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Sparsity Promoting Iterated Constrained Endmember
Detection in Hyperspectral Imagery
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Abstract—An extension of the iterated constrained endmember
(ICE) algorithm that incorporates sparsity-promoting priors to
find the correct number of endmembers is presented. In addition
to solving for endmembers and endmember fractional maps, this
algorithm attempts to autonomously determine the number of
endmembers that are required for a particular scene. The number
of endmembers is found by adding a sparsity-promoting term to
ICE’s objective function.

Index Terms—Endmember, hyperspectral imagery, sparsity
promotion.

I. INTRODUCTION

AUTONOMOUS endmember detection is a difficult prob-
lem in hyperspectral imaging. Many endmember extrac-

tion algorithms have been formulated, but the majority of these
algorithms require knowledge of the number of endmembers
that are required for a scene. The problem of autonomously
determining the number of required endmembers to a large
extent has not been tackled.

We provide an extension of the iterated constrained endmem-
ber (ICE) algorithm [1] that provides better estimates of the
number of endmembers that are required for a data set. This
extension adds a sparsity-promoting term to the ICE objective
function and is therefore referred to as sparsity-promoting ICE
(SPICE). This added term encourages the pruning of unneces-
sary endmembers.

In Section II, we review the ICE algorithm and discuss the
sparsity-promoting extension. It is assumed that the reader is
familiar with the endmember detection problem. In Section III,
we present results from artificial and real image data. Section IV
presents the conclusion.

II. ICE WITH SPARSITY PROMOTION

A. Review of the ICE Algorithm

The ICE algorithm performs a least squares minimization of
the residual sum of squares (RSS) based on the convex geom-
etry model. The convex geometry model assumes that every
pixel in a scene is a linear combination of the endmembers of
the scene. The convex geometry model can be written as

Xi =
M∑

k=1

pikEk + εi, i = 1, . . . , N (1)
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where N is the number of pixels in the image, M is the number
of endmembers, εi is an error term, pik is the proportion of
endmember k in pixel i, and Ek is the kth endmember. The
proportions satisfy the constraints

M∑
k=1

pik = 1, pik ≥ 0; k = 1, . . . , M. (2)

By minimizing the RSS, which is subjected to the constraints
in (2), the error between the pixel spectra and the pixel estimate
found by the ICE algorithm for the endmembers and their
proportions is minimized, i.e.,

RSS =
N∑

i=1

(
Xi −

M∑
k=1

pikEk

)T (
Xi −

M∑
k=1

pikEk

)
. (3)

As described in [1], the minimizer for RSS is not unique.
Therefore, the ICE algorithm adds a sum of squared distances
(SSD) term to the objective function, i.e.,

SSD =
M−1∑
k=1

M∑
l=k+1

(Ek − El)T (Ek − El). (4)

This term is proportional to the size of the area that is bounded
by the endmembers. Therefore, by adding this term to the ob-
jective function, the algorithm finds endmembers that provide
a tight fit around the data. In [1], it is shown that SSD is
equivalent to

SSD = M(M − 1)V (5)

where V is the sum of variances (over the bands) of the
simplex vertices. As done in [1], V is used in the objective
function instead of M(M − 1)V in an effort to make this term
independent of the number of endmembers M .

Therefore, the objective function used in the ICE algo-
rithm is

RSSreg = (1 − µ)
RSS
N

+ µV (6)

where µ is the regularization parameter that balances the RSS
and SSD terms of the objective function.

The ICE algorithm minimizes this objective function itera-
tively. First, given endmember estimates, the proportions for
each pixel are estimated. For the first iteration of the algorithm,
endmember estimates may be set to randomly chosen pixels
from the image. This requires a least squares minimization
of each term in (3). Since each of these terms is quadratic
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and subjected to the linear constraints in (2), the minimiza-
tion is done using quadratic programming. After solving for
the proportions, the endmembers are found using the current
proportion estimates, i.e.,

ej =
{
PT P + λ

(
IM − 11T

M

)}−1

PT xj (7)

where P is the N × M proportion matrix, ej is the vector of
the endmember values in the jth band, xj is the vector of all the
pixel values in the jth band, IM is the M × M identity matrix,
1 is the M -vector of ones, and λ = Nµ/{(M − 1)(1 − µ)}.
This iterative procedure is continued until the value of RSSreg is
smaller than a tolerance value. Although the ICE algorithm is an
excellent algorithm for finding endmembers when the number
of endmembers is known, there is no automated mechanism
in ICE to determine the correct number of endmembers. Our
proposed extension uses sparsity-promoting priors to alleviate
this disadvantage.

