the main
purpose of this work is showing that better statistical modeling in the context
of speech analysis creates an output that offers better coding properties. We
compare the implemented coder with the RPE-LTP coder, showing that just a
change in the LP estimation approach achieves a more parsimonious description
of a speech segment with interesting direct applications to low bit-rate speech
coding.

Paper D

While in Papers A-C, the 1-norm has been reasonably chosen as a convex approx-
imation of the so-called 0-norm, the true sparsity measure, in this paper we apply
the reweighted 1-norm algorithm in order to produce a more focused solution to
the original combinatorial problem that we are originally trying to solve. The
purpose of the reweighted scheme is then to overcome the mismatch between 0-
norm minimization and 1-norm minimization while keeping the problem solvable
with convex estimation tools. The experimental analysis shows improvements
over the previously used 1-norm based estimators, producing sparser solutions.
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Paper E

The objective of this paper is twofold. Firstly, we put our earlier contributions
(Papers A-D) in a common framework giving an introductory overview of Sparse
Linear Prediction and we also introduce its compressed sensing formulation. Sec-
ondly, we provide a detailed experimental analysis of its usefulness in modeling
and coding applications transcending the well known limitations related to tra-
ditional LP. In particular, we provide a thorough analysis of the effectiveness of
the sparse predictors in modeling the speech production process. Furthermore,
we give several results as proof of the usefulness of introducing sparsity in the LP
framework for speech coding applications. This provides, not only a more syn-
ergistic new approach to encode a speech segment, but also several interesting
properties such as shift independence, pitch independence and a slower decaying
quality for decreasing SNR. The compressed sensing formulation for sparse LP
introduced is also very helpful in reducing the size of the minimization problem,
and hence to keep the computational costs reasonable.

Paper F

Compared to traditional LP based on the 2-norm minimization, the minimization
of the 1-norm process will offer a residual that is sparser, providing tighter
coupling between the multiple stages of time-domain speech coders, and thereby
enabling more efficient coding. Nevertheless, unlike those obtained through 2-
norm minimization, the predictors obtained through 1-norm minimization are
not intrinsically stable and, in coding application, unstable filters may create
problems, generating saturations in the synthesized speech. In this paper, we
introduce several alternative methods to 1-norm linear prediction comparing the
spectral modeling and coding performances of the alternative predictors.

Paper G

The main purpose of this paper is to extend the use of high-order sparse predic-
tors to the audio processing scenario. In particular several experiments will be
provided to show how these predictors are able to model efficiently the differ-
ent components of the spectrum of an audio signal, i.e., its tonal behavior and
the spectral envelope characteristic. The main strength of the high-order sparse
predictors, as evinced from this paper, is that they can achieve spectral flatness
properties comparable to traditional high-order LP with very few coefficients
compared to the order of the predictor. This shows possible applications for a
more efficient use of LP in several audio related problems.
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Paper H

In this paper, we devise a compressed sensing formulation to compute a sparse
approximation of speech in the residual domain in the Analysis-by-Synthesis
equations. In particular, in our previous work defined a sparse predictive frame-
work that aims for a sparse prediction residual rather than the traditional min-
imum variance residual. We have also shown that MPE techniques are better
suited in this framework for finding a sparse approximation of the residual rather
than pseudo-random sequences (e.g., algebraic codes). Considering that MPE is
itself a suboptimal approach to modeling prediction residuals, in this paper we
aim at improving the performance of MPE by moving toward a better approach
of capturing the approximated excitation without increasing complexity. We
compare the method of computing a sparse prediction residual with the optimal
technique based on an exhaustive search of the possible nonzero locations and
the well known MPE. Experimental results demonstrate the potential of com-
pressed sensing in speech coding techniques finding with high probability the
true sparse solution.

Paper I

The usual approach in Analysis-by-Synthesis coding is to first find the linear
prediction parameters in a open-loop configuration then searching for the best
excitation given certain constraints on it. This is done in a closed-loop con-
figuration where the perceptually weighted distortion between the original and
synthesized speech waveform is minimized. The conceptual difference between
a quasi-white true residual and its approximated version, where usually sparsity
is taken into consideration (e.g. ACELP, RPE, MPE coding schemes), creates a
mismatch that can raise the distortion significantly. In this paper, we estimate
the optimal truncated impulse response that creates the given sparse coded
residual without distortion. An all-pole approximation of this impulse response
is then found using a least square approximation. The all-pole approximation is
a stable linear predictor that allows a more efficient reconstruction of the seg-
ment of speech. In this case, the autoregressive modeling is no more employed
as a method to remove the redundancies of the speech segment but as IIR ap-
proximation of the optimal FIR filter, adapted to the quantized approximated
residual, which is used in the synthesis of the speech segment.

Paper J

In this paper, we exploit the compact speech segment representation given by
sparse linear prediction and the re-estimation procedure introduced in Paper I to
create two representations within a segment of coded speech. One representation
that allows for decoding a speech frame independently, and one that acts as an
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enhancement layer and it is frame dependent. This introduces a new approach
to speech coding over packet networks, creating a coder that has speech frames
with a core that is independently decodable and an enhancement layer that is
based on the previously received frames. In particular, we create a coder that
can select between two decoding procedures, if the previous frames are received
correctly, then it decodes using all the information, otherwise, it uses only the
frame independent information. By doing so, we offer the flexibility of a frame
independent codec if the loss probability is significant but, if the probability is
low (or ideally null), then it will exploit inter-frame dependencies to perform
similarly to a frame dependent coder.

5 Conclusions

In this work, we have introduced several new approaches to the LPAS problem
for speech analysis and coding obtained by introducing sparsity into the LPAS
coding framework.

When sparsity is applied in the generalized LP minimization framework, the
sparse linear predictors have been shown to provide a more efficient decoupling
between the pitch harmonics and the spectral envelope. This translates into
predictors that are not corrupted by the fine structure of the pitch excitation
and offer interesting properties such as shift invariance and pitch invariance.
In the context of speech coding, the sparsity of residual and of the high-order
predictor provides a more synergistic new approach to encode a speech segment
by reducing the burden on the excitation sequence, offering significant benefits
for low bit-rate applications. In particular, the sparse residual obtained allows
a more compact representation, while the sparse high-order predictor engenders
joint estimation of short-term and long-term predictors. A compressed sensing
formulation is used to reduce the size of the minimization problem, and hence to
keep the computational costs reasonable. The sparse linear prediction based ro-
bust encoding technique provided a competitive approach to speech coding with
a synergistic multistage approach and a slower decaying quality for decreasing
SNR. Some preliminary results on the possible applications of the sparse linear
predictive framework in audio processing, has also shown to be effective tran-
scending some of the limitation of traditional linear prediction.

In the second part of this work, we have concentrated our attention on the
complete structure of the encoder, introducing new strategies to code the exci-
tation sequence based on the compressed sensing formulation, creating a compu-
tationally efficient near-optimum multipulse approach. We have also proposed a
new method for the re-estimation of the prediction parameters in speech coding.
In particular, the autoregressive modeling is no more employed as a method to
remove the redundancies of the speech segment but as IIR approximation of the
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optimal FIR filter, adapted to the quantized approximated excitation, that is
used in the synthesis of the speech segment. The method has shown improve-
ments in the general performances of the sparse linear prediction framework,
providing tradeoffs between the complexity, and thus the bit-rate, of the two
descriptions hitherto not possible. An interesting incarnation of the proposed
framework is the possibility of estimating predictors and residuals that create
a independently decodable frame of speech. This has been successfully applied
in a novel way to code speech in packet networks, creating a frame independent
description and an frame dependent description that acts as enhancement layer,
exploiting inter-frame redundancies.

6 Outlook

In the author’s opinion, the increasing demand for Voice-over-IP (VoIP) tele-
phony, that can carry also music and mixed audio contents, will arguably offer
some of the most important challenges in the speech coding community in the
following years. The current trend is to merge well deployed existing codecs
optimized for speech and audio and used them jointly to offer the best possible
quality [6–9]. In particular, embedded coding, proposes a multi-layer approach
to sound coding mixing transform based (e.g., MDCT) codecs for audio with tra-
ditional LP based codecs for speech. This approach has two main weaknesses.
Firstly, it does not provide a common coding strategy to speech and audio and
its flexibility is to simply switch between different codecs depending on the in-
put signal (this also pointed out in [110]). Secondly, these codecs achieve high
quality with low bit-rate mostly thanks to the exploitation of inter-frame depen-
dencies showing severe shortcomings in the presence of packet loss. Therefore,
it is interesting to focus future research to find a common coding framework for
speech and audio that achieves superior robustness to packet loss by providing
frame independent coding.

We here give a brief overview to the future role that some of the topics
discussed in this thesis could play in these above mentioned issues.

6.1 Provide a Common Coding Framework for Speech and

Audio Coding

It is well known that transform based coders are not suitable for speech cod-
ing, mostly due to their inadequate modeling of the speech signal that cannot
achieve a low bit rate. Other reasons are, the computational demands of the
transforms used [106], and the algorithmic delay that necessarily arise, espe-
cially at high sampling rate. On the other hand, LP has been fundamentally
abandoned as a possible candidate for audio coding since low-order LP seems to
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be appropriate in modeling only when the harmonic components are distributed
uniformly on the spectrum [107]. Nevertheless, the LP filter is generally a quite
adequate tool to model the spectral peaks which play a dominant role in per-
ception [108]. This and the properties that made LP successful in speech coding
(low delay, scalability and low complexity) make the extension of LP to audio
coding also appealing. In our work, we have proposed to use high-order sparse
linear predictors for audio and speech processing. These tools have shown to
be quite attractive in modeling the harmonic behavior of audio and speech sig-
nals, achieving a concise parametric representation by exploiting harmonicity
and achieving accurate spectral modeling consistent with high-order LP [109].
Their use could provide a possible common coding framework for both speech
and audio signals.

Furthermore, the complexity of the encoding strategy in audio and wide-
band speech (and recently super-wideband) coding is strongly dependent on the
sampling frequency of the initial acquisition procedure. The encoding structure
often relies on mirror filterbanks in order to proceed with a less computation-
ally demanding subband approach. In our approach, we come across the same
complexity issue dealing with high-order predictors and long residual vectors.
Nevertheless, since we have defined that both audio and speech are sparse in the
prediction and residual domain, we can effectively reduce the number of mea-
surement applying a compressed sensing formulation. This formulation, which
we have efficiently applied in finding a sparse residual, can be also easily ex-
tended to the estimation of the high-order sparse predictor. Also, we are not
using any predefined basis, thus providing a truly adaptive sparse representation
for our processed speech and audio signals.

6.2 Redefine the LPAS Coding Scheme

In simple terms, the LPAS approach is to first find the linear prediction param-
eters in a open-loop configuration then searching for the best excitation given
certain constraints on it. This second step is done in a closed-loop configuration
where the perceptually weighted distortion between the original and synthesized
speech waveform is minimized. Since the predictor is quantized transparently,
all the responsibility for the distortion falls on the choice of the excitation. A
consequence of this approach can be seen, for example, in the AMR-WB coder,
where, in its 23.85 kbit/s configuration, 80% of the bits are allocated for the
excitation and only 10% for the predictor [111].

In our work, we have proposed several ways to generally improve perfor-
mances of the LPAS scheme, reducing the burden on the excitation signal. For
example, the general idea of our proposed re-estimation procedure for the pre-
dictor was to find a tradeoff between the complexity of the excitation and the
complexity of the predictor. This idea can be easily extended to performing a
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tradeoff of the sparse representation of the excitation and the sparse representa-
tion of the high-order sparse predictor also considering that there is, arguably,
a clear relation between sparsity and rate. Early approaches have also outlined
gains by including the LP parameters in the closed-loop configuration [112, 113].

Furthermore, the LP model computation (ignoring quantization) accounts
for a minimal part of the total computational effort in the LPAS encoders,
significantly less than the search for the excitation [111]. Thus, the time might
be right to revisit the current approaches in LPAS coding, balancing both the
bit allocation and computational effort.

6.3 Provide Frame Independent Coding

As mentioned above, the codecs used for embedded coding present strong depen-
dencies from both present and future frames. The exploitation of the redundant
information present in neighboring frames helps considerably in reducing the
bit rate. Nevertheless, while this approach is consistent in the case of telephony
with dedicated circuits, in packet networks these dependencies create well known
problems. While Packet Loss Concealment (PLC) strategies have achieved a cer-
tain degree of maturity [114–121], it is still important to reduce, if not eliminate,
these dependencies making each frame independently decodable, as done, for ex-
ample in [122]. The coding algorithm we have presented is representative of a
more general rate-distortion problem. In our case, the distortion will be depen-
dent on how the representation of the speech segment is divided between a frame
independent core and a frame dependent enhancement layer. In particular, the
distortion term can be made dependent on the loss rate and therefore adjust-
ing the bit allocation on the frame dependent and frame independent parts.
While future studies are obviously necessary, the preliminary studies and results
presented in this thesis have shown this to be a viable road.
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Abstract

This paper presents two new classes of linear prediction schemes. The first one
is based on the concept of creating a sparse residual rather than a minimum vari-
ance one, which will allow a more efficient quantization; we will show that this
works well in presence of voiced speech, where the excitation can be represented
by an impulse train, and creates a sparser residual in the case of unvoiced speech.
The second class aims at finding sparse prediction coefficients; interesting results
can be seen applying it to the joint estimation of long-term and short-term predic-
tors. The proposed estimators are all solutions to convex optimization problems,
which can be solved efficiently and reliably using, e.g., interior-point methods.

1 Introduction

Linear prediction (LP) is an integral part of many modern speech and audio
processing systems ranging from diverse applications such as coding, analysis,
synthesis and recognition [1]. Typically, the prediction coefficients are found
such that the 2-norm of the residual (the difference between the observed signal
and the predicted signal) is minimized [2]. The reason behind this work is that
there are many examples where this does not work well, for example when the
excitation is not Gaussian, which is the case for voiced speech. In this case the
usual approach is to find coefficients for the short-term and long-term signal cor-
relation in two different steps [3]. This obviously leads to inherently suboptimal
solutions. In the context of predictive coding, moreover, alternative formulations
may be of interest. The 2-norm minimization shapes the residual into variables
that exhibit Gaussian-like characteristics; however, so-called sparse coding tech-
niques have been used, for example, in early GSM standards and more recently
also in audio coding [4] to quantize the residual. In these techniques, notably the
Multi-Pulse and Regular-Pulse Excitation methods (MPE and RPE) [5, 6], the
residual is encoded using only few non-zero pulses. In this case and quantization-
wise in general, we can reasonably assume that the optimal predictor is not the
one that minimizes the 2-norm but the one that leaves the fewest non-zero pulses
in the residual, i.e. the sparsest one.

In this paper, we present a framework wherein two kinds of sparse linear
predictors are considered corresponding to two different ways of estimating the
prediction coefficients. First, we consider the case where the excitation signals
are assumed to be sparse, as in the case of voiced speech. Then, we consider
the case where, not the residual, but the prediction coefficients are sparse. This
latter case allows us to jointly estimate the short-term and long-term predic-
tor coefficients and may be applied in speech coders. Therefore, the novelty
introduced is to exploit the statistical characteristics of the algorithms intro-
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duced for linear prediction in order to define, in the latter stage, a more efficient
quantization scheme.

The paper is organized as follow. A prologue that defines the mathematical
formulations of the proposed algorithms will be given. The core will be dedi-
cated to introducing the two algorithms and showing the results obtained with
these techniques and some related examples. Then we will discuss and illustrate
advantages and disadvantages of these.

2 Fundamentals

The problems considered in this paper are based on the following auto-regressive
model, where a sample of speech is written as a linear combination of past
samples:

x(n) =

K
∑

k=1

akx(n− k) + e(n), (A.1)

where {ak} are the prediction coefficients and e(n) is the excitation. We will see
that the different predictors considered apply to different kinds of excitation e(n)
and different applications. Mathematically we can state the class of problems
considered in this paper as those covered by the optimization problem associated
with finding the prediction coefficient vector a ∈ R

K from a set of observed real
samples x(n) for n = 1, . . . , N so that the error is minimized [7]. The vector
ê = x − Xâ is commonly referred to as the residual which is an estimate of
the excitation e, obtained from some estimate â resulting from the following
minimization problem:

min
a
‖x−Xa‖pp + γ‖a‖kk, (A.2)

where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)







and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for p ≥ 1. The
starting and ending points N1 and N2 can be chosen in various ways assuming
that x(n) = 0 for n < 1 and n > N . For example, considering p = 2 and
γ = 0 (maximum likelihood approach for the error being a sequence of i.i.d.
Gaussian random variables), setting N1 = 1 and N2 = N +K will lead us to the
autocorrelation method equivalent to solving the Yule-Walker equations; setting
N1 = K + 1 and N2 = N leads us to the covariance method [8]. We will show
that the choice of N1 and N2 is not trivial even in the case when p 6= 2 where
the system in (A.2) has not a closed-form unique solution.
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The question then is how to choose p, k and γ and how to perform the associ-
ated minimization, depending on the kind of applications we want to implement.
In finding sparse signal representation, there is the somewhat subtle problem of
how to measure sparseness. Sparseness is often measured as the cardinality, that
would be the so-called 0-norm ‖ · ‖0 [9], therefore, using it in (A.2) means that
we would like to minimize the number of non-zero samples in the error signal.
Unfortunately this is a combinatorial problem which generally cannot be solved
in polynomial time. Instead of the cardinality measure, we then use the more
tractable 1-norm ‖ · ‖1.

The introduction of the regularization term γ in (A.2) can have two meanings.
The first one, it is somehow related to the prior knowledge we have of the
coefficients vector a , therefore (A.2) is clearly the maximum a posteriori (MAP)
approach for finding a under the assumptions that a has a Generalized Gaussian
Distribution [10]:

aMAP =arg max
a

f(x|a)g(a)

= arg max
a
{exp(−‖x−Xa‖pp) exp(−γ‖a‖kk)}.

(A.3)

The second meaning that γ holds can be understood by the following analogy.
If in (A.2) we let k = 0 and assume that the number of bits associated with the
quantization of the prediction coefficients a is proportional to the number of non-
zero elements in a, then the regularization factor γ plays the role of a Lagrange
multiplier in a rate-constrained rate-distortion optimization with p determining
the error criterion in question: by adjusting γ, we obtain solutions for a having
different rates.

3 Sparse Linear Predictors

3.1 Finding a Sparse Residual

We now proceed to consider the problem of finding a prediction vector a such
that the residual would be sparse. As we shall see this approach is particularly
applicable to analysis and coding of voiced speech. Having defined the 1-norm as
an approximation of the cardinality function, the cost function for the problem
in question is a special case of (A.2). By setting p = 1 and γ = 0 we obtain the
following optimization problem:

min
a
‖x−Xa‖1. (A.4)

The use of a least absolute value error criterion has already been proven
to give interesting results in linear prediction of speech signals [13]. Especially
1-norm has been proven to give good results when the error is considered to
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have long tails, that is due to the fact that when p = 1 and γ = 0, the min-
imization process corresponds to the maximum likelihood approach when the
error sequence is considered to be a set of i.i.d. Laplacian random variables.
The excitation in the case of voiced speech is well represented by this statistical
approximation, therefore the 1-norm minimization outperforms the 2-norm in
finding a more proper linear predictive representation.

It should be noted that standard linear prediction ‖x−Xa‖2 exhibits spectral
matching properties in the frequency domain due to the Parseval’s theorem [2]:
it is also interesting to note that minimizing the squared error in both time
domain and frequency domain leads to the same set of equations, which are
the Yule-Walker equations [8]. To our knowledge, the only relations existing
between the time and frequency domain error using the 1-norm is the trivial
Hausdorff-Young inequality [14]:

∞
∑

n=−∞

|e(n)| <
1

2π

∫ π

−π

|E(ejω)|dω, (A.5)

that explicates the non-correspondence of the frequency domain minimization
approach for the 1-norm. It is difficult to say if the 1-norm is always advanta-
geous compared to the 2-norm, since the statistical character of the frequency
errors is not clear. Nevertheless, in our experimental studies, we empirically
observed that the use of the 1-norm was helpful against the usual problems that
the 2-norm LP analysis has to deal with in the case of voiced speech with well-
defined harmonics (those would be, for example, over-emphasis on peaks and
cancellation of errors [2]).In the case of unvoiced speech, in addition, the resid-
ual e(n) has always shown to be sparser than the one obtained with the usual
LP analysis.

3.2 Finding Sparse Coefficients

Another intriguing incarnation of the general optimization problem (A.2) is to
minimize the 2-norm of the residual while keeping the coefficient vector a sparse:

min
a
‖x−Xa‖22 + γ‖a‖1. (A.6)

This formulation is relevant because a direct minimization of (A.2) in the
standard LP form (p = 2, γ = 0) with a high prediction order K, will lead to
have a coefficient vector a containing many non-zero elements even if the true
order is less than K. The meaning of looking for a sparse coefficient vector
a can be understood as follows. An AR filter having a sparse structure is an
indication that the polynomial can be factored into several terms where one of
these exhibits comb-like characteristics: the long term predictor often used in
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speech processing is an example. A commonly used long-term predictor is:

P (z) = 1− gpz
−Tp , (A.7)

with Tp being the pitch period (the reciprocal of the fundamental frequency usu-
ally found in the range [50Hz, 500Hz]) and gp > 0 being the gain. Therefore,
the optimization problem in (A.6) can be interpreted as a joint estimation of
the short-term and long-term prediction coefficients, something which is usu-
ally achieved in cascade and thus suboptimal way [11, 12]. Also, the proposed
approach does not require the pitch period to be known or estimated, unlike
some practical long-term predictors. The minimization of the 2-norm in (A.6) is
based on the assumption that aside from the pulse-train, the excitation e(n) also
consist of Gaussian noise (as usually represented in the mathematical models of
speech production). As to the implementation of this algorithm, the optimiza-
tion problem can be posed as a quadratic programming problem and can also be
solved in time equivalent to solving a small number of 2-norm linear prediction
problems using an interior-point algorithm [16], as the problem in (A.4).

4 Numerical Experiments

The results of the approach shown in (A.4) for a voiced signal exhibit a residual
that is surprisingly similar to the impulse response of the long term predictor,
an example is presented in Figure A.1. It is also easy to see that the 2-norm
minimization introduces high emphasis on peaks in its effort to reduce large
errors: in this case the outliers due to the pitch excitation, as we can see clearly
in Figure A.2. Our examples were obtained analyzing the vowel /a/ uttered by
a female speaker using N = 400, fs = 8KHz and order K = 20. Since the
fundamental frequency for the analyzed signal is around 189Hz, the common
LP analysis will try to put a pole very closed to the unit circle around those
radians to cancel the harmonic, there explained the peak. The 1-norm approach
acknowledges the existence of the pitch harmonic, although it does not try to
cancel it because its purpose is not to fit the error into a Gaussian-like probability
density function. The result, as clearly shown in Figure A.2, is that with the
1-norm minimization we obtain a smoother filter.

In Figure A.3 we show an example of the results for our second approach,
outlined in section 3.2, on the coefficient vector of the same speech segment
analyzed above. The comparison of the prediction coefficients was made between
our algorithm for γ = 0.1 and γ = 1, with usual LP (order 50) and with the
multiplication of the transfer functions of the 10th-order short term predictor
(obtained as the mean in the Line Spectral Frequencies domain of four set of
LP parameters calculated in the analyzed signal) and the long term predictor
obtained by closed loop pitch analysis P (z) = 1 − 0.22z−40. In general, we
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Fig. A.1: Residuals for 1-norm and 2-norm minimization.
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Fig. A.2: Frequency response of the filters obtained with 1-norm and 2-norm minimization.

were able to see that using 0.1 ≤ γ ≤ 1 in (A.6), the predictive vector a is
similar to the multiplication of the short-term prediction filter Astlp(z) and long-
term prediction filter (A.7) obtained in cascade, in other words in our one step
approach we obtained:

1

Asparse(z)
≃

1

1− gpz−Tp

1

Astlp(z)
. (A.8)

5 Discussion

Denoël and Solvay [13] have pointed out the drawbacks of the absolute error
approach that we used in section 3.1. One of them is that the solution (just
like the median value of an even number of observations) may not be unique; in
this case due to the convexity of the cost function, we can easily state that the
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Fig. A.3: Comparison of the prediction coefficients (excluding the 0th-order) obtained with
our algorithm (top), with usual LP (order 50) and with the convolution of the short-term and
long-term coefficients vectors.

all the possible multiple solutions will still be optimal [15]; also, seeing the non-
uniqueness of the solution as a weakness is arguable: in the set of possible optimal
solutions we can probably find a set of coeffients that offer better properties for
our purposes.

The stability of this method is not guaranteed, not being intrinsically stable
like LP analysis with the autocorrelation method. This drawback was mitigated
by choosing N1 = 1 and N2 = N +K in (A.2): it also corresponds to the auto-
correlation method if the 2-norm was used. This helped us bring the percentage
of non-stable filters from 11% (using N1 = K + 1 and N2 = N) to less than 2%
in over 10,000 frames analyzed. Although the use of windows to mitigate the
spectral peaks or bandwidth expansion method, almost always used in 2-norm
minimization problem could have brought the non-stability percentage down to
unimportant levels, we decided not to use them as the sparseness properties of
the residual were contaminated.

In [13] an interesting method was introduced for both having an intrinsically
stable solution as well as keeping the computational cost down using (A.4): the
Burg Method for AR parameters estimation based on the least absolute forward-
backward error. In this approach to find a solution, however, the sparseness is
not preserved (as shown in Figure A.4). This is mostly due to the decoupling
of the main K-dimensional minimization problem in K one-dimensional mini-
mization sub-problems, this is in contrast with our algorithm that tries to find a
minimum in the K−dimensional cost function: therefore this method is subop-
timal. The 1-norm Burg algorithm has shown to behave somewhere in between
the 1-norm and the 2-norm minimization. Regarding the computational costs,
finding the solution of an overdetermined system of equations in the 1-norm us-
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ing a modern interior point algorithm [16] showed to be comparable to solving
around 10-15 least square problems; however the further processes, for exam-
ple open and closed loop analysis for pitch estimation and algebraic excitation
search (in the case of code-excited schemes [17]) and quantization in general,
will be highly simplified by the characteristics of the output. It is also impor-
tant to notice that the residual signal will already be available at the end of the
computation and doesn’t have to be calculated.

It is also useful to combine the optimization problems (A.4) and (A.6); in
this case the following optimization problem arises:

min
a
‖x−Xa‖1 + γ‖a‖1. (A.9)

Here, the coefficients of a high-order predictor combining the short and long
term predictors are found such that both the coefficient vector and the residual
are sparse to better quantize the residual. In our experimental work we were able
to efficiently encode a speech signal (with both voiced and unvoiced parts) using a
significantly low bit rate by using only 20% of the coefficients of each predictive
vector and setting approximately 85% of the residual samples equal to zero
with a quantizer that ignores samples below a certain adaptive treshold and a
quasi-linear quantization elsewhere. Although more intensive studies are needed
to determine the psycho-acoustic level performances of this simple scheme, the
time domain distorsion and quality seemed comparable to the common encoding-
decoding techniques used in GSM and UMTS based on 2-norm minimization.

6 Conclusions

In this paper, two kinds of sparse linear predictor have been introduced. Specif-
ically, linear predictors that offer a sparse residual or a sparse coefficients vector
or the combination of both, as a particular case of the latter one, have been
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formulated, discussed and evaluated. Although these kinds of methods seemed
particularly attractive for the analysis and coding of stationary voiced signal, we
have seen that the extension of the obtained results to unvoiced signal seemed
to be straightforward and will be subjected to further analysis. Furthermore,
considering other convex estimators will easily bring to new studies based on dif-
ferent concepts of sparseness. It should be noted that the algorithms introduced
are not restricted to speech processing and can be used for several linear predic-
tion problems where either the residual or the coefficient vector is expected to
show sparseness properties or where we want these to fit a sparse model.

References

[1] J. H. L. Hansen, J. G. Proakis, and J. R. Deller, Jr., Discrete-Time Pro-
cessing of Speech Signals, Prentice-Hall, 1987.

[2] J. Makhoul, “Linear Prediction: A Tutorial Review”, Proc. IEEE, vol. 63(4),
pp. 561–580, Apr. 1975.

[3] P. Kroon and W. B. Kleijn, “Linear-prediction based analysis-by-synthesis
coding”, in Speech Coding and Synthesis, W. B. Kleijn and K. K. Paliwal,
Eds. Elsevier Science B.V., 1995, ch. 3, pp. 79–119.

[4] F. Riera-Palou, A. C. den Brinker, and A. J. Gerrits, “A hybrid parametric-
waveform approach to bistream scalable audio coding”, in Rec. Asilomar
Conf. Signals, Systems, and Computers, 2004, pp. 2250–2254.

[5] B. S. Atal and J. R. Remde, “A new model of LPC excitation for producing
natural sounding speech at low bit rates”, in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, vol. 7, 1982, pp. 614 – 617.

