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Abstract

The amount of calibration data needed to produce images of adequate quality can prevent auto-
calibrating parallel imaging reconstruction methods like Generalized Autocalibrating Partially
Parallel Acquisitions (GRAPPA) from achieving a high total acceleration factor. To improve the
quality of calibration when the number of auto-calibration signal (ACS) lines is restricted, we
propose a sparsity-promoting regularized calibration method that finds a GRAPPA kernel
consistent with the ACS fit equations that yields jointly sparse reconstructed coil channel images.
Several experiments evaluate the performance of the proposed method relative to un-regularized
and existing regularized calibration methods for both low-quality and underdetermined fits from
the ACS lines. These experiments demonstrate that the proposed method, like other regularization
methods, is capable of mitigating noise amplification, and in addition, the proposed method is
particularly effective at minimizing coherent aliasing artifacts caused by poor kernel calibration in
real data. Using the proposed method, we can increase the total achievable acceleration while
reducing degradation of the reconstructed image better than existing regularized calibration
methods.

I. Introduction

Parallel imaging with multi-channel receive array coils and auto-calibrating reconstruction
methods like Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [1]
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enable the recovery of high-quality images from undersampled k-space data, accelerating
magnetic resonance imaging (MRI) acquisitions. Undersampling by skipping phase-encode
lines in Cartesian MRI reduces the field of view (FOV) of the associated image, aliasing
objects larger than the reduced FOV. Parallel imaging uses the inhomogeneous receive field
sensitivities of the array coil as an additional source of spatial encoding to resolve the
aliasing caused by this undersampling. GRAPPA consists of both a kernel calibration step
and a reconstruction step; for details of both steps, see [1]. The quality of the calibration, a
least-squares fit from a densely-spaced block of auto-calibration signal (ACS) data, directly
influences the ability of the reconstruction step to properly resolve coherent aliasing; an ill-
conditioned fit also amplifies noise in the reconstructed images [2]. At higher accelerations,
larger kernels are needed, and a greater quantity of ACS data must be collected to properly
calibrate these kernels [3], [4]. At the high levels of undersampling motivating this work, the
ACS size necessary for high-quality conventional calibration severely constrains the total
acceleration [5]. In this paper, we apply sparsity to improve the calibration quality with
limited ACS data, enabling greater acceleration than with existing methods.

Tikhonov regularization [6] improves SENSE [7], [8] and can be applied to GRAPPA kernel
calibration as well. Truncating the singular value decomposition (SVD) of the ACS source
matrix can improve the conditioning of the least-squares calibration, helping robustness to
noise [4]. A nonlinear technique [9] enforces the frequency-shift interpretation of the
GRAPPA operator [10]. The proposed approach does not model the kernel directly, but it
relies on the sparsity of the reconstructed images to impose indirectly a model on the kernel
used to reconstruct that image. The sparsity of a variety of MRI images was demonstrated
previously in the context of reconstruction using compressed sensing [11]. The underlying
assumption of this work to be validated is that coil images reconstructed using GRAPPA
with the correct kernel inherit the sparsity of the object being imaged.

Statistically speaking, GRAPPA is a low-complexity compromise of SENSE. SENSE
roughly inverts multiplicative sensitivities in the image domain, which corresponds to
deconvolution in the frequency domain. GRAPPA also performs convolution in the
frequency domain, but with much smaller convolution kernels. Since SENSE is optimal in
the mean squared error (MSE) sense, GRAPPA calibration could be interpreted as finding
the spectrum of the best low-resolution approximation to the MSE-optimal reconstruction.
However, such optimality requires a high quality calibration, like SENSE requires high
quality coil sensitivities. By adding a sparse reconstruction condition to the GRAPPA kernel
calibration, we are effectively using prior information that the optimal kernel produces
transform sparse images, hence overcoming the statistical inadequacies of a low quality
calibration based only on the k-space measurements, which may be too noisy or too few in
number to yield useful kernels by themselves.

Sparsity-promoting regularization has other uses in parallel MRI reconstruction.
Implementations combining sparsity with SENSE [12], [13] provide effective regularization
for challenging problems like cardiac perfusion imaging. L1-SPIRiT [14], [15] regularizes
data-preserving SPIRiT reconstruction using a transform-domain joint sparsity-promoting
ℓ1,2 norm, just like this work. However, this is the first incorporation of sparse modeling in
the calibration stage of GRAPPA-like parallel imaging. L1 -SPIRiT applies sparsity after the
SPIRiT kernels have already been calibrated, which means that inconsistencies in the
SPIRiT kernel calibration may remain and propagate to the L1 -SPIRiT reconstruction,
unlike in our method. Also, SPIRiT reconstruction applies the kernels to all data (known and
unknown), yielding an iterative method without a cost-effective direct solution. In our work,
we make use of the fast GRAPPA reconstruction enabled by uniform undersampling to
transform our kernels into images whose transform sparsity can be evaluated. These key
differences separate our work from previous endeavors to improve parallel imaging using
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sparsity. Other denoising work such as expanding the GRAPPA kernel to use quadratic
weighting terms [16] also bears mention, and the same approach to improving calibration
can be applied to such extensions of GRAPPA as well.

