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Abstract

Sparse matrix-vector multiplication is an important computational
kernel that performs poorly on most modern processors due to a low
compute-to-memory ratio and irregular memory access patterns. Opti-
mization is difficult because of the complexity of cache-based memory
systems and because performance is highly dependent on the nonzero
structure of the matrix. The Sparsity system is designed to address
these problems by allowing users to automatically build sparse matrix ker-
nels that are tuned to their matrices and machines. Sparsity combines
traditional techniques such as loop transformations with data structure
transformations and optimization heuristics that are specific to sparse
matrices. It provides a novel framework for selecting optimization param-
eters, such as block size, using a combination of performance models and
search.

In this paper we discuss the optimization of two operations: a sparse
matrix times a dense vector and a sparse matrix times a set of dense
vectors. Our experience indicates that register level optimizations are
effective for matrices arising in certain scientific simulations, in partic-
ular finite-element problems. Cache level optimizations are important
when the vector used in multiplication is larger than the cache size, espe-
cially for matrices in which the nonzero structure is random. For applica-
tions involving multiple vectors, reorganizing the computation to perform
the entire set of multiplications as a single operation produces significant
speedups. We describe the different optimizations and parameter selection
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techniques and evaluate them on several machines using over 40 matrices
taken from broad set of application domains. Our results demonstrate
speedups of up to 4× for the single vector case and up to 10× for the
multiple vector case.

1 Introduction

Matrix-vector multiplication is used in scientific computation, signal and im-
age processing, document retrieval, and other applications. In many cases the
matrices are sparse so only the nonzero elements and their indices are stored.
The performance of sparse matrix operations tends to be much lower than their
dense matrix counterparts due to: (1) the overhead of accessing the index infor-
mation in the matrix structure, and (2) the irregularity of many of the memory
accesses. For example, on an 167 MHz UltraSPARC I, there is a 2x slowdown
from the index overhead (measured by comparing a dense matrix in both dense
and sparse format) and an additional 5x slowdown for matrices that have a
nearly random nonzero structure [14]. This performance gap is due entirely to
the memory system performance, and is likely to increase as the gap between
processor speed and memory speed increases.

The Sparsity system is designed to help users obtain highly tuned sparse
matrix kernels without having to know the details of their machine’s memory
hierarchy or how their particular matrix structure will be mapped onto that
hierarchy. Sparsity performs register level and cache level optimizations [14],
which are quite different than those performed by compilers for dense code. In
particular, the data structure is changed and in some cases explicit zeros are
added to the matrix to improve memory system behavior.

In this paper we describe optimization techniques used in Sparsity for tun-
ing sparse matrix-vector multiplication. Section 3 presents the register blocking
optimization, which is most useful on matrices from Finite Element Methods,
because they tend to have naturally occuring dense sub-blocks. The challenge is
to select the register block size, which involves a trade-off between the memory
system overhead that comes from poor locality and the additional computation
required to perform multiplications with explicit zeros. Section 4 describes cache
blocking, which is used for problems in which the source vector is too large to
fit in the cache. Section 5 considers a variation on matrix-vector multiplication
in which the matrix is multiplied by a set of vectors. Sparsity reorganizes
the computation to take advantage of multiple vectors, improving locality and
performance as a result. An overview of the Sparsity system architecture is
presented in section 6.

2 Benchmark Matrices and Machines

To evaluate Sparsity’s optimization techniques, we present performance data
on four machines based on the following micrprocessors: a 333 MHz Sun Ul-
traSPARC IIi, an 800 MHz Intel Mobile Pentium III, a 900 MHz Intel Itanium
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Processor and Clock Data cache DGEMV DGEMM
compiler (MHz) sizes (MFLOPS) (MFLOPS)
Sun UltraSPARC IIi 333 L1: 16 KB 58 425
Sun C v6.0 L2: 2 MB
Intel Pentium III 800 L1: 16 KB 147 590
Mobile (Coppermine) L2: 256 KB
Intel C v6.0
IBM Power4 1300 L1: 64 KB 915 3500
IBM xlc v6 L2: 1.5 MB

L3: 32 MB
Intel Itanium 2 900 L1: 16 KB 1330 3500
Intel C v7.0 L2: 256 KB

L3: 3 MB

Table 1: Summary of Machines

2, and a 1.3 GHz IBM Power4. The machines are summarized in Table 1,
where we show each processors’ clock speed and cache configuration, along with
performance of optimized dense Basic Linear Algebra Subroutines (BLAS) op-
erations for comparison. We include the performance of the BLAS routines as
an approximate upper bound on the sparse performance: dense matrix-vector
multiplication (DGEMV) is an upper bound for sparse matrix-vector multipli-
cation, while dense matrix-matrix multiplication (DGEMM) is an upper bound
for the multiple vector case. The BLAS numbers are are for double-precision
floating point numbers on a 2000×2000 matrix. For each platform, we measured
the performance of the vendor-supplied, hand-optimized BLAS library, Goto’s
assembly-coded BLAS libraries [9], and automatically generated BLAS libraries
using ATLAS; we report the performance of the best of these implementations
in Table 1.

Since the optimizations also depend strongly on matrix size and structure,
we use a large set of matrices taken from a range of application domains for
our experiments. Table 2 summarizes the matrices. We have placed the ma-
trices in the table according to our understanding of the application domain
from which it was derived. Matrix 1 is a dense matrix, which is included in our
suite for comparison to the DGEMV performance. Matrices 2 through 17 are
from Finite Element Method (FEM) applications, which in several cases means
there are dense sub-locks within many parts of the matrix. Note however, that
the percentage of nonzeros is still very low, so these do not resemble the dense
matrix. Matrices 18 through 39 are from a variety of engineering and science
applications, including circuit simulation, computational fluid dynamics, chem-
istry, and structural dynamics. Matrix 40 comes from a text retrieval (latent
semantic indexing) application [4]. Matrices 41 through 43 come from linear
programming problems. Finally, matrix 44 comes from a statistical experimen-
tal design problem. All of the first 39 matrices are square, and although some
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are symmetric, we do not try to take advantage of symmetry in this paper. The
matrices are roughly ordered by the regularity of nonzero patterns, with the
more regular ones at the top.

3 Register Optimizations for Sparse Matrices

3.1 Description of the Register Optimizations

The performance of sparse matrix operations are typically limited by the mem-
ory system, because the ratio of the number of memory reference instructions to
the number of floating point operation is high, due to the indirect data structure
representing sparse matrix. Hence our first optimization technique is designed
to eliminate loads and stores by reusing values that are in registers. For matrix-
vector multiplication, there are few opportunities for register reuse, because
each element of the matrix is used only once. To make this discussion concrete,
we assume that we are starting with a fairly general representation of a sparse
matrix called Compressed Sparse Row (CSR) format. In CSR, all row indices
are stored (by row) in one vector, all matrix values are stored in another, and
a separate vector of indices indicates where each row starts within these two
vectors. In the calculation of y = A×x, where A is a sparse matrix and x and y
are dense vectors, the computation may be organized as a series of dot-products
on the rows. In computing y = A × x, the elements of A are accessed sequen-
tially but not reused. The elements of y are also accessed sequentially, and they
are reused for each nonzero in the row of A. The access to x is irregular, as it
depends on the column indices of nonzero elements in matrix A.