[6] P. Kroon, E. D. F. Deprettere, and R. J. Sluyter, “Regular-pulse excitation
- a novel approach to effective multipulse coding of speech”, IEEE Trans.
Acoust., Speech, Signal Processing, vol. 34, pp. 1054–1063, 1986.

[7] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2004.

[8] P. Stoica and R. Moses, Spectral Analysis of Signals, Pearson Prentice Hall,
2005.

[9] Y. Q. Li, A. Cichocki, S. Amari, “Analysis of sparse representation and
blind source separation”, Neural computation, vol. 16, no.6, pp. 1193-1234,
June 2004.



42 PAPER A

[10] J.-R. Ohm, Multimedia Communication Technology: Representation,
Transmission, and Identification of Multimedia Signals, Springer-Verlag,
2004.

[11] P. Kabal and R. P. Ramachandran, “Joint optimization of linear predic-
tors in speech coders”, IEEE Trans. Acoust., Speech, Signal Processing, vol.
37(5), pp. 642–650, May 1989.

[12] H. Zarrinkoub and P. Mermelstein, “Joint optimization of short-term and
long-term predictors in CELP speech coders”, in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, vol. 2, 2003, pp. 157–160.

[13] E. Denoël and J.-P. Solvay, “Linear prediction of speech with a least absolute
error criterion”, IEEE Trans. Acoust., Speech, Signal Processing, vol. 33(6),
pp. 1397–1403, Dec. 1985.

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics II:
Fourier Analysis, Self-adjointness, Academic Press, 1975.

[15] S. C. Narula and J. F. Wellington, “The Minimum Sum of Absolute Errors
Regression: A State of the Art Survey”, International Statistical Review,
Vol. 50(3), pp. 317-326, Dec. 1982.

[16] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.

[17] W. C. Chu, Speech Coding Algorithms: Foundation and Evolution of Stan-
dardized Coders, Wiley, 2003



Paper B

Joint Estimation of Short-Term and Long-Term
Predictors in Speech Coders

D. Giacobello, M. G. Christensen, J. Dahl,
S. H. Jensen, and M. Moonen

This paper has been published in
Proceedings of the 34th IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP),
pp. 4109–4112, 2009.



44 PAPER B

c© 2009 IEEE
The layout has been revised.



1. INTRODUCTION 45

Abstract

In low bit-rate coders, the near-sample and far-sample redundancies of the speech
signal are usually removed by a cascade of a short-term and a long-term linear
predictor. These two predictors are usually found in a sequential and therefore
suboptimal approach. In this paper we propose an analysis model that jointly
finds the two predictors by adding a regularization term in the minimization
process to impose sparsity constraints on a high order predictor. The result is a
linear predictor that can be easily factorized into the short-term and long-term
predictors. This estimation method is then incorporated into an Algebraic Code
Excited Linear Prediction scheme and shows to have a better performance than
traditional cascade methods and other joint optimization methods, offering lower
distortion and higher perceptual speech quality.

1 Introduction

Traditionally, low bit-rate speech coders involve short-term linear prediction
(LP) in order to reduce the highly redundant speech signal into a sequence of
i.i.d. samples that is easier to quantize. The prediction coefficients are found by
minimizing the 2-norm of the prediction error signal (difference between original
and predicted signal) [1]; this corresponds to finding the prediction coefficients
in a maximum likelihood sense by fitting the error signal into a white Gaussian
model. Although this approach is used in almost all commercial speech coder,
the theoretical basis is fundamentally wrong as this analysis is optimal only if the
input to the AR synthesis model is indeed spectrally white and Gaussian [1]: this
is hardly the case for voiced speech and a large set of unvoiced speech sounds. In
order to counter this model mismatch, the general approach is to add a long-term
predictor in the whitening process: the short-term predictor will first remove the
redundancies due to the formants while the long-term predictor will subsequently
remove the redundancies due to the presence of a pitch excitation. This scheme is
inherently suboptimal for the short-term analysis that will necessarily be biased
by the presence of the pitch excitation. The suboptimality of the first short-term
prediction step will subsequently corrupt the long-term analysis: the minimum
variance residual will not retain the structure of the original excitation but reflect
something that has been attenuated and distorted making the analysis more
difficult. The most significant works that have pointed out the sub-optimality
of the sequential approach were [2] and, more recently [3]. In [2], information
about the intermediate short-term residual is included in a new minimization
framework that determines jointly the formants and pitch predictors. In [3] a
correction factor based on a previous pitch excitation is included in the short-
term error minimization. Our main objection to these two methods is that they
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do not take into consideration the statistical properties of the analyzed signal as
well as how the cascade of the two predictors influences their own coefficients.

The objective of this paper is to define a new one-step minimization frame-
work corresponding to a new way of determining a prediction vector that can
then be used to find jointly a non-biased short-term predictor and a more accu-
rate pitch predictor, this also results in a residual error that is spectrally whiter
and therefore easier to quantize. This is done by increasing the prediction order
and by imposing in the 2-norm minimization of the prediction error signal a
penalty term in order to keep the predictor sparse. This sparse predictor can
then easily be factorized into the short-term and long-term predictor. The former
will not be biased by the presence of a pitch excitation because this is already
taken into account by the predictor while the latter will have a higher accuracy
than those found through traditional methods. The residual is highly uncor-
related and with very few outliers. Thus, the novelty introduced in this paper
is a minimization framework that better matches the statistical characteristics
of the speech in order to define, in a latter stage, a more efficient quantization
scheme.

The paper is organized as follow. A prologue will be given in Section 2 that il-
lustrates the general formulation for linear predictors employed in speech coders.
Section 3 and Section 4 will be dedicated to introducing the mathematical frame-
work in which the joint estimator is developed and how this is formulated. In
Section 5 we will show and discuss the performances of our estimator in an
Algebraic Code Excited Linear Prediction (ACELP) scheme.

2 General Formulation for Linear Predictors

The general approach in low bit-rate predictive coding is to employ a cascade of a
short-term linear predictor F (z) and a long-term linear predictor P (z) in order to
remove respectively near-sample redundancies, due to the presence of formants,
and distant-sample redundancies, due to the presence of a pitch excitation in
voiced speech. The general form of the short-term linear predictor is:

F (z) = 1−

Nf
∑

k=1

fkz
−k. (B.1)

The coefficient vector f = {fk} is determined by minimizing the norm of the
prediction error signal:

min
f
‖e‖pp = min

f
‖x−Xf‖pp (B.2)
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where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −Nf )
...

...
x(N2 − 1) · · · x(N2 −Nf )







and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for p ≥ 1. The
starting and ending points N1 and N2 can be chosen in various ways assuming
that x(n) = 0 for n < 1 and n > N . For example, for p = 2, setting N1 = 1 and
N2 = N +Nf will lead to the autocorrelation method equivalent to solving the
Yule-Walker equations; setting N1 = Nf +1 and N2 = N leads to the covariance
method [4]. The order of the short-term predictor Nf is usually chosen to be
between 8 and 16 and the frame length N between 5 to 20 ms (40 to 160 samples
at 8 kHz).

The long-term predictor works in a similar way on the residual of the short-
term analysis but using a larger number of data samples (2N to 4N) in order
to find values of the pitch lags that are higher than the length of the short-term
window and to better spot long-term redundancies. The pitch predictor has a
small number of taps Np (usually 1 to 3) and the corresponding delays associated
are usually clustered around a value which corresponds to the estimated pitch
period Tp, the general form is:

P (z) = 1−

Np
∑

k=1

gkz
−(Tp+k). (B.3)

The parameters {gk} and Tp are determined by minimizing the norm of the
residual error signal after the two predictors, just like in the short-term predic-
tion. P (z) often has only one tap and the analysis is done by finding a first
open-loop estimation of the long-term parameters and successively a closed-loop
estimation where this is refined and finalized.

The final step is to encode the residual error signal after the two predictors
that is hoped to be white and Gaussian. The encoding of the residual signal
uses very few bits: in ACELP coders usually the residual is encoded with only
20-30% of non-zeros samples with constrained values of ±1 and a gain gac(n) [5].
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3 Formulation of the Joint Estimator

The cascade of the predictors in (B.1) and (B.3) corresponds the multiplication
in the z-domain of the two transfer functions:

A(z) = F (z)P (z) = 1−

K
∑

k=1

akz
−k

= (1−

Nf
∑

k=1

fkz
−k)(1−

Np
∑

k=1

gkz
−(Tp+k)).

(B.4)

The resulting coefficients vector a = {ak} of the high order polynomial A(z)
will therefore be highly sparse. We will then take this sparsity into account in
a minimization process similar to (B.2) by adding a regularization term that
imposes sparsity on the coefficient vector:

min
a
‖x−Xa‖22 + γ‖a‖0, (B.5)

where ‖ · ‖0 represents the so-called 0-norm, i.e. the cardinality of the vector.
A relaxation of this non-convex problem is done by approximating the 0-norm
with the more tractable 1-norm [6]:

min
a
‖x−Xa‖22 + γ‖a‖1. (B.6)

Note that X has now been redefined as:

X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






,

where K ≥ Nf +Np.
The optimization problem in (B.6) can be posed as a quadratic programming

problem and can also be solved in time equivalent to solving a small number of
2-norm problems (like the one in (B.2)) using an interior-point algorithm [7].
The left term is strongly convex, sufficient condition for the uniqueness of the
solution [7] and also the corresponding polynomial A(z) is minimum phase when
the choice of windowing is done as the autocorrelation method (see Section 2).

If we consider the problem in (B.6) from a Bayesian point of view, we notice
that this may be interpreted as the maximum a posteriori (MAP) approach
for finding {ak} under the assumption that the coefficients vector is an i.i.d.
Laplacian set of variables and the error is an i.i.d. Gaussian set of variables:

aMAP = arg max
a

f(x|a)g(a)

= arg max
a
{exp(−‖x−Xa‖22) exp(−γ‖a‖1)},

(B.7)
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Fig. B.1: (a) and (b) show a comparison between the polynomial obtained with regularized
minimization A(z) and multiplication of the two predictors F (z)P (z) obtained in cascade; (c)
and (d) a comparison of the two long-term predictors ALTP (z) and P (z).

which can be considered to be true observing the coefficients of the polynomial
in (B.4). The regularization term γ is then intimately related to the a priori
knowledge that we have on the coefficients vector {ak} or, in other terms, to how
sparse {ak} is, considering (B.6) as an approximation of (B.5). The problem of
finding γ that offers the best fitting of the model in (B.6) will be addressed in
the next section.

Once the solution of (B.6) has been found, corresponding to the estimated
version of the coefficients of A(z) in (B.4), the first Nstp coefficients are used as
the estimated coefficients of the short-term predictor Astp(z). Then the polyno-
mial ALTP (z) is created by taking the quotient of the division between A(z) by
Astp(z). In other words:

A(z) = ALTP (z)Astp(z) +R(z); (B.8)

where the deconvolution residual R(z) can be considered negligible. Once we
have ALTP (z) we can find the pitch gain and delay by taking the minimum value
and its position in the corresponding coefficients vector:

gp =min{aLTP },

Tp =arg min{aLTP }.
(B.9)

where {aLTP } are the coefficients of ALTP (z). An example is shown in Figure
B.1.
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One of the main drawbacks is that even though the polynomial corresponding
to the solution of (B.6) is intrinsically stable, by selecting the first Nstp coeffi-
cients we can risk having the roots of the corresponding short-term prediction
polynomial outside the unit circle. This problem is not easy to solve and a deeper
analysis has to be done. However, we have observed that if the choice of γ is ac-
curate, the coefficients of the short-term polynomial Astp(z) will usually occupy
the first 8 to 16 positions of the high order polynomial A(z) and their absolute
value usually decays rapidly. We can reasonably assume that taking the first
Nstp ≥ 10 coefficients and ignoring the rest Astp(z) will still be a stable filter.
Our intuitive analysis is corroborated by the results obtained: less than 0.01%
of short-term filters where unstable in a large set of frames analyzed. As for
the long-term predictor, if we choose a one tap filter, having gp < 1 guarantees
stabilty; an event in which gp ≥ 1 has not been observed in our analysis. It is
important to notice that even if a pitch periodicity is not present, the algorithm
will still find a pitch gain and delay. The delay values are usually in the same
range as the estimates in case of pitch presence, while the pitch gain usually is
small (gp < 0.01) not creating any artifacts in the reconstructed signal.

An interesting aspect of this algorithm is that the number of taps is highly
customizable. For example, we can choose fixed orders for both predictors or we
can adjust them iterating over several values in an analysis-by-synthesis scheme
without adding too much complexity to the architecture of the coder, considering
that the order of the system of equations in (B.6) is fixed and we are just
manipulating the resulting prediction coefficients vector {ak}.

4 Selection of the Regularization Term

In previous works on Tikhonov regularized minimization, notably [8], the L-curve
has been used in order to examine which value of the regularization parameter
γ offers the best trade-off between the variance of the residual and the variance
of the solution vector. In our case, we will just substitute the variance of the
solution vector with the sum of absolute values. This is done by means of
plotting ‖x − Xaγ‖2 versus ‖aγ‖1 for several values of γ, more precisely for
0 < γ < ‖XT x‖∞ (where ‖ · ‖∞ = ‖ · ‖∗1 denotes the dual norm) the solution of
(B.6) is a piecewise linear function of γ. It is clear that for values of γ that are
too close to the bounds the optimal solution will be useless. In particular, for
γ = 0 we will find a high order polynomial that cannot be easily factorized and for
γ ≥ ‖XT x‖∞ the coefficients {ak} will be all zeros. The L-curve is monotonically
decreasing and we can easily find the “corner" that characterizes the L-curve [8]
in which the best trade-off can be found. Analyzing about 100.000 frames of
speech coming from speakers with different characteristics (gender, age, pitch,
regional accent), we have found that the interval of values of γ in which (B.6)
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offers the best performances in terms of mere optimization is 0.02 ≤ γ ≤ 0.2.
We will concentrate further analysis, based on the magnitude of the difference
between the encoded-decoded signal and the original signal, in this range.

We investigate three approaches, one with γ chosen to be constant, one with
γ adaptively chosen based on the statistics of the signal and one with γ found
in an optimal sense:

• constant γ
The regularization parameter value that on average gave the best results
was γ = 0.0631. This is the mean of the set of optimal γ’s found for each
frame.

• adaptive γ
The probability density function of γ shows to have a high variance due
to the change in statistics of the analyzed frames of speech. Studying
the behavior of the optimal γ we have seen that this is strictly related
to how “voiced" the speech is in the analyzed frame, therefore it is inti-
mately related to the pitch gain gp. By observing the data of the values
of the optimal γ over gp at the nth frame, we have found this approximate
relation:

γ(n) = −0.18g2
p(n) + 0.2. (B.10)

Considering the slow change in value of the pitch gain from a frame to
another, starting with γ(n = 0) = 0.0631, we can update the value of
γ using (B.10). A similar relation was used in another regularized linear
prediction scheme [9].

• optimal γ
An alternative approach is also investigated where γ is tuned for every
frame analyzed in order to obtain the best result. This part of the process
is based on the magnitude of the difference between the encoded-decoded
signal and the original signal.

5 Validation

5.1 Experimental Setup

In order to obtain comparable results, the regularized method are also imple-
mented in an ACELP scheme, the order of the optimization scheme in (B.6) is
K = 110 and the frame length is N = 160 (20 ms). The order of the short-term
and long-term predictors are respectively Nstp = 12 and NLTP = 1, obtained
with the procedure of Section 3. The choice of K = 110 means that we can cover
accurately pitch delays in the interval [Nstp + 1,K − Nstp − 1] or equivalently
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Table B.1: Improvements over conventional ACELP Ac in the decoded speech signal in
terms of reduction of log magnitude distortion (∆DIST) and Mean Opinion Score (∆MOS).
A 95% confidence intervals is given for each value.

METHOD ∆DIST ∆MOS

Ro 2.05±0.06 dB 0.11±0.00
Ra 1.65±0.11 dB 0.07±0.00
Rc 1.04±0.27 dB 0.03±0.03
Aj 0.32±0.13 dB 0.00±0.02

pitch frequency in the interval [82Hz, 571Hz]. The prediction residual vector is
encoded according to [5] using 40 non-zero samples constrained with ±1 values
and a gain. In the classical and optimized ACELP scheme, the order of the
short-term and long-term analysis are the same (Nf = 12 and Np = 1). The
coefficients of the short-term filter are found using the autocorrelation method
on a subframe basis of 80 samples. The pitch delay and gain are found on
the residual error signal according to traditional ACELP encoding [5]. The fi-
nal residual error signal is also encoded according to [5] but on the subsamples
frame basis with 20 non-zero samples and a gain that is averaged with the next
one. In order to obtain the same number of parameters for both regularized
and traditional ACELP, the values obtained with regularized ACELP are being
interpolated (the short-term filter interpolation is done in the LSF domain [5]),
so that for each n-th subframe of each method, the transfer function is:

Hn(z) =
gac(n)

(

1− gp(n)z−Tp(n)
)

(

1−
∑12

k=1 ak(n)z−k
) , (B.11)

and the excitation is a 80 samples vector with 20 non-zero as seen above. It
should be noted that the interpolation can be performed in the decoder with an
important decrease in the number of parameters that have to be transmitted.

5.2 Results

For each method, the signals coming out of the encoding-decoding scheme are
compared to the original speech. The results have shown that the regularized
methods offer a higher accuracy compared to traditional ACELP as shown in
table B.1, both in reducing objective as well as subjective distortion using PESQ
evaluation [10]. The performances have shown what could have been reasonably
assumed in the preliminary studies. Ro clearly shows the highest performances
having the minimization process tuned to the optimal value of γ. Ra, by taking
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into consideration the statistics of the signal, performs at a comparable level to
the optimal procedure confirming the good adaptive criterion used in (B.10). Rc

has the drawback of performing poorly when the statistics of the analyzed frame
fail to fit into the fixed minimization framework. The jointly optimized method
Aj gives in general higher performances compared to Ac but the method does
not perform well in the unvoiced case where the correction term used in the
autocorrelation method has been observed to perturb the minimization process.

There are two main reasons for the increase in accuracy in our methods.
First, the spectrally white residual coming out of the optimization process in
(B.6) that shows fewer outliers and therefore does not bias the search of an al-
gebraic codeword as much as the traditional ACELP does. Also, the search of
the pitch parameters done with the open-loop estimation on the autocorrelation
can fail due to the presence of multiples of the pitch delay, this does not happen
in our scheme that outperforms the traditional open-loop and closed-loop proce-
dure for pitch estimation. Furthermore, we have observed that the sensitivity of
the short-term prediction vectors in our method is generally lower than with tra-
ditional LP. This is due to the lower emphasis on peaks that this kind of analysis
makes by intrinsically taking into consideration that the signal has outliers due
to the pitch excitation. In the traditional short-term linear predictive analysis
(B.1) this is not taken into consideration and the minimum-variance approach
in finding the residual causes the polynomial to have zeros very close to the
unit circle in order to try to cancel the pitch excitation: the result is a transfer
function that suffers greatly from this bias and presents a spikier frequency re-
sponse. This does not happen in our approach. Thus, we have found another
meaning for the regularization term γ as related to the bandwidth expansion
that is usually operated on the LP filter [9].

6 Conclusion

The analysis method presented in this paper has shown to have attractive perfor-
mances for the coding of speech signals offering both higher accuracy and lower
number of parameters needed. This was done by presenting a new formulation
for the minimization process involved in the linear prediction that offers a better
statistical fitting for the model of speech making coding more straightforward
and accurate.
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Abstract

This paper describes a novel speech coding concept created by introducing sparsity
constraints in a linear prediction scheme both on the residual and on the pre-
diction vector. The residual is efficiently encoded using well known multi-pulse
excitation procedures due to its sparsity. A robust statistical method for the joint
estimation of the short-term and long-term predictors is also provided by exploit-
ing the sparse characteristics of the predictor. Thus, the main purpose of this
work is showing that better statistical modeling in the context of speech analysis
creates an output that offers better coding properties. The proposed estimation
method leads to a convex optimization problem, which can be solved efficiently
using interior-point methods. Its simplicity makes it an attractive alternative to
common speech coders based on minimum variance linear prediction.

1 Introduction

Linear prediction (LP) is an integral part of many modern speech coding systems
and is commonly used to estimate the autoregressive (AR) filter parameters
describing the spectral envelope of a segment of speech. Typically, the prediction
coefficients are found such that the 2-norm of the difference between the observed
signal and the predicted signal is minimized [1]. However, the minimization
criterion has been shown to be not optimal in many cases. For example, in
voiced speech, when the excitation is not Gaussian, the estimation of the short-
term spectrum is contaminated by the spectral fine structure due to the presence
of a pitch excitation. In this case, the usual approach is to find coefficients for
the short-term and long-term signal correlation in two different steps leading to
inherently suboptimal solutions. Furthermore, the 2-norm minimization shapes
the residual into variables that exhibit Gaussian-like characteristics; however,
in order to encode the residual efficiently, usually only few non-zero pulses are
used. We can then reasonably assume that the ideal predictor is not the one
that minimizes the 2-norm but the one that leaves the fewest non-zero pulses in
the residual, i.e. generates the sparsest residual.

In this paper, we present a method for estimating jointly the short-term and
long-term predictors that results in a sparse residual. With this, we transcend
the well known problems related to traditional LP based coding discussed above.
The novelty introduced is then to exploit the sparse characteristics imposed by
the new linear predictive scheme on the predictor and on the residual in order
to define, in the latter stage, a more efficient quantization. The strength of our
method is seen when these characteristics are used to realize a low bit rate coder
that keeps the perceptual quality at high levels.

The paper is organized as follow. We first outline the mathematical for-
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mulations of the proposed algorithms. The core of the paper is dedicated to
introducing the speech coding procedure and showing the performance results
obtained with this technique. Then we will discuss and illustrate advantages
and disadvantages of this method before concluding on our work.

2 Sparse Linear Prediction

The estimation problem considered in this paper are based on the following
autoregressive (AR) model, where speech signal sample x(n) is written as a
linear combination of past samples:

x(n) =
K

∑

k=1

akx(n− k) + e(n). (C.1)

Where {ak} are the prediction coefficients and e(n) is the excitation of the
corresponding AR filter. We consider the optimization problem associated with
finding the prediction coefficient vector a ∈ R

K from a set of observed real
samples x(n) for n = 1, . . . , N so that the prediction error is minimized [2]. The
prediction error vector ê = x−Xâ is commonly referred to as the residual which
is an estimate of the excitation e, obtained from some estimate â resulting from
the following minimization problem:

min
a
‖x−Xa‖pp + γ‖a‖kk, (C.2)

where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)







and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for p ≥ 1. The start
and end points N1 and N2 can be chosen in various ways assuming that x(n) = 0
for n < 1 and n > N . For example, considering p = 2 and γ = 0 (maximum
likelihood approach when the excitation is a sequence of i.i.d. Gaussian random
variables), setting N1 = 1 and N2 = N + K will lead to the autocorrelation
method equivalent to solving the Yule-Walker equations, while setting N1 =
K + 1 and N2 = N leads us to the covariance method [3].

The question then is how to choose p, k and γ and how to solve the corre-
sponding minimization problem, depending on the kind of applications we want
to implement. In finding a sparse signal representation, there is the somewhat
subtle problem of how to measure sparseness. Sparseness is often measured as the
cardinality, corresponding to the so-called 0-norm ‖ · ‖0. Therefore, using p = 0
in (C.2) means that we would like to minimize the number of non-zero samples
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in the error vector. Unfortunately this is a combinatorial problem which gener-
ally cannot be solved in polynomial time. Instead of the cardinality measure, we
then use the more tractable 1-norm ‖ · ‖1 widely used as a linear programming
relaxation of this problem [4]. When p = 1 and k = 1, our optimization problem
then becomes:

min
a
‖x−Xa‖1 + γ‖a‖1. (C.3)

This optimization problem can be posed as a linear programming problem and
can be solved using an interior-point algorithm [2]. The introduction of the reg-
ularization parameter γ in (C.2) is intimately related to the a priori knowledge
that we have on the coefficient vector {ak} or, in other words, to how sparse
{ak} is, considering the 1-norm as an approximation of the 0-norm. Further-
more, from a Bayesian point of view, this may be interpreted as the maximum
a posteriori (MAP) approach for finding {ak} under the assumption that the
coefficient vector and the error vector are both i.i.d. Laplacian sets of variables:

aMAP = arg max
a

f(x|a)g(a)

= arg max
a
{exp(−‖x−Xa‖1) exp(−γ‖a‖1)}.

(C.4)

3 Basic Coding Structure

The core of the speech coder is based on the optimization problem (C.3) seen in
the previous section. In order to obtain appropriate solutions, we have to choose
a proper regularization parameter γ in order to obtain the best statistical model
for the analyzed segment of speech. For each segment, once we have chosen
γ, we can solve the minimization problem in (C.3). At this point we obtain a
high order solution vector (the prediction polynomial) and a residual vector that
clearly exhibits sparsity. We will then look at efficient ways to encode these.

3.1 Selection of the Regularization Parameter

The regularization parameter γ plays a fundamental role in finding an appropri-
ate statistical model for the segment of speech that is being analyzed. Previous
works based on the regularized minimization problem in (C.2), with p = 2 and
k = 2, suggest that the choice should be done based on an algorithm that locates
the “corner" of the L-curve [5], defined as the point of maximum curvature of
the L shaped curve obtained by plotting (‖x−Xaγ‖2,‖aγ‖2) for several values
of γ. This value of γ then offers the best trade-off in the minimization problem
(C.3).

In our case we modify this principle by replacing the 2-norm with the 1-norm:
the new L-curve (‖x − Xaγ‖1,‖aγ‖1) will still be a monotonically decreasing
curve and the solution aγ is a piecewise linear function of γ. We can use the
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Fig. C.1: An example of the L-curve (‖x − Xaγ‖1,‖aγ‖1) obtained for a segment of 160
samples of speech (20 ms at 8 kHz); the order is K = 110. The lower and upper bounds
of γ and their respective solution norm and residual norm are also shown. γ0 represents the
optimal value of the regularization parameter for the current segment found with the algorithm
shown in [5].

same algorithm used in [5] in order to find the point of maximum curvature, that
will correspond to the value γ0. An example of the L-curve so obtained is shown
in Figure C.1. Considering the 1-norm as an approximation of the 0-norm, this
process may be seen as a trade-off between the sparsity of the residual and the
sparsity of the predictor. In particular for γ ≥ ‖XT x‖∞ (where ‖ · ‖∞ = ‖ · ‖∗1
denotes the dual norm) the entries of aγ will all be zeros while for γ = 0 the
predictor sparsity is not controlled and so the number of zeros in the residual
will be proportional to the order of the predictor K.

3.2 Factorization of the High Order Predictor

For each segment of speech, the high order predictor A(z), obtained by solving
(C.3) using γ0 as regularization parameter, has mostly zeros as entries due to the
sparsity that we have imposed on it. However, the quantization of this predictor
may not be trivial due to spurious near-zero components. In this section we
will present a robust method to remove these spurious components by creating a
new polynomial Aos(z) that will then be efficiently factorized into a short-term
predictor Astp(z)and a long-term predictor P (z).
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The removal of the spurious near-zero components in A(z) can be done by
applying a model order selection criterion that identifies the useful coefficients
in the predictor. Most model order selection criteria for autoregressive (AR)
spectral estimation are based on the assumption that the minimization term
is the prediction error power of the AR filter. A criterion first introduced by
Jenkins and Watts [7] can be generalized to the minimization of the sum of
absolute values. The model order selection criterion will then be based on the
function:

αk =
1

N − 2k

N−1
∑

n=k

∣

∣

∣

∣

∣

x(n) +

k
∑

i=1

ak(n)x(n− i)

∣

∣

∣

∣

∣

, (C.5)

where the prediction vector a is obtained by solving the minimization problem
in (C.3) for different orders k, using the regularization parameter γ0 found in the
previous step. It has been shown [6] that when solving (C.3) for a segment of
voiced speech, the high order polynomial A(z) will be very similar to the convolu-
tion of a short-term linear predictor and a long-term linear predictor. According
to this, αk will have a shape that helps us to identify the locations in A(z) of
both the short-term predictor and the locations of the coefficients obtained from
the convolution between the short-term and long-term predictors. In particular,
in traditional AR model selection, αk will be rapidly decreasing toward a global
minimum kGMIN and then monotonically increasing; the order of the AR model
is then chosen as kGMIN . This would still be case for segments of signal where
long-term redundancies are not present (unvoiced speech). However, in the case
when these redundancies are present (voiced speech), the function αk assumes
a very interesting behavior: it will still initially decrease toward a global mini-
mum kGMIN and start increasing again; but then, when the polynomial of order
k in (C.5) will start including the positions where the convolution between the
short-term and long-term predictors includes important coefficients, αk will then
decrease, increase and decrease again exhibiting also two local minima (kLMIN1,
kLMIN2) and two local maxima (kLMAX1, kLMAX2). By extending the poly-
nomial in (C.5), past the positions where the important long-term contribution
are, αk will then increase monotonically toward the global maximum. The first
local maximum kLMAX1 and the second local minimum kLMIN2 then define
the location of the convolution of the short-term and the long-term predictor
as they are acknowledged by the model order selection curve αk by making it
descend (or, in other words, being useful in the minimization process). Thus,
the coefficients with indexes [kLMAX1 +1, . . . , kLMIN2] and the first kGMIN co-
efficients (corresponding to the location of the short-term predictor) are the only
useful non-zero elements in A(z) that we need. An example of the function αk

for voiced speech is shown in Figure C.2 and an example of the two high order
polynomials before and after removing the spurious components through the
model order selection information (A(z) and Aos(z)) are shown in Figure C.3.
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Fig. C.2: An example of the cost function αk for a segment of voiced speech. The values
used for the order selection kGMIN = 6, kLMAX1 = 23 and kLMIN2 = 32 are shown.

