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Abstract

Graph-based semi-supervised learning has gained con-
siderable interests in the past several years thanks to its ef-
fectiveness in combining labeled and unlabeled data through
label propagation for better object modeling and classifica-
tion. A critical issue in constructing a graph is the weight
assignment where the weight of an edge specifies the similar-
ity between two data points. In this paper, we present a novel
technique to measure the similarities among data points by
decomposing each data point as an L1 sparse linear combi-
nation of the rest of the data points. The main idea is that
the coefficients in such a sparse decomposition reflect the
point’s neighborhood structure thus providing better simi-
larity measures among the decomposed data point and the
rest of the data points. The proposed approach is evalu-
ated on four commonly-used data sets and the experimental
results show that the proposed Sparsity Induced Similarity
(SIS) measure significantly improves label propagation per-
formance. As an application of the SIS-based label propa-
gation, we show that the SIS measure can be used to improve
the Bag-of-Words approach for scene classification.

1. Introduction

Many pattern recognition techniques require labeled data
which are often expensive and time consuming to obtain.
On the other hand, it is much cheaper to obtain unlabeled
data. Therefore, how to combine unlabeled data with la-
beled data is an important problem, which is the focus of
semi-supervised learning techniques. In the past several
years, the graph-based semi-supervised learning approach
has attracted a lot of attention due to its elegant mathemati-
cal formulation and its demonstrated effectiveness in com-
bining labeled and unlabeled data through label propaga-
tion [31, 13, 2, 3, 24, 22, 13, 25, 14].

The performance of graph-based semi-supervised learn-
ing depends on the weights which are assigned to the edges
of the graph. The weight on each edge specifies the simi-
larities between the two nodes that are adjacent to the edge.

The simplest method for the weight assignment is to use the
Euclidean distances between the feature vectors. A straight-
forward extension is the K-Nearest Neighbor (KNN) ap-
proach where only the edges between a data point and its
K-nearest neighbors have non-zero weights. Another exten-
sion is to use a Gaussian Kernel Similarity (GKS) [2, 3] as
the edge weights. As pointed out by [3, 24], the main draw-
back with the GKS approach is that its performance is sen-
sitive to the parameter variance and there is no reliable way
to determine the optimal variance value especially when the
amount of labeled data is small. Wang and Zhang [24] pro-
posed to first approximate a graph by a set of overlapped
linear neighborhood patches, and the edge weights in each
patch are then computed by neighborhood linear projection.
While this method improves the traditional KNN approach
by re-adjusting the weight between a point and its k near-
est neighbors, it relies on the traditional Euclidean distance
to pre-determine its k nearest neighbors. In other words, it
does not address the fundamental problem of how to deter-
mine the true neighbors in the first place.

In this paper, we propose a new technique to compute
the similarities among the data points based on sparse de-
composition in L1 norm sense. We call it Sparsity Induced
Similarity measure (SIS). The main idea is that the sparse
decomposition of a data point reflects its true neighborhood
structure and provides a similarity measure between the data
point and its neighbors. In contrast to the Linear Neighbor-
hood Propagation (LNP) [24], the proposed method does not
need a separate phase to estimate the neighborhood patches
before measuring similarities. In other words, we do not
need to reply on the Euclidean distance to pre-determine
its k nearest neighbors. Our approach is loosely related to
distance metric learning approaches which need more data
though these approaches can explore local structures among
data [27]. In addition, Shakhnarovich et. al [19] mea-
sured patch similarities using sparse overcomplete code co-
efficients. This technique requires training data to learn the
basis vectors. In contrast, our technique does not require any
training data for similarity measure.

We evaluate the proposed approach on four data sets,
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Cedar Buffolo binary Digits data set [12] which is com-
monly used for evaluating graph-based semi-supervised
learning methods, UIUC car data set [1], ETH-80 object
data set [16], and scene-15 data set [11, 18, 15], which are
commonly-used data sets for object/scene recognition. The
experimental results indicate that the proposed SIS measure
significantly improves label propagation performance. As an
application of the SIS-based label propagation, we show that
the SIS measure is useful for codeword assignment in a Bag-
of-Words (BoW) approach and its performance is evaluated
on the scene-15 data set.