Register reuse of y and A cannot be improved, but access to x may be
optimized if there are elements in A that are in the same column and nearby
one another, so that an element of x may be saved in a register. To improve
locality, Sparsity stores a matrix as a sequence of small dense blocks, and
organizes the computation to compute each block before moving on to the next.
This blocked format also has the advantage of reducing the amount of memory
required to store indices for the matrices, since a single index is stored per
block. To take full advantage of the improved locality for register allocation,
we fix the block sizes at compile time. Sparsity therefore generates code for
matrices containing only full dense blocks of some fixed size r × c, where each
block starts on a row that is a multiple of r and a column that is a multiple of
c. The code for each block is unrolled, with instruction scheduling and other
optimizations applied by the C compiler. The assumption is that all nonzeros
must be part of some r×c block, so Sparsity will transform the data structure
by adding explicit zeros where necessary. We show an example of the unblocked,
reference code in Figure 1, and 2×2 blocked code in Figure 2.
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Name Application Area Dimension Nonzeros %

1 dense1000 Dense Matrix 1000x1000 1000000 100

2 raefsky3 Fluid/structure 21200x21200 1488768 0.33

3 inaccura Accuracy problem 16146x16146 1015156 0.39

4 bcsstk35 Automobile frame 30237x30237 1450163 0.16

5 venkat01 Flow simulation 62424x62424 1717792 0.04

6 crystk02 FEM Crystal 13965x13965 968583 0.50

7 crystk03 FEM Crystal 24696x24696 1751178 0.29

8 nasasrb Shuttle rocket booster 54870x54870 2677324 0.09

9 3dtube 3-D pressure tube 45330x45330 3213332 0.16

10 ct20stif CT20 Engine block 52329x52329 2698463 0.10

11 bai Airfoil eigenvalue 23560x23560 484256 0.09

12 raefsky4 Buckling problem 19779x19779 1328611 0.34

13 ex11 3D steady flow 16614x16614 1096948 0.40

14 rdist1 Chemical processes 4134x4134 94408 0.55

15 vavasis3 2D PDE problem 41092x41092 1683902 0.10

16 orani678 Economic modeling 2529x2529 90185 1.41

17 rim FEM fluid mechanics 22560x22560 1014951 0.20

18 memplus Circuit Simulation 17758x17758 126150 0.04

19 gemat11 Power flow 4929x4929 33185 0.14

20 lhr10 Light hydrocarbon 10672x10672 232633 0.20

21 goodwin Fluid mechanics 7320x7320 324784 0.61

22 bayer02 Chemical process 13935x13935 63679 0.03

23 bayer10 Chemical process 13436x13436 94926 0.05

24 coater2 Coating flows 9540x9540 207308 0.23

25 finan512 Financial optimizaion 74752x74752 596992 0.01

26 onetone2 Harmonic balance 36057x36057 227628 0.02

27 pwt Structural engineering 36519x36519 326107 0.02

28 vibrobox Vibroacoustics 12328x12328 342828 0.23

29 wang4 Semiconductor devices 26068x26068 177196 0.03

30 lnsp3937 Fluid flow 3937x3937 25407 0.16

31 lns3937 Fluid flow 3937x3937 25407 0.16

32 sherman5 Oil reservoir 3312x3312 20793 0.19

33 sherman3 Oil reservoir 5005x5005 20033 0.08

34 orsreg1 Oil reservoir 2205x2205 14133 0.29

35 saylr4 Oil reservoir 3564x3564 22316 0.18

36 shyy161 Viscous flow 76480x76480 329762 0.01

37 wang3 Semiconductor devices 26064x26064 177168 0.03

38 mcfe Astrophysics 765x765 24382 4.17

39 jpwh991 Circuit physics 991x991 6027 0.61

40 webdoc Document Clustering 10000x255943 37124897 0.15

41 nug30 Linear programming 52260x379350 1567800 0.0079

42 osa60 Linear programming 10280x243246 1408073 0.056

43 rail4284 Railway scheduling 4284x1092610 11279748 0.24

44 bibd 22 8 Experimental design 231x319770 8953560 12.0

Table 2: Matrix benchmark suite: The basic characteristic of each matrix
used in our experiments is shown. The sparsity column is the percentage of
nonzeros.
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void smvm_1x1( int m, const double* value,

const int* col_idx, const int* row_start,

const double* x, double* y )

{

int i, jj;

/* loop over rows */

1 for( i = 0; i < m; i++ ) {

2 double y_i = y[i];

/* loop over non-zero elements in row i */

3 for( jj = row_start[i]; jj < row_start[i+1];

jj++, col_idx++, value++ ) {

4 y_i += value[0] * x[col_idx[0]];

}

5 y[i] = y_i;

}

}

Figure 1: Reference implementation. A standard C implementation of
SMVM for y = y+Ax, assuming CSR storage and C-style 0-based indexing. A
is an m×n matrix. This is a modification of the corresponding NIST routine.

void smvm_2x2( int bm, const int *b_row_start,

const int *b_col_idx, const double *b_value,

const double *x, double *y )

{

int i, jj;

/* loop over block rows */

1 for( i = 0; i < bm; i++, y += 2 ) {

2 register double d0 = y[0];

3 register double d1 = y[1];

4 for( jj = b_row_start[i]; jj < b_row_start[i+1];

jj++, b_col_idx++, b_value += 2*2 ) {

5 d0 += b_value[0] * x[b_col_idx[0]+0];

6 d1 += b_value[2] * x[b_col_idx[0]+0];

7 d0 += b_value[1] * x[b_col_idx[0]+1];

8 d1 += b_value[3] * x[b_col_idx[0]+1];

}

9 y[0] = d0;

10 y[1] = d1;

}

}

Figure 2: Example: 2×2 register blocked code. Here, bm is the number of
block rows, i.e., the number of rows in the matrix is 2*bm. The dense sub-blocks
are stored in row-major order.
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Matrix 02−raefsky3: 8x8 blocked submatrix (1:80, 1:80)

Figure 3: Sparse matrix example. A macroscopic view of the non-zero
structure of matrix #2, raefsky3 (left). This matrix is structurally, but not
numerically, symmetric. Furthermore, the matrix consists entirely of uniformly
aligned 8×8 blocks as shown by the 80×80 leading submatrix (right).

3.2 Choosing the Register Block Size

The idea of register blocking or tiling for dense matrix operations is well-known
(e.g., [17]), but the sparse matrix transformation is quite different, since it
involves filling in zeros, which add both storage and computation overhead.
Blocked sparse matrix formats are commonly used in applications where the
matrices are constructed one dense block at a time. The critical question in our
work is how to select the block dimensions r and c for optimal performance.
This is quite different than the block size selection problem for dense matrices,
because it depends on the nonzero structure of the matrix. We also find that
the best blocking factor is not always the one naturally chosen by a user, since
it may vary across machines for a given matrix. We illustrate how the choice of
block size can be surprising using the following experimental example. Figure 3
shows the non-zero structure of matrix #2 (raefsky3) in Table 2. This matrix
consists entirely of 8×8 blocks, uniformly aligned as shown in the figure. A
user is likely to choose a square block size such as 8×8, or possibly even 4×4
if register pressure is a known problem. Indeed, PETSc, a standard packages
in scientific computing [3], only allows square block sizes at the time of this
writing.

For this example, consider an experiment in which we measure the perfor-
mance of sixteen r×c implementations where r, c ∈ {1, 2, 4, 8}. All of these block
sizes are “natural” in that they evenly divide the largest, natural block size of
8×8, and therefore require no fill. We show the results of such an experiment
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on the four evaluation machines in Figure 4. Each plot shows all 16 implemen-
tations, each shaded by its performance in MFLOPS and labeled by its speedup
over the reference (1×1) code. On the UltraSPARC IIi, we see the expected
behavior: performance increases smoothly as r and c increase, and indeed 8×8
blocking is the best choice. By contrast, 4×4 and 8×8 are good choices on the
Itanium 2 but nevertheless only half as fast as the optimal choice of 4×2 block-
ing. The best block size is also non-square on the other platforms: 2×8 on the
Pentium III and 4×1 on the Power4. On the Power4, 4×4 is actually not much
slower than the optimal 4×1 block size, but it is not clear why 8×8 should be
10% slower than either, since the Power4 has twice as many double-precision
floating point registers as the UltraSPARC IIi (32 vs. 16 registers). Thus, even
in this simple example, we see that the choice of block size is not always obvious.