The prediction vector Aos(z) may now be relatively easy to quantize, having
usually few non-zero coefficients. However we can make a further simplification
that makes our solution more meaningful by proceeding with the deconvolution
of the high-order polynomial. Knowing that the short-term predictor Astp(z) is
located in the first kGMIN positions of Aos(z):

Astp(z) = 1−

Nstp
∑

k=1

aos,kz
−k, (C.6)

where Nstp = kGMIN , we can separate Aos(z) into its two contributions, short-
term Astp(z) and long-term ALTP (z):

Aos(z) = ALTP (z)Astp(z) +R(z) ≈ ALTP (z)Astp(z), (C.7)

where we can reasonably assume that the deconvolution residual R(z) is negli-
gible. The resulting polynomial ALTP (z) can then be further reduced into the
classical form for a long-term predictor:

P (z) = 1−

Np−1
∑

k=0

gkz
−(Tp+k), (C.8)

where Tp = kLMAX1 + 1. The number of taps Np, i.e., the order of P (z), is
chosen by looking at the difference between the magnitude of the frequency
response between the true long-term contribution polynomial ALTP (z) and its
approximation P (z).
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Fig. C.3: An example of the high order predictor coming out of the minimization process
A(z) and its “clean” version Aos(z)

3.3 Encoding of the Residual

In traditional LPC coding schemes, the 2-norm shapes the residual such that
it exhibits Gaussian-like characteristics. This is not the case in our scheme,
where the residual exhibits sparse characteristics (Figure C.4). In early GSM
standards, notably in the Multi-Pulse and Regular-Pulse Excitation methods
(MPE and RPE) [8], the residual is encoded using only few non-zero pulses. We
will then go back to these previous methods as encoding procedures, as they are
reasonable approaches to encoding the residual.

In the MPE scheme, an efficient solution is found by determining in an
analysis-by-synthesis scheme the locations and amplitudes of the pulses compos-
ing the synthetic excitation, one at the time. Finding the location in our case will
be much simplified by the sparsity of the residual (Figure C.4). The RPE scheme
is based on a similar concept, except that the location of the non-zero samples
in the residual is now constrained. In particular, the excitation sequence will be
an upsampled version of an optimal vector found using an analysis-by-synthesis
criterion. This encoding procedure also allows for a shift of the upsampled se-
quence [8]. In our work, we will consider this second formulation which will
result in a more efficient bit allocation. In the analysis-by-synthesis procedure
we will use the polynomial obtained as the multiplication of Astp(z) and P (z).

4 Validation

To validate our method, we will compare it with the GSM 6.10 RPE-LTP
Coder [8] and the low rate CELP coder presented in [10]. The comparison
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Fig. C.4: An example of the sparse residual vector for a segment of voiced (above) and
unvoiced speech (below).

with the former method will show that the different ways of estimating the pa-
rameters and the residual will lead to a significant decrease in the bit rate with
similar perceptual quality. The comparison with the latter method will show
the higher perceptual quality obtained with similar bit rate. We have analyzed
about one hour of clean speech coming from several different speakers with dif-
ferent characteristics (gender, age, pitch, regional accent) taken from the TIMIT
database, re-sampled at 8 kHz. In order to obtain comparable results, the frame
length is N = 160 (20 ms). The order of the optimization problem in (C.3) is
K = 110 and the order of the short-term and long-term predictors are chosen
according to the method presented in 3.2. For voiced speech we have noted that
the order of the short-term predictor is usually between Nstp = 6 and Nstp = 8
and the corresponding long-term predictor order is between Np = 1 (usual sin-
gle lag implementation) and Np = 3, while for unvoiced speech the order is
usually between Nstp = 8 and Nstp = 11, without long-term information. The
choice of K = 110 means that we can cover accurately pitch delays in the inter-
val [Nstp + 1,K − Nstp − 1], including the usual range for the pitch frequency
[70Hz, 500Hz].

In our method, as well as for the other two coding schemes, the coefficients
of the short-term predictor are encoded using their Line Spectral Frequencies
(LSFs) representation. The number of bits needed for each LSFs vector it is
fixed to 20 bits for a 10 coefficients predictive vector in the RPE and ACELP
coders. In our scheme, it will depend on the predictor length from 12 (Nstp = 6)
to 22 (Nstp = 11) bits per frame. In all three schemes, the method presented
in [9] is used; the number of bits chosen is consistent with the transparent coding
properties (spectral distortion between quantized and unquantized spectrum less
than 1 dB).
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Each long-term prediction coefficient is encoded directly with 6, 5, and 4 bits
(depending on the position) and the pitch period is encoded with 7 bits. The
number of pulses to be used in the regular-pulse encoding of the residual is based
on the intrinsic classification between voiced an unvoiced speech performed in
the factorization procedure of the high-order polynomial. For voiced speech, the
residual will have only very few significant non-zero values, while for unvoiced
speech the residual will have a less clear sparse structure (Figure C.4). Therefore
we will represent the excitation with 20 samples (pulse spacing Q = 8) in the
case of unvoiced speech and only 10 samples (pulse spacing Q = 16) in the
case of voiced speech. A 8-level uniform quantizer is used in both cases. The
quantizer normalization factor (the peak magnitude) is encoded with 6 bits per
frame; the initial shift is encoded with 3 or 4 bits depending on the number of
pulses used in the residual.

The maximum bit rate for voiced speech segments is 87 bits/frame (4300
bits/s) obtained when Nstp = 8, Np = 3 and we use 10 pulses to code the exci-
tation. The maximum bit rate for unvoiced speech segments is 110 bits/frame
(4800 bits/s) obtained when Nstp = 11 and we use 20 pulses to code the excita-
tion. The choice of the maximum possible number of coefficients is given by the
analysis phase. For voiced speech the largest observed value of Nstp was 8 and to
model the long-term predictor no more than 3 taps have been needed. Similarly,
for unvoiced speech the largest observed value of Nstp was 11. The average bit
rate is around 4600 bits/s. It should be noted that our scheme requires for each
frame 1 bit to indicate the voiced/unvoiced decision, 2 bits to indicate the order
of the short-term predictor and 2 bits to indicate the order of the long-term
predictor.

A perceptual evaluation using PESQ (ITU-T P.862) has been done and the
coding scheme has been compared by means of the Mean Opinion Score (MOS)
with the other two schemes. The results are shown in Table C.1. The evaluation
clearly shows that the large reduction in the bit rate, compared to the RPE, is
paid by just a slight decrease in accuracy, demonstrating the robustness of our
method. The CELP scheme, that works with a similar bit rate, has a significantly
worse perceptual quality.

5 Discussion

In this section we will discuss some of the drawbacks and advantages of the LPC
method presented in the paper.
Stability

Stability is important in common linear predictive coding for various reasons, the
most important one being its employment in the analysis-by-synthesis schemes,
to choose the best approximate excitation, and in the synthesis of the recon-
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Table C.1: Comparison in terms of bit rate and Mean Opinion Score (MOS) between our
coder based on Sparse LP, the RPE-LTP and the CELP scheme according to [10]. A 95%
confidence intervals is given for each value.

Coder Bit Rate MOS

Sparse LP 4.6 Kb/s 3.49±0.03
RPE-LTP 12.4 Kb/s 3.59±0.06
CELP 4.7 Kb/s 3.21±0.01

structed speech signal. Our scheme presents a low rate (around 2%) of unstable
combined filters Astp(z)P (z) and an important aspect is that the instability
in this polynomial is given, except very few exceptions, only by the long-term
predictor P (z). This is consistent with traditional coding procedures in which
the pitch gain is allowed to be greater than 1 (one tap implementation). It
should be noted that A(z), Aos(z) and the combined polynomial Astp(z)P (z)
exhibit the same instability rate, a further proof of the good criterion employed
to factorize the polynomial. Although stability has been considered a funda-
mental property to be kept in speech coding frameworks, we have noted in our
scheme that instability does not affect the performances of our coder (i.e., the
output of the system does not “explode”). We have found as a main reason for
this is that the roots outside the unit circle are usually only given by the long-
term predictor and they are still very close to the unit circle. A proof is that
performing a bandwidth expansion, using a fixed value found in the analysis
process as low as 0.9965 (about 20 Hz of expansion), would force the number
of non-minimum phase combination filters Astp(z)P (z) to zero. The unstable
filters are also isolated events that do not create problems in the reconstruction
phase. In practice, using a minimum phase Astp(z)P (z) results in slightly higher
time-domain distortion than the original composite filter.
Uniqueness

The minimization problem in (C.3) allows for the solution not to be unique. In
these rare cases of multiple solutions, due to the convexity of the cost function, we
can easily state that the all the possible multiple solutions will still be optimal [2].
Computational costs

Regarding the computational costs, finding the solution of the overdetermined
system of equations in (C.3) using a modern interior point algorithm [2] can be
shown to be comparable to solving around 20-30 least square problems. How-
ever, our advantage is that we have found a one step way to calculate both the
short-term and the long-term predictors while the encoding of the residual is fa-
cilitated by its sparse characteristics. The process of selecting the regularization
parameter γ0 can also be highly simplified by choosing it in a fixed or adaptive
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way based on the properties of the signal as done in other regularized prediction
methods [6, 11]. The factorization process can also be done by choosing a fixed
set of possible values of Nstp and Np and selecting the ones that creates the best
fitting of A(z), skipping the model order selection procedure [6].
Sensitivity of the short-term predictor coefficients

In the experimental analysis, the coefficients of the short-term prediction polyno-
mial Astp(z) obtained with our LP method have shown to have lower sensitivity
than the one obtained with usual LPC procedures. This allows one to also have
reflection coefficients, Log-Area-Ratio coefficients or Line Spectral Frequencies,
with a lower sensitivity as well, therefore allowing more efficient quantization.
In particular, we have observed a lower log spectral distortion (LSD) between
the estimated short-term AR model obtained with our method S1(ω,a) and its
corresponding quantized version Ŝ1(ω,a), compared to the one obtained with
the 2-norm autocorrelation method S2(ω,a) (applying a 60 Hz bandwidth ex-
pansion) and its quantized version Ŝ2(ω,a). Another comparison, between a
reference spectrum Sref (ω) and the quantized versions of the two AR models
has also demonstrated that our method is generally more efficient in quantiza-
tion purposes by achieving a lower distortion at lower bit rates. The reference
used was found through a cubic spline interpolation between the harmonic peaks
of the logarithmic periodogram and used as an approximation of the true vocal
tract transfer function [11]. An example of the LSD values obtained for different
rates is shown in Figure C.5.
Pitch-independence and shift-independence

Two properties of the method presented in this paper that have stunned us,
and will be subject to further investigations, are the pitch-independence of the
short-term predictor Astp(z) and the shift-independence of the solution predictor
A(z). Our analysis has shown that shifting the frame boundaries by few samples
does not change significantly the statistics of the predictor as much as with the
traditional linear predictive coding. The pitch-independence has been observed
by re-synthesizing segments of speech changing only the pitch value. Analyzing
again the new synthetic signal and comparing the new short-term envelopes with
the original ones, the new short-term envelopes have not exhibited any significant
changes when our method is employed, while dramatic differences have been
observed when traditional 2-norm LP analysis is used. Both properties are most
likely due to the robustness of the estimation based on the 1-norm to outliers.
The shift-independence may be mainly due to the reduced dependence of the
solution to all of the values taken into consideration in the minimization process
(just like when calculating the median value of an even number of observations).
The pitch-independence may be due to the reduced emphasis put on the envelope
peaks by the 1-norm LP estimation than the traditional 2-norm LP estimation
in the minimization process to reduce the outliers of the pitch excitation. The
common LP analysis tries to cancel the pitch harmonics by putting some of
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Fig. C.5: Values of average log spectral distortion (LSD) for voiced speech at different bits per
LSFs frame. The figure shows the LSD values between the two AR models (obtained with our
scheme (Nstp = 8) and with 2-norm minimization (Nstp = 10)) and their quantized version
(LSD1−1q vs. LSD1−2q). The total LSD is also shown comparing the quantized AR models
with a ground truth reference spectrum (LSDref−1q vs. LSDref−2q). In our method the bit
rate includes the 2 bits necessary to indicate the model order at the receiver.

the poles very closed to the unit circle. The 1-norm approach acknowledges
the existence of the pitch harmonics, although it does not try to cancel them
because its purpose is not to fit the error into a Gaussian-like probability density
function and consequently it will let through the pitch excitation outliers. This
results in smoother short-term filters that are independent from the underlying
pitch excitation in voiced speech. This makes the pitch detection much easier in
the case of a conventional analysis based on the short-term residual. In our case,
we go even beyond this sequential approach having jointly estimated short-term
and long-term predictors. The pitch-tracking properties have been shown to
outperform the traditional closed-loop pitch estimation done on the short-term
prediction residual. We compared the results of both with a robust reference
based on subspace pitch estimation [12]; an example is shown in Figure C.6.

6 Conclusions

In this paper we have introduced a new formulation in the context of speech
coding where the concept of sparsity is used in the linear predictive scheme.The
sparse residual obtained allows a more compact representation, while the sparse
high order predictor engenders joint estimation of short-term and long-term pre-
dictors that achieve better spectral matching properties than conventional meth-
ods. The short-term predictors obtained are not corrupted by the fine structure
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belonging to the pitch excitation and their smoother spectral envelopes are ro-
bust to quantization. These envelopes are also represented using lower order AR
models compared to traditional LP based coders, thus requiring fewer bits. The
long-term predictors and, in particular, the pitch lag estimation are also more
accurate. These and other interesting properties, like pitch-independence of the
short-term spectral envelopes and shift-independence of the combined envelopes,
lead to attractive performance in speech coding.
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Abstract

Linear prediction of speech based on 1-norm minimization has already proved
to be an interesting alternative to 2-norm minimization. In particular, choos-
ing the 1-norm as a convex relaxation of the 0-norm, the corresponding linear
prediction model offers a sparser residual better suited for coding applications.
In this paper, we propose a new speech modeling technique based on reweighted
1-norm minimization. The purpose of the reweighted scheme is to overcome the
mismatch between 0-norm minimization and 1-norm minimization while keep-
ing the problem solvable with convex estimation tools. Experimental results prove
the effectiveness of the reweighted 1-norm minimization, offering better coding
properties compared to 1-norm minimization.

1 Introduction

In Linear Predictive Coding of speech signals (LPC), the prediction coefficients
are typically obtained by minimizing the 2-norm of the residual (the difference
between the observed signal and the predicted signal) [1]. The 2-norm minimiza-
tion shapes the residual into variables that exhibit Gaussian-like characteristics.
However, in order to reduce the information content of the residual and to allow
for a low bit rate encoding, a sparse approximation of the residual is often used.
This conceptual difference between a quasi-white minimum variance residual and
its approximated version creates a mismatch that can raise the distortion sig-
nificantly. In our recent work, we have defined a new predictive framework that
provides a tighter coupling between the linear predictive analysis and the resid-
ual encoding by looking for a sparse residual rather than a minimum variance
one [2, 3]. Early encoding techniques such as Multi-Pulse Excitation (MPE) [4]
or Regular-Pulse Excitation (RPE) [5], have shown to be more consistent with
this kind of predictive framework unlike, e.g., Code Excited LP (CELP) [6] that
uses pseudo-random sequences to encode the residual.

In our previous work we have used the 1-norm as a convex relaxation of the
so-called 0-norm, the cardinality of a vector. The 0-norm, and more generally
the p-norm with 0 ≤ p < 1, is not a proper norm and its minimization yields
a combinatorial problem (NP-hard). We therefore aim to “adjust” the error
weighting difference between the 1-norm and the 0-norm keeping the feasibility
of the problem in polynomial time. To do so, in this paper we propose a new
method for the estimation of the prediction filter based on iteratively reweighted
1-norm minimization [7]. We will see how this method, by enhancing the sparsity
of the residual, yields a better and simpler formulation of the coding problem,
hence allowing for a general improvement in performance.

The paper is organized as follows. In Section 2 we give the general problem
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formulation of sparse linear prediction. In Section 3 we introduce the algorithms
used to enhance sparsity in linear predictive coding and in Section 4 we provide
a statistical interpretation. In Section 5 and Section 6 we illustrate the effects of
the algorithm for analysis and coding of speech. Section 7 concludes the paper.

2 Sparse Linear Prediction

The problem considered in this paper is based on the following Auto-Regressive
(AR) speech production model, where a sample of speech x(n) is written as a
linear combination of K past samples:

x(n) =
K

∑

k=1

akx(n− k) + r(n), 0 < n ≤ N, (D.1)

where {ak} are the prediction coefficients and r(n) is the driving noise process
(commonly referred to as the prediction residual). The speech production model
(D.1) in matrix form becomes:

x = Xa + r (D.2)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






.

The prediction coefficient vector a ∈ R
K is found by minimizing the p−norm of

the residual r [8]:

â, r̂ = arg min
a
‖r‖pp, s.t. r = x−Xa; (D.3)

where ‖ · ‖p is the p-norm. The starting and ending points N1 = 1 and N2 =
N +K are chosen assuming that x(n) = 0 for n < 1 and n > N [9]. Sparsity is
often measured as the cardinality, i.e., the so-called 0-norm. Therefore, setting
p = 0 in (D.3) means that we aim to minimize the number of non-zero samples
in the error signal. Unfortunately this corresponds to a combinatorial problem
which generally cannot be solved in polynomial time. Instead of the 0-norm, we
then use the more tractable 1-norm [2]:

â, r̂ = arg min
a
‖r‖1 s.t. r = x−Xa; (D.4)

An interesting alternative problem formulation is obtained when sparsity is also
imposed on the predictor:

â, r̂ = arg min
a
‖r‖1 + γ‖a‖1, s.t. r = x−Xa; (D.5)
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Algorithm 1 Iteratively Reweighted 1-norm Minimization of the Residual

Inputs: speech segment x

Outputs: predictor âi, residual r̂i

i = 0, initial weights Wi=0 = I

while halting criterion false do

1. âi, r̂i ← arg mina ‖W
ir‖1 s.t. r = x−Xa

2. Wi+1 ← diag
(∣

∣r̂i
∣

∣ + ǫ
)−1

3. i← i+ 1
end while

in this case the sparse structure of the predictor (in this case high order) allows
a joint estimation of a short-term and a long-term predictor [3, 10]. This op-
timization problem can be posed as a linear programming problem and can be
solved using an interior-point algorithm [8].

3 Iteratively Reweighted 1-norm Minimization

Our general goal is to determine a linear predictor that yields a sparse residual.
As mentioned before, for 0 ≤ p < 1, the problem cannot be solved using convex
optimization. To overcome this problem, an iteratively reweighted 1-norm min-
imization may be used for estimating a and enhancing the sparsity on r, while
keeping the problem solvable with convex tools [7]. The algorithm is shown in
Algorithm 1. The parameter ǫ > 0 is used to provide stability when a component
of r̂ goes to zero. ǫ does not need to be too small; as empirically demonstrated
in [7], it should be in the order of the expected nonzero magnitude of r. It can
be shown that ‖r̂i+1‖1 ≤ ‖r̂

i‖1, meaning that this is a descent algorithm [7].
The halting criterion can therefore be chosen as either a maximum number of
iterations or as a convergence criterion.

When we impose sparsity both on the residual and on the predictor, as
in (D.5), the algorithm is modified as shown in Algorithm 2. As mentioned
before, the high order sparse predictor estimated in (D.5) is found to show
a structure similar to the convolution between a short-term and a long-term
predictor, usually estimated in two different stages. In previous approaches
[3, 10], the predictor shows a clear sparse structure but also some spurious
components, i.e., small components in the predictor that are irrelevant to our
analysis. In [3], we have used a model order selection criterion to locate the
spurious quasi-zero components in the predictor which are then put to zero. The
reweighted 1-norm minimization seems to be more effective in removing these
spurious components, as the new predictor is iteratively re-estimated, rather
than just “cleaned up”.
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Algorithm 2 Iteratively Reweighted 1-norm Minimization of Residual and Pre-
dictor

Inputs: speech segment x

Outputs: predictor âi, residual r̂i

i = 0, initial weights Wi=0 = I and Di=0 = I

while halting criterion false do

1. âi, r̂i ← arg mina ‖W
ir‖1 + γ‖Dia‖1

s.t. r = x−Xa

2. Wi+1 ← diag
(∣

∣r̂i
∣

∣ + ǫ
)−1

3. Di+1 ← diag
(
∣

∣âi
∣

∣ + ǫ
)−1

4. i← i+ 1
end while

4 Statistical Interpretation

The linear prediction solution defined in (D.4) and (D.5) can be seen respectively
as the Maximum Likelihood (ML) and Maximum A Priori (MAP) estimate of
an AR process driven by a Laplacian noise sequence r. In the MAP approach,
a prior on a as a Laplacian variable is also imposed. The Laplacian distribution
has already been considered to provide a more appropriate fitting for speech [12]
than the Gaussian distribution, due to the heavier tails that admit larger errors in
the residual. For the case p ≤ 1, the density functions will have even heavier tails
and a sharper slope near zero. In particular, this means that the maximization
will encourage small values to become smaller while leaving unchange the larger
values. The limit case for p = 0 will have an infinitely sharp slope in zero and
equally weighted larger slopes. This will force the maximization to include as
many zeros as possible as they are infinitely weighted.

The mismatch between the 0-norm and the 1-norm minimization that we are
trying to compensate for, can be seen more clearly in Figure D.1, where larger
coefficients are penalized more heavily by the 1-norm than small ones. In this
sense, the 0-norm can be seen as more “impartial” by penalizing every nonzero
coefficient equally. It is clear that if a very small value would be weighted as
much as a large value, the minimization process will try to eliminate the smaller
ones and enhance the larger ones.

This explains the choice of the weights as the inverse of the magnitude of the
residual. In fact, this weighting will balance the dependence on the magnitude
of the 1-norm, changing the cost function and moving the problem towards the
0-norm minimization.
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Fig. D.1: Comparison between cost functions for p ≤ 1. The 0-norm can be seen as more
“democratic” than any other norm by weighting all the nonzero coefficients equally.

5 Experimental Analysis

To illustrate the effects of the algorithm, we first analyze a segment of stationary
voiced speech. The reweighted 1-norm minimization helps to reduce the empha-
sis on the outliers due to the pitch excitation, as we can see clearly in Figure
D.2. The ability of easily spotting the main components in the residual, as we
shall see in the next section, have a great impact on coding applications.

An even more interesting case, is the reweighted 1-norm minimization of
both residual and predictor. In this case, the use of the high order predictor
removes also the long-term redundancies, what is left is almost just an impulse as
shown in Figure D.3. This basically means that all the information of the signal
is transferred to the predictor which also show a very clear sparse structure,
similar to the convolution between the coefficients of short-term and long-term
predictors. The examples were obtained analyzing the vowel /a/ uttered by a
female speaker using N = 160, fs = 8 kHz and order K = 10 for Algorithm
1 and K = 110 for Algorithm 2. In both cases ǫ = 0.01. The choice of the
regularization term γ is given by the L-curve where a trade-off between the
sparsity of the residual and the sparsity of the predictor is found [3, 11]. Both
algorithms converge rapidly, three to five iteration are sufficient to reach a point
where ‖r̂i+1‖1 ≈ ‖r̂

i‖1 and, in the joint case, ‖âi+1‖1 ≈ ‖â
i‖1.
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Fig. D.2: Comparison between true 1-norm 10th order LP residual (middle) and iteratively
reweighted 1-norm LP residual (bottom) according to Algorithm 1. The original voiced speech
is shown on top. Three iteration where performed, sufficient to reach convergence.

6 Validation

To validate our method, we have analyzed about one hour of clean speech coming
from several different speakers with different characteristics (gender, age, pitch,
regional accent) taken from the TIMIT database, re-sampled at 8 kHz. The
frame length is N = 160 (20 ms). We will consider now the two cases, with the
reweighted minimization of the residual and with the reweighted minimization
of both residual and predictor. The parameter ǫ, used to avoid division by zero,
is chosen to be ǫ = 0.01.

6.1 Reweighted Residual

In order to code the residual sequence when Algorithm 1 is used, after the
reweighted scheme we use an Analysis-by-Synthesis to optimize the amplitudes
of the M = 20 largest pulses (therefore constraining the positions). The order of
the predictor is K = 10, a long-term predictor is not used for immediacy of the
results. Our method (MPE1r) is compared with the classic MPE scheme where
the linear predictor is found with a 1-norm minimization (MPE1), with a 2-
norm minimization (MPE2r) [4] and using a 2-norm re-weighted minimization
(MPE1r) [13]. In the reweighted cases, five iterations are done (enough to
reach reasonable convergence). The quantization process uses 20 bits to encode
the predictor using 10 Line Spectral Frequencies using the procedure in [14],
in the case the filter is unstable the poles outside the unit circle are reflected
inside of it. A 3 bits uniform quantizer that goes from the lowest to the highest
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Fig. D.3: Residual and 110th order linear predictor at the convergence of Algorithm 2 after
three iterations. The speech segment analyzed is the same as Figure D.2.

magnitude of the residual pulses is used to code the residual, 5 bits are used to
code the lowest magnitude and 2 bits are used to code the difference between
lowest and highest magnitude. The signs are coded with 1 bit per each pulse.
We postpone the efficient encoding of the positions to further investigation, for
now we just use the information content of the pulse location which is log2

(

160
10

)

bits. This produces a bit rate of 9500 bits/s. The results are shown in Table D.1.
We would like to highlight that in MPE1r it is not necessary to calculate the
positions of the nonzero pulses are located (as it is usually done in MPE coding),
we simply exploit the information coming out of the predictive analysis. We are
then clearly moving our problem towards a more synergistic way to code a signal.

Table D.1: Comparison between the MPE residual estimation methods in terms of Segmental
SNR and Mean Opinion Score (PESQ evaluation). A 95% confidence intervals is given for each
value.

METHOD SSNR MOS

MPE1r 20.9±1.9 3.24±0.03
MPE1 20.0±3.2 3.20±0.12
MPE2r 19.3±2.9 3.17±0.10
MPE2 18.5±2.1 3.17±0.22
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6.2 Reweighted Residual and Predictor

The most interesting case is when both predictor and residual are processed in
the reweighted minimization. As shown in our previous work [10], the high order
predictor is split into the long-term and short-term component through a simple
deconvolution. The short-term predictor Astp(z) will have order Nstp = 10 and
the long term predictor (pitch predictor) P (z) = 1− gpz

−Tp will have order one.
The choice of K = 110 in (D.5) means that we can cover accurately pitch delays
in the interval [Nstp + 1,K −Nstp − 1], including the usual range for the pitch
frequency [70Hz, 500Hz].

In the coding process, we can make a distinction between the voiced case and
the unvoiced case. In particular, when the pitch gain gp is lower than a certain
threshold, we will not code the long term informations and we will allocate more
pulses for the residual, usually less sparse than the voiced residual. In our exper-
imental analysis we have set the threshold to THgp

= 0.05. M = 5 and M = 10
pulses are used respectively in the voiced and unvoiced case. Just like we did
in Section 6.1, the positions of the M pulses of largest magnitude are used in
the Analysis-by-Synthesis to define the only nonzero samples. The quantization
procedure is also the same as in Section 6.1, except for the quantization of Tp

and gp for which we use respectively 7 and 6 bits. This produces a bit rate of
5450 bit/s in the voiced case and 4900 bit/s in the unvoiced case, and an approx-
imate average bit rate of 5175 bit/s. We will compare our method (J11r) with
the scheme without the reweighting (J11) presented in Equation (D.5) and the
method where the significant coefficients are chosen using a model order selec-
tion procedure [3] (J11os), we also compared the method with both reweighting
and model order selection. In the reweighting cases, only three iteration were
needed to reach convergence in all the analyzed frames. The results shown in
Table D.2, demonstrate a net improvement over the traditional method (J11)
and a slight improvement also over (J11os), without the costly model order
selection procedure. The combinations of both methods (J11r+os), shows the
best results. This is due to the combination of the reweighting procedure that
“concentrates” the nonzero parts in the high order polynomial with the model
order selection that “spots” the important ones.