We begin by introducing our notation for GRAPPA calibration and reconstruction. Our
algorithm for using joint sparsity of the reconstructed channel images to regularize the
GRAPPA kernel calibration, originally proposed in [17], is explained, and the consequences
of uniform and nonuniform undersampling are discussed. We validate our assumption about
the sparsity of GRAPPA reconstruction on real data. We present performance comparisons
for both simulated and real brain data, including portraying the trade-off between
reconstructed image quality and total acceleration studied in [18]. New in this paper, we
study the effects of choosing an appropriate tuning parameter more thoroughly and include
comparisons of g-factor maps and reconstructed image error autocorrelations.

II. Theory

We first provide our notation for the GRAPPA parallel imaging acquisition, calibration, and
reconstruction process. A more thorough discussion of GRAPPA is provided in [1]. Existing
methods for calibration, including Tikhonov, truncated-SVD, and nonlinear GRAPPA
regularization, and the proposed sparsity-promoting regularization are briefly described. The
proposed method relies on uniform undersampling, and extensions to nonuniform
undersampling are explored.

A. Acquisition and GRAPPA Reconstruction

Let us consider the 2-D imaging case; 3-D reconstruction involves performing an inverse
discrete Fourier transform (DFT) along the fully-sampled frequency encode direction and
slice-by-slice reconstructions of the resulting 2-D hybrid k-space (other generalizations are
possible; see [19]). The full-FOV true 2-D image m(x, y) is sampled in the k-space domain
by a P-channel receive array coil, with sensitivity profiles s1(x, y),…, sP(x, y). Uniform
Cartesian sampling of k-space yields noisy observations dp[kx, ky] of the samples yp[kx, ky]
of k-space. Our samples are perturbed by additive complex Gaussian noise np[kx, ky],
uncorrelated across k-space frequencies. For a given frequency, the measurements from
different coil channels have covariance Λ (assume this covariance does not vary across k-
space). For accelerated parallel imaging, we undersample in one or both phase encode
directions (by factors of Rx and Ry, respectively). This acquisition model is depicted in Fig.
1.

GRAPPA reconstructs missing (target) k-space points using a weighted linear combination
of neighboring acquired (source) points from all the coils. We use a Bx × By-point kernel
gp,q,rx,ry for each pair of input p ∈ {1, …,P} and output q ∈ {1,…,P} coil channels and each
2-D target offset rx∈ {0,…, Rx− 1} and ry∈ {0,…, Ry−1}. To compute the vector of kernel
weights [G]q,rx,ry = vec([g1,q,rx,ry, …,gP,q,rx,ry]) (vec(·) reshapes a matrix into a column
vector) for a given offset rx, ry and output coil q, we form a column vector of known target

points  and a matrix of source points  from the ACS data. The resulting

linear system of NFit fit equations  has BxByP unknowns. If the

system has full column rank, the least-squares solution is 
where (A)† is the left pseudo-inverse (AH A)-1 AH, and AH is the conjugate transpose of

complex matrix A. Collecting the column vectors into a matrix of target points  and

kernel weights G yields the linear system  which can be solved for all the
kernel weights needed to fill in the un-acquired k-space.
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How many fit equations are there? In the 1-D case, a set of NACS points yields NFit = NACS
− (B − 1)R fit equations for B > 1, and NFit= NACS − R + 1 fits for B = 1. For higher
dimensions, NFit is the product of the number of fits for each dimension considered
individually.

The GRAPPA reconstruction Y = GRAPPA(D, G) forms the full multi-coil k-space Y from
the undersampled data D and the kernel G. More specifically, Y = K ̄TDconvG+KTD, where
K ̄T and KT embed the interpolated and known k-space, respectively, into the full k-space,
and Dconv is a block convolution matrix for multiplication of the acquired data and the
kernel weights from all the coils.

B. Regularization of the Kernel Calibration

The least-squares problem formulation of conventional GRAPPA kernel calibration can be
regularized using a penalty function (G):

(1)

The Frobenius norm ‖A‖F is the ℓ2 norm of the vector formed by stacking the columns of A.

As mentioned in the discussion of previous work, several choices of regularization have
been investigated in the literature. Four methods compared in this work are basic Tikhonov
regularization, truncated-SVD-based regularization, nonlinear GRAPPA-operator-based
regularization, and our novel sparsity-promoting regularization. Energy-minimizing basic

Tikhonov regularization has the form , (α > 0). The Tikhonov-regularized
solution has the closed form

(2)

Note that the regularized solution is guaranteed to exist, even when the un-regularized least-
squares problem is underdetermined. Tikhonov regularization mitigates noise amplification,
since an energy-minimizing model reduces the gain of the kernel. The truncated-SVD

approach [4] zeros out the singular values of the source matrix  less than a threshold τ
relative to the maximum singular value (one can also retain a fixed number of singular
values), reducing the gain of the kernel. The nonlinear GRAPPA-operator-based
regularization method [9] penalizes the difference between the GRAPPA kernel applied R
times, which maps acquired data to the same data shifted one block over, and a permutation
matrix representing that shift. This method is effective at improving image quality, including
reducing aliasing, with fewer ACS lines at low accelerations [9].