We have developed a performance model that predicts the performance of
the multiplication for various block sizes without actually blocking and running
the multiplication. The model is used to select a good block size. There is a
trade-off in the choice of block size for sparse matrices. In general, the compu-
tation rate will increase with the block size, up to some limit at which register
spilling becomes necessary. In most sparse matrices, the dense sub-blocks that
arise naturally are relatively small: 2×2, 3×3 and 6×6 are typical values. When
a matrix is converted to a blocked format, the index structure is more compact,
because there is only one index stored per block, rather than per nonzero. How-
ever, some zero elements are filled in to make a complete r× c block, and these
extra zero values not only consume storage, but increase the number of floating
point operations, because they are involved in the sparse matrix computation.
The number of added zeros in the blocked representation are referred to as fill,
and the ratio of entries before and after fill is the fill overhead. Our performance
model for selecting register block size has two basic components:

1. An approximation for the Mflop rate of a matrix with a given block size.

2. An approximation for the amount of unnecessary computation that will
be performed due to fill overhead.

These two components differ in the amount of information they require: the
first needs the target machine but not the matrix, whereas the second needs the
matrix structure but not the machine.

3.2.1 Machine Profile

The first component cannot be exactly determined without running the resulting
blocked matrix on each machine of interest. To avoid the cost of running all
these for each matrix structure of interest, we use an approximation for this
Mflop rate, which is the performance of a dense matrix stored in the blocked
sparse format. The second component could be computed exactly for a given
matrix, but is quite expensive to compute for multiple block sizes. Instead, we
develop an approximation that can be done in a single pass over only a part of
the matrix.
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Figure 4: Register blocking performance: Matrix #2, raefsky3. We
show the results of register blocking the matrix shown in Figure 3 on four
platforms (clockwise from upper-left): UltraSPARC IIi, Intel Pentium III, Ita-
nium 2, and Power4. On each platform, each square is an r×c implementation
shaded by its performance in MFLOPS and labeled by its speedup relative to
the unblocked CSR implementation (1×1). Sixteen implementations are shown
for r, c ∈ {1, 2, 4, 8}. The optimal block sizes are 8×8 on the UltraSPARC IIi
(1.79x speedup, 63 MFLOPS), 2×8 on the Pentium III (1.81x, 120 MFLOPS),
4×2 on the Itanium 2 (4.09x, 1.1 GFLOPS), and 4×1 on the Power4 (1.22x,
700 MFLOPS).
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Figure 5: Performance profile of register-blocked code on an Ultra-
SPARC IIi (top) and a Pentium III (bottom). Each r×c implementation
is shaded by its performance (MFLOPS); the top 25% of the implementations
are labeled by their speedup relative to the unblocked (1×1) case (lower-leftmost
implementation, labeled 1.0). The largest observed speedup is 2.03 at 6×8 on
the UltraSPARC IIi, and is 2.24 on the Pentium III at 2×5. The baseline
performance is 36 MFLOPS on the UltraSPARC IIi and 60 MFLOPS on the
Pentium III. The best performance is 72 MFLOPS on the UltraSPARC IIi and
130 MFLOPS on the Pentium III.
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Figure 6: Performance profile of register-blocked code on a Power4
(top), and an Itanium 2 (bottom). The largest observed speedup is 1.38
at 10×8 on the Power4, and 4.07 at 4×2 on the Itanium 2. The baseline per-
formance is 595 MFLOPS on the Power4 and 300 MFLOPS on the Itanium 2;
the best observed performance is 820 MFLOPS on the Power4 and nearly 1.2
GFLOPS on the Itanium 2.
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Figures 5 and 6 show the performance of sparse matrix vector multiplication
for a dense matrix using register-blocked sparse format. Specifically, each square
represents an implementation at a particular row block size (varying along the
y-axis) and column block size (x-axis). Each implementation is shaded by its
performance in MFLOPS. We call these plots the machine profile because they
provide the machine-specific component of our performance model. The data
was collected using a 2000× 2000 dense matrix in sparse format, although the
performance is relatively insensitive to the total matrix size as long as the matrix
is small enough to fit in memory but too large to fit in cache. We vary the block
size within a range of r × c values from 1× 1 up to 12× 12. This limit is likely
to be reasonable in practice, since none of the application matrices in Table 2
have many naturally occuring dense blocks larger than 8×8.

From these profiles, we can see some interesting characteristics of the ma-
chines with respect to sparse matrix operations. First, the difference between
the graphs shows the need for machine-specific tuning, and with the exception
of the Pentium III (and to some extent the UltraSPARC IIi), the performance
curves are far from smooth, so a small change in block size can make a large
difference in performance. While the reasons for this erratic behavior are not
clear, both the memory system structure and the compiler are significant fac-
tors. The code is C code generated automatically by the Sparsity system, and
for register blocked code, the basic blocks can be quite large. This may, for
example, explain the noticeable drop in performance for large block sizes on the
UltraSPARC. Overall, these graphs show the difficulty of choosing the register
block size fully automatically, even for the simplest case of a dense matrix in
sparse format. These observations motivate our use of the machine profiles for
optimization.

Second, the difference between the 1 × 1 performance and the best case
will give us a rough idea of the kind of speedups we may expect from register
blocking real matrices. For the UltraSPARC and Pentium III, there is roughly
a 2× difference between the 1× 1 performance and the best case. The Itanium
2 has a wider range of 4×, whereas the Power4 maximum is 1.4×. Note that
the baseline on the Power4 is significantly faster than the baseline on the other
machines—nearly 600 MFLOPS compared to the second fastest of about 300
MFLOPS on the Itanium 2.

3.2.2 Estimating Fill Overhead

To approximate the unnecessary computation that would result from register
blocking, we estimate the fill overhead. For each r, we select 1% of the block
rows uniformly at random and count the number of zeros which would be filled
in for all c simultaneously. Currently, we limit our estimate to sizes up to
12 × 12, though on the matrix benchmark suite we have not observed optimal
sizes greater than 8× 8. Also, we perform the 1% scan independently for each
r, though this could obviously be improved by simultaneously scanning r and
its factors (e.g., while scanning r = 12, simultaneously search r = 1, 2, 3,
6, and 12). As described and implemented, we scan up to 12% of the matrix.
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Nevertheless, the cost of this procedure for all r, c is in practice less than the cost
of converting the matrix from CSR to register blocked format. Furthermore, our
procedure typically estimates the fill ratio to within 1% on FEM matrices, and
to typically within 5–10% on the other matrices in our benchmark suite.

We use this estimate of fill overhead to predict the performance of an r × c
blocking of a particular matrix A as:

performance of a dense matrix in r × c sparse blocked format
estimated fill overhead for r × c blocking of A

We choose the r and c that maximizes this performance estimate.
The heuristic is imperfect, and to ensure that Sparsity never produces code

that is slower than the naive implementation, we run the transformed code
with the selected block size against the unblocked code, and select whichever is
fastest. A more aggressive optimization approach would be to search exhaus-
tively over a set of possible block sizes using the matrix of interest, but that
may be too expensive for most application programmers. For example, the cost
of converting the matrix to any given block size is at least an order of mag-
nitude more expensive than performing a single matrix-vector multiplications.
Our approach of using a heuristic to select block size, followed by a single search
gives good performance with much less overhead than exhaustive search.