7 Conclusions

In this paper, we have proposed a method to enhance sparsity in linear prediction
based on the reweighted 1-norm error minimization. With just few iterations,
we were able to move the error minimization criterion toward the 0-norm solu-
tion, showing general improvements over conventional 1-norm minimization in
coding purposes. Statistical reasons supporting the new criterion have also been
provided. A concluding remark would also be that in the cases analyzed, we
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Table D.2: Comparison between the coding methods with joint estimation of residual and
predictor in terms of Segmental SNR and Mean Opinion Score (PESQ evaluation). A 95%
confidence intervals is given for each value.

METHOD SSNR MOS

J11r+os 27.9±0.9 3.59±0.02
J11r 25.3±1.3 3.43±0.03
J11os 24.7±1.0 3.40±0.09
J11 23.9±1.9 3.22±0.09

have no prior knowledge of where the residual should be nonzero. This brings
the bit allocated to describe the position of few samples to significantly increase
the rate. An interesting case, that would subject to further analysis would be to
structure the reweighting process by imposing where we would like to have the
nonzero pulses located. First experiments have shown to be promising and will
be subject of our future work.
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Abstract

The aim of this paper is to provide an overview of Sparse Linear Prediction, a set
of speech processing tools created by introducing sparsity constraints into the lin-
ear prediction framework. These tools have shown to be effective in several issues
related to modeling and coding of speech signals. From a speech analysis perspec-
tive, we provide predictors that are accurate in modeling the speech production
process and overcome problems related to traditional linear prediction. In partic-
ular, the predictors obtained offer a more effective decoupling between the vocal
tract transfer function and its underlying excitation, making it a very efficient
method for the analysis of voiced speech. From a speech coding perspective, we
provide predictors that shape the residual according to the characteristics of the
sparse encoding techniques creating more synergistic and straightforward coding
strategies. Furthermore, encouraged by the promising application of compressed
sensing in signal compression, we investigate its formulation and application
to sparse linear predictive coding. The proposed estimators are all solutions to
convex optimization problems, which can be solved efficiently and reliably using,
e.g., interior-point methods. Extensive experimental results are provided to sup-
port the effectiveness of the proposed methods, showing the improvements over
traditional linear prediction in both speech analysis and coding.

1 Introduction

Linear prediction (LP) is widely considered as one of the most prominent ways to
model speech signals and has been successfully applied in many modern speech
processing systems ranging from such diverse applications as coding, analysis,
synthesis and recognition (see, e.g., [1]). The speech model used in many of
these applications is the source-filter model where the speech signal is generated
by passing an excitation through an all-pole filter (the predictor). Typically, the
prediction coefficients are identified such that the 2-norm of the residual, the dif-
ference between the observed signal and the predicted signal, is minimized. This
works well when the excitation signal is Gaussian and independent and identi-
cally distributed (i.i.d.) [2], consistent with the equivalent maximum likelihood
approach to determine the coefficients [3]. However, when the excitation signal
does not satisfy these assumptions, problems arise [2]. This is the case for voiced
speech where the excitation can be considered to be of a quasi-periodic nature
with a spiky excitation [1]. In this case, the spectral cost function associated
with the minimization of the 2-norm of the residual can be shown to suffer from
certain well known problems such as overemphasis on peaks and cancellation
of errors [2]. In general, the shortcomings of LP in spectral envelope modeling
can be traced back to the 2-norm minimization approach: by minimizing the
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2-norm, the LP filter tries to cancel the input voiced speech harmonics causing
the envelope to have a sharper contour than desired with poles close to the unit
circle. A wealth of methods have been proposed to mitigate these effects. Some
of the proposed techniques involve a general rethinking of the spectral modeling
problem (notably [4], [5], [6], and [7]) while some others are based on changing
the statistical assumptions made on the prediction error in the minimization
process (notably [8], [9], and [10]).

The above mentioned deficiencies of the 2-norm minimization in LP mod-
eling have also repercussions in the speech coding scenario. In fact, while the
2-norm criterion is consistent with achieving minimal variance of the residual
for efficient coding1, sparse techniques are employed to encode the residual. Ex-
amples of this can be seen since early GSM standards with the introduction
of multi-pulse excitation (MPE [12]) and regular-pulse excitation (RPE [13])
methods and, more recently, in sparse algebraic codes in code-excited linear pre-
diction (ACELP [14]). In these cases, we can reasonably assume that the best
predictor is not the one that minimizes the 2-norm, but the one that leaves the
fewest non-zero pulses in the residual, i.e., the sparsest residual. Early contribu-
tions (notably [9], [15], and [16]) have followed this line of thought questioning
the fundamental validity of the 2-norm criterion with regards to speech coding.
Nevertheless, to the authors’ best knowledge, 2-norm minimization is the only
criterion used in commercial speech codecs.

Traditional usage of LP is confined to modeling only the the spectral envelope
capturing the short-term redundancies of speech. Hence, in the case of voiced
speech, the predictor does not fully decorrelate the speech signal because of the
long-term redundancies of the underlying pitch excitation. This means that the
residual will still have pitch pulses present. The usual approach is then to employ
a cascaded structure where LP is initially applied to determine the short-term
prediction coefficients to model the spectral envelope and, subsequently, a long-
term predictor is determined to model the harmonic behavior of the spectrum [1].
Such a structure is inherently suboptimal since it ignores the interaction between
the two different stages. Also in this case, while early contributions have outlined
gains in performance in jointly estimating the two filters (notably [17]), the
common approach is to distinctly separate the two steps.

The recent developments in the field of sparse signal processing, backed up by
significant improvements in convex optimization algorithms (e.g., interior point
methods [18] [19]), have recently encouraged the authors to explore the concept
of sparsity in the LP minimization framework [20]. In particular, while rein-

1The fundamental theorem of predictive quantization [11] states that the mean squared
reproduction error in predictive encoding is equal to the mean squared quantization error
when the residual signal is presented to the quantizer. Therefore, by minimizing the 2-norm
of the residual, these variables have a minimal variance whereby the most efficient coding is
achieved.
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troducing well known methods to seek a short-term predictor that produces a
residual that is sparse rather than minimum variance, we have also introduced
the idea of employing high order sparse predictors to model the cascade of short-
term and long-term predictors, engendering a joint estimation of the two [21].
This preliminary work has led the way for the exploitation of the sparse char-
acteristics of the high order predictor and the residual to define more efficient
coding techniques. Specifically, in [22], we have demonstrated that the new
model achieves a more parsimonious description of a speech segment with in-
teresting direct applications to low bit-rate speech coding. While in these early
works, the 1-norm has been reasonably chosen as a convex approximation of the
so-called 0-norm2, in [23] we have applied the reweighted 1-norm algorithm in
order to produce a more focused solution to the original problem that we are
trying to solve. In this work, we move forward, introducing the novelty of a
compressed sensing formulation [24] in sparse LP, that will not only offer im-
portant information on how to retrieve the sparse structure of the residual, but
will also help reduce the size of the minimization problem, with a clear impact
on the computational complexity.

The contribution of this paper is then twofold. Firstly, we put our ear-
lier contributions in a common framework giving an introductory overview of
Sparse Linear Prediction and we also introduce its compressed sensing formu-
lation. Secondly, we provide a detailed experimental analysis of its usefulness
in modeling and coding applications transcending the well known limitations
related to traditional LP.

The paper is organized as follows. In Section 2, we provide a prologue that
defines the mathematical formulations of the proposed sparse linear predictors.
In Section 3, we define the sparse linear predictors and, in Section 4, we provide
their compressed sensing formulation. The results of the experimental evaluation
of the analysis properties of the short-term predictors are outlined in Section 5,
while the experimental results of the coding properties and applications are
outlined in Section 6. We provide a discussion on some of the drawbacks of
sparse linear prediction in Section 7. Finally, Section 8 concludes our work.

2 Fundamentals

We consider the following speech production model, where a sample of speech
x(n) is written as a linear combination of K past samples:

x(n) =

K
∑

k=1

akx(n− k) + r(n), (E.1)

2The 0-norm is not technically a norm since it violates the triangle inequality.
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where {ak} are the prediction coefficients and r(n) is the prediction error. In
particular, we consider the optimization problem associated with finding the
prediction coefficient vector a ∈ R

K from a set of observed real samples x(n)
for n = 1, . . . , N so that the prediction error is minimized [18]. Considering
the speech production model for a segment of N speech samples x(n), for n =
1, . . . , N , in matrix form:

x = Xa + r, (E.2)

the problem becomes:

a = arg min
a
‖x−Xa‖pp + γ‖a‖kk, (E.3)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






. (E.4)

The p-norm operator ‖ · ‖p is defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p . The starting
and ending pointsN1 andN2 can be chosen in various ways by assuming x(n) = 0
for n < 1 and n > N . In this paper we will use the most common choice of
N1 = 1 and N2 = N + K, which is equivalent, when p = 2 and γ = 0, to
the autocorrelation method [25]. The introduction of the regularization term γ
in (E.3) can be seen as being related to the prior knowledge of the coefficients
vector a, problem (E.3) then corresponds to the maximum a posteriori (MAP)
approach for finding a under the assumptions that a has a Generalized Gaussian
Distribution [26]:

aMAP =arg max
a

f(x|a)g(a)

= arg max
a
{exp(−‖x−Xa‖pp) exp(−γ‖a‖kk)}.

(E.5)

This reduces to the maximum likelihood (ML) approach when γ = 0, under the
assumption that the residual is a vector of i.i.d. Generalized Gaussian variables:

aML = arg max
a

f(x|a) = arg max
a
{exp(−‖x−Xa‖pp)}. (E.6)

The question now is how to choose p, k and γ in our minimization problem
(E.3) and how to perform the associated minimization, depending on the kind
of estimator we wish to implement.

In finding a sparse signal representation, there is the somewhat subtle prob-
lem of how to measure sparsity. Sparsity is often measured as the cardinality,
corresponding to the so-called 0-norm ‖ · ‖0. Our optimization problem (E.3)
would then become:

a = arg min
a
‖x−Xa‖0 + γ‖a‖0, (E.7)
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with the particular case in which we are only considering the sparsity in the
residual (γ = 0):

a = arg min
a
‖x−Xa‖0. (E.8)

Unfortunately, these are combinatorial problems which generally cannot be solved
in polynomial time. Instead of the cardinality measure, we will then use the more
tractable 1-norm ‖·‖1, which has shown to perform well as a linear programming
relaxation of the 0-norm [27]. We will also consider a variation of the 1-norm
minimization criterion such as the reweighted 1-norm [28] to enhance the sparsity
measure and moving the solution closer to the original 0-norm problem (E.7).
Throughout the paper, we will see the application scenarios and performances
of the various predictors obtained by introducing sparsity in the LP framework.

3 Sparse Linear Predictors

In this section, we will define the different sparse linear predictors and show their
application in the context of speech processing. In particular, we will introduce
the problem of determining a short-term predictor that engenders a sparse resid-
ual and the problem of finding a high order sparse predictor that also engenders a
sparse residual. This second formulation is, as we shall see, particularly relevant
in providing a robust joint estimation of short-term and long-term predictors.
Since in Section 2, we have introduced the 1-norm minimization as the spar-
sity measure, here we will also introduce the reweighted 1-norm algorithm to
enhance this sparsity measure, moving closer to the original problem (0-norm
minimization).

3.1 Finding a Sparse Residual

We consider the problem of finding a prediction coefficient vector a such that the
resulting residual is sparse. Having identified the 1-norm as a suitable convex
relaxation of the cardinality, the cost function for this problem is a particular
case of (E.3). By setting p = 1 and γ = 0 we obtain the following optimization
problem:

min
a
‖x−Xa‖1. (E.9)

The 1-norm minimization criterion has already been shown to outperform 2-
norm minimization in finding a proper linear predictive model in speech analysis
[9] [15] [16]. In particular, comparing the cost functions associated with 2-norm
minimization and 1-norm minimization, it can be easily shown that, when solving
(E.9), lower emphasis is forced on the larger values present in the underlying
excitation sequence. This property becomes particularly relevant when analyzing
voiced speech, obtaining a more pronounced spiky behavior in the residual vector
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Fig. E.1: An example of prediction residuals obtained by 2-norm and 1-norm error min-
imization. The speech segment analyzed is shown in the top box. The prediction order is
K = 10 and the frame length is N = 160. It can be seen that the spiky pitch excitation is
retrieved more accurately when 1-norm minimization is employed.

consistent with the traditional impulse train representation of the residual. An
example of this is shown in Figure E.1. In general, the smaller influence from the
large values in the excitation creates a more efficient decoupling of the source
excitation from the vocal tract transfer function, creating a more robust analysis
tool [8]. This effect can be seen in the spectral envelope that will avoid the
over-emphasis on peaks generated in the effort to cancel the pitch harmonics
or, equivalently, the large spikes present in the residual. An example of this
property is shown in Figure E.2.

The 1-norm minimization criterion, is also equivalent to the ML estimator
when the residual is assumed to be i.i.d. Laplacian. This statistical interpre-
tation is also meaningful, since it is well known that the distribution of speech
samples is better described by a Laplacian distribution [29]. In the case of un-
voiced speech, the Gaussian and Laplacian distributions both seem to provide
appropriate models. However, by using the 1-norm minimization, we provide a
residual that is sparser. In particular in [30] it is shown that, the residual vector
provided by 1-norm minimization will have at least K components equal to zero.

3.2 Finding a High Order Sparse Predictor

We now consider the problem of finding a high order sparse predictor that also
engenders a sparse residual. This problem is particularly relevant when con-
sidering the usual modeling approach adopted in low bit-rate predictive coding
for voiced speech segments. This corresponds to a cascade of a short-term lin-
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Fig. E.2: An example of LP spectral model obtained by 1-norm and 2-norm error minimiza-
tion for a segment of voiced speech. The prediction order is K = 10 and the frame length
is N = 160. The lower emphasis on peaks in the envelope, when 1-norm minimization is
employed, is a direct consequence of the ability to retrieve the spiky pitch excitation.

ear predictor F (z) and a long-term linear predictor P (z) to remove respectively
near-sample redundancies, due to the presence of formants, and distant-sample
redundancies, due to the presence of a pitch excitation. The cascade of the pre-
dictors corresponds to the multiplication in the z-domain of the their transfer
functions:

A(z) = F (z)P (z) = 1−
K

∑

k=1

akz
−k

= (1−

Nf
∑

k=1

fkz
−k)(1−

Np
∑

k=1

gkz
−(Tp+k−1)).

(E.10)

The resulting prediction coefficient vector a = {ak} of the high order poly-
nomial A(z) will therefore be highly sparse3. Taking this into account in our
minimization process, and again considering the 1-norm as convex relaxation of
the 0-norm, our original problem (E.7) becomes:

min
a
‖x−Xa‖1 + γ‖a‖1, (E.11)

where the dimension of the prediction coefficient vector a (the order of the
predictor) has to be sufficiently large to model the filter cascade (K > Nf +
Tp + Np) in (E.10). This approach, while maintaining resemblances to (E.9)

3Traditionally, for speech sampled at 8 kHz, Nf = 10, Np = 1, and Tp usually belongs in
the range [16, 120].
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looking for a sparse residual, is fundamentally different. While the predictor
in (E.9) aims at modeling the spectral envelope, the purpose of the high order
sparse predictor is to model the whole spectrum, i.e., the spectral envelope and
the spectral harmonics. This can be easily achieved due to the strong ability
of high order LP to resolve closely spaced sinusoids [31]. Nevertheless, with an
appropriate choice of γ, the sparse high order predictor will still retain the above
mentioned structure and can then be easily factorized into the original form
of short-term and long-term components. The opportunity given by the high
order predictor to jointly find these two components, translates into finding a
short-term predictor that will be remarkably uncorrupted by the fine structure
belonging to the pitch excitation and also a robust initial estimation of the
pitch lag Tp. Furthermore, since the presence of the pitch excitation is taken
into account by the high order sparse predictor, the sparse residual will present
a very low mutual information among the samples without the characteristic
train of pulses found when using only short-term prediction. An example of the
predictor obtained as solution of (E.11) is shown in Figure E.3. An example of
the spectral modeling properties is shown in Figure E.4.

The minimization problem in (E.11) also has a statistical meaning being
equivalent to MAP estimation (E.5) under the assumptions that both the resid-
ual and the predictor are sets of i.i.d. Laplacian variables. However, while the
assumption on the residual is still meaningful, the assumption on the high order
predictor does not have any significant statistical interpretation. In this case,
the 1-norm minimization should be considered merely as a convex relaxation of
the 0-norm, then the prior on the coefficients vector a can be seen as a sparsity
constraint, where the regularization term γ plays the role of a Lagrange multi-
plier. γ therefore controls how sparse the predictor should be and the trade-off
between the sparsity of the predictor and the sparsity of the residual.

There are mainly two problems associated with exploiting the modeling prop-
erties of the sparse high order predictor: determining an appropriate value of
γ to solve (E.11) and using an approximate factorization to obtain again the
initial formulation composed by the two predictors (E.10). Below we address
these two issues.

Selection of γ

It is clear from (E.11) that if the regularization term γ is too small or too
large the obtained solution may be useless. In particular, by increasing γ, we
increase the sparsity of the prediction coefficient vector, until all its entries are
zero (A(z) = 1) for γ ≥ ‖XT x‖∞ (where ‖ · ‖∞ denotes the dual norm to ‖ · ‖1).
More precisely, for 0 < γ < ‖XT x‖∞, the solution vector a is a linear function
of γ. However, in general, the number of nonzero elements in a is not necessarily
a monotonic function of γ.
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Fig. E.3: An example of the high order predictor coefficient vector resulting from a cascade of
long-term and short-term predictors (top box) and the solution of (E.11) for γ = 0.1 and order
K = 100. The order is chosen sufficiently large to accommodate the filter cascade (E.10). It
can be seen that the sparse prediction coefficient vector resembles accurately the cascade of
the two predictors.

There are obviously several ways of determining γ. In our previous work
[21] [22], we have found the modified L-curve [32] as an efficient tool to find a
balanced sparse representation between the two descriptions. We find the mod-
ified L-curve (‖x −Xaγ‖1, ‖aγ‖1) by solving the minimization problem (E.11)
for several values of γ in the interval 0 < γ < ‖XT x‖∞. The optimal value of γ
(in the L-curve sense) is found as the point of maximum curvature of this curve.
Considering the 1-norm as a convex relaxation of the 0-norm, then clearly the γ
chosen with the L-curve is an efficient way to determine an appropriate sparse
representation of the predictor and the residual in (E.11). We have also observed
that, in general, a constant value of γ, chosen for example as the average value
of the set of γ’s found with the L-curve based approach for a large set of speech
frames, is an appropriate choice in the predictive problems considered. In the
experimental analysis we will consider both approaches to defining γ.

Factorization of the High Order Polynomial

If γ is chosen appropriately, the considered formulation (E.11) results in a high
order predictor Â(z) with a clear structure that resembles the cascade of the
short-term and long-term predictor (Figure E.3). We can therefore bring Â(z)
to the original formulation in (E.10), by applying a simple and effective ad-
hoc method to factorize the solution [22]. In particular, we use the first Nf
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Fig. E.4: Frequency response of the high order predictor of Figure E.3. The order of the
predictor is K = 100 and we consider only the nine nonzero coefficients of largest magnitude
modeling the short-term and long-term predictors cascade.

coefficients as the estimated coefficients of the short-term predictor:

F̂ (z) = 1−

Nf
∑

k=1

âkz
−k, (E.12)

and then compute the quotient polynomial Q̂(z) of the division of Â(z) by F̂ (z)
so that:

Â(z) = Q̂(z)F̂ (z) + E(z) ≈ Q̂(z)F̂ (z), (E.13)

where the deconvolution remainder E(z) is considered to be negligible. From the
polynomial Q̂(z) we can then extract theNp taps predictor. In this paper, we will
consider the most common pitch predictor where Np = 1 (P (z) = 1 − gpz

−Tp),
then we merely identify the minimum value and its position in the coefficients
vector of Q̂(z):

gp = min{qk},

Tp = arg min{qk}.
(E.14)

It is clear that, while heuristic, this factorization procedure is highly customiz-
able. A different numbers of taps for both the short-term and long-term can be
selected and also a voiced/unvoiced classification can be included, based on the
presence or absence of long-term information, as described in [21, 22].

It should be noticed that the structure of the cascade can also be incorpo-
rated into the minimization scheme and can be potentially beneficial in reducing
the size of the problem. This approach is then similar to the One-Shot Com-
bined Optimization presented in [17]. Nevertheless, to obtain the same result
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as (E.11), we require prior knowledge on the position of the pitch contributions
and the model order of both the short-term and long-term predictors, making
this approach impractical.

3.3 Enhancing Sparsity by Reweighted 1-norm Minimiza-

tion

As shown throughout this section, the 1-norm is used as a convex relaxation of
the 0-norm, because 0-norm minimization yields a combinatorial problem (NP-
hard). We are therefore interested in adjusting the error weighting difference
between the 1-norm and the 0-norm. A variety of recently introduced methods
have dealt with this issue relying on iterative reweighted 1-norm minimization
(see, e.g., [33] and references therein). In particular, the iteratively reweighted
1-norm minimization may be used for estimating a and enhancing the sparsity
of r (and a), while keeping the problem solvable with convex tools [28] [23]. The
predictor can then be seen as a solution of the following minimization problem:

a = arg min
a

lim
p→0

lim
k→0
{‖x−Xa‖pp + γ‖a‖kk}. (E.15)

From a optimization point of view, for the case p ≤ 1, the cost functions will have
even lower emphasis on large values and a sharper slope near zero. In particular,
this means that the minimization will encourage small values to become smaller
while enhancing the amplitude of larger values. The limit case for p = 0 will have
an infinitely sharp slope in zero and equally weighted tails. This will introduce
as many zeros as possible as these are infinitely weighted.

The algorithm to obtain a short-term predictor engendering a sparser resid-
ual, a reweighted formulation of (E.9), is shown in Algorithm 3. This approach,
as we shall see becomes beneficial in finding a predictor that produces a sparser
residual, providing a tighter coupling between the prediction estimation and the
search for the approximated sparse excitation. An example is shown in Fig. E.5.

When we impose sparsity both on the residual and on the high order pre-
dictor, as in (E.11), the algorithm is modified as shown in Algorithm 4. The
formulation in Algorithm 4, while enhancing the sparsity of the residual similarly
to Algorithm 3, is particularly relevant due to the presence of near-zero com-
ponents in the high order predictor obtained (see Fig. E.3). We are therefore
interested in putting to zero these spurious components, while enhancing the
larger components that contain information of near-end and far-end redundan-
cies. This will be beneficial in finding also a better estimate of the short-term
and long-term contributions through the approximate factorization presented in
3.2.

In both algorithms, the parameter ǫ > 0 is used to provide stability when
a component of r̂ goes to zero. ǫ does not need to be too small; as empirically
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Fig. E.5: An example of prediction residuals obtained through 1-norm and reweighted 1-norm
error minimization using Algorithm 3. The speech segment analyzed is shown in the top box.
The prediction order is K = 10 and the frame length is N = 160. Five iterations where made
with ǫ = 0.01.

demonstrated in [28], it should be in the order of the expected nonzero magni-
tude of r. Also, it has been shown in [28] that ‖r̂i+1‖1 ≤ ‖r̂

i‖1, meaning that this
is a descent algorithm. The halting criterion can therefore be chosen as either
a maximum number of iterations or as a convergence criterion. The choice of
the weights, as the inverse of the magnitude of the residual, is made to penalize
every nonzero coefficient equally, as done by the 0-norm. In the experimental
analysis we will give details on how many iterations are required in our setting.
In [28] and [33], it is also shown that the reweighted 1-norm algorithm, at con-
vergence, is equivalent to the minimization of the log-sum penalty function. This
is relevant to what we are trying to achieve in (E.15): the log-sum cost function
has a sharper slope near zero compared to the 1-norm, providing more effective
sparsity inducing properties. Furthermore, since the log-sum is not convex, the
iterative algorithm corresponds to minimizing a sequence of linearizations of the
log-sum around the previous solution estimate, providing at each step a sparser
solution (until convergence).

4 Compressed Sensing Formulation for Sparse Lin-

ear Prediction

In this section, we explore the compressed sensing (CS) formulation for the
sparse linear predictors introduced in Section 3. The CS formulation is par-
ticularly interesting in our problems: by exploiting prior knowledge about the
sparsity of the signal x we will show that a limited number of random projections
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Algorithm 3 Iteratively Reweighted 1-norm Minimization of the Residual

Inputs: speech segment x

Outputs: predictor âi, residual r̂i

i = 0, initial weights Wi=0 = I

while halting criterion false do

1. âi, r̂i ← arg mina ‖W
ir‖1 s.t. r = x−Xa

2. Wi+1 ← diag
(∣

∣r̂i
∣

∣ + ǫ
)−1

3. i← i+ 1
end while

Algorithm 4 Iteratively Reweighted 1-norm Minimization of Residual and Pre-
dictor

Inputs: speech segment x

Outputs: predictor âi, residual r̂i

i = 0, initial weights Wi=0 = I and Di=0 = I

while halting criterion false do

1. âi, r̂i ← arg mina ‖W
ir‖1 + γ‖Dia‖1

s.t. r = x−Xa

2. Wi+1 ← diag
(∣

∣r̂i
∣

∣ + ǫ
)−1

3. Di+1 ← diag
(∣

∣âi
∣

∣ + ǫ
)−1

4. i← i+ 1
end while

are sufficient to recover our predictors and sparse residual with high accuracy.
In particular, it has been shown [24] [34] that a random projection of a high-
dimensional but sparse or compressible signal vector onto a lower-dimensional
space contains enough information to be able to reconstruct the signal with small
or zero error.

In recent work, notably [35] and [36], CS formulations in the context of speech
analysis and coding have been formulated in order to find a sparse approxima-
tion of the residual, given the predictor. It is then interesting to extend this
work to the case where we want to find directly the predictor that engenders
intrinsically a sparse residual. In particular, given the sparsity level of the sparse
representation that we wish to retrieve in a given domain, we can determine an
efficient shrinkage of the minimization problem in a lower dimensional space,
with a clear impact on the computational complexity.

If we wish to perform CS, two main ingredients are needed: a domain where
the analyzed signal is sparse and the sparsity level of this signal T . In our case,
the residual is the domain where the signal is sparse, while the linear transform
that maps the original speech signal to the sparse residual is the sparse predictor.
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The sparsity in the residual domain is then imposed by our needs [34]. Let us
now review the formulation presented in [36]:

r̂ = arg min
r
‖r‖1 s.t. Φx = ΦHr (E.16)

where x is the N × 1 analyzed segment of speech, H the N × (N +K) synthesis
matrix, constructed from the truncated impulse response of the known predictor
[37], r is the residual vector to be estimated (supposedly sparse) and Φ is the
sensing matrix of dimension M × N . The dimensionality of the random linear
projection M stems from the sparsity level T that one wishes to impose on the
residual. In particular, based on empirical results, the number of projections
is set equal to four times the sparsity, i.e. M = 4T . Furthermore, when the
incoherence between the synthesis matrix and the random basis matrix Φ holds
(µ(Φ,H) ≈ 1), even if H is not orthogonal the recovery of the sparse residual r

is still possible and the linear program in (E.16) gives an accurate reconstruction
of x with very high probability [24, 36].

To adapt CS principles to the estimation of the predictor as well, let us now
consider the relation between the synthesis matrix H and the analysis matrix A

where one is the pseudo-inverse of the other [38]:

A = H+. (E.17)

We can now replace the constraint Φx = ΦHr in (E.16) as

Φr = ΦAx, (E.18)

where A is the (N +K)×N analysis matrix that performs the whitening of the
signal, constructed from the coefficients of the predictor a of order K [38], the
dimension of the sensing matrix Φ is now adjusted accordingly to M × (N +K).
Notice that, due to the structure of A this can be rewritten equivalently to:

Φr = ΦAx = Φ [x|X]
[

1,aT
]T
, (E.19)

where [x|X] is the matrix obtained by stacking the vector x to the left of X in
(E.4). The minimization problem can then be rewritten as:

min
a,r
‖r‖1 s.t. Φr = Φ(x−Xa). (E.20)

We can now see that (E.20) is equivalent to (E.9), the only difference being
the projection onto the random basis in the constraint. The results obtained
will then be similar to our initial formulation (E.9), as long as the choice of Φ is
appropriate. In this case, the formulation in (E.20) will not only provide hints on
the T pulses to be selected in the residual, but also a dimensionality reduction



5. PROPERTIES OF SPARSE LINEAR PREDICTION 99

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−80

−60

−40

−20

0

20

40

60

80

100

frequency [Hz]

A
m

p
lit

u
d

e
 [

d
B

]

 

 

CS LP
1−norm LP
Periodogram

Fig. E.6: An example of LP spectral model obtained through 1-norm minimization (E.9) and
through CS based minimization (E.20) for a segment of voiced speech. The prediction order
is K = 10 and the frame length is N = 160, for the CS formulation the dimension of the
sensing matrix is M = 80, corresponding to the sparsity level T = 20.

that will simplify the calculations. This computational complexity reduction,
resulting from the dimensionality reduction given by the projection onto random
basis has been also observed in [39] and arises from the Johnson-Lindestrauss
lemma [40]. An example of an envelope estimation using the formulation in
(E.20) is presented in Figure E.6 while the recovered sparse residual is shown in
Figure E.7.