We propose leveraging the transform-domain sparsity of MRI images to improve
calibration. We consider the shared sparsity of the true full-FOV channel images and use an
ℓ1,2 hybrid norm to promote joint sparsity of a suitable transform of the coil channel images:

for a length-N, P-channel joint sparse representation W, . As we
are regularizing the kernel, we first “transform” the kernel into full-FOV reconstructed
multi-channel k-space by convolving the kernel set with the acquired undersampled data,
and the ℓ1,2 norm is evaluated on the sparse transform Ψ of the inverse DFT -1 of the full
reconstructed k-space. We can use any suitable linear transform or trained dictionary to
sparsify the reconstruction coil images; in this paper, we investigate total variation and the
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four-level bi-orthogonal ‘9-7’ discrete wavelet transform (DWT). The optimization problem
becomes

(3)

where the tuning parameter λ > 0 controls the level of regularization.

Although more efficient computational methods based on message passing algorithms for
compressed sensing [20] may be applicable for solving Eq. (3), we use half-quadratic
minimization [21], [22], which iteratively approximates the ℓ1,2 norm with a weighted least-
squares term and updates the weights after each iteration. Each iteration has the form

(4)

Algorithm 1 GRAPPA with sparsity-promoting kernel calibration.

Require: D, ,  Ĝ(0), λ, ε, I, tol

1 Set f(0) to objective in Eq. (3) evaluated for G = Ĝ(0).

2 for i = 1 : I do

3  W(i-1) ← Ψ −1 GRAPPA(D, Ĝ(i-1))

4
  .

5  Run LSMR to solve Eq. (4) for Ĝ(i) using Δ(i-1).

6  Compute f(i) using Ĝ(i) in the objective in Eq. (3).

7  if f(i-1) - f(i) ≤ tol. f(i-1) then

8   break

9  end if

10 end for

11 Ŷ ← GRAPPA(D, Ĝ(i)).

12 return Ŷ.

The diagonal weight matrix , the sparse transform W(i) = Ψ −1

GRAPPA(D, Ĝ(i)), and ε > 0 is small to smooth the ℓ1 norm. The resulting least-squares
problems are solved iteratively using the LSMR [23] solver. The LSMR method is a descent

method for minimizing  that requires performing matrix-vector multiplication
involving A and AH efficiently. For Eq. (4), x corresponds to vec(G), and Ax −b requires
computing

(5)

(6)
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Multiplying the adjoint AH by the residual uses

(7)

Since the GRAPPA reconstruction step consists of convolution of the data with the different
kernels, the adjoint of the GRAPPA reconstruction operation GRAPPA* (D, Y) consists of
convolution of Y with the conjugated and reversed acquired k-space data. Both these
operations can be implemented efficiently using the fast Fourier transform (FFT). The
proposed method is summarized in Algorithm 1. The reconstructed full multi-channel k-
space Ŷ is then post-processed to combine the channels into a single image m[̂x, y] for
evaluation.

C. Uniform vs. Nonuniform Undersampling

This implementation suffices when the spacing between acquired k-space samples is
uniform, since we need to calibrate only one set of kernels, and the reconstruction step can
be very efficiently implemented using the FFT. Since the GRAPPA reconstruction is
performed within the inner iterations of sparsity-promoting calibration, an efficient
implementation is essential for practical use.

When k-space is undersampled nonuniformly, GRAPPA can be adjusted in a couple ways.
One approach uses different kernels for each target point or block of target points. While the
missing k-space still is interpolated via direct computation, the need for many sets of kernels
greatly expands the number of variables that need to be optimized during the calibration
phase. Another approach [24] reconstructs the full k-space by finding values for the missing
data consistent with the acquired data using a single kernel set relating source and target
points throughout k-space. The implementation of this method solves a large-scale
(regularized) least-squares problem, which no longer has an efficient direct implementation.

Tiled small random patterns [25] would reduce the number of kernels needed for direct
nonuniform GRAPPA while preserving significant randomness in the undersampling
pattern. In this case, the GRAPPA reconstruction step remains relatively fast, so the
proposed method can be used without significant modification. When greater randomness in
the sampling pattern is desired, a joint calibration and reconstruction method can be
performed, alternating between updating the calibrated kernel according to the sparsity of
the current estimate of full k-space and updating the full k-space according to iterative
GRAPPA with the current kernel.