B. Sparsity Promotion

The RSS term of the objective function is a least squares term
whose minimization is equivalent to the maximization of the
following [2]:

− 1
2

N∑
i=1

(
xi−

M∑
k=1

pikEk

)2

=ln e
− 1

2 !

N∑
i=1

(
xi−

M∑
k=1

pikEk

)2

. (8)

When examining the exponential in (8), it can be seen that
this is proportional to the Gaussian density with a mean of∑M

k=1 pikEk and a variance of 1, i.e.,

N

(
M∑

k=1

pikEk, 1

)
=

1√
2π

exp


−

N∑
i=1

(
xi−

M∑
k=1

pikEk

)2

2




∝ exp


−1

2

N∑
i=1

(
xi−

M∑
k=1

pikEk

)2

 . (9)

A common method to promote small parameter values during
a least squares minimization process is to add a weight decay
term to the objective function. The weight decay term attempts
to prevent the pik values from becoming large, i.e.,

LSWD = ln e
− 1

2

N∑
i=1

(
xi−

M∑
k=1

pikEk

i

)2

−γ

N∑
i=1

M∑
k=1

p2
ik

= ln


e

− 1
2

N∑
i=1

(
xi−

M∑
k=1

pikEk

)2

e
−γ

N∑
i=1

M∑
k=1

p2
ik


 (10)

where γ ≥ 0. The second exponential in (10) can also be seen as
a Gaussian with a mean of zero. Therefore, (10) can be viewed
as the log of the following product:

p(X|P)p(P) (11)

where p(X|P) is the probability of the data given the parame-
ters and p(P) is the prior on the parameters.

Unfortunately, the Gaussian prior is not effective at spar-
sity promotion. The Gaussian does not prefer to set parame-
ter values to zero, which would promote sparsity; instead,
the Gaussian prefers several small-valued nonzero parameters.
Therefore, instead of using a Gaussian distribution for the
parameters’ prior, a zero-mean Laplacian distribution can be
used to promote sparsity [3], i.e.,

LSSP=−1
2

N∑
i=1

(
xi−

M∑
k=1

pikEk

)2

−
M∑

k=1

γk

N∑
i=1

|pik|. (12)

C. SPICE

Given (12), we see that the sparsity-promoting term should
be of the form

SPT =
M∑

k=1

γk

N∑
i=1

|pik| =
M∑

k=1

γk

N∑
i=1

pik (13)

where the last equality follows due to the constraints in (2). For
this letter, we take

γk =
Γ

N∑
i=1

pik

. (14)

Γ is a constant that is associated with the degree that the
proportion values are driven to zero. The advantage of this
expression for γk is that, as the proportion values change during
the minimization of the objective function, the weight that is
associated with each endmember adjusts accordingly. If the sum
of a particular endmember’s proportion values becomes small,
then weight γk for that endmember becomes larger. This weight
change accelerates the minimization of those proportion values.
Furthermore, since the objective function is minimized in an
iterative fashion, the change in the γk values does not disrupt
the minimization.

Incorporating this new term into ICE’s objective function
yields

RSS∗
reg = (1 − µ)

RSS
N

+ µV + SPT. (15)

This can be rewritten as

RSS∗
reg =

(1−µ)
N

N∑
i=1

(
Xi−

M∑
k=1

pikEk

)T (
Xi−

M∑
k=1

pikEk

)

+ µV +
M∑

k=1

γk

N∑
i=1

pik

=
(1−µ)

N

N∑
i=1



(
Xi−

M∑
k=1

pikEk

)T (
Xi−

M∑
k=1

pikEk

)

+
N

(1−µ)

M∑
k=1

γkpik

]
+µV. (16)
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Fig. 1. Two-dimensional example. One hundred data points that are generated
from the corners of the simplex are shown.

In order to minimize this new objective function, the iterative
procedure that is used in ICE can still be used. The endmembers
are still found by solving (7) since SPT does not depend on
the endmembers. When solving for the proportion values given
endmember estimates, each of the N terms of the following
sum need to be minimized given the constraints in (2) using
quadratic programming:

RSS∗
reg,term1 =

(1 − µ)
N

×
N∑

i=1



(
Xi−

M∑
k=1

pikEk

)T(
Xi−

M∑
k=1

pikEk

)
+

M∑
k=1

γ∗
k
pik




(17)

where

γ∗
k =

Γ∗
N∑

i=1

pik

, Γ∗ =
NΓ

(1 − µ)
. (18)

During the iterative minimization process, endmembers can
be pruned as their proportion values drop below a pruning
threshold. After every iteration of the minimization process,
the maximum proportion values for every endmember can be
calculated as

MAXPk = max
i

{pik}. (19)

If the maximum proportion for an endmember drops below
a threshold, then the endmember can be pruned from the
endmember set.