Similarly, if we are looking for a high order sparse predictor, the problem
(E.11) can be cast into a CS framework leading to:

arg min
a,r
‖r‖1 + γ‖a‖1 s.t. Φr = Φ(x−Xa). (E.21)

Both formulations (E.20) and (E.21), can also be modified to involve iterative
reweighting (Algorithm 5 shows the general case for γ > 0). In [28] applications
of the reweighted 1-norm minimization in a CS framework are provided.

5 Properties of Sparse Linear Prediction

As mentioned in the introduction, many problems appearing in traditional 2-
norm LP modeling of voiced speech can be traced back to the inability of the
predictor to decouple the vocal tract transfer function from the pitch excitation.
This results in a lower spectral modeling accuracy and a strong dependence on
the placement of the analysis window. In this section we provide some exper-
iments to illustrate how the sparse linear predictors presented in the previous
sections manage to overcome these problems. As a general remark, it is well
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Fig. E.7: An example of prediction residuals obtained through 1-norm minimization and
CS recovery. The speech segment analyzed is shown in the top box. The prediction order is
K = 10 and the frame length is N = 160. For the CS formulation, the imposed sparsity level
is T = 20, corresponding to the size M = 80 for the sensing matrix.

known that the p−norm LP estimate with p 6= 2 is not guaranteed to be sta-
ble [41]. Nevertheless, the results presented in this section concentrate on the
spectral modeling properties of sparse LP, thus the stability of the predictor is
simply imposed by pole reflection which stabilizes the filter without modifying
the magnitude of the frequency response. We will provide a thorough discussion
of the stability issues in the Section 7 and in Section 6 where the speech coding
properties are analyzed and stability is critical.

The experimental analysis has been done on 20,000 frames of length N = 160
(20 ms) of clean voiced speech coming from several different speakers with dif-
ferent characteristics (gender, age, pitch, regional accent) taken from the TIMIT
database, downsampled at 8 kHz. The prediction method we will compare in
this section are shown in Table E.1. The optimality of the methods BE and
RLP, presented in [6], comes from the selection of the parameters which pro-
vide the lowest distortion compared with the reference envelope. For brevity
and clarity of the presented results, we have omitted the predictors obtained as
solutions of the iterative reweighted algorithms presented in Section 3.3 and the
CS formulation presented in Section 4. These methods, while presenting very
similar modeling properties to SpLP10 and SpLP11, produce predictors esti-
mates with slightly higher variance, thus requiring few more bits to be encoded.
Therefore, while it is hard to provide a fair comparison in terms of modeling,
their properties become more interesting in the coding scenario that will thor-
oughly analyzed in Section 6; in particular, the differences in their bit allocation
necessary for efficient coding and the information required in the residual will
be analyzed.
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Algorithm 5 CS Formulation of the Iteratively Reweighted 1-norm Minimiza-
tion of Residual and Predictor

Inputs: speech segment x, desired residual sparsity level T
Outputs: predictor âi, residual r̂i

i = 0, initial weights Wi=0 = I and Di=0 = I,
random matrix Φ of size M × (N +K), M = 4T
while halting criterion false do

1. âi, r̂i ← arg mina ‖W
ir‖1 + γ‖Dia‖1

s.t. Φr = Φ(x−Xa)

2. Wi+1 ← diag
(∣

∣r̂i
∣

∣ + ǫ
)−1

3. Di+1 ← diag
(∣

∣âi
∣

∣ + ǫ
)−1

4. i← i+ 1
end while

5.1 Spectral Modeling

In this section, we provide results to the modeling properties of the short-term
predictors. As a reference, we use the envelope obtained through a cubic spline
interpolation between the harmonics peaks of the logarithmic periodogram. This
method was presented in [6] and provides an approximation of the vocal tract
transfer function, without the fine structure corresponding to the pitch excita-
tion. We then calculate the log spectral distortion between our reference envelope
Sint(ω) and the estimated predictive model S(ω,a) as:

SDm =

√

1

2π

∫ π

−π

[10 log10 Sint(ω)− 10 log10 S(ω,a)]
2
dω. (E.22)

where the numerator gain is calculated as the variance of the residual.
The coefficients of the short-term predictors presented have also shown to be

smoother and therefore they have a lower sensitivity to quantization. We will
also compare the log spectral distortion between our reference envelope Sint(ω)
and the quantized predictive model S(ω, â) for every predictor obtained with
the presented methods. The quantizer used is the one presented in [42], with
the number of bits fixed at 20 for the different prediction orders, providing
in all the method presented a transparent coding4. The results are shown in
Table E.2 for different prediction orders. A critical analysis of the results show
the superior modeling properties of SpLP11. This is given by its ability to

4According to [43], transparent coding of LP parameters is achieved when the two versions
of coded speech, obtained using unquantized LP parameters and quantized LP parameters,
are indistinguishable through listening. This is usually achieved with an average log distortion
between quantized and unquantized spectra lower that 1 dB, with no outliers with log distortion
greater than 4 dB and a number of outliers with 2-4 dB distortion lower than 2%.
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Table E.1: Prediction methods compared in the modeling properties evaluation.

Method Description

LP
Traditional 2-norm LP with 10Hz band-
width expansion (γ = 0.996) and Ham-
ming windowing.

SpLP10

1-norm LP presented in (3.1), solution of
(E.9). Stability is imposed by pole reflec-
tion if unstable. No windowing is per-
formed.

SpLP11

1-norm LP presented in (3.2). The order
of (E.11) is K = 110 (covering accurately
pitch delays in the interval [Nf + 1,K −
Nf − 1]). γ is chosen as the point of maxi-
mum curvature in the L-curve. The short-
term predictor coefficients are the first Nf

coefficients of the high order polynomial.
Stability is imposed by pole reflection if un-
stable. No windowing is performed.

BE
Optimally bandwidth expanded 2-norm
LP as shown in [6]. Hamming window is
used.

RLP
Optimally regularized 2-norm LP as shown
in [6]. Hamming window is used.

take into consideration the whole speech production model, thus decoupling
more effectively the short-term contribution that provides the spectral envelope
from the contribution given by the pitch excitation. SpLP10 and RLP achieve
similar performances, providing evidence supporting the generally good spectral
modeling properties of the minimization problem in (E.9).

5.2 Shift Invariance

In speech analysis, a desirable property for an estimator is to be invariant to the
small shifts of the analysis window, since speech, and voiced speech in particular,
is assumed to be short-term stationary. However, standard LP is well known not
to be shift invariant [8]. This is a direct consequence of the coupling between the
vocal tract transfer function and the underlying pitch excitation that standard
LP introduces in the estimate. To analyze the invariance of the LP methods to
window shifts, we take the same 20,000 frames of clean voiced speech and we
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Table E.2: Average spectral distortion for the considered methods in the unquantized case
(SDm) and quantized case (SDq). A 95% confidence interval is given for each value.

METHOD K SDm SDq

LP

8 2.11±0.06 3.24±0.11
10 1.97±0.03 2.95±0.09
12 1.98±0.05 2.72±0.12

SpLP10

8 1.91±0.01 2.92±0.02
10 1.78±0.01 2.53±0.02
12 1.61±0.01 2.31±0.04

SpLP11

8 1.64±0.00 2.65±0.01
10 1.69±0.00 2.37±0.01
12 1.39±0.01 2.13±0.01

BE

8 2.04±0.03 3.11±0.08
10 1.88±0.02 2.92±0.07
12 1.83±0.10 2.71±0.04

RLP

8 1.89±0.02 2.93±0.04
10 1.72±0.01 2.51±0.03
12 1.53±0.02 2.22±0.04

expand them to the left and to the right with 20 samples, giving a total length
N = 200. In each frame of length N = 200 we define a M = 160 samples boxcar
window and we shift the window by s = 1, 2, 5, 10, 20 samples. The average
difference of the 10th order AR estimate between S0(ω) and Ss(ω) is analyzed.
The average differences obtained for the methods in Table E.1 are shown in
Table E.3. In Figure E.8, we show an example of the shift invariance property.
The results obtained indicate clearly the sparse predictor robustness to small
shifts in the analyzed window. Also in this case, the change in the frequency
response in traditional LP is clearly given by the pitch bias in the estimate of
the predictor, particularly dependent on the location of the spikes of the pitch
excitation. The approaches SpLP11 and SpLP10, since they do not try to
cancel this characteristic spiky excitation, are less dependent from its location
and provide a more robust estimate of the true envelope.

5.3 Pitch Independence

The ability of the sparse linear predictors to decouple the pitch excitation from
the vocal tract transfer function is reflected also in the ability to have estimates
of the envelope that are not affected by the pitch excitation. In this experiment,
we calculate the envelope using 10th order regularized LP (RLP) and we model
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Fig. E.8: An example of the shift invariance property of the sparse linear predictor (SpLP11)
(top box), compared to traditional LP (LP). Ten envelopes are analyzed by shifting a the
analysis window (160 samples) of s = 1, 2, 5, 10, 20 samples over a stationary voiced speech
segment (length 200 samples).

Table E.3: Average spectral distortion for the considered methods with shift of the analysis
window s = 1, 2, 5, 10, 20.

METHOD SD1 SD2 SD5 SD10 SD20

LP 0.113 0.128 0.223 0.452 1.262
SpLP10 0.003 0.003 0.011 0.017 0.032
SpLP11 0.001 0.002 0.005 0.006 0.009

BE 0.097 0.117 0.197 0.238 0.328
RLP 0.015 0.089 0.180 0.201 0.323

the underlying pitch excitation with an impulse train with different spacing.
We then analyze the synthetic speech applying the different LP methods in Ta-
ble E.1. We divide the analysis into three subsets: high pitched Tp ∈ [16, 35]
(f0 ∈ [228Hz, 500Hz]), mid pitched Tp ∈ [36, 71] (f0 ∈ [113Hz, 222Hz]) and low
pitched Tp ∈ [72, 120] (f0 ∈ [67Hz, 111Hz]). The shortcomings of LP can be
particularly seen in high pitched speech, as shown in the results of Table E.4.
Because high pitched speakers have fewer harmonics within a given frequency
range, modeling of the spectral envelope is more difficult and particularly prob-
lematic for traditional LP. The sparse linear predictors are basically unaffected
by the underlying pitch excitation, which results in an improved spectral mod-
eling. In particular for SpLP11, since the high order structure of the initial
estimate includes the pitch harmonic structure, the extracted short-term predic-
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Table E.4: Average spectral distortion for the considered methods with different underlying
pitch excitation. A 95% confidence interval is given for each value.

METHOD low mid high

LP 0.81±0.12 1.04±0.23 1.32±0.56
SpLP10 0.02±0.00 0.09±0.00 0.11±0.01
SpLP11 0.00±0.00 0.00±0.00 0.01±0.00

BE 0.45±0.07 0.65±0.19 0.89±0.34
RLP 0.05±0.02 0.16±0.10 0.19±0.09

tor is particularly robustly independent from the underlying excitation.

6 Coding Applications of Sparse Linear Predic-

tion

By introducing sparsity in the residual, we can reasonably assume that only a
small portion of the residual samples are sufficient to reconstruct the speech
signal with high accuracy. We will corroborate our intuition by providing some
experiments on the coding applications of sparse linear prediction. Specifically,
in 6.1, we will first give experimental proof of the sparsity inducing effectiveness
of the short-term predictors in the Analysis-by-Synthesis (AbS) scheme [37]. In
this case, we use a very simple excitation model coding without long-term pre-
diction where we exploit directly the information on the location of the nonzero
samples. In 6.2, we will present a simple coding procedure that exploits the prop-
erties of the combined high order sparse LP and sparse residual. As we shall see
in 6.3, this approach presents interesting properties such as noise robustness for
which we give both objective and subjective evaluation.

As a general remark, since the stability of the short-term predictors is not
assured, we will consistently perform a stability check and, if the short-term
predictor is found to be unstable, we will perform a pole reflection. Note that
this approach will necessarily modify the time domain behavior of the residual as
well as the predictor coefficients. Nevertheless, since the rate of unstable filters
is low and the instability is very mild (i.e., the magnitude of the poles is only
very slightly higher than one), this can be considered as an adequate solution to
this problem. We will return to the stability issue in Section 7.
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Table E.5: Prediction methods compared in the coding properties evaluation.

Method Description

LP

Traditional 2-norm LP with a fixed
bandwidth expansion of 60 Hz (done
by lag-windowing the autocorrela-
tion function) and Hamming win-
dowing.

SpLP10 1-norm LP solution of (E.9).

RWLP10

Reweighted 1-norm LP presented in
Section 3.3 using Algorithm 3. Four
reweighting iterations are performed
(sufficient for convergence).

CSLP10

Compressed sensing formulation
presented in Section 4, solution
of (E.20). The size of the sensing
matrix is given by the number of
samples we want to retrieve in the
residual.

RWCSLP10

Reweighed compressed sensing for-
mulation of CSLP10 using Algo-
rithm 3. Four reweighting iterations
are performed (sufficient for conver-
gence).

6.1 Coding Properties of the Short-Term Sparse Linear

Predictor

The first experiment regards the use of the short-term predictor in speech coding.
In particular we will compare the use of the multipulse encoding procedure in
the case of bandwidth expanded linear prediction (LP) with a fixed bandwidth
expansion of 60 Hz (done by lag-windowing the autocorrelation function). We
will compare this approach with our introduced sparse linear predictors. The
only difference is that, instead of performing the multipulse encoding, we per-
form the AbS procedure straight after selecting the T positions of the T largest
samples that are located in the residual. In this experiment, we will not per-
form long-term prediction, focusing only on the coding properties of the sparsity
inducing short-term predictors.

We consider the formulation SpLP10, reweighted 1-norm RWLP10, and
their CS formulations CSLP10 and RWCSLP10. The methods compared
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Table E.6: Comparison between the sparse predictor estimation methods. A 95% confidence
interval is given for each value.

METHOD T â SSNR MOS t

LP
5 19 14.1±3.2 2.85±0.23 0.1±0.1
10 19 19.1±2.9 3.01±0.16 0.9±0.3

SpLP10
5 18 15.3±2.1 2.87±0.12 1.3±0.2
10 18 20.1±1.7 3.11±0.11 1.3±0.2

RWLP10
5 22 17.2±1.6 3.01±0.06 4.1±0.3
10 22 21.4±1.5 3.19±0.03 4.1±0.3

CSLP10
5 19 16.9±1.9 2.97±0.04 0.4±0.0
10 19 20.9±1.5 3.25±0.03 0.6±0.2

RWCSLP10
5 24 20.2±0.9 3.15±0.03 1.3±0.3
10 24 24.4±0.4 3.43±0.01 1.9±0.2

are summarized in Table E.5. As mentioned in Section 5, all these methods
achieve similar modeling performances to SpLP10, although their estimate of
the predictor requires a slightly larger number of bits. Here we will show this
providing a comparison also in terms of bits needed for transparent quantization
of the predictor. The methods BE and RLP, presented in the previous section
(Table E.1) while offering better modeling properties than traditional LP, do
not provide any significant improvement in the coding scenario, thus they will
be omitted from the current experimental analysis.

We have performed the analysis on the same speech signals database con-
sidered in Section V. The frame size is N = 40, the 10th order predictors are
quantized transparently using the LSFs coding method in [42] while the T pulses
are left unquantized. In the CS formulations the sensing matrix has M = 4T
rows; this means that just a slight reduction in the size of the problem is obtained
when T = 10. Nevertheless we are able to obtain important information on the
location of the pulses. In the reweighted schemes, the number of iterations is
four, which is sufficient to reach convergence in all the analyzed frames.

In Table E.6, we present the results in terms of Segmental SNR, Mean Opin-
ion Score (obtained through PESQ evaluation) and empirical computational time
t in elapsed CPU seconds for T = 5 and T = 10, and number of bits necessary to
transparently encode the predictor (â) using LSFs [42]. The results demonstrate
the effectiveness of the sparse linear predictors. These results also show that the
predictors in the reweighted cases (RWLP10 and RWCSLP10), need a larger
number of bits for transparent quantization due to the larger variance of their
estimates. This result is particularly interesting when considering the model
in (E.2). In particular, the description of a segment of speech is distributed
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between its predictive model and the corresponding excitation. Thus, we can
observe that the complexity of the predictor necessarily increases when the com-
plexity of the residual decreases (less significant pulses). This also leaves open
questions on the optimal bit distribution between the two descriptions. As a
proof of concepts, the results show how only 5 bits of difference between LP and
RWCSLP10 in the representation of the filter result in a significant improve-
ment in performance: only 5 pulses in the residual are necessary in RWCSLP10

to obtain similar performances to LP using 10 pulses.
A critical analysis of the results leads to another interesting conclusion. In

fact, while 1-norm based minimization, with or without the shrinkage of the
problem provided by the CS formulation in (E.20), is computationally more
costly, than 2-norm minimization, it greatly simplifies the next stage where the
excitation is selected in a closed-loop AbS scheme. In particular, the empirical
computational time in Table E.6 refers to both the LP analysis stage and the
search for the MPE excitation. Since the MPE search for the location is not
performed in our sparse LP methods and we exploit directly the information
regarding the T pulses of largest magnitude, the AbS procedure is merely a
small least square problem where we find the T pulse amplitudes. We will come
back to the discussion regarding complexity in 7.2. Furthermore, it should be
noted that the CS formulation improves the selection of the T largest pulses.
This is remarkable since while the predictor obtained with or without the random
projection is similar, the reduction of the constraints helps us find a more specific
solution for the level of sparsity T that we would like to retrieve in the residual.
As mentioned above, the price to pay is a slightly higher bit allocation for the
predictors obtained through CS formulation.

6.2 Speech Coding Based on Sparse Linear Prediction

As a proof of concepts, we will now present a very simple coding scheme that
summarizes all the previously introduced methods. We will use the method
presented in Section 3.2, exploiting the sparse characteristics of the high order
predictor and the sparse residual. In order to reduce the number of constraints,
we cast the problem in a CS formulation (E.21) that provides a shrinkage of
the constraint according to the number of samples we wish to retrieve in the
residual. Furthermore, in order to refine the initial sparse solution, we apply
the reweighting algorithm. The core scheme is summarized in Algorithm 3.
Differently from multistage coders, this method, with its joint estimation of
a short-term and a long-term predictor and the presence of a sparse residual,
provides a synergistic one-step approach to speech coding. In synthesis, given a
segment of speech, a way to encode the speech signal can be as follows:

1. Define the desired level of sparsity of the residual T and define the sensing
matrix dimensionality accordingly M = 4T .
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2. Perform n steps of the CS reweighted minimization process (Algorithm 5).

3. Factorize the prediction coefficients into a short-term and long-term pre-
dictor using the procedure in 3.2.

4. Quantize short-term and long-term predictors.

5. Select the T positions where the values of largest magnitude are located.

6. Solve the analysis-by-synthesis equation keeping only the T nonzero posi-
tions.

7. Quantize the residual.

We have again analyzed about one hour of clean speech taken from the TIMIT
database. In order to obtain comparable results, the frame length is now N =
160 (20 ms). The order of the high order predictor in (E.21) is K = 110 (mean-
ing that we can cover accurately pitch delays in the interval [Nf +1,K−Nf−1],
including the usual range for the pitch frequency [70Hz, 500Hz]). the fixed regu-
larization parameter is γ = 0.12 and the defined level of sparsity is T = 20. Four
iterations of the reweighting minimization process are performed, sufficient to
reach convergence in all the analyzed frames. The orders of the short-term and
long-term predictors obtained from the factorization of the high order predictor
are Nf = 10 and Np = 1, respectively. 25 bits are used to transparently encode
the LSF vector, 7 bits are used to quantize the pitch period Tp and 6 bits to
quantize the pitch gain gp. The stability of the overall cascade is imposed by
pole reflection on the short-term predictor, and by limiting the pitch gain to
be less that unity. As for the residual, the quantizer normalization factor is
logarithmically encoded with 6 bits while a 8 levels uniform quantizer is used
to quantize the normalized amplitudes; the signs are coded with 1 bit per each
pulse. The upper bound given by the information content of the pulse location
(log2

(

160
20

)

bits) is used as an estimate of the number of bits used for distor-
tionless encoding of the location. No perceptual weighting is performed in our
case. The total number of bits per frame used are 202, producing a 10.1 kbps
rate. We will compare this method (SpLP) with the AMR coder in the 10.2
kbps mode (AMR102) [44]. The results in terms of MOS (obtained through
PESQ evaluation) and empirical computation time are shown in Table E.7 and
demonstrate similar performances but with a more straightforward approach to
coding than AMR. The CS formulation also helps to generally keep the problem
solvable in reasonable time.

6.3 Noise Robustness

This study is motivated by the ability of a sparse coder to identify more effec-
tively the features of the residual signal that are important for its reconstruction,
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Table E.7: Comparison between the coding properties of the AMR102 and the coder based
on sparse linear prediction SpLP. A 95% confidence interval is given for each value.

METHOD rate MOS t

AMR102 10.2 kbps 4.02±0.11 0.1±0.0
SpLP 10.1 kbps 4.13±0.13 1.2±0.1

Table E.8: Performances of AMR102 and the coder based on sparse linear prediction
(SpLP) for different values of SNR (white gaussian noise). A 95% confidence interval is given
for each value.

METHOD clean 30dB 20dB 10dB

AMR102 4.02±0.11 3.88±0.21 3.25±0.19 2.76±0.23
SpLP 4.13±0.13 3.94±0.15 3.52±0.14 3.21±0.19

discarding those which probably are a result of the noise. The traditional en-
coding formulation, based on minimum variance analysis and residual encoding
through pseudo-random sequences (i.e., algebraic codes), makes the identifica-
tion of these important features basically impossible and requires, for low SNRs,
noise reduction in the preprocessing. Interestingly enough, sparse LP based
coding appears to be quite robust in the presence of noise. An example of the
different performances in terms of MOS for different SNR under additive white
Gaussian noise is given in table E.8.

6.4 Subjective Assessment of Speech Quality

To further investigate the properties of our methods, we have conducted two
MUSHRA listening tests [45] with 16 non-expert listeners. Ten speech clips
were used in the listening test. In the first MUSHRA test we investigate what
we have shown in 6.2, about the similarity in quality between the AMR coder and
our method. In the second MUSHRA test the noise robustness of our method,
discussed in 6.3, is proved. The test results are presented in Figure E.9 where
the score 100 corresponds to “Imperceptible” and the score 0 corresponds to
“Very annoying” according to the 6-grade impairment scale. From the results,
we can see that our method does not affect greatly the quality of the signal, given
that our method is conceptually much simpler and substantially less optimized
compared to AMR. In clean condition the average score was 89 for AMR102,
and 82 for SpLP. The most significant results though, are the one related to
the coding of noisy signals. In particular, we can see from Figure E.9 that our
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Fig. E.9: MUSHRA test results. In the box above we show the results for clean speech and
in the box below for speech corrupted by white noise (SNR=10dB). The four versions of the
clips appear in the following order: Anchor, Hidden reference, AMR102, and SpLP. The
anchor is the NATO standard 2400 bps LPC coding [46]. A 95% confidence interval is given
for each value (upper and lower star).

method scores considerably better than the AMR showing how a sparse encoding
technique can be more effective in noise robust speech coding. In fact, in noisy
conditions, the average score was 62 for AMR102, and 75 for SpLP.

7 Discussion

7.1 Stability

Although the predictor stability in the analysis of speech signals may not be
required, it is a fundamental requirement in speech synthesis and coding, where
an unstable filter can generate saturations in the synthesized speech. According
to [41], the roots of the monic polynomial solution to the 1-norm minimization
belongs to the numerical range of the shift operator matrix B used to generate
x and X in (E.4), which, in turn, belongs to an open circular disk with radius
2‖B‖2 = 2 and centered in the origin. This means that, for all the presented
sparse linear predictors, we can define an upper bound on the maximum absolute
value of the obtained roots. Even if this is an interesting result, it does not really
help us create a minimization problem that is intrinsically stable (like it has been
done, for example, in [47]) since the maximum absolute value for a root found
in all our considered predictors is ρmax = 1.0259.

The stability problem in (E.9) was already tackled in [9] by introducing
the Burg method for prediction parameters estimation based on the least ab-
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solute forward-backward error. In this approach, however, the sparsity is not
preserved. This is mostly due to the decoupling of the main K-dimensional min-
imization problem in K one-dimensional minimization sub-problems. Therefore
this method is suboptimal and produces results, as we have observed, somewhere
in between those of the 2-norm and 1-norm approach. Also, the approach is only
valid in (E.9) and not in all the other minimization schemes presented.

In the presented applications of sparse linear predictors, the percentage of
unstable filters was found to be low (around 2%) and the instability “mild”
(ρmax = 1.0259). This suggests the use of a simple stability check and pole re-
flection. This approach, while leaving the magnitude of the spectrum unchanged
would slightly modify both the coefficients of the predictor and the residual (af-
fecting the sparsity properties), but not significantly enough to invalidate the
presented results. Another approach to obtain stability, since ρmax = 1.0259,
could have been a mild bandwidth expansion of about 60 Hz, sufficient to bring
the percentage of unstable filters to zero. However, this approach does not guar-
antee to find intrinsically stable solution. Also, even if no windowing has been
applied in our scheme to the analyzed speech frame, we have observed that the
use of a Hamming window eliminates completely the presence of unstable filters:
this can be explained by the modified behavior of the analyzed speech signal seg-
ment. For example, we have observed that unstable filters are almost uniquely
obtained when modeling the beginning of a strongly vocalized phoneme, where
the waveform exhibits an “explosive” behavior. The impulse response of the
all-pole filter used in the AbS equations will then mimic this behavior by not
converging to zero but growing indefinitely. Therefore, the enhanced modeling
properties given by our sparse linear predictors comes with a potential of insta-
bility. In particular, by properly modeling the behavior, we are able to find a
better representation of a segment of speech that may be unstable, as has been
observed in [48]. It is therefore interesting to continue to investigate into the
subject and try to find a way to obtain, if not the optimal 1-norm solution,
a good approximate that retains its properties at all time. Further work will
concentrate on this issue.

7.2 Computational Cost

As for the computational cost, finding the solution of the overdetermined system
of equations in (E.9) using a modern interior point algorithm [19] can be shown
to be equivalent to solving around 20-30 least square problems. Nevertheless,
implementing this procedure in an AbS coder, as done in Section 6.1, is shown
to greatly simplify the search for the sparse approximation of the residual in
a closed-loop configuration, without compromising the overall quality. Further-
more, in the case of (E.11), the advantage is that a one step approach is taken to
calculate both the short-term and the long-term predictors while the encoding
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of the residual is facilitated by its sparse characteristics.
The introduction of a compressed sensing formulation for the prediction prob-

lem has helped reduce dramatically the computational costs. An example of this
can be seen in the coding scheme presented in 6.2. Retrieving T = 20 samples re-
duces the number of constraints of the minimization problem from 270 (N +K)
to 80 (M = 4T ). Since for each constraint we have a dual variable, by re-
ducing the number of the constraints we also reduce the number of the dual
variables [18]. In turn, the whole coding scheme, as shown empirically, is only
about one order of magnitude more expensive than a 2-norm LP based coder,
although with added improvements such as noise robustness and a fairly high
conceptual simplicity.

7.3 Uniqueness

The minimization problems considered do not necessarily have a unique solution.
In these rare cases with multiple solutions, due to the convexity of the cost
function, we can immediately state that all the possible multiple solutions will
still be optimal [18]. Viewing the non-uniqueness of the solution as a weakness
is also arguable: in the set of possible optimal solutions we can probably find
one solution that offers better properties for our modeling or coding purposes.
A theorem to verify uniqueness is discussed in [49].

7.4 Frequency Domain Interpretation

The standard linear prediction method exhibits spectral matching properties in
the frequency domain due to Parseval’s theorem [2]:

∞
∑

n=−∞

|e(n)|2 =
1

2π

∫ π

−π

|E(ejω)|2dω. (E.23)

It is also interesting to note that minimizing the squared error in the time domain
and in the frequency domain leads to the same set of equations, namely the Yule-
Walker equations [25]. To the best of our knowledge, the only relation existing
between the time and frequency domain error using the 1-norm is the trivial
Hausdorff-Young inequality [50]:

∞
∑

n=−∞

|e(n)| <
1

2π

∫ π

−π

|E(ejω)|dω, (E.24)

which implies that time domain minimization does not corresponds to frequency
domain minimization. It is therefore difficult to say if the 1-norm based approach
is always advantageous compared to the 2-norm based approach for spectral
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modeling, since the statistical character of the frequency errors is not clear.
However, the numerical results in Tables E.2, E.3 and E.4 clearly show better
spectral modeling properties of the sparse formulation.