III. Methods

Both simulated and real data (see Fig. 2) are used to analyze the proposed method. We
simulated a noise-free T1-weighted normal brain with 2.0 mm isotropic resolution using the
Brain-Web database (http://www.bic.mni.mcgill.ca/brainweb/) [26], and we multiplied a
128×128 voxel axial slice of this volume (the ground truth) with coil sensitivities simulated
for a 16-channel circular array receive coil. This synthetic data set (with 20 dB SNR noise
added) is phase-encoded in the AP-direction and frequency-encoded in the RL-direction. We
employed total variation to sparsify the simulated data due to its piece-wise smooth nature.

We also acquired a three-dimensional brain image of a consented subject using a
conventional T1-weighted MPRAGE (TR = 2.53 s, TI = 1.1 s, TE = 3.45 ms, bandwidth =
190 Hz/pixel) pulse sequence with 256 × 256 × 176 mm FOV and 1.0 mm isotropic spatial
resolution with a Siemens 32-channel receive array coil in a Siemens Tim Trio (3 T) MRI
scanner. This acquisition completed in about eight minutes without acceleration. We
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processed the raw data later using MATLAB. First, we normalized the data post-scan by
dividing by the sum-of-squares of smoothed separately measured coil sensitivities (these
sensitivities are then discarded) to undo the attenuation in the center of the head from a sum-
of-squares combination of inhomogeneous coil sensitivities. We extracted an axial slice
from the volume; since the head-to-foot direction was frequency-encoded, the axial slice
plane contained both phase encode directions. The slice was cropped in the image domain
before undersampling. By undersampling both phase encode directions, we imitated slice-
by-slice processing of a 3-D data set that is acquired with 2-D undersampling and
transformed to a hybrid image/k-space domain by taking the inverse-DFT along the fully-
sampled frequency-encoded z-direction. We combined the cropped and normalized non-
undersampled k-space using a sum-of-squares method [27] to form a magnitude image,
retained as a reference for image quality comparisons. Without highly accurate sensitivities,
the complex-valued combined image phase may be inaccurate. Fortunately, the magnitude is
sufficient for evaluating these T1-weighted brain images, although phase information is
important for other applications. We used the bi-orthogonal ‘9-7’ DWT to sparsify
reconstructions with this data set.

In this paper, we measure total acceleration R by dividing the total number of points in the
full-FOV k-space by the total number of acquired points:

(8)

for a square NACS × NACS block of ACS lines and Rx × Ry nominal undersampling.

To combine the reconstructed multi-channel k-space into a single image, we applied un-
accelerated SENSE using low-resolution coil sensitivity profiles estimated from the ACS
lines. These ACS lines were apodized with a Blackman window to mitigate ringing artifacts.
When comparing reconstructions of the same image using different numbers of ACS lines
(as in Fig. 5 and 6), we used the same set of sensitivities for all coil combinations, as to not
affect the comparison. When evaluating the quality of reconstructed images, visual
comparisons using both magnitude and difference images are standard. From these images,
residual aliasing artifacts should be readily identifiable. However, visual comparison is not
conducive towards establishing quantitative trends in image quality. For such trends, the
peak-signal-to-noise ratio (PSNR) is used; for magnitude images, it is defined in dB units as

(9)

where |m[x, y]| is the magnitude combined “ground-truth” image, and |m[̂x,y]| is the
magnitude combined image from the GRAPPA-reconstructed k-space. PSNR has several
limitations: it does not correlate strongly with visual image quality, and it is not a robust
statistical measure of spatially varying noise. PSNR also does not distinguish between
amplified noise and aliasing errors. We evaluated noise amplification by forming Monte-
Carlo estimates of the g-factors, the spatially varying quantity of noise amplification beyond
the factor of √R from undersampling, using the pseudo multiple replica method [28].
Analytical g-factors can also be computed [29], although such an analysis ignores the effects
of including ACS data in the reconstruction. To quantify aliasing, we compared the sample
autocorrelations of the complex difference images. Since spatially-varying noise is not
strongly correlated, it will be spread throughout the autocorrelation, while coherent aliasing
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should be strongly correlated, causing peaks at offsets of ±X/Rx and ±Y/Ry and multiples
thereof.

As mentioned in the introduction, we assume in developing our method that a GRAPPA-
reconstructed image inherits the transform-domain sparsity of the object, even after under-
sampling, interpolation, and the resulting noise amplification. To test this hypothesis, we
applied the sparsity-promoting GRAPPA calibration with a 36 × 36 ACS block to the 4 × 4-
undersampled real data set. After applying the resulting kernel to the undersampled data,
with and without including the ACS in the reconstruction, we transformed the noisy
reconstructed images into the DWT sparse transform domain. We compared the coil-
combined magnitudes of the transform coefficients against the same magnitudes for the
fully-sampled reference data by plotting their empirical cumulative distribution functions
(CDFs) on a log scale.

The Tikhonov, truncated SVD, and proposed sparsity-promoting regularization methods all
depend on carefully selecting the tuning parameter (denoted α, τ, and λ, respectively)
optimal for kernel calibration. To avoid reliance on heuristic methods particular to a given
regularizer, we chose the optimal tuning parameter for each method via two-stage coarse-
then-fine parameter sweeps. We then portrayed the effects of varying the tuning parameters
on the visual quality of the reconstructed images. We expect that the optimal choice of
tuning parameter varies with the image and the sampling pattern used, including the
acceleration factor and number of ACS lines. We performed this experiment on the
simulated data set with an ACS block of reasonable size, where sweeping the parameters
yielded visible variations in image quality.