The rest of the paper is organized as follows. We review
the label propagation framework in Section 2. Section 3 de-
scribes the Sparsity Induced Similarity measure. The ex-
periment results are presented in section 4. We conclude in
Section 5.

2. The Framework of Label Propagation

In this section, we review the label propagation frame-
work as described in [31]. We choose to use this method to
evaluate our similarity measure because it is a representative
graph-based semi-supervised technique which is closely re-
lated to other graph-based methods including random walk
approach [21], spectral clustering [20] and graph cuts [29].

Label propagation is a way to propagate labels from la-
beled data to unlabeled data for different applications, for
example, patch labelling [4], image annotation [13]. The
basic idea is, given a small number of labeled data, to prop-
agate the labels through dense unlabeled regions and find
more data with the similar properties as the labeled data,
and use these selected unlabeled data to enhance a certain
performance of a system. A straightforward solution is to
compute pairwise similarities among all the data points, and
then formulate the problem as a harmonic energy minimiza-
tion problem [31] which has a closed-form solution. This
technique is briefly summarized below.

Suppose there are K classes. Let C = {1, 2, · · · ,K}
denote the set of class labels. Let Fl = [f1, f2, · · · , fn]
denote the labeled data. Let Fu = [fn+1, fn+2, · · · , fn+m]
denote the Unlabeled data. Typically n � m. We use gi to
denote the label of fi, i = 1, ..., n+m. We assume g1, ..., gn

are known, and the task is to compute gn+1, ..., gn+m.

Consider a graph G = (V,E) with nodes corresponding
to N = n + m feature vectors. There is an edge for every
pair of the nodes. We assume there is an N × N symmet-
ric weight matrix W = [wij ] on the edges of the graph. The
weight for each edge indicates the similarity between the two
nodes that are adjacent to the edge. Intuitively, similar un-
labeled samples should have similar labels. Thus, the label
propagation can be formulated as minimizing the quadratic

energy function [31]

E(f) =
1
2

∑
i,j

wij(fi − fj)2. (1)

One commonly used similarity measure is the Gaussian Ker-
nel Similarity based weight matrix defined as

wij = exp (−dσ2(fi, fj)) = exp
(
−‖fi − fj‖2

σ2

)
, (2)

where σ is a hyperparameter. As pointed out in [31]
and [24], it is hard to determine the optimal value of σ,
which causes the instability of label propagation process.

Let D denote an N × N diagonal matrix with dii =∑
j wij . Denote P = D−1W . We split matrix W into 4

blocks

W =
[

Wnn Wnm

Wmn Wmm

]
, (3)

where Wnn is the top left n × n sub-matrix of W . We split
D and P in the same way.

Denote Gn = (g1, ..., gn)T, and Gm =
(gn+1, ..., gn+m)T. It can be shown [31] that given W
and Gn, the solution to the energy minimization problem of
Eqn. (1) is given by the following formula:

Gm = (Dmm−Wmm)−1WmnGn = (I−Pmm)−1PmnGn.
(4)

In summary, we can propagate labels from the labels Gn

of the labeled samples to labels Gm of unlabeled samples
using weight matrix W . The performance of such a graph-
based label propagation technique relies on the weight ma-
trix, that is, the similarity measure between the nodes. Even
though there have been extensive studies on the label prop-
agation techniques, little research has been reported on how
to measure the similarities. The most commonly used simi-
larity measure is the Gaussian Kernel Similarity based mea-
sure Eqn. (2) whose performance is sensitive to the param-
eter variance setting. In the next section, we propose a new
technique to measure the similarities.

3. The Sparseness Induced Similarity Measure

One main drawback of most of the existing similarity
measures such as the Euclidean distance and Gaussian Ker-
nel Similarity measure is that the similarity measurement
completely ignores the class structure. In image classifi-
cation and object recognition, people usually use high di-
mensional feature vectors while assuming that the feature
vectors for each class belong to a lower dimensional sub-
space. The subspace structure can be discovered when there
is enough training data, and researchers have shown that
the subspace representation is effective for image classifi-
cation and object recognition. However, when there is lit-
tle training data available such as in semi-supervised train-
ing or unsupervised training, it is impossible to compute the



subspace structure. Consequently, the similarity measure-
ment between feature points are usually based on pairwise
Euclidean distance while the subspace structure is ignored.
How to leverage the hidden subspace structure for similarity
measurement has not been addressed before.