8 Conclusions

In this paper, we have given an overview of several linear predictors for speech
analysis and coding obtained by introducing sparsity into the linear prediction
framework. In speech analysis, the sparse linear predictors have been shown to
provide a more efficient decoupling between the pitch harmonics and the spec-
tral envelope. This translates into predictors that are not corrupted by the fine
structure of the pitch excitation and offer interesting properties such as shift
invariance and pitch invariance. In the context of speech coding, the sparsity
of residual and of the high order predictor provides a more synergistic new ap-
proach to encode a speech segment. The sparse residual obtained allows a more
compact representation, while the sparse high order predictor engenders joint
estimation of short-term and long-term predictors. A compressed sensing for-
mulation is used to reduce the size of the minimization problem, and hence to
keep the computational costs reasonable. The sparse linear prediction based ro-
bust encoding technique provided a competitive approach to speech coding with
a synergistic multistage approach and a slower decaying quality for decreasing
SNR.
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Abstract

In linear prediction of speech, the 1-norm error minimization criterion has al-
ready been shown to provide a valid alternative to the 2-norm criterion for both
analysis and coding of speech signals. However, unlike 2-norm minimization, the
1-norm minimization does not guarantee stability of the corresponding all-pole
model and, in coding applications, this can generate saturations in the synthe-
sized speech. In this paper we introduce two new methods to obtain intrinsically
stable solutions to the 1-norm minimization problem. The first method is based
on the reduction of the numerical range of the shift operator associated with the
particular prediction problem considered. The second method is based on impos-
ing a constraint, given by the alternative Cauchy bound, in the 1-norm error
minimization. The methods are compared with two well known stable methods:
the Burg algorithm, based on the 1-norm minimization of the forward and back-
ward prediction error, and the iteratively reweighted 2-norm minimization. The
evaluation gives proof of the effectiveness of the new methods, performing very
similarly to traditional 1-norm based linear prediction in terms of modeling and
coding behavior.

1 Introduction

Linear Prediction (LP) is widely used in a diverse range of speech processing
algorithms for analysis, coding and recognition [1]. The traditional approach is to
find the prediction coefficients through the 2-norm minimization of the difference
between the predicted and observed signal. This works well when the excitation
signal is i.i.d. Gaussian [2], however, when this assumption is not satisfied,
problems arise. This is the case for voiced speech where the pitch excitation
can be considered to be of quasi-periodic nature with spiky excitation. In this
case, the approach based on the 1-norm minimization of the prediction error has
shown to offer better modeling properties thanks to its ability to decouple the
pitch excitation from the vocal tract transfer function [3].

The improved statistical fitting of the 1-norm minimization shows also to
be beneficial in speech coding applications. In particular, seeing the 1-norm as
a convex relaxation of the 0-norm, the minimization process will offer a resid-
ual that is sparser, providing tighter coupling between the multiple stages of
time-domain speech coders, and thereby enabling more efficient coding [4]. Nev-
ertheless, unlike those obtained through 2-norm minimization, the predictors
obtained through 1-norm minimization are not intrinsically stable [5] and, in
coding application, unstable filters may create problems, generating saturations
in the synthesized speech.

The problem of stability in 1-norm LP was already tackled in [6] by intro-
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ducing the Burg method for AR parameter estimation based on 1-norm forward
and backward error minimization. However, in this approach the sparsity is
not preserved [3]. We are therefore interested in finding new ways to determine
stable solutions for the 1-norm LP problem that allow for a improved spectral
modeling but also allowing more efficient coding.

The paper is organized as follows. In Section 2, we provide a brief review of
linear prediction. In Section 3, the core of the paper, we introduce our two new
methods to obtain intrinsically stable solution to the 1-norm minimization prob-
lem. In Section 4, we compare the spectral modeling and coding performances
of the predictors. Finally, Section 5 concludes the paper.

2 Fundamentals of Linear Prediction

The problem considered in this paper is based on the following auto-regressive
(AR) model, where a sample of speech is written as a linear combination of past
samples:

x(n) =

K
∑

k=1

akx(n− k) + e(n), (F.1)

where {ak} are the prediction coefficients, e(n) is the driving noise process (also
referred to as prediction residual or excitation) and we assume that x(n) = 0 for
n < 1 and n > N . The speech production model (F.1) in matrix form becomes:

x = Xa + e. (F.2)

The problem considered in this paper is associated with finding the prediction
coefficient vector a ∈ R

K from a set of observed real samples x(n) for n =
1, . . . , N so that the prediction error is minimized [7]:

â = arg min
a
‖x−Xa‖pp, (F.3)

where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






, (F.4)

and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for p ≥ 1. The
starting and ending points N1 and N2 can be chosen in various ways assuming
that x(n) = 0 for n < 1 and n > N [8]. We will consider the case N1 = 1 and
N2 = N +K, equivalent, when p = 2, to the autocorrelation method:

â = arg min
a
‖x−Xa‖22 = (XT X)−1XT x, (F.5)
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where R = XT X is the autocorrelation matrix (when N1 = 1 and N2 = N+K).
The case we would like to consider is when p = 1, which corresponds to

minimizing the sum of absolute values:

â = arg min
a
‖x−Xa‖1. (F.6)

This formulation is relevant particularly in LP of voiced speech signals where the
prediction residual is usually modeled by an impulse train. The 1-norm, intended
as a convex relaxation of the 0-norm, will offer an approximate solution to the
minimization of the cardinality, i.e., the sparsest prediction prediction residual.
This translates into the ability of the predictor to preserve the structure of the
underlying sparse pulse-like excitation. The spectral envelope will benefit from
this by avoiding the over-emphasis on peaks generated in the effort to cancel the
voiced speech harmonics [3, 6].

The 1-norm minimization criterion, is also equivalent to the ML estimator
when the prediction error is assumed to be i.i.d. Laplacian:

aML = arg max
a

f(x|a) = arg max
a
{exp(−‖x−Xa‖1)}. (F.7)

This statistical interpretation is also meaningful, since it is well known that the
distribution of speech samples is better described by a Laplacian distribution [9].

The minimization problem in (F.6) does not allow for a closed form solution
and so a linear programming formulation is required [7]. In particular, inte-
rior point methods [10] have been proved to solve the minimization problem
efficiently.

3 Methods for Obtaining Stable Solutions

3.1 Reducing the Numerical Range of the Shift Operator

First of all, we have to consider a more general prediction framework where the
columns of the matrix obtained concatenating x and X, defined in (F.4):

[x|X] = [x0 x1 . . . xK ] ∈ R
(N+K)×(K+1), (F.8)

can be generated via the formula:

xk+1 = Bxk. (F.9)

In this formulation, (F.6) is a particular case where:

x0 = [x1 x2 . . . xN 0 . . . 0]T ∈ R
N+K , (F.10)
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and B is an upper shift matrix of size (N +K)× (N +K):

B =













0 0 · · · ω

1
. . .

. . .
...

...
. . .

. . . 0
0 0 1 0













. (F.11)

In our case ω plays no useful role and thus we will set ω = 0 (noncirculant shift
matrix).

Let us now consider the p-norm LP problem (F.3), where the column [x|X]
are constructed using the formula in (F.9) where B is generalized to any matrix
in R

(N+K)×(N+K). It has been shown that, in this case, the roots {zi} of the
monic polynomial solution to the p-norm minimization problem (F.3) belong to
the numerical range ηp(B) of the matrix B, which, in turn, belongs to an open
circular disk ρ(B) of radius 2‖B‖2 and center in the origin [11]. It is then clear
that the roots of the predictor, obtained solving (F.6), will be contained in a
closed circle of radius 2‖B‖2 = 2. This result can be generalized for any shift
matrix with nonzero entries different from the unity:

B =













0 0 · · · 0

B2,1
. . .

. . .
...

...
. . .

. . . 0
0 0 BN+K,N+K−1 0













. (F.12)

In this case, the radius of the circle ρ(B) that contain the numerical range η1(B)
is defined as:

2‖B‖2 = 2max |Bi,i+1|. (F.13)

We will then change the nonzero values of B (and subsequently the construction
of [x|X]), in order to reduce the radius of the circle containing η1(B) to be equal
or less than one, therefore guaranteeing the stability of the linear predictor. In
particular, having max |Bi,j | ≤ 1/2 will be sufficient for stability. We can also
consider a more general formulation of the predictive scheme, where we apply a
weighting w ∈ R

N+K
+ on the analyzed speech signal. The effect of the weighting

can be moved to the shift matrix and the analyzed speech segment by defining:

B̃ =













0 0 · · · 0

w2/w1
. . .

. . .
...

...
. . .

. . . 0
0 0 wN+K/wN+K−1 0













, (F.14)
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and
x̃0 = [w1x1 w2x2 wNxN 0 . . . 0]T . (F.15)

Constructing all the other columns of the new matrix [x̃|X̃] using the relation
in (F.9), the minimization problem (F.6) then becomes:

min
a
‖x̃− X̃a‖1. (F.16)

The 2-norm of the matrix can be defined as the maximum value of the entries of
the shift matrix |wn+1/wn| and the circle containing the roots of the predictor
will have radius:

ρ(B) = 2max
wn+1

wn
. (F.17)

Knowing this we can construct a weighting vector that stabilizes the predictor.
A smart way to choose the weights can be done using the method in [12] and [13],
where the weight function in (F.14) is chosen based on the short-time energy
(STE):

wn =

√

√

√

√

M−1
∑

i=0

x2
n−i−1 (F.18)

where M is the length of the STE window. The STE window tends to weight
more those section of the speech signal which consist of samples of large magni-
tude providing robust signal selection especially for the analysis of voiced speech.
Considering now the radius of the numerical range where the roots are contained
(F.17), we can define the entries of the matrix B̃ in (F.14) so that:

B̃i+1,i =

{

(wi+1/wi) if (wi+1/wi) ≤ 1/2,
1/2 if (wi+1/wi) > 1/2.

(F.19)

Finally, we can solve our modified 1-norm problem in (F.16) obtaining an in-
trinsically stable solution. Clearly, the window, and thus the weights, can be
chosen ad libitum, we will use the STE windowing that provides important signal
selection properties to retrieve the underlying spiky structure for of the speech
signal, as done in [13].

3.2 Constrained 1-norm Minimization

Let us now consider the univariate polynomial A(z), corresponding to the solu-
tion of (F.6):

A(z) = 1 +
K

∑

k=1

akz
−k, (F.20)
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so that a ∈ R
K . According to [14], the alternative Cauchy bound state that all

zeros of (F.20) lie in the disk:

|z| ≤ λ, where λ = max

{

1,

K
∑

k=1

|ak|

}

. (F.21)

This bound, refinement of the famous Cauchy bound [15], gives precious hints
on how to modify the formulation of (F.6), so to guarantee a minimum phase
solution. In particular, we can rewrite the problem as:

min
a
‖x−Xa‖1, s.t. ‖a‖1 < 1, (F.22)

where the constrained ‖a‖1 < 1, according to (F.21), provides a sufficient (not
necessary) condition for the zeros of (F.20) to belong to the open unit disk, and
can be easily incorporated in the linear program to solve (F.6) [7]. Note that, if
the constraint would have been ‖a‖1 ≤ 1 the zeros could be located on the the
disk (|z| ≤ 1). The strict constraint guarantees that |z| < 1.

3.3 Iteratively Reweighted 2-norm Minimization

A known method to obtain a minimum phase solution to the 1-norm minimiza-
tion problem is based on iteratively reweighted 2-norm minimization [16]. The
algorithm is shown in Algorithm 6. This method is guaranteed to output a
polynomial with roots contained in the unit circle since the only difference is the
projection in the weighted domain by the matrix Wi, not changing the construc-
tion of x and X, as discussed in Section 3.1. In [16] a proof that ‖r̂i+1‖2 ≤ ‖r̂

i‖2
(where r̂i = x−Xâi) is provided, meaning that this is a descent algorithm. In
Algorithm 6, the halting criterion can be chosen as either a maximum number
of iterations or as a convergence criterion. The parameter ǫ > 0 is used to avoid
problems when a component of r̂ goes to zero. The weighting done by the square
root of the inverse of the amplitude of the residual increases the influence of the
small values in the residual while the influence of the large residual values de-
creases, consistently with the Laplacian probability density functions, for which
(F.6) is the maximum likelihood approach.

3.4 Burg Method Based on 1-norm Minimization

This method, proposed in [6], stands as a generalization of the Burg method
where the reflection coefficients of the lattice filter are obtaining by minimizing
the 2-norm of the forward and backwards prediction error. In this case the 1-
norm is minimized instead. The algorithm is shown in Algorithm 7. Once the
K reflection coefficient are found, the prediction polynomial and the prediction
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Algorithm 6 Iteratively Reweighted 2-norm Minimization

Inputs: speech segment x

Outputs: predictor âi, residual r̂i

i = 0, initial weights Wi=0 = I

while halting criterion false do

1. âi ← arg mina ‖W
i(x−Xa)‖22

2. Wi+1 ← diag
(∣

∣x−Xâi
∣

∣ + ǫ
)−1/2

3. i← i+ 1
end while

Algorithm 7 1-norm Burg Method

Inputs: speech segment x

Outputs: reflection coefficients {ki}
Initialize forward f0 = x and backward b0 = x error
for i = 1, . . . ,K do

1. ki ← arg minki
‖fi−1 + kibi−1‖1 + ‖kifi−1 + bi−1‖1

update forward error
2. fi(n)← fi−1(n) + kibi−1(n− 1)
update backward error
3. bi(n)← kif(n)i−1 + bi−1(n− 1)

end for

error can be easily calculated. This method is also guaranteed to be stable since
all the reflection coefficients obtained have amplitude less than one. A simple
proof is shown in [6]. This method is however suboptimal due to the decoupling
of the main K-dimensional minimization problem (F.6) in K one-dimensional
minimization sub-problems. This is in contrast with all the other methods that
try to find a minimum in the K−dimensional cost function.

4 Experimental Analysis

In this section, we analyze and compare the performances of the stable predictors
presented in the previous section with traditional 2-norm LP and 1-norm LP. An
overview of the methods compared is shown in Table F.1. In the case of 1-norm
LP, a stability check takes place once the solution is obtained, the stabilization
is performed through pole reflection when the filter is unstable. Notice that pole
reflection is the only way to have the amplitude of the frequency response of
the all-pole model that is exactly the same as the one of the unstable filter. In
all other method, no stability check is performed and the predictor is calculated
directly with the intrinsically stable method.
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Table F.1: Description of the different prediction methods compared in our evaluation.

METHOD DESCRIPTION

LP2

Traditional 2-norm minimization (F.5)
with 10Hz bandwidth expansion (γ =
0.996) and Hamming windowing.

LP1

Traditional 1-norm minimization (F.6).
Stability is imposed by pole reflection if
unstable. No windowing is performed.

STW

Stable 1-norm minimization through re-
duction of the numerical range of the
shift operator (F.16). The weigths in
(F.14) and (F.15) are chosen from the
STE (F.18).

CS1
Constrained 1-norm minimization as
shown in (F.22). No windowing is per-
formed.

BU1

Burg method based on the 1-norm mini-
mization of forward and backward error
(as shown in Algorithm 7). No window-
ing is performed.

RW2

Reweighted 2-norm minimization (as
shown in Algorithm 6). No bandwidth
expansion is performed. No windowing
is performed.

4.1 Modeling Performances

In this section we analyze the modeling performances of the predictors in case
of voiced speech. The experimental analysis has been done on 5,000 frames
of length N = 40 (5 ms) of clean voiced speech coming from several different
speakers with different characteristics (gender, age, pitch, regional accent) taken
from the TIMIT database, downsampled at 8 kHz. As a reference, we used the
envelope obtained through a cubic spline interpolation between the harmonics
peaks of the logarithmic periodogram. This method was presented in [17] and
provides an approximation of the vocal tract transfer function, “cleaned” from
the fine structure belonging to the pitch excitation. We then calculate the log
spectral distortion between our reference envelope Sint(ω) and the estimated AR
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Table F.2: Average spectral distortion for the considered methods in the unquantized case
SDm and quantized case SDq for different prediction orders K. A 95% confidence intervals is
given for each value.

METHOD K SDm SDq

LP2
10 1.97±0.03 2.95±0.09
12 1.98±0.05 2.92±0.12

LP1
10 1.78±0.01 2.53±0.02
12 1.61±0.01 2.31±0.04

STW
10 1.71±0.02 2.47±0.01
12 1.52±0.01 2.19±0.09

CS1
10 1.88±0.01 2.64±0.01
12 1.65±0.01 2.22±0.01

BU1
10 1.91±0.06 2.71±0.09
12 1.84±0.11 2.59±0.10

RW2
10 1.83±0.01 2.51±0.02
12 1.69±0.03 2.37±0.05

model S(ω,a) as:

SDm =

√

1

2π

∫ π

−π

[10 log10 Sint(ω)− 10 log10 S(ω,a)]
2
dω. (F.23)

In general, the linear predictors obtained through 1-norm minimization provide
smoother all-pole models of the vocal tract, therefore more robust to quantiza-
tion. We will then also compare the log spectral distortion between our reference
envelope Sint(ω) and the quantized AR model S(ω, â):

SDq =

√

1

2π

∫ π

−π

[10 log10 Sint(ω)− 10 log10 S(ω, â)]
2
dω. (F.24)

The quantizer used is the one presented in [18], with the number of bits fixed
at 20 for the different prediction orders, providing in all the method presented
a transparent coding [19]. A critical analysis of the results shows how 1-norm
based LP (LP1) offers substantially better modeling of the envelope than tradi-
tional LP (LP2). All the other methods achieve similar performances to LP1,
nevertheless STW offers even better modeling performances, thanks also to the
choice of weights. It should be noted that CS1 increase its performances con-
siderably from order K = 10 to K = 12. This is due to the stringent constraint
on the prediction coefficients (‖a‖1 < 1) that necessarily needs a larger K in
order to grasp the spectral information as well as the other methods.
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Table F.3: Comparison between the considered predictors in coding application through
multipulse encoding (T pulses). A 95% confidence interval is given for each value.

METHOD T â SSNR

LP2
5 19 14.1±3.2
10 19 19.1±2.9

LP1
5 18 15.3±2.1
10 18 21.1±1.7

STW
5 17 14.9±1.6
10 17 20.6±0.9

CS1
5 15 13.9±1.9
10 15 19.2±1.5

BU1
5 19 14.2±0.9
10 19 19.4±0.4

RW2
5 21 15.2±1.2
10 21 20.9±1.7

4.2 Coding Performances

The second objective is to extend these algorithms to the contest of speech
coding. The experimental analysis has been conducted on about one hour of
clean speech (both voiced and unvoiced) coming from several different speakers
with different characteristics (gender, age, pitch, regional accent) taken from the
TIMIT database, re-sampled at 8 kHz. We propose a simple scheme to evalu-
ate the coding performances of the proposed prediction method. A 10th order
predictive analysis is first done on a segment of speech of N = 40. Then a mul-
tipulse encoding procedure [20] is performed to code T pulses in the residual,
with T = 5 and T = 10. Multipulse encoding is used to obtain a sparse resid-
ual, rather than a pesudo-random one like algebraic codes, therefore matching
the characteristics of the 1-norm minimization. In Table F.3, we present the
results in terms of Segmental SNR and number of bits necessary to transpar-
ently encode the predictor (â) using the method presented in [18]. The best
performances in coding are achieved by RW2, consistently with the “guidance”
in the reweighting algorithm given by the square root of inverse of the residual
amplitude, although it requires a larger number of bits to transparently encode
the predictor. As mentioned in the introduction, BU1 does not preserve the
sparsity of the residual and the coding characteristics of the 1-norm, performing
very similarly to the 2-norm. The methods we have introduce seem to have good
coding characteristics. The very smooth spectrum obtain with CS1 allows con-
siderably less bits than any other methods to achieve transparent coding of the
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prediction coefficients, achieving performances comparable to LP2 and BU1.
STW performs just slightly worse than RW2, but with a significant saving in
the bit budget of the predictor.

5 Conclusions

This paper has presented two new methods for finding intrinsically stable solu-
tion to the 1-norm linear prediction problem. The stable methods introduced,
one based on constrained 1-norm minimization and one of the reduction of the
numerical range of the shift operator, have both shown as valid alternatives to
the original 1-norm linear prediction problem preserving the well known proper-
ties of the 1-norm minimization criterion. The experimental analysis has shown
that both methods have attractive performances for the analysis and coding of
speech signals offering comparable performances to the original problem with-
out a significant increase in complexity. This two methods have also shown to
be slightly better in modeling performance compared to two well-known stable
1-norm methods: the 1-norm Burg method and the reweighted 2-norm.
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Abstract

Linear prediction has generally failed to make a breakthrough in audio process-
ing, as it has done in speech processing. This is mostly due to its poor modeling
performance, since an audio signal is usually an ensemble of different sources.
Nevertheless, linear prediction comes with a whole set of interesting features that
make the idea of using it in audio processing not far fetched, e.g., the strong abil-
ity of modeling the spectral peaks that play a dominant role in perception. In this
paper, we provide some preliminary conjectures and experiments on the use of
high-order sparse linear predictors in audio processing. These predictors, suc-
cessfully implemented in modeling the short-term and long-term redundancies
present in speech signals, will be used to model tonal audio signals, both mono-
phonic and polyphonic. We will show how the sparse predictors are able to model
efficiently the different components of the spectrum of an audio signal, i.e., its
tonal behavior and the spectral envelope characteristic.

1 Introduction

Linear prediction (LP) is arguably one of the most successful tools for the anal-
ysis and coding of speech signals [1]. Its success can be explained by the corre-
spondence between the modeling of the speech production process and the LP
analysis. In particular, the all-pole model corresponding to the LP filter can be
seen as a good approximation of the vocal tract transfer function [2]. Moreover,
the use of LP in speech coding techniques guarantees interesting attributes like
low delay, scalability and, in general, low complexity. The predictor in this case
is used to decorrelate the speech waveform leaving a prediction residual that is
easier to encode.

The LP model is definitely less popular in audio processing. The main reason
is that the predictor does not necessarily model any physical mechanism that
generated the audio signal. The general difficulties in the accurate parametriza-
tion of audio signals [3] have led the way to transform-based audio coders that
exploit perceptual models of human hearing [4]. Nevertheless, the all-pole model
of the LP filter is generally a quite adequate tool to model the spectral peaks
which play a dominant role in perception [5]. This and the properties that made
LP successful in speech coding (low delay, scalability and low complexity) make
the extension of LP to audio coding also appealing. Several examples can be
found in literature (see, e.g., [6–9]). Furthermore, in audio analysis, LP finds
also other interesting applications. For example, the whitening properties of
the predictor can be used to obtain fast converging acoustic echo and feedback
cancelers (see, e.g., [10, 11]).

Since conventional LP, based on the 2-norm minimization of the prediction
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error, is generally performing poorly in audio processing, several methods have
been introduced to improve the LP step in audio processing (see [12] for an
overview). High-order autoregressive (AR) models seem to yield some of the
highest scores in spectral flatness1, therefore the predictor retains a great deal
of spectral information but it does not provide any useful information for coding
purposes.

In our recent work, we have introduced several new predictors for speech
processing applications [13]. In particular in [14], we have shown the benefits of
using high-order sparse linear predictors to model the cascade of short-term and
long-term predictors, providing an efficient decoupling between the two contri-
butions. In general, for a high-order AR filter, a sparse structure is an indication
that the polynomial can be factored into several terms. The challenge would now
be to extend these early contributions to the case of audio signals. We will test
our algorithms and see how the high-order sparse predictors with few nonzero
coefficients are capable to model efficiently the tonal behavior of the audio signal
as well as the spectral envelope characteristic.

The paper is organized as follows. In Section 2, we introduce the tonal
audio signals used in the following sections, providing ideas on how high-order
predictors with a sparse structure can model the different components of the
audio signal. In Section 3, we illustrate the LP methods used in our experiments
and in Section 4 we provide the experimental results. Finally, Section 5 concludes
the paper.

2 Tonal Audio Signal Model

We will only consider tonal audio signals, that is, signals having a spectrum
containing a finite number of dominant frequency components at multiples of
the fundamental frequency f0 (usually found in the range 100-1000 Hz). This
model covers the majority of audio signals. The performance of the different
LP models will be evaluated for three types of audio signals. We will consider
true monophonic and true polyphonic audio signals and synthetic audio signals
consisting of a sum of harmonic sinusoids.

2.1 Monophonic Audio Signals

In the monophonic signal model, it is assumed that all tonal components are
harmonically related to a single fundamental frequency:

x(n) =

M
∑

m=1

αm cos(mω0n+ φm) + r(n), n = 1, . . . , L, (G.1)

1The 2-norm minimization of the prediction error is equal, according to the Parseval’s
theorem [1], to maximizing the spectral flatness of the residual.
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Fig. G.1: Magnitude spectrum of the monophonic audio signal of Example 1.

where the time index n has been normalized with respect to the sampling period
Ts = 1/fs and ω0 = 2πf0/fs. The signal is modeled with M sinusoids (with
parameters αm, mω0, φm) and a noise term r(n) that contains the nontonal
components.
Example 1. The monophonic audio fragment considered was extracted from a
Bb clarinet sound recording in the McGill University Master Samples (MUMS)
collection (fs = 44100 Hz). The spectrum of this N = 2048 samples fragment,
which corresponds to the samples 70001 to 72048 of the G4 note recording, is
shown in Figure G.1. The fundamental frequency corresponds to f0 = 387.6 Hz
and the signal has M = 15 relevant harmonics.
Even though this signal can generally not be considered as output of an AR

process, significant considerations can be made. As it is clear from Figure G.1,
the signal spectrum is made up by two components: a comb-like structure where
the peaks are located in the multiples of the fundamental frequency and a smooth
spectral envelope that resembles a low-pass filter, since the harmonic structure
is more prominent in the lower half of the spectrum. The comb-like structure
can be modeled by the filter:

Hp(z) =
1

P (z)
=

Gp

1− pz−P
, (G.2)

where P = T0/Ts (T0 = 1/f0) and Gp is a scaling factor2. The low-pass compo-
nent can be modeled by an all-pole filter:

Hf (z) =
1

F (z)
=

Gf

1−
∑Nf

k=1 fkz−k
. (G.3)

2If P is non-integer, a fractional-delay filter P (z) can be used [15].
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The cascade of the two filters corresponds the multiplication in the z-domain of
the their transfer functions:

Ha(z) =
1

A(z)
=

GfGp

F (z)P (z)
=

GfGp

1−
∑K

k=1 akz−k

=
GfGp

(1−
∑Nf

k=1 fkz−k)(1− pz−P )
.

(G.4)

The signal can therefore be modeled with an order K ≥ P +Nf sparse predictor
A(z). The resulting predictor coefficient vector a = {ak} of the high-order
polynomial A(z) will therefore be highly sparse. We will see how we can take
this into account in the linear prediction model and minimization criterion.

2.2 Synthetic Audio Signals Consisting of a Sum of Har-

monic Sinusoids in White Noise

Synthetic tonal audio signals are well suited for examining the modeling prop-
erties of the high-order sparse LP models presented below, since these provide
exact knowledge of the fundamental frequency f0 and the number of harmonics.
The model is similar to (G.1):

x(n) =

M
∑

m=1

αm cos(mω0n+ φm) + r(n), n = 1, . . . , L, (G.5)

except that the noise term r(n) will be white noise, therefore not containing
low-power harmonics.
Example 2. We have built a synthetic signal of N = 2048 samples with M = 15
tonal components and random, uniformly distributed amplitudes (αm ∈ (0, 1])
and phases (φm ∈ [0, 2π)). The radial fundamental frequency was chosen to be
ω0 = 2π/64, that is, at fs = 44.1 kHz, f0 = 689.1 Hz. The pitch period T0 being
equal to an integer number of sampling periods (T0 = 64Ts) will clearly illustrate
the effects of the pitch predictor.
In this case, we can also make considerations similar to those made for the
monophonic case. The magnitude spectrum is similar to the one in Figure G.1,
the main difference being the predominance of the harmonic sinusoids over the
rest of the spectrum. While the comb-like behavior can still be modeled by a
pitch predictor P (z), the predictor F (z), used to model the smooth spectral
envelope of the signal, will now serve to enhance the frequencies where the
harmonics are located. In particular, the low-pass filter will exhibit a sharper
transition between the lower half of the spectrum and the higher frequencies.
This necessarily translates into a higher order Nf for F (z).
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Fig. G.2: Magnitude spectrum of the polyphonic audio signal of Example 3. In the smaller
frame, we show a detail of the frequency range [0, 800] Hz where the first harmonics of each
of the four monophonic signals are located (f0,n = {258.4, 323.0, 387.6, 516.8}).