For our comparisons of GRAPPA kernel calibration regularization techniques, we began
with the phantom data. First, we varied the number of ACS lines used for calibration. We
calculated the PSNR values for reconstructions using un-regularized, Tikhonov-regularized,
truncated-SVD-based, and sparsity-promoting calibration. We also considered L1-SPIRiT
reconstructions for the same range of ACS lines, using a 7 × 7-point kernel (Tikhonov-
regularized by default). Unfortunately, nonlinear GRAPPA was too computationally
intensive to generate such a trade-off curve. The trade-off curves correspond to Ry= 3
nominal undersampling with the number of ACS lines varying from 10 to 30 full lines. We
repeated this experiment on our real data set for the same methods, using 4 × 4 nominal
undersampling and varying the number of ACS lines from 20 × 20 to 64 × 64. To find the
best achievable image quality for any desired total acceleration, we performed this
experiment on the real data for a couple different levels of nominal undersampling and
constructed trade-off curves for each regularizer that represent the maximum PSNRs of all
the trade-off curves for that technique.

Next, we performed visual comparisons for both simulated and real data sets. We compared
all the methods for the simulated data with Ry= 3 1-D nominal undersampling and 20 and 10
ACS lines. We also compared all the methods, minus nonlinear GRAPPA, for the real data
with 4 × 4 2-D nominal undersampling and 36 × 36 and 24 × 24 ACS lines. We chose the
larger ACS blocks to yield low-quality calibrations without any regularization, and the
smaller blocks to produce underdetermined calibrations. Bydder's nonlinear GRAPPA [9]
only supports 1-D undersampling of k-space at present, so we did not apply it to the 2-D
undersampled real data.

We generated G-factor maps for the kernels calibrated from low-quality (but not
underdetermined) sets of ACS lines in the previous experiments, except nonlinear GRAPPA.
G-factors generated from the pseudo multiple replica method for each kernel confirm that all
the regularization methods help defeat noise amplification. As is done in [29], we ignored
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the effect of noise amplification on the calibration of the kernel. Our implementation of the
pseudo multiple replica method repeated the GRAPPA reconstruction 400 times for each
calibrated kernel, adding complex Gaussian noise with covariance Λ. We also included G-
factor maps for L1-SPIRiT for comparison.

Finally, we computed autocorrelation maps of the difference images for the
underdetermined reconstructions to measure residual aliasing. Significant offset peaks
signify noticeable residual aliasing in the reconstructed image. Since we expect the residual
aliasing to vary with the tuning parameter, we computed curves for each choice across our
parameter sweep and show the best curve for each method.

IV. Results

The curves in Fig. 3 demonstrate very similar behavior for the fully-sampled reference data
and the GRAPPA reconstructed images. The empirical CDF curves are nearly identical
when the ACS data was included in the reconstruction. A compressible signal would be
expected to have sparse transform coefficients that decay exponentially, which coincides
with 1 − CDF being linear on a log-log scale. As is apparent from the curves, the GRAPPA
reconstruction including the 36 × 36 block of ACS data in the output has nearly identical
sparsity to the original data, while the data with no ACS included in the output are similar,
but with a slight bias towards larger-magnitude coefficients. One would expect a
reconstruction calibrated with fewer ACS lines to yield a curve between these two, so the
assumption appears validated, at least for this real data set. One must remain concerned
about even greater noise amplification, but considering the noise level present in the real
data at this acceleration, one probably would not be interested in even greater
undersampling.

In Fig. 4, we display the reconstructed simulated images after varying the tuning parameters
for Tikhonov, truncated SVD, and sparsity-promoting regularized calibration. For
overdetermined calibration (20 ACS lines with Ry = 3 1-D nominal acceleration), very low
values of the tuning parameters for any of these three regularizers reduce that regularizer's
effect on the calibration. All three methods also introduce significant residual aliasing for
larger values of the parameters, suggesting that overemphasizing the regularization can
undermine even overdetermined calibrations.

In the next series of simulations on the phantom data, we varied the number of ACS lines
from 10 samples up to 30 samples, holding fixed the 1-D nominal undersampling at Ry = 3.
After computing the GRAPPA reconstructions with un-regularized, Tikhonov-regularized,
TSVD-based, and sparsity-promoting kernel calibrations, we plot their PSNRs versus the
total acceleration corresponding to the nominal undersampling and number of ACS lines
(see (8)). We added the L1-SPIRiT reconstructions for the same range of ACS lines for
reference. The PSNRs (not shown) for the GRAPPA calibration methods are nearly
identical, trending from between 27-28 dB with 10 ACS lines up to 36 dB with 30 lines. L1-
SPIRiT fares slightly better, increasing in the same pattern from 30 dB to nearly 37 dB over
the same range.