III. RESULT

A. Toy Example

A 2-D example was initially used for testing the SPICE
algorithm. Fig. 1 shows the data set and the endmembers from
which the data were generated. The data points were generated
in the same fashion as the toy example in [1]. The endmembers
that are used to generate the 100 data points were (−10

√
2, 0),

(10
√

2, 0), and (0, 20). The maximum proportions of the bottom
two endmembers were 0.80 and 0.60, respectively. Zero-mean
independent Gaussian random noise with a variance of 1 was
added to the x and y coordinates of all the generated data.

In [1], the number of endmembers that are used to solve this
simple example was known to be three. In SPICE, the number

Fig. 2. Comparison of (top) SPICE and (bottom) ICE with pruning. In these
three experiments, µ = 0.001, and the pruning threshold is 0.0005. The initial
number of endmembers was 20.

of endmembers does not need to be known; therefore, the initial
number of endmembers can be set to a large value.

The results of three experiments comparing the ICE and
SPICE algorithms are shown in Fig. 2. The parameters for
each algorithm, other than the sparsity-promoting term, were
set to be the same during the experiments. The initial number
of endmembers for all three runs was 20, and µ was set to
0.001 (Γ for the SPICE algorithm in these runs was set to 10,
20, and 5, respectively). The endmembers were initialized to the
same values for each experiment comparing ICE and SPICE.
These initial endmembers were chosen randomly from the
data set.

An endmember was pruned from either algorithm when
the endmember’s maximum proportion over the data points
dropped below 0.0005. In these three experiments, the follow-
ing proportion values were averaged over the iterations in which
an endmember was pruned:

MINMAXPk = min
k

{
max

i
{pik}

}
. (20)

These were found to be 3.3 × 10−4, 2.4 × 10−4, and
2.4 × 10−4 for ICE, respectively. In comparison, 4.1 × 10−6,
8.3 × 10−17, and 7.8 × 10−17 are these mean values for SPICE
in the three experiments, respectively. As shown, these values
are significantly lower in SPICE compared to the pruning
threshold than the values in ICE. SPICE consistently drives
proportion values for unnecessary endmembers well below a
0.0005 pruning threshold. Despite this high pruning threshold,
ICE did not find the correct number of endmembers with
pruning without the use of a sparsity-promoting term.

As shown by the results, SPICE determined that three end-
members was an appropriate number to represent the data set.
ICE ended the algorithm with six endmembers. In the first
comparison that is shown in Fig. 2, two of the endmembers that
are found by ICE were (−3.62, 7.94) and (−3.68, 7.94), and
they appear as one endmember in the figure.

B. Cuprite Data Results

To determine SPICE’s value on real image data, SPICE
was run on Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) hyperspectral image data from Cuprite, NV. The
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Fig. 3. Endmembers that are found from the AVIRIS Cuprite hyperspectral
data. µ was 0.1 for all experiments. The pruning threshold was set to 1e−9.
The limits of the x axis are in the range of 1978–2477 nm, and the limits of the
y axis are in the range of 1000–7000 in units of 10 000 times the reflectance
factor [7].

Fig. 4. Comparison of one endmember that is found by SPICE and a USGS
Alunite spectrum (“Alunite SUSTDA-20 W1R1Ba AREF”) from the 2005
USGS spectral library.

data used were 51 contiguous spectral bands (in the range of
1978–2477 nm) from “Scene 4” of the AVIRIS Cuprite data
from [4]. This data set was also used in [5]. We chose this data
set to be able to compare our results with the NFINDR results
that are presented in [5].

As in [1], SPICE was run on a subset of pixels from the
image using “candidate points” that are selected using the pixel
purity index (PPI) [6]. The candidate points in our experiments
were chosen from 10 000 random projections. Points within a
distance of two from the boundary of the projection received
increased purity indices. The 1011 pixels with the highest PPI
were used as the candidate points. In [1], 1000 pixels were used
during the experiments on the real image sets. We chose a PPI
threshold that allowed us to have as close to 1000 pixels as
possible (many pixels have the same PPI).