2.3 Polyphonic Audio Signals

The polyphonic audio signals are a finite sum of monophonic signals:

x(n) =

M
∑

m=1

(

Qm
∑

q=1

αm,q cos(qω0,mn+ φm,q)) + r(n),

n = 1, . . . , L

(G.6)

where ω0,q represents the fundamental frequency of the q−th monophonic signal.
Example 3. The polyphonic audio signal considered was generated by adding four
monophonic piano sounds from the MUMS concert hall Steinway recordings.
The samples 2001 to 4048 of the C4, E4, G4, and C5 note recordings were
added to obtain a N = 2048 C major chord, plotted in Figures G.2. The four
fundamental frequencies are f0,n = {258.4, 323.0, 387.6, 516.8} Hz, and each of
the monophonic components has 7 relevant harmonics.
Linear prediction of polyphonic audio signals is the most challenging case. It

is also the most significant one, since audio signals are usually an ensemble of
different sources with different fundamental frequencies. The same reasoning we
have followed for the case of monophonic audio signals can be used for polyphonic
signals with some important differences. The smooth spectral envelope is clearly
similar to the monophonic one, therefore requiring a low-order predictor F (z)
to model it. The substantial difference comes from the modeling of the sum
of the different comb-like components. In particular, the multipitch structure,
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differently from (G.2), will have to be modeled by:

Hp(z) =

M
∑

i=1

Gpi

Pi(z)
=

M
∑

i=1

Gpi

1− piz−Pi
, (G.7)

which is a pole-zero filter. Since we are interested in an all-pole filter this may
translate into a defect in modeling. Nevertheless, in our experimental analysis,
we have noticed that, since pi < 1, we can write:

Hp(z) =

M
∑

i=1

Gpi

1− piz−Pi
≈

Gp
∏M

i=1(1− piz−Pi)
. (G.8)

This simplification seems far fetched and obviously requires some further anal-
ysis. Nevertheless, we will show it holds quite well in modeling the harmonic
behavior. Just as in the monophonic case, also a low-order all-pole model (G.3)
can be used to model the envelope. The high-order sparse predictor resulting
from the cascade of the two contributions will still be sparse:

Ha(z) ≈
1

A(z)
=

GfGp

F (z)P (z)
=

GfGp

1−
∑K

k=1 akz−k

=
GfGp

(1−
∑Nf

k=1 fkz−k)(
∏M

i=1(1− piz−Pi))
.

(G.9)

The order of the high-order sparse predictor A(z) will be K ≥
∑

i Pi + Nf in
order to accommodate all the cross terms.

3 Linear Prediction in Audio Processing

The estimation problems considered in this paper are based on the following
autoregressive (AR) model, where a signal sample x(n) is written as a linear
combination of past samples:

x(n) =

K
∑

k=1

akx(n− k) + e(n). (G.10)

Here, {ak} are the prediction coefficients and e(n) is the excitation of the cor-
responding AR filter, also referred to as the prediction error. We consider the
optimization problem associated with finding the prediction coefficient vector
a ∈ R

K from a set of observed real samples x(n) for n = 1, . . . , N so that the
prediction error is minimized [16]. This corresponds to the following minimiza-
tion problem:

min
a
‖x−Xa‖pp + γ‖a‖kk, (G.11)
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where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)







and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for p ≥ 1. The
starting and ending points N1 and N2 can be chosen in various ways by assuming
x(n) = 0 for n < 1 and n > N . In this paper we will use the most common
choice of N1 = 1 and N2 = N +K, which is equivalent, when p = 2 and γ = 0,
to the autocorrelation method :

â = arg min
a
‖x−Xa‖22 = (XT X)−1XT x, (G.12)

where R = XT X is the autocorrelation matrix (when N1 = 1 and N2 = N +K)
[17].

3.1 High-Order LP Modeling

It is well known that a signal composed of M sinusoids can be modeled exactly
using an autoregressive moving average model, i.e., ARMA(2M ,2M) model.
This model can be arbitrarily closely approximated with an AR model, provided
that the model order K is chosen large enough [18]. We will consider for all our
audio segments a K = 1024 order predictor, solution of the 2-norm minimization
problem (G.12). The general goal of the high-order model is to maximize the
spectral flatness of the residual. However, the all-pole model does not provide
hints for factorization, as it does not exploits the harmonicity properties of the
signal.

3.2 Pitch Prediction

A monophonic signal with a pitch period T0 corresponding to an integer number
of sampling periods Ts can be perfectly predicted using the one-tap pitch pre-
dictor in Eq. (G.2). Obviously, the pitch period will generally not be an integer
multiple of the sampling period, such that the use of a multi-tap pitch predic-
tor is required for interpolation, or a fractional-delay filter should be used. The
drawback with employing only a pitch predictor is that this creates an extremely
non-smooth residual signal by also attempting to cancel harmonic frequencies
which are not present in the input signal. For these reasons, in this paper we will
use a 3-tap pitch predictor [19], efficient in modeling the decreasing comb-like
structure of the signals analyzed.

The pitch prediction model is the only prediction model in which the har-
monicity property is exploited. The underlying signal model of the monophonic
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audio signal in (G.1) is harmonic, while the polyphonic signal model in (G.6)
is not. Therefore, while performing accurately for the monophonic signal, the
pitch predictor fails to recover the different pitch components in the polyphonic
audio. In particular, we have observed, that its estimation of the fundamental
frequency f0 = 1/T0 is similar to a weighted average of the different fundamental
frequencies f0,n of the underlying model.

3.3 High-Order Sparse LP Modeling

Considering the two signal models we have introduced for the monophonic and
synthetic audio (G.4) and for the polyphonic audio (G.9), we use the minimiza-
tion problem in (G.11) to find the LP coefficients imposing k = 0. In this way,
sparsity of the high-order predictor is taken into consideration directly in the
minimization problem. The operator ‖ · ‖0 represents the so-called 0-norm, i.e.,
the cardinality of the vector. A relaxation of this non-convex problem is ob-
tained by approximating the 0-norm with the more tractable 1-norm or by the
iteratively reweighted 1-norm, bringing the solution closer to the 0-norm [13].
In this paper we will limit the analysis to the 1-norm. The regularization term γ
is then clearly related to the a priori knowledge that we have on the coefficients
vector {ak} or, in other terms, to how sparse {ak} is. There are many ways to
choose γ. To generate preliminary results, we will consider it fixed (γ = 0.1).
The order of the predictor is K = 1024. The choice of p is also non-trivial. For
p = 2 we will obtain a Gaussian residual, consistent with the equivalent i.i.d.
Gaussian maximum likelihood approach to determine the coefficients. The case
p = 1 is probably more interesting: seeing this as a convex relaxation of the
0-norm, the residual will be also sparse, providing interesting coding properties
that will be subject to further analysis. The minimization problem considered
used is then:

â = arg min
a
‖x−Xa‖1 + γ‖a‖1. (G.13)

The high-order LP in (G.12) does not rely on harmonicity, while the pitch pre-
dictor relies basically only on harmonicity thus greatly simplifying the calcu-
lations. The high-order sparse LP positions itself somewhere in between these
two approaches, providing significant modeling properties similar to (G.12) but
parametrizing the signal in a more sophisticated way by taking into account the
different components of the signal. Furthermore, when the order K approaches
N/2 in (G.12), a number of spurious spectral peaks start to appear. This effects
can be traced back to the ill-conditioning of the normal equations (XT X)−1XT x

and in particular to the observation matrix X with highly correlated rows when
sinusoids are present in the data [20]. The sparsity of the predictor, helps reduc-
ing the ill-conditioning basically applying an “automatic” pruning of the rows
of the observation matrix without the necessary a priori knowledge used, for
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example, in [21]. Indeed, the inclusion of the regularization term in (G.13) can
also be seen as a general method for solving ill-posed problems [22].

4 Experimental Analysis

4.1 Spectral Modeling

In this section we will compare the use of high-order sparse LP with the con-
ventional high-order 2-norm LP. The comparison is done for the audio signals
introduced in Section 1 (Example 1-3). The first Nf coefficients belonging to
the low-pass filter are chosen using a model order selection criterion [13].

Monophonic Audio Signal

The frequency response of the filters is shown in Figure G.4 while the two predic-
tors are shown in Figure G.3. It is clear that the predictor is an accurate model
of the two expected contributions: P (z) and F (z). In particular the convolutive
term is clustered around the integer pitch delay corresponding to the inverse of
the fundamental frequency and the peak is exactly located in P = ⌈fs/f0⌋ = 113
(where fs = 387.6 Hz). Remarkably, the shape resembles the fractional-delay
interpolation filter [23]. The combination of the two contributions models very
accurately the comb-like structure and the low-pass behavior (Fig. G.4). A 4th
order polynomial was enough to model the low-pass behavior, this corresponds
to the first four samples of the sparse prediction vector. It is also clear that
the order K = 1024 is excessive, an order K ≥ P + Nf where Nf ≈ 4 and
P = fs/f0 would have been sufficient. A final word should be spent regarding
the sparsity of the vector. The signal, having M = 15 relevant harmonics, could
be modeled accurately using an ARMA(30,30) model. It is clear that achieving
similar performance with just 25 nonzero samples is an important result that
can be exploited in coding applications.

Synthetic Sum of Sinusoids

Similar considerations can be made for the synthetic audio signal. A 10th order
polynomial models the envelope enhancing the frequency present in the first half
of the spectrum. The pitch predictor models exactly the comb like structure
since the pitch period T0 is equal to an integer number of sampling periods
(T0 = 64Ts). An example of the modeling behavior of the predictor is shown in
Figure G.5. For the sake of brevity the predictor structure is not shown.
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Fig. G.3: High-order 2-norm LP (HOLP, above) and high-order sparse LP (HOSpLP, below)
for a monophonic audio signal. A detail of the coefficients of order 105-125 is shown in the
frame. The number of nonzero samples in the sparse predictor is 25.

Polyphonic Audio Signal

The frequency response of the filters is shown in Figure G.6 while the two pre-
dictors are shown in Figure G.7. The predictor is less sparse than in the mono-
phonic case, taking into consideration the different multipitch components. Fur-
thermore, we notice that the approximation we have performed in (G.9), holds
quite well and the predictor seems to model accurately the whole sum of differ-
ent harmonics coming from the different signals. The only drawback seems the
over-emphasis of the envelope in modeling the low-pass behavior that we have
not observed in the other cases. This will be subject to further analysis since
at this early point it is difficult to provide an explanation. In this case also the
order K = 1024 is excessive: recalling that K ≥

∑

i Pi +Nf , the order should be
a little higher than 500. Moreover, the number of nonzero samples in the sparse
predictor is 53, which is considerably less than the number of coefficients of an
ARMA(56,56) model (sum of four signal with M = 7 relevant harmonics each).

4.2 Spectral Flatness Performance

The spectral flatness measure (SFM) of the LP residual [18] in dB is a negative
real number, with SFM= 0 dB corresponding to a flat spectrum. In Table G.1 we
describe the ∆SFM’s, differences in spectral flatness, between the original audio
signals (monophonic and polyphonic) and its residual provided by the three
methods presented in Section 3. It can clearly be seen that high-order 2-norm
minimization certainly provides a higher spectral flatness (as expected) although
with a highly dense predictor. The 3-tap pitch-predictor, while performing with
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Fig. G.4: Monophonic audio signal. Frequency response for the all-pole high-order 2-norm
LP (HOLP), high-order sparse LP (HOSpLP) and the 4th order smooth spectral envelope
(ENV). A detail of the first nine harmonics and the predictors modeling behavior is shown in
the smaller frame.

Table G.1: Difference in spectral flatness between the original audio signals (monophonic
and polyphonic) and their residuals for the three methods presented in Section 3: high-order
2-norm LP (HOLP), 3-tap pitch predictor (PP) and high-order sparse LP (HOSpLP).

METHOD ∆SFMmono ∆SFMpoly

HOLP 35.41 dB 37.02 dB
PP 24.37 dB 17.03 dB

HOSpLP 34.59 dB 32.43 dB

a certain degree of accuracy in the monophonic case, fails to model the multipitch
behavior of the underlying signal structure in the polyphonic case. The high-
order sparse LP offers almost the same performance as the high-order 2-norm
with only 1/100th of the taps necessary. As for the polyphonic case, we notice
a more significant difference in performance between sparse LP and 2-norm
LP. This is mostly due to the simplification of the pole-zero model structure
represented only by the sparse LP and the over-emphasis of the low-pass spectral
characteristic in the higher frequency range.

5 Conclusions

The use of high-order sparse LP in audio processing seems quite promising. In
particular, the different components of the audio signal (the spiky harmonics
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Fig. G.5: Synthetic sum of sinusoids. Frequency response for the all-pole high-order 2-norm
LP (HOLP), high-order sparse LP (HOSpLP) and the 10th order smooth spectral envelope
(ENV). A detail of the first two harmonics and the predictors behavior is shown in the smaller
frame.

located on the lower half of the spectrum and the low-pass overall behavior of
the envelope) are modeled efficiently by the high-order predictor. Furthermore,
while reaching spectral flattening performances comparable with high-order 2-
norm LP, the high-order sparse LP only requires few nonzero components, offer-
ing important hints for coding. In this regard, we should notice that the use of
1-norm residual minimization provides also a sparse residual rather than a mini-
mum variance one, arguably related to more efficient coding strategies. Although
the frequency behavior corresponding to the 1-norm minimization is unknown,
the numerical results obtained clearly show potential advantages of the sparse
formulation for spectral modeling. The results presented also make the sparse
LP modeling promising for coding applications. This, and other questions left
open, such as stability and complexity will be subject of our future work.
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Abstract

Encouraged by the promising application of compressed sensing in signal com-
pression, we investigate its formulation and application in the context of speech
coding based on sparse linear prediction. In particular, a compressed sensing
method can be devised to compute a sparse approximation of speech in the resid-
ual domain when sparse linear prediction is involved. We compare the method
of computing a sparse prediction residual with the optimal technique based on
an exhaustive search of the possible nonzero locations and the well known Multi-
Pulse Excitation, the first encoding technique to introduce the sparsity concept
in speech coding. Experimental results demonstrate the potential of compressed
sensing in speech coding techniques, offering high perceptual quality with a very
sparse approximated prediction residual.

1 Introduction

Finding a sparse approximation of the prediction residual in Linear Predictive
Coding (LPC) has been an active field of research for the past thirty years.
A significant result was found with the introduction of the Multi-Pulse Exci-
tation (MPE) technique [1] providing a suboptimal solution to a problem of
combinatorial nature. The purpose of this scheme is to find a prediction resid-
ual approximation with a minimum number of nonzero elements, still offering a
high perceptual quality. MPE quickly evolved to Code Excited Linear Predic-
tion (CELP), where the best residual approximation is selected from a codebook
populated with pseudo-random white sequences. This choice was motivated by
the statistic of the residual, ideally a sequence of i.i.d. Gaussian samples (due
to the use of 2-norm minimization in the LP analysis).

In our recent work, we have utilized recent developments in convex opti-
mization to define a new synergistic predictive framework that aims for a sparse
prediction residual rather than the usual minimum variance residual [2, 3]. We
have also shown that MPE techniques are better suited in this framework for
finding a sparse approximation of the residual. Considering that MPE is itself
a sub-optimal approach to modeling prediction residuals, a natural question is
whether one can improve upon the performance of MPE by moving towards
a more optimal approach of capturing prediction residuals without increasing
complexity. Recent work on sparse solutions to linear inverse problems, com-
monly referred to as compressive sensing (CS), should be able to provide methods
for tackling such issues [4]. While CS has been mainly applied to signals such
as images with a natural underlying sparse structure, CS methods also seem
to be appropriate for signals that are almost sparse, or for which sparsity is
imposed [5]. Consequently, one expects that CS methods can be utilized to esti-
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mate a sparse residual within a suitably modeled predictive coding framework.
In [6] the authors examined the use of CS within speech coding, resulting in a
restricted approach in which a codebook of impulse response vectors is utilized
in tandem with an orthonormal basis. In [7], one can find a CS formulation of
sinusoidal coding of speech.

In this paper, we examine CS within predictive coding of speech. In contrast
to the work in [6], we do not utilize a codebook of impulse response vectors,
and instead examine the more familiar approach to predictive coding in which
the impulse response matrix is specified. In particular, we demonstrate how a
CS formulation utilizing the Least Absolute Shrinkage and Selection Operator
(LASSO [8]) method allows for a trade-off between the sparsity of the residual
and the waveform approximation error. Moreover, this CS approach leads to
a reduction in complexity in obtaining sparse residuals, moving closer to the
optimal 0-norm solution while keeping the problem tractable through convex
optimization tools and projection onto a random basis. In addition, this paper
also shows the successful extension of the CS formulation to the case where the
basis is not orthogonal, a case which is rarely examined in the CS literature.
In simulations, the CS-based predictive coding approach provides better speech
quality than that of MPE-based methods at roughly the same complexity.

The paper is structured as follows. In Section 2 we briefly review the gen-
eral CS theory. In Section 3 we introduce the CS formulation for the case of
speech coding, providing some significant results in Section 4. Section 5 will
then conclude our work.

2 Compressed Sensing Principles

Compressed sensing (CS) has arguably represented a shift in paradigm in the
way we acquire, process and reconstruct signals. In essence, CS exploits prior
knowledge about the sparsity of a signal x in a linear transform domain in order
to develop efficient sampling and reconstruction. Let x ∈ R

N be the signal for
which we would like to find a sparse representation and Ψ = {ψ1, . . . , ψN} be
the orthonormal basis (or orthobasis). Considering the expansion of x onto the
basis Ψ as:

x = Ψr =
N

∑

i=1

riψi (H.1)

where r is the vector of the scalar coefficients of x in the orthobasis. The
assumption of sparsity means that only K coefficients, with K << N , of r are
significant to represent x. In particular, x is said to be K-sparse if only K
nonzero samples in r are sufficient to represent x exactly.

In CS we do not observe the K-sparse signal x directly, instead we record
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M < N nonadaptive linear measurements:

y = Φx =

N
∑

i=1

φm(i)x(i), 1 ≤ m ≤M < N, (H.2)

where Φ ∈ R
M×N is a measurement matrix made up of random orthobasis vec-

tors. CS theory states that we can reconstruct x (or, equivalently r) accurately
from y if Φ and Ψ are incoherent (µ(Ψ,Φ) ≈ 1, where µ(Ψ,Φ) is the coherence
measure, the largest correlation between any two columns of the basis matrix
and the random matrix). This property is easily achievable when the entries of
the random matrix Φ are i.i.d. Gaussian variables. In this case, the recovery
works with high probability if M is in the order of K log(N) [9]. If the incoher-
ence holds, the following linear program gives an accurate reconstruction with
very high probability:

min
r∈RN

‖r‖1 s.t. y = ΦΨr, (H.3)

where ‖r‖1 = (
∑N

n=1 |r(n)|) is the 1-norm and it is used as a convex relaxation
of the so-called 0-norm, the cardinality of a vector.

A very interesting property of CS is that if x is not K-sparse (or, not exactly
K-sparse), the quality of the recovered signal r (or, equivalently x) is as good
as if we were to select only the K largest values before the calculations, and
measure them directly. To quote [9]:

the reconstruction is nearly as good as that provided by an oracle
which, with full and perfect knowledge about r, would extract the K
most significant pieces of information for us.

This important property, stated elegantly in [10], extends the use of CS to all
kinds of signals for which we would like to find a sparse representation. In
particular, it allows us to apply CS to signals where K is not defined by the
signal x but by our “need” for sparsity, therefore allowing an approximation
error:

e = y −ΦΨr. (H.4)

The formulation in (H.4) will then become:

min
r∈RN

‖r‖1 s.t. ‖y −ΦΨr‖22 ≤ ǫ, (H.5)

where ǫ is the bound for the approximation error. This inequality constrained
convex problem can also be rewritten using Lagrange multipliers as:

min
r∈RN

‖r‖1 + γ‖y −ΦΨr‖22. (H.6)
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This latest formulation, also called Least Absolute Shrinkage and Selection Op-
erator (LASSO [8]), shows more clearly the robustness of CS to signals that are
not necessarily sparse and in particular, the trade-off between the sparsity of r

and the approximation error e(γ, r).
Summarizing, if we wish to perform CS, two main ingredients are needed: a

domain where the analyzed signal is sparse and the sparsity of this signal. The
domain is found through a linear transform while the level of sparsity can be
either known or assumed. In the next section we will see how can we define the
CS formulation in speech coding.

3 Compressed Sensing Formulation for Speech Cod-

ing

3.1 Definition of the Transform Domain

In speech coding, the transform domain where the representation is required
to be sparse is the prediction residual. In our previous work, we have indeed
found very few nonzero samples in the residual when sparse linear prediction
is involved [2, 3]. Considering the simple case in which we would like to find
a linear predictor a of order P that provides a sparse residual, the formulation
becomes:

â = arg min
a∈RP

‖x−Xa‖1; (H.7)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 − P )
...

...
x(N2 − 1) · · · x(N2 − P )







and ‖ · ‖1 is the 1-norm. The start and end points N1 and N2 can be chosen
in various ways assuming that x(n) = 0 for n < 1 and n > N . An appropriate
choice is N1 = 1 and N2 = N+P (in the case of 2-norm minimization, this leads
to the autocorrelation and to the Yule-Walker equations). The more tractable
1-norm is used as a linear programming relaxation of the sparsity measure, just
like in (H.4). Given a prediction filter a the residual vector can be expressed as:

r = Ax, (H.8)

where A is the N × N matrix that performs the whitening of the signal, con-
structed from the coefficients of the predictor a of order P [11].

Equivalently, we can write:

x = A−1r = Hr, (H.9)
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where H is the N × N inverse matrix of A and is commonly referred to as
the synthesis matrix [11] that maps the residual representation to the original
speech domain. In practice, this inversion is not computed explicitly and H

is constructed directly from the impulse response h of the all pole filter that
corresponds to a. Furthermore, the usual approach is to have N + P columns
in H bringing in the effects of P samples of the residual of the previous frame
(the filter state/memory).

It is important to notice that the column vector r will be now composed of
N + P rows, but the first P elements belong to the excitation of the previous
speech frame and therefore are fixed and do not affect the minimization process.

It is now clear that the basis vectors matrix is the synthesis matrix Ψ = H.
We can now write:

x =

K
∑

i=1

rni
hni

, {n1, n2, . . . , nK} ⊂ {1, . . . , N + P} . (H.10)

where hi represents the i−th column of the matrix H. The formulation then
becomes:

r̂ = arg min
r∈RN

‖r‖1 + γ‖y −ΦHr‖22 (H.11)

where y = Φx is the speech signal compressed through the projection onto the
random basis Φ of dimension M × N . The second term is now the 2-norm of
the difference between the original speech signal and the speech signal with the
sparse representation, projected onto the random basis. Assuming that:

‖y −ΦHr‖22 = ‖Φ(x−Hr)‖22 ≈ ‖x−Hr‖22, (H.12)

the problem in (H.11) can now be seen as a trade-off between the sparsity in the
residual vector and the accuracy of the new speech representation x̂ = Hr̂. To
ensure simplicity in the preceding and following derivations, we have assumed
that no perceptual weighting is performed. The results can then be generalized
for an arbitrary weighting filter.

An important aspect that should be taken into consideration is that, if the
transformation matrix Φ is not exactly orthogonal, such as in the case of Φ = H,
the recovery is still possible, as long as the incoherence holds (µ(Φ,H) ≈ 1) [4].

3.2 Defining the Level of Sparsity

CS theory states that for a vector x of length N with sparsity levelK (K << N),
M = O(K log(N)) random linear projections of x are sufficient to robustly (i.e.,
with overwhelming probability) recover x in polynomial time. With a proper
random basis, so that Φ and H are incoherent (µ(Φ,H) ≈ 1) [12], as a rule of
thumb, four times as many random samples as the number of non-zero sparse
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samples should be used; therefore, we can simply choose M = 4K [9]. It is now
clear that the size of the random matrix Φ depends uniquely on the sparsity level
K that we expect in the residual vector. Now the question is how sparse do we
expect the residual to be? An interesting case for the choice of K is obtained for
voiced speech. In this case, the residual r is a train of impulses. Each impulse is
separated by Tp samples, the pitch period of the voiced speech which is inversely
proportional to the fundamental frequency f0. It is now clear that K will depend
on Tp; for a segment of voiced speech of length N , we can reasonably assume
to find only N/Tp significant samples in the residual, belonging to the impulse
train. A coarse estimation of the integer pitch period Tp can be easily obtained
by an open-loop search on the autocorrelation function of the vector x. Then
the number of random projections sufficient for recovering x will be M = 4 N

Tp
.

In the case of unvoiced speech the choice of K is not direct, however we can
use a heuristic approach where K = k is picked when the improvement in the
accuracy of the representation between the choice of K = k and K = k + 1 is
negligible.

3.3 Similarities with Multi-Pulse Excitation

In Multi-Pulse Excitation (MPE) coders the prediction residual consists of K
freely located pulses in each segment of length N . This problem is made im-
practical by its combinatorial nature and a suboptimal algorithm was proposed
in [1] where the sparse residual is constructed one pulse at a time. Starting with
a zero residual, pulses are added iteratively adding one pulse in the position
that minimizes the error between the original and reconstructed speech. The
pulse amplitude is then found in an Analysis-by-Synthesis (AbS) scheme. The
procedure can be stopped either when a maximum fixed number of amplitudes is
found or when adding a new pulse does not improve the quality. MPE provides
an approximation to the optimal approach, when all possible combinations of K
positions in the approximated residual of length N are analyzed, i.e.:

r̂ = arg min
r∈RN

‖x−Hr‖22 s.t. ‖r‖0 = K. (H.13)

The compressive sensing formulation in (H.11) can then be seen to approximate
(H.13), finding a trade-off between the information content of the prediction
residual and the quality of the synthesized speech.

4 Experimental Results

To evaluate our method, we have analyzed about one hour of clean speech coming
from several different speakers with different characteristics (gender, age, pitch,
regional accent) taken from the TIMIT database, re-sampled at 8 kHz. The order
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Table H.1: Comparison between the sparse residual estimation methods. A 95% confidence
intervals is given for each value.

METHOD K AS-SNR MOS t

OPT
10 21.2±3.1 3.25±0.13 343±5
20 27.2±1.6 3.52±0.09 581±3

CS
10 20.6±2.6 3.13±0.16 0.3±0.1
20 25.9±1.9 3.49±0.13 0.5±0.1

MPE
10 17.2±4.1 3.03±0.15 0.1±0.2
20 20.3±3.2 3.22±0.12 0.9±0.3

of the sparse linear predictor is P = 10, the length of the speech frame is N = 160
(20 ms). Three methods are compared: the MPE, the CS based approach in
(H.11) and the optimal combinatorial approach (OPT) in (H.13). For simplicity,
no long-term pitch prediction is performed. In the CS formulation, the random
matrix Φ is populated with Gaussian samples with distribution N(0, 1) and the
size is chosen according to the level of sparsity we want to retrieve using the
relation M = 4K. The regularization parameter γ is chosen as the point of
maximum curvature of the L−curve, using the method presented in [13].

In Figure H.1, we present the unquantized results of the three methods in
term of the normalized error ‖x − x̂‖2/‖x‖2, with x̂ = Hr̂(K) averaged over
all frames, choosing different levels of sparsity K. It is clear that for K > 10,
the CS solution performs similarly to the optimal solution. While for very few
samples K < 5, the performance is comparable to that of MPE.

In the quantized case, we concentrate our experimental analysis for the two
most significant cases (K = 10 and K = 20). The quantization process uses
20 bits to encode the predictor using 10 line spectral frequencies (providing
transparent coding) using split vector quantization. A 3 bit uniform quantizer
that goes from the lowest to the highest magnitude of the residual pulses is used
to code the residual pulses; 5 bits are used to code the lowest magnitude and 2
bits are used to code the difference between the lowest and highest magnitudes.
The signs are coded with 1 bit per each pulse. We postpone the efficient encoding
of the positions to further investigation, for now we just use the information
content of the pulse location log2

(

N
K

)

bits. The bit rate produced is respectively
5900 bits/s for K = 10 and 9500 bits/s for K = 20. In Table H.1, we present the
results in terms of Average-Segmental SNR, MOS and empirical computational
time t in elapsed CPU seconds of the three methods for the quantized case. It is
now clear that the CS formulation achieves similar performances to the optimal
case, in a computational time similar to that of MPE.

As mentioned in the previous section, the CS recovery seems also particularly
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Fig. H.1: Number of nonzero samples K versus the average normalized reconstruction error
‖x − x̂‖2/‖x‖2 for a speech segment x. The values corresponding to K > 30 are not shown
for clarity as the error rates converge to zero.

attractive for the analysis and coding of stationary voiced signals. In Figure H.2
we see an example of CS recovery of pitch excitation. The open-loop pitch search
gives us a coarse approximation of the pitch period of Tp = 35 (f0 ≈ 229Hz).
We then impose K = ⌈N/Tp⌉ = 10 and M = 40, using the relation M = 4K.
From the solution we take the K = 10 pulses with largest magnitude. We can
clearly see that this kind of approximation works very well in the case of voiced
speech, retrieving the K pulses belonging to the train of impulses with very high
accuracy. The distance between pulses is then approximately Tp.