In Fig. 5, a similar series of simulations were run on the real data, varying the number of
ACS lines from 20 × 20 samples up to 64 × 64 samples, and holding fixed the nominal
undersampling at Rx = Ry = 4. As the number of ACS lines increased, the PSNR also
increased, as we observe for the simulated data. The difference between un-regularized and
regularized methods is more significant here, although PSNR improvement still does not
compare to the level achieved by L1-SPIRiT. As the number of ACS lines decreases, the
PSNR decreases at a far more diminished rate for the regularized calibration techniques.
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Because un-regularized calibration cannot be performed when the number of ACS lines
yields too few fit equations, un-regularized calibration cannot be performed for total
accelerations beyond R = 10.5 in this plot. At the highest accelerations, sparsity-promoting
regularization produces images with better PSNR than Tikhonov regularization. The trade-
off shift due to sparsity-promoting regularization suggests that the PSNR for the real data is
no worse than for other regularized GRAPPA calibration methods and is significantly
improved over un-regularized GRAPPA kernel calibration.

The plot in Fig. 5 only considers the performance achievable with the nominal
undersampling held fixed. In Fig. 6, we computed trend lines for different levels of nominal
undersampling and generated curves by taking the greatest PSNR for each level of total
acceleration, merging trends for 4 × 3 and 4 × 4 nominal undersampling to produce a
staircase effect. Lower nominal undersampling with fewer ACS lines tends to produce
higher PSNR.

The previous experiments establish trends for different calibration and reconstruction
methods using PSNR. However, as PSNR is not sensitive to the type of coherent aliasing
artifacts we expect with extreme undersampling, we should inspect the reconstructed images
visually. Visual comparisons allow us to readily evaluate the significance of coherent
aliasing artifacts and noise amplification on overall image quality. First, we explored
regularizing overdetermined and underdetermined ACS fits on simulated data. We used a 4
× 3-block GRAPPA kernel with Ry = 3 nominal undersampling and 20 and 10 ACS lines for
the overdetermined and underdetermined fits, respectively. We also used L1-SPIRiT with a
7 × 7-point kernel for comparison. Reconstructions and difference images using Tikhonov-
regularized, truncated-SVD, nonlinear, and sparsity-promoting GRAPPA are shown, along
with L1-SPIRiT, for both overdetermined and underdetermined cases in Fig. 7. In the
overdetermined case, the images appear very similar. In the underdetermined case, none of
the methods completely remove the aliasing, but the nonlinear GRAPPA method does
slightly better than the rest at mitigating the aliasing within the simulated brain.

The visual comparisons using real data more effectively demonstrate the advantages of
sparsity-promoting calibration on image quality. Using a 4 × 4-block GRAPPA kernel and 5
× 5-point SPIRiT kernel with Ry = Rz = 4 2-D nominal undersampling, the ACS block
measured 36 × 36 samples in the overdetermined case and 24 × 24 samples in the
underdetermined case. All the methods shown for the simulated data with the exception of
nonlinear GRAPPA, which does not support 2-D acceleration, were repeated for the real
data set. The reconstructed images and difference images shown in Figure 8 show effective
denoising and diminished aliasing for the sparsity-promoting method. In particular, the
aliased structure is significant in the other methods in the underdetermined case. The L1-
SPIRiT method is capable of even greater denoising, most likely accounting for the PSNR
difference, but the result displays aliasing artifacts in both overdetermined and
underdetermined cases. We would expect this aliasing to be mitigated if L1-SPIRiT were
applied to randomly undersampled k-space, rather than the uniform Cartesian undersampling
employed here.

Next, we quantified the improvement in noise amplification for these calibration methods
using simulated g-factors. Spatial g-factor maps for the simulated and real combined images
are shown in Fig. 9 and Fig. 10 for the overdetermined calibrated kernels used in Fig. 7 and
Fig. 8. We masked the g-factor maps to ignore pixels outside the brain, as what happens to
noise outside the brain is less important. We report the mean and maximum observed g-
factors using this mask. We observe little difference between Tikhonov-regularized,
truncated SVD-based, and sparsity-promoting GRAPPA calibration methods for either data
set, so our method does not greatly sacrifice noise reduction by improving aliasing
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suppression. L1-SPIRiT provides improved g-factors over all the GRAPPA-based methods,
at the expense of the residual aliasing observed in the reconstructions of uniformly
undersampled real data.