3.1. Sparseness Representation Assumptions

We observe that the subspace assumption is closely re-
lated to sparseness representation assumption, and we pro-
pose to use sparseness decomposition as a way to define the
similarity measurement that takes into consideration of the
subspace structure. In particular, our technique is based on
the following sparseness representation assumptions on the
feature vectors in each class.

Linearity: Any feature vector in a class can be repre-
sented as a linear combination of some other feature vectors
in the same class.

Sparsity: Given a feature vector, its sparsest representa-
tion is achieved when all the basis feature vectors belong to
the same class as the feature vector.

The linearity assumption has been used extensively in
various computer vision tasks [30, 28, 17]. Note that for a
data set with sufficient amount of data (regardless of whether
they are labeled or not), the linear representation of a fea-
ture vector is usually far from unique. For example, a fea-
ture vector may be represented as a linear combination of
a number of feature vectors from a different class or from
multiple classes. The sparsity assumption states that when a
feature vector is represented as a linear combination of fea-
ture vectors in a different class, the representation tends to
be less sparse. The sparsity assumption is the basis for many
sparse sensing researches [28], and it was used in [26] for
face recognition. In this paper, we propose to use sparsity
assumption as a way to obtain similarity measurement that
reflects the subspace structure of classes.

Note that if the sparsity assumption is strictly satisfied,
the sparseness decomposition will provide a simple method
for unsupervised clustering. For each feature vector V , we
decompose it as a sparse linear combination of the rest of
the feature vectors. The feature vectors that have non-zero
coefficients in the decomposition will be in the same class
of V . After performing this decomposition for every feature
vector V , we will be able to group them into connected com-
ponents, and it is guaranteed that the feature vectors in each
connected components belong to the same class.

In practice, the data are noisy. Thus the sparsity assump-
tion may not be strictly satisfied. In fact, a random noise
vector in general has a long tail (i.e., many small non-zero
coefficients) in their sparse decomposition. Therefore mak-
ing binary decisions does not work well. Thus, we instead
use the coefficients as soft similarity measures.

3.2. The Definition of SIS

More formally, we propose the following Sparseness In-
duced Similarity Measure. Let F = {f1, f2, ..., fN} denote
all the feature vectors of a data set regardless of whether
they are labeled or not, where fk ∈ R

D. For any given
fk ∈ F , we first decompose fk as a sparse linear combi-
nation of the rest of the feature vectors in F . Let Gk de-
note the matrix that consists of f1,...,fk−1, fk+1,..., fN as
its columns, that is, Gk = (f1, ..., fk−1, fk+1, ..., fN ). Let
X = (x1, ..., xk−1, xk+1, ..., xN )T denote the coefficients
of the sparse decomposition. Given F = (fk, Gk), X is
defined by the following optimization problem:

min
X

‖X‖�0 , s.t. GkX = fk, (5)

where ‖X‖�0 is the �0 norm of X .
This decomposition is different from the most com-

mon sparse decomposition problem in that the basis vec-
tors are not necessarily orthogonal. In fact, strictly speak-
ing, vectors in Gk may not form a basis. But Donoho and
Elad [9, 8] showed that such non-orthogonal sparse decom-
position problem can still be solved through �1 minimiza-
tion. That is, X can be obtained by solving the following
linear programming problem:

min
X

‖X‖�1 , s.t. GkX = fk, (6)

where ‖X‖�1 is the �1 norm of X .
We convert it to a standard linear programming prob-

lem by introducing variables x+
i and x−

i , and setting xi =
x+

i − x−
i and |xi| = x+

i + x−
i , 1 ≤ i ≤ N, i �= k, In addi-

tion, we add constraints x+
i ≥ 0 and x−

i ≥ 0. The resulting
linear programming problem is then solved by a simplex al-
gorithm [5] 1.