3.3 Performance of Register Optimizations

We ran Sparsity on all of the benchmark matrices in Section 2. The optimiza-
tions are quite effective on the more structured matrices across all machines. On
the less sturctured matrices, numbered 20-44, we see no benefit from register
blocking on most machines.1 We therefore present performance results only for
matrices 1 through 19. Note that when reporting a Mflop rate, we do not count
the extra operations with explicitly filled in zeros as floating point operations.
Thus, for a given matrix, comparing performance is equivalent to comparing
inverse time.

Figures 7–8 compare the performance of the following three implementations:

• Exhaustive best—The implementation in which we choose the block size
for each matrix by exhaustive search over 1×1 to 12×12. We denote this
block size by ro×co.

• Heuristic—The implementation in which we choose the block size using
our heuristic. We denote this block size by rh×ch.

• Reference—The baseline implementation, our unblocked 1×1 CSR code.
This baseline code is comparable to that of other unblocked implementa-
tions, such as the NIST Sparse BLAS Toolkit [22].

1On Itanium 2, register blocking pays off even on the unstructured matrices. We will
present those results in Section 5.
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Figure 7: Register blocking performance on the UltraSPARC IIi (top)
and Pentium III (bottom) platforms. For each matrix (x-axis), we com-
pare the performance (MFLOPS, y-axis) of three implementations: (1) the best
performance when r and c are chosen by exhaustive search, (2) the performance
when r and c are chosen using our heuristic, and (3) the unblocked reference
code.
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Figure 8: Register blocking performance on the Power4 (top) and
Itanium 2 (bottom) platforms. For each matrix (x-axis), we compare the
performance (MFLOPS, y-axis) of three implementations: (1) the best perfor-
mance when r and c are chosen by exhaustive search, (2) the performance when
r and c are chosen using our heuristic, and (3) the unblocked reference code.
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In Appendix A, we show the values of ro×coand rh×ch, as well as the resulting
fill overheads. As noted earlier the best register block sizes differ across machines
as well as matrices. For example, the best block sizes for matrix 4 (bcsstk35)
are 6 × 2 on the UltraSPARC IIi, 3 × 3 on the Pentium III and Power4, and
4 × 2 on the Itanium 2. The higher fill overhead required for the larger blocks
are not justifed by the performance profiles on the Pentium III and Power4.

Comparing just the exhaustive best implementation and the reference, we
see that register blocking shows significant speedups with a maximum of 4× for
this set of machines and matrices. As expected from the register profiles, the
Itanium 2 shows the highest performance and speedups relative to the baseline,
while the Power4 has the lowest speedups. The benefits are also highest on the
the lower numbered matrices, which are finite element matrices with relatively
large natural blocks. Even in these cases, the blocks are not uniform throughout
the matrix, so there is some noticeable fill overhead. In some cases a surprisingly
large number of zeros can be filled in while still obtaining a speedup: on the
Itanium 2, a number of matrices have a fill overhead of more than 1.5, while
still being a factor of 2x or more than the baseline.

In addition, we see that our heuristic usually selects the optimal or near-
optimal block size. On the UltraSPARC IIi and Pentium III platforms, the
performance of the heuristically chosen implementation is never more than 10%
slower than the exhaustive best code. On Itanium 2, the code chosen by heuristic
does somewhat worse than this for matrices 14 and 19, and on Power 4, the
heuristic performance is more than 10% slower in 5 instances (matrices 11, 14,
16, 18, and 19). We note matrices 14 and 19 have the fewest number of non-
zeros of matrices 1–19. Indeed, the 5 matrices for which our heuristic made
a sub-optimal choice on the Power4 also have the fewest number of non-zeros
of matrices 1–19. This suggests that the machine profile, which we chose to
be large relative to the caches, is not a good match to these small matrices.
We have performed some preliminary experiments in which we use a machine
profile based on an in-L2 cache workload (i.e., a dense matrix which fits in the
L2 cache), and the new predicted block sizes yield performance within 10% of
the exhaustive best. Therefore, future work could consider collecting multiple
profiles and matching profiles to a given matrix.

4 Cache Optimizations for Sparse Matrices

In this section we describe an optimization technique for improving cache uti-
lization. The cost of accessing main memory on modern microprocessors is in
the tens to hundreds of cycles, so minimizing cache misses can be critical to
high performance. The basic idea is to reorganize the matrix data structure
and associated computation to improve the reuse of data in the source vector,
without destroying the locality in the destination vectors. In cache blocking,
the set of values in the cache is not under complete control of the software;
hardware controls the selection of data values in each level of cache according
to its policies on replacement, associativity, and write strategy [12]. Because
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Figure 9: Cache-blocks in a sparse matrix: The gray areas are sparse matrix
blocks that contain nonzero elements in the rcache× ccache rectangle. The white
areas contain no nonzero elements, and are not stored.

the caches can hold thousands of values, it is not practical to fill in an entire
cache block with zeros. Instead, we preserve the sparse structure but rearrange
the order of computation to improve cache reuse. (In contrast, register blocking
avoids some of the indexing and loop overhead by filling in dense subblocks to
make them uniform, but this is not practical for cache blocking due to the big
size of cache block and to low density of such block.)

4.1 Description of Cache Optimizations

The idea of cache blocking optimization is to keep ccache elements of the source
vector x in the cache with rcache elements of the destination vector y while an
rcache × ccache block of matrix A is multiplied by this portion of the vector x.
The entries of A need not be saved in the cache, but because this decision is
under hardware control, interference between elements of the matrix and the
two vectors can be a problem.

One of the difficulties with cache blocking is determining the block sizes,
rcache and ccache. To simplify the code generation problem and to limit the
number of experiments, we start with the assumption that cache blocks within
a single matrix should have a fixed size. In other words, rcache and ccache are
fixed for a particular matrix and machine. This means that the logical block
size is fixed, although the amount of data and computation may not be uniform
across the blocks, since the number of nonzeros in each block may vary. Figure
9 shows a matrix with fixed size cache blocks. Note that the blocks need not
begin at the same offsets in each row.

We have considered two strategies for cache blocking: The first implemen-
tation, referred to as static cache blocking, involves a preprocessing step to re-
organize the matrix so that each block is stored contiguously in main memory.
In the second implementation, referred to as dynamic cache blocking, does not
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involve any data structure reorganization, but changes the order of computa-
tion by retaining a set of pointers into each row of the current logical block.
Although dynamic cache blocking avoids any preprocessing overhead, it incurs
significantly more runtime overhead than static cache blocking [14], so SPAR-

SITY uses static cache blocking.

4.2 Performance of Cache Optimizations

Only matrices with very large dimensions will benefit from cache blocking, i.e.,
if the source vector easily fits in a cache and still leaves room for the matrix
and destination elements to stream through without significant conflicts, there
is no benefit to blocking. Matrices 40–44 are large enough to cause conflicts of
this kind, since the source vectors are large—in particular, the source vectors
are all at least 2 MB in size, which is at least as large as the L2 cache on all
four machines.

We applied cache blocking to these matrices and measured the speedups on
the four machines used in the previous section. We also applied combination
of register blocking and cache blocking to these matrices. However, since the
register block sizes for these matrices were chosen to be 1× 1, the optimization
was reduced to a simple cache blocking. The results of cache blocking are shown
in Figure 10. We show, for each platform, raw performance in MFLOPS before
and after cache blocking. Cache blocking performance is also labeled by speedup
over the unblocked code.