Lastly, we measured the residual aliasing in the reconstructed images from each regularized
GRAPPA kernel used in Fig. 7 (simulated brain) and Fig. 8 (real data) for the
underdetermined calibration regime. We depict one side of the center slice in the y-direction
of the two-dimensional normalized autocorrelation map for the 1-D undersampled simulated
data, and we show center slices in the x- and y-directions for the 2-D undersampled real
data. Since only relative magnitudes are important, we normalized the autocorrelation curves
so that the largest value across all the curves is 1.0. The autocorrelation magnitudes in Fig.
11 and Fig. 12 portray significant residual aliasing in the reconstruction using Tikhonov-
regularized or truncated SVD-based kernels, while the nonlinear GRAPPA kernel has a
slightly lower peak for the simulated data, and the sparsity-promoting kernel has much less
of a peak for the real data. While tuning the regularization parameters may be thought to
reduce this aliasing, these are the minimum peaks observed varying α or τ. Together with
the visual comparisons, the reduced autocorrelation peaks justify using sparsity-promoting
regularization to calibrate GRAPPA, even though the acquired data are uniformly spaced.
While coherent aliasing is visible in the image reconstructed using Li-SPIRiT, the
autocorrelation plot for Li-SPIRiT does not appear to have coherent peaks in the same
places.

V. Discussion

The success of GRAPPA accelerated parallel imaging depends on the quality of the
calibration. At high levels of acceleration, acquiring sufficiently many ACS lines to
reconstruct a high quality image may be impractical, and regularization can help improve
image quality without sacrificing for more ACS lines. The sparsity-promoting regularization
method described in this paper produces a GRAPPA kernel that mitigates both noise
amplification and residual coherent aliasing in the reconstructed image, even when the
number of ACS lines would provide only enough fit equations to form an underdetermined
least-squares problem without regularization. The proposed method enables calibration
using this under-determined system of least-squares fit equations because the regularized
calibration takes advantage of the joint transform-domain sparsity expected of the images
reconstructed using the calibrated kernels. The plots of PSNR/total acceleration trade-off
curves for the different calibration methods demonstrate the significant impact of
regularized calibration on the performance of accelerated parallel imaging using GRAPPA,
especially when calibrating using the proposed method. The effects of regularization on
noise amplification are confirmed using simulated g-factor maps, and the residual aliasing is
measured using the difference image autocorrelation maps. Altogether, these experiments
describe the benefits of a novel approach to calibrating the GRAPPA kernels for superior
image reconstruction quality using fewer ACS lines. By successfully reducing the number of
ACS lines required for a high-quality reconstruction, this method will enable more effective
calibration in studies that can only accommodate the acquisition of limited ACS data.

Compared to incorporating a sparsity-promoting regularizer into the reconstruction of
another parallel imaging method like SENSE or SPIRiT, promoting sparsity at the GRAPPA
calibration step may appear suboptimal. Indeed, methods like L1-SPIRiT should have an
advantage in denoising the result due to being able to modify the un-acquired data more
freely. Regularizing the kernel calibration constrains the sparse reconstructed coil images to
reside in a subspace spanned by the acquired (aliased) image data from all the coils, which is
more restrictive than finding the sparsest of any image consistent with the acquired data. If
we assume that a GRAPPA kernel does exist that would yield the full-FOV k-space from
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these acquired data, this subspace should contain the sparse reconstructed coil images of
interest. If the acquired data are particularly noisy, or not enough coils are used, this
assumption may be violated, so this calibration method, like GRAPPA itself, does have
limitations. We studied the sparsity-preserving assumption for GRAPPA applied to real
data, and our results appear to validate this assumption for at least the level of
undersampling addressed in this paper. To overcome this suboptimality, either more coils
should be used, or the reconstructed k-space should be denoised using a method like
DESIGN denoising [30].

Other limitations of this sparsity-promoting calibration method remain. First, we have no
analytical formula for the optimal choice of λ. In this work, a coarse-then-fine parameter
sweep was used to identify a useful value, but such sweeps can be time-consuming.
Fortunately, iterative reweighting methods like the half-quadratic minimization algorithm
used to implement the optimization are compatible with a warm-start approach; we can
slowly scale up the value of λ, and successive optimization problems take less time to solve.
We aim to investigate automatic parameter selection methods in future work. Another
challenge is the efficient or real-time implementation of this method. Typical usage requires
a few hundred inner iterations of the LSMR least-squares solver to converge to the final
solution, and each iteration can take several seconds because of the need to perform a
GRAPPA reconstruction in each step. Since the computationally intensive operations are
highly parallelizable for implementation using GPUs, combining parallel computing with
alternative implementations of the cost function in Eq. (3) such as variable-splitting-based
alternating minimization methods could accelerate the method significantly, for practical
use.

As discussed earlier, the efficient implementation of this method is limited to uniform
Cartesian sampling patterns by the existence of efficient GRAPPA reconstruction methods
and the number of kernels that need to be calibrated. More development is necessary to
generalize this sparsity-promoting calibration method to nonuniform or non-Cartesian
sampling patterns or indirect reconstruction methods like SPIRiT in a practical manner.
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Fig. 1.
Abstract model relating the original image m(x,y) to the acquired data dp[kx, ky] for p = 1,
…, P.
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Fig. 2.
Magnitude combined image of reference T1-weighted (a) simulated BrainWeb phantom and
(b) real data.