If the amount of data is large, it becomes expensive to
solve the linear programming problem of Eqn. (6) for each
feature vector. It has been shown [10, 5] that for �1-norm
based signal reconstruction, the number of basis vectors re-
quired to recover a sparse signal is only a small fraction of
the signal’s dimension. However, it is impossible to know
a priori what vectors should be selected as basis vectors. A
heuristics that we use in our experiments is the following.
Given a feature vector fk, we choose the first CD vectors
that are closest to fk in terms of Euclidean distance where D
is the feature vector dimension and C is a user-specified pa-
rameter which is set to 1.5 in our experiments. The value of
C is a compromise between computation cost and the qual-
ity of the sparse decomposition. In general, C needs to be
greater than 1 to prevent the linear system from being over
constrained due to noises in the feature vectors. The larger
the C, the more expensive the computation and the better the
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quality of sparse decomposition. Empirically, we find that
C=1.5 provides a good tradeoff in our experiments.

The similarity between fk and fi, 1 ≤ i ≤ N, i �= k, is
defined as

ski =
max{xi, 0}∑N

j=1,j �=k max{xj , 0}
. (7)

After we repeat this procedure for every fk ∈ F , k =
1, ..., N , we obtain a matrix sij , 1 ≤ i, j ≤ N . Note that
this matrix is not necessarily symmetric. To ensure sym-
metry, the final similarity between fi and fj is defined as
wij = sij+sji

2 . We set wii = 1.
Prior to computing the SIS, we need to normalize all the

feature vectors so that their L2 norms are 1. Normalization is
necessary because otherwise the decomposition coefficients
would be sensitive to the magnitudes of the feature vectors.

We would like to note that the sparse coefficients in
Eqn. (5) are related to non-orthogonal projection coeffi-
cients onto the sparse basis. Let X∗ = (x∗

1, ..., x
∗
N )T de-

note the solution of Eqn. (5). Let x∗
u1

, ..., x∗
uk

denote the

nonzero coefficients. Denote X̂∗
k = (x∗

u1
, ..., x∗

uk
)T, and

Ĝk = (fu1 , ..., fuk
). Then Eqn. (5) becomes

ĜkX̂∗
k = fk. (8)

The columns of Ĝk must be linearly independent because
otherwise there would be a solution sparser than X∗. There-
fore,

X̂∗
k =

(
(Ĝk)TĜk

)−1

(Ĝk)Tfk. (9)

In other words, the sparse coefficients (x∗
u1

, ..., x∗
uk

) are
non-orthogonal projection coefficients of fk onto the vectors
(fu1 , ..., fuk

).

3.3. A Toy Problem

Figure 1. An illustration of a two-class classification problem: (a)
Points on a 3D sphere; (b) Points projected to a 2D plane only for
better illustration of spatial relationship among points.

Let us use a toy problem to illustrate how sparsity repre-
sentation can be used to improve similarity measure. Fig-
ure 1 (a) shows a two class classification problem. The

points in each class belong to a linear subspace. Points A1,
A2, A3, and A4 belong to class A. Points B1, B2, B3, and
B4 belong to class B. Note that all the points are on the
unit sphere because we assume they are normalized feature
vectors. Figure 1(b) is obtained by projecting the 3D points
to 2D XY plane for better visualization of the spatial rela-
tionship among the points. The coordinates of these points
are

A1 = [0.1, 0, 0.9950], B1 = [0.1, 0.025, 0.9947]
A2 = [0.2, 0, 0.9798], B2 = [0.2, 0.050, 0.9785]
A3 = [0.3, 0, 0.9539], B3 = [0.3, 0.075, 0.9510]
A4 = [0.4, 0, 0.9165], B4 = [0.4, 0.100, 0.9110].

It can be easily verified that for each point Ai, i = 1, ..., 4,
its closest point is Bi according to the Euclidean distance.
Similarly, point Bi’s closest point is Ai. Figure 2(b) shows
the label propagation result obtained by computing similar-
ities based on the Euclidean distance and using A4 and B1

as the labeled data. We can see that A1 and A2 are incor-
rectly labeled as in class B while B3 and B4 are incorrectly
labeled as in class A.