For these matrices, the benefits are significant: we see speedups of up to
2.2x. Cache blocking appears to be most effective on matrix 40, which sees
the largest speedups, and least effective on matrix 41, which did not see any
speedup on two machines. The selected block sizes are shown in Table 3. The
unoptimized performance is relatively poor: the unblocked code runs at only
15–24 MFLOPS on the Ultra IIi, 25–42 MFLOPS on the Pentium III, 100–280
MFLOPS on the Power4, and 170–220 MFLOPS on the Itanium 2. Roughly
speaking, if we order the matrices by increasing density—matrix 41, 42, 40, 43,
and 44—we see that the cache blocked performance also tends to increase. Note
that while cache blocking is only of interest on only a few of these matrices in
the benchmark suite, we believe this more of a reflection on the age of these
matrices, which came primarily from standard benchmarks suites. On modern
machines much larger matrices are likely to be used.

The cache block sizes are chosen automatically by the Sparsity system
after measuring the performance for rectangular block sizes between 32 × 32
and 128K × 128K that are powers of two. We may miss optimal block size by
searching only for block sizes of powers of 2, but this choice is made because it
is practically impossible to search for all possible block sizes since the range of
block sizes are enormous.
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Figure 10: Speedup from cache blocking. We show performance (MFLOPS,
y-axis) of the reference implementation compared to a cache-blocked implemen-
tation for Matrices 40–44 (x-axis). Data from four platforms are shown (clock-
wise from top-left): UltraSPARC IIi, Pentium III, Itanium 2, and Power4. Each
of the bars corresponding to cache-blocked performance is labeled above by its
speedup over the reference performance.

Matrix Ultra IIi Pentium III Power4 Itanium 2
40-webdoc 10000×32768 10000×8192 10000×32768 10000×65536
41-lp nug30 2048×32768 — 32768×65536 —
42-lp osa60 10280×32768 4096×8192 8192×65536 4096×65536
43-rail4284 4284×16384 4284×8192 4284×32768 4284×32768
44-bibd 22 8 231×1024 231×4096 231×4096 231×4096

Table 3: Chosen Cache Block Sizes A dash “—” indicates that it was
faster to leave the code unblocked. See Figure 10 for corresponding performance
results.
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5 Optimizing for Multiple Vectors

Both register blocking and cache blocking improve memory locality so that a
sparse matrix might approach the performance of a matrix-vector operation in
dense format. Neither can turn these operations into a BLAS-3 operation like
matrix-matrix multiplication, which has a much higher computation to memory
ratio. To see these benefits, we look at a variation on the sparse matrix-vector
multiplication, which is multiplying a sparse matrix times a set of dense vectors
(or equivalently times a dense matrix, but usually one that is very tall and
thin). This type of operation occurs in practice when there are multiple right-
hand sides in an iterative solver, in recently proposed blocked iterative solvers
[2], and in blocked eigenvalue algorithms, such as block Lanczos [8, 10, 11, 19, 1]
or block Arnoldi [25, 24, 18, 1], It also occurs in image segmentation algorithm
in video, where a set of vectors is used as the starting guess for a subsequent
frame in the video [26].

5.1 Description of Multiple Vector Optimizations

When multiplying a sparse matrix by a set of vectors, the code for multiplication
by a single vector can be repeatedly used, but the extra locality advantages
are not likely to be exhibited under such conditions. Figure 11 illustrates the
sequence of steps for the algorithm, showing that two uses of the same matrix
element are nz steps apart, where nz is the number of nonzeros in the matrix.
Multiplication can be optimized for the memory hierarchy by moving those
operations together in time, as shown in figure 12.

The code generator of Sparsity produces register-blocked multiplication
codes for a fixed number of vectors. The number of vectors, v, is fixed and
the loops across v are fully unrolled. Because of full unrolling, different code is
generated for each value of v. The strategy is used because we view these as
inner loops of a larger stripmined code.

5.2 Choosing the Number of Vectors

The question of how to choose the number of vectors v when multiplying by a set
of vectors is partly dependent on the application and partly on the performance
of the multiplication operation. For example, there may be a fixed limit to the
number of right-hand sides or the convergence of an iterative algorithm may
slow as the number of vector increases. If there are a large number of vectors
available, and the only concern is performance, the optimization space is still
quite complex because there are three parameters to consider: the number of
rows and columns in register blocks, and the number of vectors.

Here we look at the interaction between the register-blocking factors and
the number of vectors. This interaction is particularly important because the
register-blocked code for multiple vectors unrolls both the register block and
multiple vector loops. How effectively the registers are reused in this inner loop
is dependent on the compiler. We will simplify the discussion by looking at
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Figure 11: Sequence of steps in single vector code: In the example, a 4×4
sparse matrix with nz nonzero elements is being multiplied by 2 vectors. The
matrix and code are register-blocked using 2× 2 blocks.
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Figure 12: Sequence of multiple vector code: This example is the same as
that in figure 11, except that the code has been reorganized to use each element
twice (once per vector) before moving to the next element.
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Figure 13: Register-blocked, multiple vector performance on an Ultra-
SPARC IIi, varying the number of vectors.
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two extremes in the space of matrix structures: a dense 1K × 1K matrix in a
sparse format, and a sparse 10K×10K randomly generated matrices with 200K
(.2%) of the entries being nonzero. In both cases, the matrices are blocked for
registers, which in the random cases means that the 200K nonzero entries are
clustered differently to exactly match the block size. We will also limit our data
to square block sizes from 1× 1 up to 10× 10.

Figure 13 shows the effect of changing the block size and the number of vec-
tors on UltraSPARC IIi. The figure shows the performance of register-blocked
code optimized for multiple vectors, with the top figure showing the randomly
structured matrix and the bottom figure showing the dense matrix.

Multiple vectors typically pay off for matrices throughout the regularity and
density spectrum. We can get some sense of this by looking at the dense and
random matrices. For most block sizes, even changing from one vector to two
is a significant improvement. However, with respect to choosing optimization
parameters, the dense and random matrices behave very differently. The random
matrix tends to have a peak with some relatively small number of vectors (2-
5), whereas the dense matrix tends to continue increase in speedup for larger
number of vectors.

5.3 Performance of Multiple Vector Optimizations

Figures 14 and 15 show the speedup of the multiple vector optimization on the
whole matrix set introduced in Table 2. The speedup is computed relative to the
performance of naive code without any optimization. We applied the multiple
vector optimizations combined either with register blocking or cache blocking
for all of the matrices, and show the best speedup in the graph. The number of
vectors was fixed at 9 in this experiment.

For reference, Figures 14 and 15 show (1) the speedup due to blocking (either
register or cache blocking) alone, and (2) the speedup when blocking and the
multiple vector optimization are combined. We see tremendous speedups of up
to a factor of 10.5x, with fairly consistent speedups of 2x or more. It is notable
that even matrices 20 through 44 speed up. We also tried combining register
blocking and cache blocking, but it was not effective for any matrix in the test
set.

For matrices 1 to 39, the optimization that exhibits the speedup shown in the
graph was register blocking unrolled for multiple vectors, while the optimization
for the matrices 40–44 was cache blocking unrolled for multiple vectors. In fact,
often for the matrices 20 to 44, the register block sizes are chosen to be 1 × 1,
which means the multiplication code is unrolled for multiple vectors, but not
for a particular block size. And still, performance improvement is good.