5 Conclusions

In this paper we have introduced a new formulation in the context of speech
coding based on compressed sensing. The CS formulation based on LASSO has
shown to provide an efficient approximation of the 0-norm for the selection of
the residual allowing a trade-off between the sparsity imposed on the residual
and the waveform approximation error. The convex nature of the problem, and
its dimensionality reduction through the projection onto random basis, makes it
also computationally efficient. The residual obtained engenders a very compact
representation, offering interesting waveform matching properties with very few
samples, making it an attractive alternative to common residual encoding proce-
dures. The results obtained also show clearly that CS performs quite well when
the basis are not orthogonal, as anticipated in some CS literature.
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Fig. H.2: Example of CS recovery of the pitch excitation for a segment of stationary voiced
speech. In (a) we show the estimated excitation using (H.7) and in (b) the original speech
segment. In (c) we show the CS recovered excitation with K = N/Tp = 320/35 ≈ 10 and in
(d) the reconstructed speech segment.
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Abstract

In this work, we propose a novel scheme to re-estimate the linear predictive
parameters in sparse speech coding. The idea is to estimate the optimal truncated
impulse response that creates the given sparse coded residual without distortion.
An all-pole approximation of this impulse response is then found using a least
square approximation. The all-pole approximation is a stable linear predictor that
allows a more efficient reconstruction of the segment of speech. The effectiveness
of the algorithm is proved in the experimental analysis.

1 Introduction

The most important speech coding paradigm in the past twenty years has been
Analysis-by-Synthesis (AbS) [1, 2]. The name signifies analysis of the optimal
parameters by synthesizing speech based on these. In other words, the speech
encoder mimes the behavior of the speech decoder in order to find the best
parameters needed. The usual approach is to first find the linear prediction
parameters in a open-loop configuration then searching for the best excitation
given certain constraints on it. This is done in a closed-loop configuration where
the perceptually weighted distortion between the original and synthesized speech
waveform is minimized. The conceptual difference between a quasi-white true
residual and its approximated version, where usually sparsity is taken into con-
sideration, creates a mismatch that can raise the distortion significantly. In our
previous work we have defined a new synergistic predictive framework that re-
duces this mismatch by jointly finding a sparse prediction residual as well as a
sparse high order linear predictor for a given speech frame [3]. Multipulse encod-
ing techniques [4] have shown to be more consistent with this kind of predictive
framework, offering a lower distortion with very few samples [5].

In this work, we propose a method to further reduce the mismatch between
sparse linear predictor and approximated residual by re-estimating the linear
predictive parameters. This paper is structured as follow. In Section 2, we
introduce the coding method based on sparse linear prediction. In Section 3, we
introduce the re-estimation procedure and in Section 4 we propose the results
to validate our method. Finally, Section 5 concludes our work.

2 Speech Coding Based on Sparse Linear Predic-

tion

In our previous work [3, 5], we have defined a synergistic new predictive frame-
work that jointly finds a sparse prediction residual r as well as a sparse high
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order linear predictor a for a given speech frame x as

â, r̂ = arg min
a
‖r‖1 + γ‖a‖1, subject to r = x−Xa; (I.1)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)







and ‖ · ‖1 is the 1-norm defined as the sum of absolute values of the vector on
which operates. The start and end points N1 and N2 can be chosen in various
ways assuming that x(n) = 0 for n < 1 and n > N [6]. The more tractable
1-norm ‖ · ‖1 is used as a linear programming relaxation of the sparsity measure,
often represented as the cardinality of a vector, the so-called 0-norm ‖ · ‖0. This
optimization problem can be posed as a linear programming problem and can
be solved using an interior-point algorithm [7]. The choice of the regularization
term γ is given by the L-curve where a trade-off between the sparsity of the
residual and the sparsity of the predictor is found [8].

The sparse structure of the predictor allows a joint estimation of short-term
and long-term predictor [9]:

A(z) ≈ Ã(z) = F (z)P (z), (I.2)

where F (z) is the short-term predictor, commonly employed to remove short-
term redundancies due to the formants, and P (z) is the pitch predictor that
removes the long-term redundancies. The sparse structure of the true residual
r̂ allows for a quick and more efficient search of approximated residual r̃ using
sparse encoding procedure, where the approximated residual is given by a regular
pulse excitation (RPE) [10]. The problem can be rewritten as:

r̃ = arg min
r
‖W(x− H̃r)‖2, (I.3)

by imposing the RPE structure on r̃:

r̃(n) =

N/S−1
∑

i=0

αiδ(n− iS − s) s = 0, 1, . . . , S − 1, (I.4)

where αi are the amplitudes δ(·) is the Kronecker delta function, N/S are the
number of pulses and S is the spacing; only S different configurations of the
positions are allowed (s is the shift of the residual vector grid). In (I.3), W is
the perceptual weighting matrix, H̃ is the (N)×(K+N) synthesis matrix whose
i−th row contains the elements of index [0,K + i− 1] of the truncated impulse
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response h̃ of the combined prediction filter Ã(z) = F (z)P (z):

H̃ =



















h̃K · · · h̃0 0 0 · · · 0

h̃K+1
. . .

. . .
. . . 0 0 0

...
. . .

. . . · · · h̃0 0 0

h̃K+N−2
. . .

. . . · · · h̃1 h̃0 0

h̃K+N−1 h̃K+N−2 · · · · · · h̃2 h̃1 h̃0



















. (I.5)

and r is composed of the previous residual samples r̃− (the filter memory, already
quantized) and the current r̃ that has to be estimated:

r =
[

r̃T
−

r̃T
]T

= [r̃−K , · · · , r̃−2, r̃−1, r̃0, r̃1, r̃2, · · · , r̃N−1]
T
. (I.6)

In the end a segment of speech can be represented by the sparse predictor Ã(z)
and its approximated excitation r̃.

3 Re-estimation of the Predictive Parameters

To ensure simplicity in the following derivations, let us assume that no perceptual
weighting is performed (W = I). The results can then be generalized for an
arbitrary W. The problem in (I.3) is now just a waveform matching problem.
The interesting thing is that, once found a proper sparse excitation, we can re-
estimate the matrix H and therefore the impulse response h by posing it as a
convex optimization problem:

Ĥ = arg min
H
‖(x−Hr̃)‖2 → ĥ = arg min

h
‖(x− R̃h)‖2 (I.7)

where:

R̃ =



















r̃0 · · · r̃−K 0 0 · · · 0

r̃1
. . .

. . .
. . . 0 0 0

...
. . .

. . . · · ·
. . . 0 0

r̃N−1
. . .

. . . · · ·
. . . r̃−K 0

r̃N r̃N−1 · · · · · · · · · r̃−K+1 r̃−K



















. (I.8)

where {r̃−K , . . . , r̃−1} is the past excitation (belonging to the previous frame).
The problem (I.7) allows for a closed form solution when the 2-norm is employed
in the minimization:

ĥ = hopt = R̃T (R̃R̃T )−1x. (I.9)
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Because the matrix R̃T (R̃R̃T )−1 in (I.9) is the pseudo-inverse R̃+ of R̃, the
new hopt is then the optimal truncated impulse response that matches the given
sparse residual:

‖x− R̃hopt‖2 = 0. (I.10)

It is therefore clear that the optimal sparse linear predictor A(z) is the one that
has hopt as truncated impulse response. The problem now is that the impulse
response will include both short-term and long-term contribution. We can split
the two contribution and perform a two step optimization.

Assuming hf the impulse response of the short-term predictor 1/F (z) and
hp the impulse response of the long-term predictor 1/P (z), we can rewrite the
problem in (I.7) as:

Ĥf , Ĥp = arg min
Hf ,Hp

‖(x−HfHpr̃)‖2. (I.11)

We can then proceed with the re-estimation of the impulse response of the short-
term predictor by solving the problem:

ĥf = arg min
hf

‖(x− (HpR̃)hf )‖2, (I.12)

and then find the predictor that approximates ĥf . The predictor A(z) = 1 +
∑Q

k=1 akz
−k can then just be seen as a reduced Q order IIR approximation

(Q << N +K) to the optimal FIR filter Hf (z). Assuming:

Hf (z) =
E(z)

A(z)
(I.13)

where E(z) is the error polynomial and A(z) is the approximating polynomial:

E(z) =

N+Q−1
∑

k=0

eiz
−i (I.14)

and

ei = hf
i −

Q
∑

k=1

akh
f
i−k. (I.15)

We recognize this also as a linear predictive problem. Putting (I.15) into matrix
form:

ê = hf −HF
f â, (I.16)

and:

hf =







hf (N1)
...

hf (N2)






,HF

f =







hf (N1 − 1) · · · hf (N1 −Q)
...

...
hf (N2 − 1) · · · hf (N2 −Q)






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we can solve it using common procedures. In particular, rewriting the problem
as:

â = arg min
â
‖hf −HF

f â‖2. (I.17)

Choosing N1 = 1 and N2 = N+Q and assuming hf (n) = 0 for n < 1 and n > N ,
we find the well known Yule-Walker equations. This guarantees stability and
simplicity of the solution. In more general terms the problem of approximating
the impulse response Hf (z) through the linear predictor A(z) falls in the class of
the approximation of FIR through IIR digital filters (see, for example, [12, 13]).
Using a similar approach we can recalculate the long-term predictor as well.

4 Experimental Analysis

In order to evaluate our method, we have analyzed about one hour of clean speech
coming from several different speakers with different characteristics (gender, age,
pitch, regional accent) taken from the TIMIT database, re-sampled at 8 kHz.
We choose a frame length of N = 160 (20 ms) and a order of the optimization
problem in (I.1) of K = 110. We implement the sparse linear predictive coding
using Nf = 10 and Np = 1, the residual is encoded using RPE with 20 samples
(pulse spacing S = 8), a gain and a shift. The gain is coded with 6 bits and the
pulse amplitude are coded using a 8 level uniform quantizer, the LSF vector is
encoded with 20 bits (providing transparent coding) using the procedure in [14],
the pitch period is coded with 7 bits and the gain with 6 bits. This produces a
fixed rate of 102 bit/frame (5100 bit/s). No perceptual weighting is employed.
The re-estimation is done only on the short-term parameters. The coder that
employs re-estimation consists of the following steps:

1. Determine Ã(z) = F (z)P (z) using sparse linear prediction.

2. Calculate the residual vector r̃ using RPE encoding.

3. Re-estimate the optimal truncated impulse response hf .

4. Least square IIR approximation of hf using order Nf = 8, 10, 12.

5. Optimize the amplitudes of the sparse RPE residual r̃ using the new syn-
thesis filter ĥf (positions and shift stay the same).

We compare two approaches, one with only the re-estimation of hf and one with
the optimization of the amplitudes of the RPE residual, using (I.3). The results,
in comparison with standard Sparse Linear Prediction, are shown in table I.1.
An example of the re-estimated impulses responses are shown in Figure I.1.
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Fig. I.1: An example of the different impulse response used in the work. The impulse re-
sponse hf of the original short-term predictor F (z), the optimal re-estimated impulse response
adapted to the quantized residual hopt and the approximated impulse response hn

f of the new

short-term predictor F̂ (z). The order is Nf = 10.

5 Conclusions

In this paper, we have proposed a new method for the re-estimation of the pre-
diction parameters in speech coding. In particular, the autoregressive modeling
is no more employed as a method to remove the redundancies of the speech
segment but as IIR approximation of the optimal FIR filter, adapted to the
quantized approximated residual, that is used in the synthesis of the speech seg-
ment. The method has shown an improvement in the general performances of
the sparse linear prediction framework, but it can be applied also to common
methods based on minimum variance linear prediction (e.g. ACELP). The work
can be extended for these methods where we expect an even greater increase in
performances due to the mismatch between true residual and approximated one.
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Abstract

In this paper, we describe a new approach to cope with packet loss in speech
coders. The idea is to split the information present in each speech packet into
two components, one to independently decode the given speech frame and one
to enhance it by exploiting inter-frame dependencies. The scheme is based on
sparse linear prediction and a redefinition of the analysis-by-synthesis process.
We present Mean Opinion Scores for the presented coder with different degrees
of packet loss and show that it performs similarly to frame dependent coders for
low packet loss probability and similarly to frame independent coders for high
packet loss probability. We also present ideas on how to make the coder work
synergistically with the channel loss estimate.

1 Introduction

With the increasing importance of VoIP (Voice over IP) telephony, alternative
methods to improve the robustness of speech codecs to packet loss are required.
The approaches presented in literature, notably [1] with the definition of the
iLBC (Internet Low Bit Rate Codec), tend to create speech coders that are
totally frame independent or, in other words, where each frame is independently
decodable and does not depend on the previous frames. On the other hand, in the
case of telephony with dedicated circuits, the coding schemes used achieve high
quality with low bit rate mostly because of their property to exploit inter-frame
dependencies. However, these coding schemes, and in particular the ACELP
(Algebraic Code Excited Linear Prediction) based codecs, in the case of packet
loss show severe shortcomings [1].

In this paper we introduce a new approach to speech coding over packet
networks, creating a coder that has frames with a core that is independently
decodable and an enhancement layer that is based on the previously received
frames. In particular, we create a coder that can select between two decoding
procedures, if the previous frames are received correctly, then it decodes using all
the information, otherwise, it uses only the frame independent information. By
doing so, we offer the flexibility of a frame independent codec if the loss probabil-
ity is significant but, if the probability is low (or ideally null), then it will exploit
inter-frame dependencies to perform similarly to a frame dependent coder. In
our coding scheme, the speech analysis is based on sparse linear prediction which
has shown better statistical modeling in creating an output (residual and pre-
dictor) that offers better coding properties [2]. Frame independence is achieved
through a rethinking of the analysis-by-synthesis (AbS) scheme [3], allowing the
possibility of re-estimating the synthesis matrix (and thus the impulse response
that generates it) that creates an independently decodable frame of speech given
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the residual similarly to what is done in [4].
The paper is organized as follows. Section 2 describes the system architecture

of our coder. In Section 3, we provide some experimental results in comparison
with G.729a [5] and iLBC, chosen due to their public availability. In Section 4,
we discuss how the bit allocation can work synergistically with the channel loss
statistics to generally improve the performance of the coder. Section 5 concludes
our paper.

2 System Architecture

2.1 Step 1: Prediction Parameters Estimation

The first step is to perform a linear predictive analysis using a sparse linear
prediction framework. A sparse linear predictive framework has already shown
to offer, not only sparsity properties that make coding more straightforward [2]
but also a more compact description of all the features extracted from a speech
frame [7]. For a given speech frame x, we obtain an estimate of the underlying
autoregressive process by minimizing the prediction error vector e = x − Xa

(commonly referred to as the residual):

â = arg min
a
‖x−Xa‖1 + γ‖a‖1, (J.1)

where

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






,

and ‖ · ‖1 is the 1-norm defined as the sum of absolute values of the vector on
which operates. The start and end points N1 and N2 can be chosen in various
ways assuming that x(n) = 0 for n < 1 and n > N [8]. The more tractable
1-norm ‖ · ‖1 is used here as a linear programming relaxation of the sparsity
measure, often represented as the cardinality of a vector, i.e. the so-called 0-
norm ‖ · ‖0. This optimization problem can be posed as a linear programming
problem and can be solved using an interior-point algorithm [9]. The choice of
the regularization term γ is based on a trade-off between the sparsity of the
residual and the sparsity of the predictor, found through by the L-curve [10].
The sparse structure of the predictor, allows a joint estimation of a short-term
and a long-term predictors [7]:

A(z) ≈ F̂ (z)P̂ (z) (J.2)

where F̂ (z) is the short-term predictor, commonly employed to remove short-
term redundancies due to the formants, and P̂ (z) is the long-term pitch predictor
that removes the long-term redundancies. The two filters will then be quantized.
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2.2 Step 2: Residual Estimation

In order to achieve frame independence, we rethink the analysis-by-synthesis
(AbS) scheme used for the estimation of the approximated residual given A(z),
estimated in the previous step. In particular, the main equation of AbS coding
is the following [3]:

r̂ = arg min
r
‖W(x− Ĥ

[

r̂T
−
, rT

]T
)‖2,

s.t. struct(r),
(J.3)

where x is the N × 1 frame of speech, W is the N × N perceptual weighting
matrix, Ĥ is the N × K + N synthesis matrix whose i−th row contains the
elements with index [0,K + i − 1] of the truncated impulse response ĥ of the
combined quantized prediction filter Â(z) = F̂ (z)P̂ (z):

Ĥ =



















ĥK · · · ĥ0 0 0 · · · 0

ĥK+1
. . .

. . .
. . . 0 0 0

...
. . .

. . . · · · ĥ0 0 0

ĥK+N−2
. . .

. . . · · · ĥ1 ĥ0 0

ĥK+N−1 ĥK+N−2 · · · · · · ĥ2 ĥ1 ĥ0



















. (J.4)

The residual term
[

r̂T
−
, rT

]T
is composed of the K previous residual samples r̂−

(the filter memory, already quantized) and the current N × 1 residual vector r

that has to be estimated. It is now clear that the dependence plays a central
role in the estimation of the residual. The operator struct(·), that we will leave
undefined at the moment, imposes the structure on the residual (e.g., MPE,
RPE, CELP). Also, for the sake of simplicity, we will assume that no perceptual
weighting is performed (W = I). The results can then be generalized for an
arbitrary W.

We now look for two estimates of the residual in (J.3), one where we take
into consideration the previous residual r̂−, one where we do not take it into
consideration, therefore setting it to zero. The frame independent is then ob-
tained considering only the N × N right side of the synthesis matrix in (J.4).
The two residuals r̂FI and r̂FD will then be quantized.

2.3 Step 3: Re-estimation of the Prediction Coefficients

Once we have the two estimated residuals r̂FI and r̂FD, we can calculate the
truncated impulse response that generates them. In particular, we can rewrite
the problem in (J.3) as:

H̃ = arg min
H
‖(x−Hr̂)‖2 → h̃ = arg min

h
‖(x− R̂h)‖2, (J.5)
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where

R̂ =



















r̂0 · · · r̂−K 0 0 · · · 0

r̂1
. . .

. . .
. . . 0 0 0

...
. . .

. . . · · ·
. . . 0 0

r̂N−1
. . .

. . . · · ·
. . . r̂−K 0

r̂N r̂N−1 · · · · · · · · · r̂−K+1 r̂−K



















, (J.6)

is the N ×N +K matrix constructed with the frame dependent residual vector
[

r̂T
−
, rT

]

. The problem (J.5) allows for a closed form solution when the 2-norm
is employed in the minimization:

h̃ = R̂T (R̂R̂T )−1x, (J.7)

with
‖x− R̂h̃‖2 = 0. (J.8)

We can now see that the optimal sparse linear predictor (frame dependent and
frame independent) is the one that has h̃ as truncated impulse response. The
problem now is that the impulse response will include both short-term and long-
term contribution. We can split the two contribution as:

Â(z) = F̂ (z)P̂ (z)→ Ĥ = ĤfĤp, (J.9)

and re-estimate only the short-term impulse response, assuming that the long-
term impulse response will not vary significantly, we can rewrite (J.5) using
(J.9):

h̃f = arg min
hf

‖(x− ĤpR̂hf )‖2. (J.10)

We can then obtain two estimates of the impulse responses, a frame dependent
one h̃FD

f and a frame independent one h̃FI
f . In the frame independent case, the

matrix R̂ in (J.6) will be N ×N and it will be constructed using only r̂FI .
Using an autoregressive modeling of both h̃FD and h̃FI , we obtain two new

short-term predictive filters F̃FI(z) and F̃FD(z), that not only generate a bet-
ter approximate of the impulse response but are also stable [4]. We will then
quantize them.

2.4 Definition of an Enhancement Layer

For a given frame of speech we have calculated two residuals (r̂FI and r̂FD)
and two predictors (ÃFI(z) = P̂ (z)F̃FI(z) and ÃFD(z) = P̂ (z)F̃FD(z)). The
reconstructed speech frames are, for the frame independent case:

x̂FI = ĤpH̃
FI
f r̂FI , (J.11)
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and, for the frame dependent case:

x̂FD = ĤpH̃
FD
f

[

(r̂FD
−

)T , (r̂FD)T
]T
. (J.12)

It should be noted that Ĥp is constructed from the truncated impulse response
of P̂ (z), that is equal for both cases, but in the frame independent case Ĥp is
N ×N while in the frame dependent case Ĥp is N ×N +K.

What we will do is transmit the frame independent parameters (r̂FI , ÃFI(z) =
P̂ (z)F̃FI(z)) to robustly construct a frame independent coder then define an
enhancement layer based on the frame dependent parameters. To do so, we
transmit the differences between the two short-term predictors F̃∆(z) and the
differences between the two residuals r̂∆(z). We will specify in the next section
how to code the differences and in which domain.

If there is no loss of speech packets, it is clear that the decoder will work
in “full” mode, using the frame independent informations together with the en-
hancement layer, (J.12) would then become:

x̂ = Ĥp(H̃
FI
f + H̃EN

f )
[

(r̂FI
−

+ r̂EN
−

)T , (r̂FI + r̂EN )T
]T
, (J.13)

where H̃EN , r̂EN
−

and r̂EN are functions of the parameters used to define the
enhancement layer F̃∆(z) and r̂∆(z).

The interesting case is when a k−th frame is missing. In this case, the
k+1−th frame is self-constructed only from the frame independent parameters,
using (J.11). The k + 2−th frame will then be reconstructed using the frame
dependent information but first it is necessary to convert the part of the residual
of the k+1−th frame r̂FI

−
, that will appear in the reconstruction equation (J.13),

into the frame dependent one (r̂FI
−

+ r̂FE
−

).

3 Experimental Analysis

3.1 Setup

Linear predictive analysis

The length of the analyzed speech frames in our scheme is N = 160 (20 ms).
The order of the optimization problem in (J.1) is K = 110, meaning that we can
cover accurately pitch delays in the interval [Nstp + 1,K −Nstp − 1], including
the usual range for the pitch frequency [70Hz, 500Hz]. This also means that the
dependency from the previous frame is K = 110 residual samples. The linear
prediction filters F (z) and P (z) are chosen as respectively of order Nf = 12
and Np = 1. F (z) is coded initially as an LSF vector with 26 bits (providing
transparent coding) using the procedure in [11]. The pitch period is coded with
7 bits and the gain with 6 bits. Coding of the residual
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The residual coding of both r̂FI and r̂FD is implemented using an RPE proce-
dure [12] with fixed shift equal to zero and a sample spacing Q = 8. The RPE
procedure is slightly modified to have the first 8 pulses as nonzero (27 nonzero
pulses in total). This guarantees, other than a full row rank of R̂, also a well con-
ditioned problem in (J.10) in both the frame dependent, where R̂ is N ×N +K
and frame independent case, where R̂ is N × N . r̂FI is calculated first, then
we impose the same sign structure when calculating r̂FD. The residuals are also
quantized simultaneously with a 8-level uniform quantizer, the peak magnitude
is encoded with 6 bits per frame and 1 bit per pulse is used to code the sign.
Re-estimation procedure

In the re-estimation procedure (J.10), we impose the constraint of having hf (0) =
1, this is done to simplify the IIR modeling of hf , so that the filter has a unit
numerator. The new short-term predictive filters are also coded as an LSF vec-
tor with 26 bits (providing transparent coding in both cases).
Coding of the Enahncement Layer

The difference vector F̃∆(z) is calculated between F̃FD(z) and F̃FI(z) in the
quantized LSF domain. A 11 bits vector quantizer has proved to be sufficient
to describe the difference between the two polynomial. In particular, the recon-
structed polynomial (sum of F̃FI(z) and F̃∆(z) in the LSF domain) is going to
fulfill the spectral transparency performances as F̃FD(z) does. As for the dif-
ference between the two residuals r̂∆(z), we will use 2 bits per pulse, sufficient
to code the difference almost without distortion in the quantized domain. Each
frame will then be coded with a total of 218 bits, 153 belonging to the frame
independent part and 65 belonging to the frame dependent enhancement layer,
generating a total bit rate of 10.9 kbps (7.65 kbps for the frame independent
information and 3.25 kbps for the enhancement layer).

3.2 Results

In this subsection we present the numerical results of our method compared,
in terms of PESQ-MOS [13], to the iLBC in [1] and the G.729a [5], working
respectively at 13.33 kbps and 8 kbps.

We have analyzed about one hour of clean speech coming from several differ-
ent speakers with different characteristics (gender, age, pitch, regional accent)
taken from the TIMIT database [14], re-sampled at 8 kHz. In our simulations,
we used the Gilbert model for packet loss with parameters q = P (loss|loss) = 0.7
and p = P (loss|noloss) varied in order to have an average loss rate of p/(p+ q).
The analyzed loss rates are 0%, 2.5%, 5%, 7.5%, 10%, and 15%. In our imple-
mentation, a simple packet loss concealment (PLC) based on repeating the pre-
viously received frames is implemented for our method and also for the G.729a.

As the results suggest in Figure J.1, the coder works well with performances
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Fig. J.1: Performances of the compared methods: G.729a (8 kbps), iLBC (13.33 kbps), and
our introduced method based on sparse linear prediction (SpLP) with (FI+EN) and without
(FI) the frame dependent enhancement layer (respectively 10.9 and 7.65 kbps).

similar to the G.729a codec at 0% packet losses, where the iLBC fails to do
so. The frame dependent layer seems to work well at low packet loss rates and
loses its enhancement properties when the loss rate increases, as we may have
expected. It should be noted, that our scheme, when only the frame independent
part is employed, performs only slightly worse than iLBC with a net decrease
in rate and a very simple PLC scheme. This can be explained by the novelty
we have introuduced in the re-estimation of the “frame independent linear pre-
dictors” and by the compact and robust modeling advantages offered by sparse
linear prediction [2]. Our coder performs worse than iLBC for loss percentage
higher than 7.5%, mostly due to the more advanced PLC implemented on iLBC.
A final comment is that the structured sparsity of the residual can allow guid-
ance in order to generate an excitation sequence when packet loss occurs, for
example when the other parameters are estimated in a Hidden Markov Model
based PLC [15].

4 Discussion

The coding algorithm we have presented is representative of a more general prob-
lem, where we minimize the expected distortion between the analyzed speech and
its coded approximation, subject to a rate constraint:

minimize D(x, x̂),
subject to: R(x̂) ≤ R∗;

(J.14)
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where D(x, x̂) represent the expected distortion by representing x with x̂, R(x̂)
is the rate (or, equivalently, the bit allocation) to transmit x̂ and R∗ is the
maximum possible rate (the constraint). In our case, the distortion will be
dependent on how the representation of x̂ divided between a frame independent
core x̂FI and a frame dependent enhancement layer x̂EN . In particular, the
distortion term can be made dependent on the loss rate and therefore adjusting
the bit allocation on the frame dependent and frame independent parts. We
see for example from Figure J.1 how the increase in performance given by the
enhancement layer tend to reduce itself with the increase of the loss rate, in
particular with a 15% of lost packets, there is almost no difference, although
there is a 3.25 kbps difference in rate. In this case, what we would then like to
do is to reallocate the bits used to define the enhancement layer, to improve the
performances of the frame independent coder, the problem in (J.14) can then be
rewritten as:

min. wpL
D(x, x̂FI) + (1− wpL

)D(x, x̂FI + x̂EN ),
s.t.: R(x̂FI) +R(x̂EN ) ≤ R∗.

(J.15)

where the allocation of the rate is now split between the frame independent part
and the enhancement layer that exploits frame dependence. Also the expected
distortion will be proportional to the different bit allocation. In (J.15), wpL

is
a weight that will be somehow proportional to the packet loss probability pL

(0 ≤ wpL
< 1), and, on a higher order analysis, it will also depend on other

loss statistics such as the burst length. An interesting case, it is also to use the
bit allocated for the enhancement layer to bring information for the packet loss
concealment on how to reconstruct the missing frames when the loss rate is high.
How to implement the problem in (J.15) will be subject of our future work.

5 Conclusion

In this paper, we have introduced a novel formulation for speech coding in packet
networks. In particular, we have defined an algorithm that generates parame-
ters that independently decode a speech segment at 7.65 kbps. A 3.25 kbps
frame dependent enhancement layer is added to exploit inter-frame dependen-
cies. This allows to reach performances similar to the G.729a coder for 0%
packet loss probability while behaving similarly to the iLBC coder for higher
packet loss probabilities. Sparse linear prediction has been used to robustly an-
alyze a speech segment, providing a joint estimation of long-term and short-term
predictors and a sparse residual. Also, a new formulation of the Analysis-by-
Synthesis scheme has been defined by re-estimating a more appropriate synthesis
matrix. A definition of the future work on the how to optimally construct a frame
dependent/independent coder has also been given.
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