On the other hand, let us represent point A2 as a sparse
linear combination of the rest of the points. That is, we seek
coefficients, x1, x3, x4, y1, y2, y3, y4, so that

A2 =
4∑

i=1,i �=2

xiAi +
4∑

j=1

yjBj , (10)

and the number of non-zero coefficients is the smallest. It
can be verified that the sparsest decomposition is given by

A2 = 0.5079A1 + 0.4974A3. (11)

In this representation, A1 has the largest coefficient, and A3

has the second largest coefficient. The rest of the coefficients
are all zero. Based on the coefficients, we conclude that A2

is most similar to A1 and A3. We can see that this sim-
ilarity measure is more consistent with the class structure.
Figure 2(a) shows the label propagation result obtained by
using SIS measure and using A4 and B1 as the labeled data.
We can see that all the points are correctly labeled.

Note that if we use linear decomposition without sparsity
constraints, the resulting coefficients do not provide a good
similarity measure. Again, let us consider A2 in the above
example. Since there are multiple ways to represent A2 as
a linear combination of the rest of the vectors, one possi-
bility, as suggested by Wang and Zhang [24], is to choose
a small number of nearest neighbors (in terms of Euclidean
distance). If we choose the 2-nearest neighbors of A2, which
are A1 and B2, we obtain the following least-square solu-
tion:

A2 ≈ 0.1361A1 + 0.8639B2. (12)



Figure 2. Label propagation using 3 different similarity measures: (a) SIS; (b) Euclidean distance; (c) Linear neighbors in [24], where the
number of nearest neighbors is 2. Red points A4 and B1 are labeled data, and the blue lines are class boundaries.

According to this representation, B2 would be considered as
the most similar to A2. Figure 2(c) shows the label propa-
gation result obtained by using Wang and Zhang’s method
for the similarity measure. Again, A4 and B1 are used as the
labeled data. We can see that the result is the same as what is
obtained by computing similarities based on Euclidean dis-
tance.

4. Experimental Results and Analysis

In this section, we present four sets of experiments to val-
idate the proposed approach. Section 4.2, 4.3, 4.4, and 4.5
describe experiments on Cedar Buffalo digits data set, UIUC
car data set, ETH-80 object data set, and scene-15 data set,
respectively.

4.1. Experimental Setup

Data sets: We used four data sets in our experiments,
which are commonly used for semi-supervised learning and
object/scene recognition experiments. We evaluated the pro-
posed SIS measure on the Cedar Buffalo binary digit data
set [12]. The digits are preprocessed to reduce the size of
each image down to a 16× 16 by down-sampling and Gaus-
sian smoothing, and the value of each pixel ranges from 0
to 255. Each digit is thus represented by a 256-dimensional
vector.

For evaluating the performance of label propagation for
object data sets, we used both ETH-80 data set [16] and
UIUC car data set [1]. ETH-80 contains 8 object cate-
gories. In each category there are 10 different objects, and
for each object there are 41 different poses. There are
8× 10× 41 = 3, 280 images in total. Here, similar to [16],
we use the histogram of the first derivatives DxDy with 48
dimensions over 3 different scales to represent each image,
and then all features are normalized. The UIUC car train-
ing data set consists of 1050 images of cars in side views
with resolution 40(H)×100(W) pixels. For this data set, we
use dense grids of histogram-of-gradient features to repre-
sent each image [7], where 20×20 pixel blocks, block stride
of 10 pixels, and 8 orientation bins are used to obtain the fea-

ture vector of 240 dimensions for each image.
Furthermore, we conducted experiments on scene classi-

fication task based on the data set of scene-15 data set [11,
18, 15] which consists of 4485 images with different reso-
lutions over 15 categories. Each category has 200 to 400
images. As in [15], we use dense SIFT descriptors of 128
dimensions on 16 × 16 pixel patches and spacing pixels are
8, and skip the usual SIFT normalization procedure when
the overall gradient magnitude of the patch is too small. To
eliminate the effect of SIFT feature vectors whose L2 norms
are less than 1 on L1 decomposition, we normalize SIFT
feature vectors fk ∈ R

D by increasing one dimension

fk(D + 1) = 1 −
√

fk(1)2 + · · · + fk(D)2. (13)

Similar to [23], we choose 100 random images per category
as a training set and the remaining images as testing images.

Labeled and unlabeled samples: Similar to [31], we
randomly sample labeled samples from the entire samples
of each class, and the rest of the samples of this class are
used as unlabeled data to evaluate different similarity mea-
sure approaches in the first three experiments. However, we
fix codewords as labeled samples and dense patches as un-
labeled samples in the fourth experiment due to application
requirement.