On the Itanium 2, most of the benefit comes from blocking, while on the
other three platforms, most of the benefit comes from having multiple vectors.
On the Pentium III and Itanium 2 machines, the benefit tends to decrease as the
matrix number increases. The overall benefits are much more uniform across
matrices than in a register blocking for a single vector.
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Figure 14: Speedup of register-blocked multiplication on the Ultra-
SPARC IIi (top) and Pentium III (bottom) platforms. We show the
best speedup from blocking only (either register or cache) and from blocking
combined with the multiple vector optimization. The number of vectors is fixed
at 9. The baseline implementation is an unblocked CSR code which multiplies
by each vector separately.
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Figure 15: Speedup of register-blocked multiplication on the Power4
(top) and Itanium 2 (bottom) platforms. We show the best speedup
from blocking only (either register or cache) and from blocking combined with
the multiple vector optimization. The number of vectors is fixed at 9. The
baseline implementation is an unblocked CSR code which multiplies by each
vector separately.
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A multiplication code for cache blocked matrices was also unrolled for a given
number of vectors. For the same reason matrices 1 to 39 did not speed up by
cache blocking, cache blocking for multiple vectors does not make a difference for
those matrices. Also, the performance of multiple vector optimization with no
register blocking yielded mixed results on matrices 40–44 because, as discussed
earlier, the source vectors are so long that elements are rarely in cache. We
should note that each of the vectors are stored contiguously in memory, because
that seems to reflect the most likely application order; if, instead, the ith ele-
ments of all vectors were stored contiguously, the multiple vector optimization
by itself would probably be more significant.

6 The Sparsity System

As a result of our study on optimization techniques for sparse matrix-vector
multiplication, we demonstrated that register blocking, cache blocking, and use
of multiple vectors can significantly improve performance. We showed that the
right choice of optimizations is crucial to performance improvement because each
optimization technique is beneficial only to a subset of our benchmark matrices
and is sometimes detrimental to others. This implies that analysis of the matrix
structure and target machine should precede selection of the optimization tech-
nique and its parameters. It is unreasonable to expect that the scientists and
engineers who are users of sparse matrix operations will also become experts
on the optimization techniques described in this paper. We have therefore built
a system, Sparsity, that will choose the optimizations and parameters given
little or no input from the user, other than an example matrix and the number
of vectors to be multiplied.

Sparsity is an automatic optimization system, and it performs some of the
same tasks that an optimizing compiler performs. It does not need to per-
form the traditional kinds of analyses, because it only compiles one program,
sparse matrix-vector multiplication. However, it still performs other optimiza-
tion tasks, including data structure reorganization, insertion of explicit zeros,
and compiler-style loop optimizations. SPARSITY generated C code for porta-
bility, allowing the C compiler to perform machine-specific intsruction schedul-
ing and register allocation.

6.1 Optimization Decisions

In any optimization framework, whether it is a general purpose compiler or a
specialized system like Sparsity, there are various techniques that can be used
to make optimization decisions. These include search, general heuristics, and
performance models. In our case, the decisions involve choosing both the kinds
of optimizations to apply and parameters such as block size. Both the data
structure and the code is involved in these transformations.
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6.1.1 Search

The simplest solution to selecting transformations on the code is to apply each
possible transformation for each possible parameter setting, run the code and
measure its performance, and use the minimum setting. In principle, the search
may be exhaustive or controlled by some kind of bounded search. For example,
one could imagine searching through register block sizes sequentially until the
performance starts to decline, or searching over the number of rows and columns
using some kind of branch-and-bound technique. Alternatively, one may use a
more arbitrary restriction on the search space, such as looking only at block
sizes which are powers of two, as was done in cache blocking.

The effectiveness of these search strategies depends on the characteristics
of the optimization space. In cache blocking, performance is relatively insen-
sitive to small changes in the cache block size; restriction of the search space
may miss the optimal block size, but the resulting performance is probably not
much different than for the optimal size. In contrast, the performance can vary
wildly given a small change in the register block size, as seen for machines like
the Itanium 2. We therefore believe that exhaustive search over some range
of register block size would be necessary under search-based register blocking.
However, the overhead of running an exhaustive search for every input matrix
is very expensive. In an effort to reduce this overhead, we chose to develop a
performance model to complete this phase of selection for the range of register
block sizes. In the model, we combine a priori knowledge about the machine
and information about the matrix.

In Sparsity, we also use search to determine the optimal number of vectors
when the application has many vectors available. This is primarily useful for
splitting a large set of vectors (tens or hundreds) into smaller groups. For smaller
numbers of vectors the user needs to specify how many are available. Because
register blocking with multiple vectors involves two unrolled loops, one over the
block and the other over the vectors, making either loop too large can have a
serious negative impact on performance.

Search has been effectively used in automatic optimization frameworks for
dense matrix kernels [6, 28]. The major disadvantage to search-based optimiza-
tion is its high cost. While algorithms like simulated annealing are often used
for applications like circuit layout, where users are willing to wait for hours or
even days for a good solution, such techniques are not employed in the context
of general-purpose compilers. Not only is search very expensive, but it requires
that the input data be available, which is not the case in static compilation
systems.

6.1.2 Heuristics

As an alternative to search, decisions may be based on some kind of heuristic
or a performance model. These techniques can also be combined with search to
limit the size of the search space.

Heuristics may be based on some knowledge of the machine or algorithm, or
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on experimental results that indicate it will select good solutions in the search
space. For example, we use a somewhat arbitrary cutoff for the maximum block
size for register blocking, based on both the observed dense matrix performance
and our understanding of the number of registers available on a given machine.
Since most of the machines have 32 visible registers, a block size larger than
16 × 16 is clearly not useful, since we need at least r + c registers to hold the
source and destination vectors. We further limit this to 12× 12 blocks, because
even for the dense matrix benchmark, performance is trailing off at that point,
and we have seen no examples of sparse matrices with such large blocks already
available. We could probably have limited the space further, and on machines
with very small register sets this might be useful for improving the performance
of Sparsity’s optimization phase.

A second heuristic that we developed the identification of matrices that
benefit most from cache blocking. From looking at the nonzero structure in the
matrices, we developed a hypothesis that it was most effective on matrices with
nearly random structure. We therefore developed a measure of randomness by
building a hyper-graph representation of the sparse matrix, bisecting it using a
graph partitioning algorithm, and measuring the ratio of the number of edge-
cuts to the number of edges. We then chose a threshold for this ratio, which
was chosen as 0.4 in our experiments. When combined with some minimum size
constraints, this heuristic was able to select those matrices that benefited from
cache blocking over those that did not. However, the choice of block size still
requires search, so SPARSITY does not employ this heuristic.

6.1.3 Performance Modeling

A specific class of heuristics are based on performance models, which use some
abstraction of the machine performance to predict the performance of the trans-
formed code. There is difficulty in devising a model that is accurate enough to
be useful, yet simple enough to evaluate quickly.

The primary example of a performance model within Sparsity is the model
of register-blocked performance based on an approximation of the fill overhead,
which measures extraneous computation, and dense matrix performance, which
is used to approximate the raw performance of the blocked code. Since the
estimation of fill overheads for all possible block sizes can be done at one sweep
of the sparse matrix, and profiling of the performance of the machine can be
done only once for each machine and then reused, model prediction is more
efficient than searching for register block sizes by creating each blocked version
and measuring the performance of each.

6.2 Code Generation

The second major component of an automatic optimization system is the code
generation framework. Because Sparsity is generating code for only one rou-
tine, each of the blocked versions could be created by hand, and indeed some
of our routines were produced this way. Hand-coding has typically been used
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for dense matrix kernels, although increasing machine complexity means that
an enormous human investment is required to produce each hand-optimized
routine. As a result, some vendors have stopped providing routines for their
machines, relying instead on their optimizing compilers.

Sparsity takes an intermediate approach to this problem by automating
some of the code generation and most of the optimization decisions, but us-
ing the special-purpose nature of the system to avoid difficult program analysis
problems which are unlikely to work in a sparse matrix context. Specifically,
Sparsity uses hand-written codes for some of the drivers and conversion rou-
tines as well as the cache-blocked multiplication codes, which are parameterized
over the block size. The register blocked multiplication routines, with and with-
out multiple vectors, are generated by a code generation framework, because
loops are unrolled for the specific block and vector set size. If this code is pa-
rameterized, instead of unrolling the loop, we have found that the performance
of multiplication is much lower.