Weller et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 3.
The curves representing 1— CDF for the fully-sampled reference and GRAPPA
reconstructions' sparse transform coefficient magnitudes are plotted on a log-log scale. At
worst, such a curve representing sparse coefficients would be linear on this scale. The curve
for GRAPPA with ACS data included in the reconstruction nearly matches the fully-
sampled data curve exactly, while the reconstruction without calibration data appears to
favor sparse coefficients slightly larger in magnitude.
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Fig. 4.
For simulated data, reconstructed and difference images for GRAPPA reconstructions with
Tikhonov-regularized, T-SVD-regularized, and sparsity-promoting calibration are portrayed
using a range of tuning parameter choices for the overdetermined calibration case (4 × 3-
block GRAPPA kernel from 20 ACS lines with Ry= 3 1-D nominal undersampling). The
middle tuning parameters (d-f) have the best PSNR; the reconstructed images for smaller
values of α, τ, or λ have slightly more noise, while reconstructed images for larger tuning
parameters have residual aliasing visible in the difference images.
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Fig. 5.
Regularized calibration improves the image quality (PSNR) of GRAPPA reconstructions of
the real data over a broad range of total accelerations (corresponding to varying the number
of ACS lines), with sparsity-promoting calibration yielding the best performance at the
highest accelerations among the GRAPPA-based methods. However, the L1-SPIRiT
reconstruction has even higher PSNR. The nominal undersampling was held fixed (Rx = Ry
= 4 for the real data).
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Fig. 6.
For real data, as the desired total acceleration increases (by reducing the number of ACS
lines), the best PSNR is achieved using sparsity-promoting calibration with the lowest
possible nominal undersampling. The greatest benefit of sparsity-promoting calibration
appears at effective accelerations R between 12 and 14 with 4 × 4 nominal undersampling,
although L1-SPIRiT remains the clear winner in terms of overall PSNR.
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Fig. 7.
For the simulated data, all the regularized 4 × 3-block GRAPPA kernels for Ry = 3 1-D
nominal undersampling yield similar image quality, both in terms of noise reduction in the
overdetermined case, and mitigating aliasing in the underdetermined case. The results for
L1-SPIRiT appear similar to the GRAPPA reconstructions, with less aliasing outside the
brain.
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Fig. 8.
For the real data, all the sparsity-promoting 4 × 4 GRAPPA kernels for Ry = Rz = 4 2-D
nominal undersampling yield significantly improved image quality, in terms of mitigating
aliasing in the underdetermined case. In the overdetermined case, all the methods are
effective at denoising. In both cases, the L1-SPIRiT method is even more effective at
denoising, but the coherent aliasing that also results may be undesirable.
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Fig. 9.
For simulated data, with 20 ACS lines, the g-factors for the 4 × 3-block GRAPPA kernel
calibrated for Ry = 3 1-D nominal undersampling of the simulated brain with (a) Tikhonov,
(b) truncated SVD, and (c) sparsity-promoting regularization have minor noise amplification
(mean = 1.8/1.9/1.8, respectively; max. = 3.4/3.3/3.3, respectively), while (d) L1-SPIRiT
greatly reduces noise amplification (mean = 1.1; max. = 2.2). The colors are logarithmically
spaced to facilitate comparison.
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Fig. 10.
For real data, with 36 × 36 ACS lines, the g-factors for the 4 × 4 GRAPPA kernel calibrated
for 4 × 4 nominal undersampling with (a) Tikhonov, (b) truncated SVD, and (c) sparsity-
promoting regularization reduce noise amplification (mean = 2.5/3.1/2.8, respectively; max.
= 4.5/5.9/5.0, respectively), while (d) L1-SPIRiT greatly reduces noise amplification (mean
= 0.86; max = 4.3). The colors are logarithmically spaced to facilitate comparison.
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Fig. 11.
For simulated data, with 10 ACS lines, the Tikhonov-regularized and truncated SVD-based
4 × 3 GRAPPA kernels for Ry = 3 1-D nominal undersampling yield images with noticeable
aliasing artifacts that cause a significant peak at Y/Ry ≈ 43 in the autocorrelation map in the
y-direction, while L1-SPIRiT and sparsity-promoting regularization have smaller peaks.
Nonlinear GRAPPA also has a smaller peak, but another larger peak appears around 2Y/Ry.
The L1-SPIRiT peak is just slightly larger than the sparsity-promoting peak in this example.
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Fig. 12.
For real data, with 24 × 24 ACS lines, the Tikhonov-regularized and truncated SVD-based
4× 4 GRAPPA kernels for 4 × 4 nominal undersampling yield images with noticeable
aliasing artifacts that cause a significant peak at X/Rx = 44 in the autocorrelation map in the
(a) x-direction and at Y/Ry = 53 in the autocorrelation map in the (c) y-direction, while
sparsity-promoting regularization has much smaller peaks. The Tikhonov and TSVD curves
are on top of each other in the above figures. The L1-SPIRiT curves in the (b) x-direction
and (d) y-direction demonstrate different behavior, with additional autocorrelation energy
clustered near the far edges of the curves.
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