Evaluation Criterion: For the first three experiments,
We employed recognition accuracy to evaluate the perfor-
mance of the proposed SIS on label propagation. Each
recognition accuracy curve is obtained by averaging the re-
sults over 10 different trials. For each trial, again, we ran-
domly select the labeled and unlabeled samples for the semi-
supervised label propagation. For the scene classification ex-
periment, similar to [23, 15], we use the classification accu-
racy of final scene classification to evaluate the performance
of two patch labeling approaches.

4.2. The Cedar Buffalo Binary Digits Data Set

This experiment compared the proposed SIS measure
with the other three similarity measures, GKS, Linear
Neighbor Similarity(LNS) [24], and KNN on digits data set.



0 10 20 30 40 50 60 70 80 90
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Labeled Set Size

A
cc

ur
ac

y

 

 

GKS
SIS
LNS
KNN

Figure 3. The accuracy of label propagation on digits ‘1’ and ‘2’
based on semi-supervised learning.

For GKS, we used Eq. (2) to measure similarity and the vari-
ance σ is set to 380 which achieves the best performance.
For LNS, we obtain the weight matrix by optimizing an ob-
jective function based on a linear neighbor assumption in
the LNP approach [24] while the label propagation scheme
is similar to [31]. The number of nearest neighbors K is set
to 10 (Both 5 and 10 were used in [24]. We found that 10
works better for this example). As for KNN, We use inner-
product similarity to find the K nearest neighbors. Then, the
similarity values between a sample and its K nearest neigh-
bors are their correlation coefficients while those between
the sample and the rest are set to 0. The value of K is set to
10. Note that, in this paper, we consider KNN just as a type
of similarity measure, not as a classifier as in [31, 24]. In our
SIS approach, we normalize all feature vectors so that their
L2 norms are 1 before computing weight matrix.

Figure 3 shows the propagation accuracies of four differ-
ent similarity measures: GKS, SIS, LNS, and KNN on digits
‘1’ and ‘2’. The x-axis is the number of labeled data rang-
ing from 2 to 90. The y-axis is label propagation accuracy.
We can see that GKS (labeled as ‘GKS’) works better than
KNN (labeled as ‘KNN’), LNS (labeled as ‘LNS’) works
better than GKS, and SIS (labeled as ‘SIS’) works the best.

We also use the digit data set to study the performance
stability when the amount of labeled samples varies. Since
Wang and Zhang [24] showed that the performance of LNS
is better than that of GKS in performance stability, we only
compare SIS with LNS. In Figure 4, the x-axis is the index
of different trials ranging from 1 to 20, and y-axis is the
accuracy resulted from label propagation. We compare with
three different labeled data sizes: 2, 20, and 40 . The curve
‘SIS-2’ denotes the label propagation accuracy obtained by
using SIS with 2 labeled samples, and the curve ‘SIS-20’
denotes the accuracy obtained by using SIS with 20 labeled
samples, and so on. Similarly, the curve ‘LNS-2’ denotes the
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Figure 4. The performance stability of different similarity measures
for the different number of labeled samples.

labeling accuracy using LNS with 2 labeled samples, etc.
We can see that the proposed similarity measure has very
stable performance for different labeling data sizes, while
the LNS approach exhibits large performance fluctuations.

4.3. The UIUC Car Data Set

In this experiment, we investigate the SIS performance
for label propagation of UIUC car data set. Two classes,
1050 images of cars and backgrounds, are used to validate
the proposed approach. For GKS, the variance σ is set to
0.5 and the value of K is set to 10 in KNN. Similarly, the
number of nearest neighbors is set to 10 in LNS.

Figure 5 compares the label propagation accuracy re-
sulted from four different similarity measures. We select
the labeled samples randomly from 1000 images of cars and
backgrounds, and use 2, 10, 20, 30, · · · , 100 labeled sam-
ples to evaluate the effects of different labeled data sizes.
Again, the proposed similarity measure significantly outper-
forms the other approaches.