All of the code produced by Sparsity, either by hand or automatically, is C
code. (Sparsity itself is written in a combination of Java and C.) Within the
unrolled loops in register blocking, some attempt is made to schedule memory
operations by moving certain statements in the code. This code scheduling is
not specific to a particular machine or C compiler, although one could imagine
more specialized scheduling decisions that search over multiple implementations
of the kernels that make up multiplication of a single register block.

If register blocking is selected, then Sparsity produces a hand-written con-
version routine and a multiplication routine that is automatically generated. If
cache blocking is selected, the code to block the matrix and the multiplication
routine are both produced from the hand-written versions. The code generator
also produces driver routines, including matrix I/O operations for various file
formats, and timing routines, so that users may do their own benchmarking.

6.3 Overview of the Sparsity System

The general structure of the Sparsity system is illustrated in figure 16. The
user may also constrain the optimization system to consider only register block-
ing, for example, if they believe that it would be much more effective than cache
blocking.

Within the Sparsity system, the matrix is tested for several criteria to
determine whether register blocking, cache blocking, or both should be applied.
The decision to use multiple vectors requires user involvement, and is therefore
not fully automatic. If the user does request code for a large number of vectors,
an additional optimization step takes place after the other optimization decisions
in which the number of vectors is selected.

For the single vector case, the matrix is first tested for register blocking by
estimating fill overhead and predicting the blocked multiplication performance
using dense performance. Part of the Sparsity framework includes machine
profiling that is done by running each register-blocking size under considera-
tion on a fixed dense matrix, which creates a kind of performance profile for
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Figure 16: Sparsity system

the machine. After evaluating the performance model for the matrix and the
machine profile, the recommended block size was used on the actual matrix and
performance compared to the unblocked matrix. This last step is done to en-
sure that register blocking never degrades overall performance; it can be viewed
as a very limited search over two data points, one of which was chosen by our
performance model. There are three outputs that result from this test: 1) an
answer to the question of whether register blocking is useful; 2) if so, then the
selected block size; 3) the code that performs matrix-vector multiplication with
the selected block size.

The second test is for cache blocking. As shown in section 4, this optimiza-
tion is unlikely to have a significant payoff on any matrix that was amenable to
register blocking. However, we allow for this possibility by applying the cache
blocking test to the result of the register blocking test, in other words, either
using the register blocked matrix and code as input or, if register blocking did
not prove effective, the original matrix and code. The cache blocking test was
performed by search over a fixed set of block sizes from 64×64 up to 64K×64K,
as well as the unblocked code. For each point in the search space, the matrix
is cache-blocked, code is run on the machine of interest, and performance is
measured. Although we developed some performance models to aid in decisions
related to cache blocking, searching over this limited set of sizes is both practical
and more reliable. As with register blocking, the output of this test includes
the cache block size and the corresponding code.

The three possible outcomes of this process are that zero, one or two of the
optimizations may be applied. After that, the multiple vector test is performed
if requested by the user. Along with the optimized matrix-vector multiplication
code, the code generator produces a driver module, benchmarking functions,
and matrix I/O routines for commonly used sparse matrix file formats.

Sparsity is similar to some dynamic or feedback-directed compilation sys-
tems in that the code is specific to a particular input. However, the code will
work correctly on any matrix, as long as it has been converted to the appropri-
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ate block size. Indeed, we expect that a common use of the system will be to
produce an optimized matrix-vector multiplication routine for one matrix, to be
used for other matrices in the same application domain. Users may choose to
use the blocked representation throughout their applications or to convert the
matrix before and after iterative solves are performed.

7 Related Work

Sparsity is related to several other projects that automatically tune the perfor-
mance of algorithmic kernels for specific machines. In the area of sparse matri-
ces, these systems include the sparse compiler that takes a dense matrix program
as input and generates code for a sparse implementation [5]. As in Sparsity,
the matrix is examined during optimization, although the sparse compiler looks
for higher level structure, such as bands or symmetry. This type of analysis is
orthogonal to ours, and it is likely that the combination would prove useful. The
Bernoulli compiler also takes a program written for dense matrices and compiles
it for sparse ones, although it does not specialize the code to a particular ma-
trix structure [16]. Finally, Pugh and Shpeisman propose a sparse intermediate
program representation (SIPR) for use inside a sparse compiler [23]. They aug-
ment their representation with a high-level, machine and matrix independent
cost model to make high-level transformation decisions. However, these models
are not sufficiently fine-grained to choose block sizes, and therefore complement
the transformations and heuristics which we propose.

Toledo [27] demonstrated some of the performance benefits or register block-
ing, including a scheme that mixed multiple block sizes in a single matrix, but
his optimizations were done by hand and there was no general approach to
finding a good block size. PETSc (Portable, Extensible Toolkit for Scientific
Computation) is a library for Finite Element Methods, which also uses a matrix
format with small dense blocks [3], although the block sizes are chosen by the
application programmer based on what is natural in the algorithm, rather than
optimal for a particular machine. This avoids expensive model evaluation or
searching through the parameter space, but as we have shown, selecting based
on machine parameters is often important.

Many researchers have explored the benefits of reordering sparse matrices,
usually for parallel machines or when the natural ordering of the application has
been destroyed [20]. In particular, Pinar and Heath show that reordering based
on a heuristic for the Travelling Salesman Problem (TSP) can be combined with
register blocking to improve performance on uniprocessors [21]; Heras, et al.,
propose a similar TSP-based reordering [13]. Reordering could be incorporated
into Sparsity, and in prior work we used it to optimize sparse matrix-vector
multiplication for shared memory multiprocessors, but we found little benefit
on uniprocessors [15]. The difference is the reordering strategy, and both groups
found that simple bandwidth reduction orderings are not useful.

Finally, we note that the BLAS Technical Forum has already identified the
need for runtime optimization of sparse matrix routines. This is an ongoing
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effort aimed at expanding the BLAS in a number of ways to reflect develop-
ments in hardware, software, and languages, including a specification for BLAS
operations on sparse matrices. An early draft of this standard contained a pa-
rameter in the matrix creation routine to indicate how frequently matrix-vector
multiplication will be performed [7].

8 Conclusions

In this paper, we have described optimization techniques to improve memory
efficiency in sparse matrix-vector multiplication for one or more vectors. Our op-
timizations showed significant payoffs, with up to a 4× improvement for register
blocking, 2× for cache blocking, and nearly 10× for register blocking combined
with multiple vectors. Our optimization techniques address the increasingly
deep and complex layering of memory systems in modern machines, which has
come about due to the widening gap between processor and memory perfor-
mance. At the top of the memory hierarchy is a fixed set of registers, which are
normally under control of the compiler. To optimize for registers, we demon-
strated that an effective strategy is to identify fixed-size dense blocks within a
sparse matrix, filling in zeros as necessary. We introduced a performance model
to help select the appropriate block size for a machine, using a kind of machine
performance profile combined with an analysis of the sparse matrix structure.
Even on matrices where the blocks were not evident at the application level,
small blocks proved useful on some machines.

The next two or three levels in most processor memory hierarchies are caches,
which differ across machines in their size, speed, and replacement policies. To
optimize for cache reuse, we devised a kind of two-level sparse block structure
for matrices, which is particularly effective for very large matrices with a nearly
random sparsity pattern. We introduced heuristics to help identify this class of
matrices, which work quite well in practice, although we found that search over
a relatively limited set of possible block sizes is also practical and more reliable.

For a class of sparse matrix algorithms, the problem can be reduced to a
matrix times a set of vectors, rather than a single vector. We extended our
optimization framework to take advantage of multiple vectors, which can be
used to increase the reuse of data within registers or caches. The application
of multiple vectors provides large opportunities for performance gains, because
it allows for reuse of matrix elements that is not possible with a single vector.
We believe this is an important area for further investigation, requiring work on
both blocked algorithms and selection of the optimal number of vectors.

Our performance studies showed that all of these optimization have sig-
nificant performance improvements on some matrices and some machines, but
the performance is highly depedent on both. Register optimizations are most
effective for sparse matrices arising in scientific simulations, especially Finite El-
ement Methods, whereas cache optimizations are suitable for matrices arising in
information retrieval applications. In general, the effects of these optimizations
are more pronounced for machines with deeper memory higherachies, and diffi-
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culty of selecting optimization parameters increases with hardware complexity.
Current trends in hardware indicate that both the penalty for accessing main
memory and the complexity of the memory system are likely to increase, making
systems like Sparsity even more important.
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Exhaustive Best Heuristic Reference
ro×co Fill MFLOPS rh×ch Fill MFLOPS MFLOPS

1 8×5 1.00 72.9 8×5 1.00 72.9 36.5
2 8×8 1.00 63.2 8×8 1.00 63.2 35.3
3 6×6 1.12 54.5 6×6 1.12 54.5 35.6
4 6×2 1.13 54.1 3×3 1.06 51.9 34.3
5 4×4 1.00 48.4 4×4 1.00 48.4 30.9
6 3×3 1.00 49.9 3×3 1.00 49.9 33.9
7 3×3 1.00 52.5 3×3 1.00 52.5 34.5
8 6×6 1.15 50.1 6×6 1.15 50.1 33.7
9 3×3 1.02 54.3 3×3 1.02 54.3 35.0

10 2×1 1.10 39.1 2×2 1.21 38.8 33.7
11 2×2 1.23 32.3 2×2 1.23 32.3 28.9
12 2×2 1.24 37.9 2×3 1.36 36.4 33.0
13 2×1 1.14 36.7 2×2 1.28 36.0 33.6
14 2×1 1.17 26.0 1×2 1.15 25.3 24.5
15 2×1 1.00 41.1 2×1 1.00 41.1 31.8
16 2×1 1.17 26.3 1×1 1.72 25.2 25.2
17 1×1 1.00 32.4 1×1 1.00 32.4 32.4
18 2×1 1.36 19.4 1×1 1.00 18.4 18.4
19 2×1 1.01 23.5 2×1 1.01 23.5 18.5

Table 4: Register blocking performance on the Sun UltraSPARC IIi.

A Tabulated Register Blocking Data

In Tables 4–7, we show data for the following implementations:

• Exhaustive best: Block size, fill overhead, and performance when the
block size, ro×co, is chosen by exhaustive search.

• Heuristic: Block size, fill overhead, and performance when the block
size, rh×ch, is chosen by our heuristic. In addition, if the performance is
less than 10% of the exhaustive best performance, we mark the heuristic
performance by an asterisk (*).

• Reference: Performance of the unblocked (1×1) CSR implementation.
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Exhaustive Best Heuristic Reference
ro×co Fill MFLOPS rh×ch Fill MFLOPS MFLOPS

1 3×11 1.00 142.9 3×11 1.00 142.9 74.6
2 2×8 1.00 120.1 8×8 1.00 114.5 67.1
3 6×1 1.10 112.8 3×6 1.12 101.5 67.7
4 3×3 1.10 105.7 3×3 1.10 105.7 60.7
5 4×2 1.00 104.7 2×4 1.00 103.5 60.9
6 3×3 1.03 106.8 3×3 1.03 106.8 64.6
7 3×3 1.03 105.7 3×3 1.03 105.7 64.3
8 6×6 1.25 96.2 3×3 1.15 93.6 60.4
9 3×3 1.05 101.8 3×3 1.05 101.8 61.7

10 2×2 1.23 77.3 2×2 1.23 77.3 60.9
11 2×2 1.23 75.7 2×2 1.23 75.7 60.5
12 2×2 1.24 83.0 2×2 1.24 83.0 68.5
13 3×2 1.40 84.4 2×2 1.28 81.9 68.6
14 2×2 1.33 78.7 2×2 1.33 78.7 67.4
15 2×1 1.00 78.7 2×1 1.00 78.7 63.8
16 3×3 1.69 90.2 4×1 1.43 90.2 75.1
17 1×1 1.00 68.6 1×1 1.59 68.6 68.6
18 2×1 1.36 45.1 2×1 1.36 45.1 42.1
19 2×1 1.01 55.3 2×1 1.01 55.3 55.3

Table 5: Register blocking performance on the Intel Pentium III.
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Exhaustive Best Heuristic Reference
ro×co Fill MFLOPS rh×ch Fill MFLOPS MFLOPS

1 8×1 1.00 766.4 8×1 1.00 766.4 607.1
2 4×1 1.00 703.2 8×1 1.00 666.0 576.9
3 3×2 1.12 636.0 6×1 1.10 618.7 542.4
4 3×3 1.10 606.7 3×3 1.10 606.7 424.1
5 4×1 1.00 642.9 4×1 1.00 642.9 429.8
6 3×3 1.03 691.9 3×3 1.03 691.9 476.1
7 3×3 1.03 673.3 3×3 1.03 673.3 481.3
8 6×2 1.23 581.0 3×1 1.09 547.4 435.8
9 3×3 1.05 704.6 3×3 1.05 704.6 499.7

10 2×1 1.12 548.7 2×1 1.12 548.7 434.2
11 2×1 1.23 543.6 1×1 1.00 425.9* 425.9
12 3×1 1.24 597.0 1×1 1.00 587.5 587.5
13 2×1 1.14 597.1 1×1 1.00 553.7 553.7
14 3×1 1.31 754.0 1×1 1.00 580.4* 580.4
15 2×1 1.00 545.1 2×1 1.00 545.1 460.7
16 2×1 1.17 890.6 1×1 1.00 713.2* 713.2
17 1×1 1.00 521.2 1×1 1.00 521.2 521.2
18 2×1 1.36 397.3 1×1 1.00 273.5* 273.5
19 4×1 1.87 591.3 2×1 1.01 504.7* 295.7

Table 6: Register blocking performance on the IBM Power4.
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Exhaustive Best Heuristic Reference
ro×co Fill MFLOPS rh×ch Fill MFLOPS MFLOPS

1 4×2 1.00 1219.8 4×2 1.00 1219.8 296.1
2 4×2 1.00 1121.6 4×2 1.00 1121.6 275.3
3 6×1 1.10 945.6 6×1 1.10 945.6 275.2
4 4×2 1.28 806.8 4×2 1.28 806.8 247.8
5 4×2 1.00 1011.5 4×2 1.00 1011.5 250.7
6 4×2 1.50 740.2 3×2 1.16 719.1 262.2
7 4×2 1.49 733.7 3×2 1.16 710.8 259.9
8 6×1 1.22 777.6 6×1 1.22 777.6 247.3
9 6×1 1.38 719.6 3×2 1.17 701.5 260.9

10 4×2 1.50 697.6 4×2 1.50 697.6 249.9
11 4×2 1.70 620.2 4×2 1.70 620.2 240.9
12 4×2 1.48 773.5 4×2 1.48 773.5 275.6
13 4×2 1.54 749.3 4×2 1.54 749.3 276.8
14 4×1 1.49 690.9 3×2 1.47 604.6* 268.7
15 4×1 1.78 513.5 2×1 1.00 490.1 259.8
16 4×1 1.43 769.8 4×2 1.66 769.8 288.7
17 4×1 1.75 536.0 6×1 1.98 536.0 269.4
18 4×1 2.44 323.1 4×2 2.97 323.1 170.1
19 4×1 1.87 566.7 2×1 1.01 425.0* 188.9

Table 7: Register blocking performance on the Intel Itanium 2.
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