4.4. The ETH-80 Object Data Set

In this experiment, we evaluate the SIS performance for
label propagation of multi-class objects. 3 types of objects,
apples, pears and tomatoes are used to evaluate the proposed
similarity measure for multi-class label propagation since
it is comparatively difficult to distinguish those three cate-
gories in this data set. For GKS, the variance σ is set to
0.15 and the value of K is set to 10 in KNN. Similarly, the
number of nearest neighbors is set to 10 in LNS.

Figure 6 compares four different similarity measures on
ETH-80. We select the labeled samples randomly from
1,230 images of apples, cars, and cows. We use 3, 9, 18, 27,
· · · , 81 labeled samples to evaluate the effect on different
labeled data sizes. Again, the proposed similarity measure
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Figure 5. The accuracy of label propagation on UIUC data set based
on semi-supervised learning.
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Figure 6. An accuracy comparison of GKS, SIS, LNS, KNN on the
ETH-80 data set.

outperforms the rest.

4.5. The Scene-15 Data Set

This experiment evaluates the proposed similarity mea-
sure in the framework of BoW for scene classification on
scene-15 data set. The basic idea of BoW is to sample a
representative set of patches from each image, compute a
feature descriptor for each patch, characterize the resulting
distributions and finally classify images based on the distri-
butions. In this experiment, we focus on the third issue, that
is, how to characterize the resulting distributions. Basically,
it consists of codebook generation and codeword assign-
ment. Similar to traditional codebook generation, we use
K-means approaches to generate a codebook. For codeword
assignment, two popular approaches, hard assignment and
soft assignment, are used to assign codewords to the patches
thus forming the patch distributions (i.e., histogram). In the

Figure 7. A performance comparison on scene-15 data set of two
patch labeling approaches: the kernel-based approach and the SIS-
based approach.

hard assignment approach, each patch is assigned with a sin-
gle codeword. In contrast, the soft assignment allows mul-
tiple codewords (with weights) to be assigned to a patch.
A Gaussian-kernel soft assignment approach was proposed
in [23]. Essentially, it uses GKS measure to determine the
similarities between the patches and the codewords.

As an alternative to kernel-based codeword assign-
ment [23], we use the SIS-based label propagation technique
to determine the soft assignment. Given h1 patches for one
image and h2 codewords for a codebook, we first obtain fea-
ture vector matrix F in Eq. (5), where the total number of
feature vectors is N = h1 + h2. Second, we compute the
weight matrix using the approach introduced in Sect. 3.2.
Third, we use the codewords in F to represent the labeled
samples and use the patch descriptors to represent the un-
labeled samples. The label propagation result of Eq. (4) is
used as the soft assignment for the patches. Similar to [23],
for each image we accumulate the soft assignment values
of its patches to form the resulting histogram for the image.
The histograms are then used for classification.

In Figure 7, we compare the scene classification per-
formance obtained by using SIS-based patch labeling ap-
proach (labeled as ‘SIS’) with what is obtained by using
the Gaussian-kernel patch labeling approach [23] (labeled
as ‘kernel’). To ensure a fair comparison with the kernel
based patch labeling approach, we closely follow [23] in the
experiment setup. As in [23], we perform K-means cluster-
ing to form the codebook of 200 codewords, and repeat the
experiment 10 times to obtain reliable results. For classifi-
cation, libSVM [6] and a histogram intersection kernel are
used in one-versus-one multi-class classification. Figure 7
shows the classification rates obtained from using the two
patch labeling approaches. We can see that our approach



outperforms the kernel-based approach for every category.
On average, we achieve 74.94% classification rate on scene-
15 data set with an absolute improvement of 3.5% over ker-
nel based approach. Furthermore, SIS based scene classifi-
cation with 200 codewords achieves nearly the same perfor-
mance as the kernel-based approach with 1600 codewords.

5. Conclusions

In this paper, we have proposed a novel similarity mea-
sure for propagating labels form labeled samples to unla-
beled samples. The proposed SIS measure takes into ac-
count the hidden class structure by using the sparse decom-
position. We have compared the proposed similarity mea-
sure with the traditional similarity measures including GKS
and KNN, and the experiment results demonstrated the su-
periority of the proposed method. In addition, we showed
that the proposed similarity measure can be used to improve
the codeword assignment in the BoW framework for scene
classification.
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