Results from one experiment on this image and the spectral
profiles of the nine endmembers that are found by SPICE are
shown in Fig. 3. The three endmembers in the first column of
Fig. 3 compare well to the three endmembers that are found and
identified as kaolinite, alunite, and calcite in [5], respectively.
Fig. 4 shows a comparison of one of the found endmembers
to the U.S. Geological Survey (USGS) spectral library data on
alunite [7].

Although it is clear that SPICE was able to find some of the
same endmembers that are identified in [5], it is not clear if
the correct number of endmembers was found. The difficulty of
using real image data is that the correct number of endmembers
in the scene is unknown. To overcome this problem, a subset
of the Cuprite data image was used for further testing of the
algorithm.

Fig. 5. Endmembers that are selected from AVIRIS Cuprite data image
by hand.

Fig. 6. Normalized test pixels that are selected from the Cuprite data.

TABLE I
NUMBER OF ENDMEMBERS THAT ARE FOUND BY SPICE AND ICE ON

TEST PIXELS FROM AVIRIS CUPRITE DATA OVER A RANGE OF Γ VALUES,
AND THE INITIAL NUMBER OF ENDMEMBERS. EACH EXPERIMENT HAD

THE SAME INITIALIZATION FOR ICE AND SPICE. µ WAS SET TO 0.1 FOR

ALL EXPERIMENTS. THE PRUNING THRESHOLD WAS SET TO 1e−9

Three endmembers, as shown in Fig. 5, were selected from
the hyperspectral image by hand. The squared Euclidean dis-
tance was calculated from every pixel in the image to these three
endmembers. The pixels within 500 000 squared Euclidean
distance from these three hand-selected endmembers were
collected and used as a test set for SPICE. The test set was
normalized and is shown in Fig. 6.

Table I shows the number of endmembers that are found us-
ing SPICE for a range of Γs and an initial number of endmem-
bers. As shown, SPICE consistently finds three endmembers for
this data set. The results in Table I and in Fig. 2 show that the
SPICE algorithm is fairly stable with respect to Γ. SPICE is also
very stable with respect to the initial number of endmembers.
Therefore, the initial number of endmembers should be set to a
large value.

Fig. 7 shows the endmembers that are found using SPICE in
these experiments. These endmembers are clearly very similar
to the three hand-selected endmembers that is used for this
experiment.

Authorized licensed use limited to: University of Florida. Downloaded on December 17, 2008 at 13:38 from IEEE Xplore.  Restrictions apply.



450 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 4, NO. 3, JULY 2007

Fig. 7. SPICE endmember results that are found on normalized test data that
are selected from the Cuprite AVIRIS scene.

Fig. 8. Abundance maps that are generated by SPICE on the Indian Pines
data set.

C. Indian Pines Results

SPICE was also run on the June 1992 AVIRIS data set col-
lected over the Indian Pines Test site. The image has 145 × 145
pixels with 220 spectral bands and contains approximately two-
third agricultural land and one-third forest and other elements.
The soybean and corn crops in this scene are in their early
growth stages. Therefore, these regions are primarily bare soil
and residues from previous crops [9].

As in the previous experiments, SPICE was run on a subset
of the image pixels. One thousand one hundred pixels were
randomly selected from the image. Before running SPICE,
these pixels were normalized. SPICE, µ, and Γ were initial-
ized to 60 endmembers, 0.1, and 1, respectively. Ten end-
members were found for this data set using SPICE. The
resulting abundance maps are shown in Fig. 8. SPICE pruned
unnecessary endmembers and provided interpretable results
that compare to results that are found by others on this data
set [8]–[10].

In Fig. 8, the images were found to correspond to the
following: (a) and (f) woods and tree canopies; (b), (c), and
(j) a mixture of soybean and corn crops; (d) and (e) grass and
background; (f) windrows; (g) steel towers, roads, and other
man-made objects; and (h) grass/pasture and wheat.

IV. CONCLUSION

The SPICE algorithm extends the ICE algorithm with the
addition of a sparsity-promoting term. This term encourages
the pruning of excess endmembers by penalizing the ob-
jective function when a large number of endmembers are
being used.

The sparsity-promoting term drives the set of proportions
that are associated with unnecessary endmembers to zero, at
which point such endmembers can be pruned from the set of
endmembers representing the data.

Although results suggest that the SPICE algorithm removes
the need to know the number of endmembers that are needed for
a scene in advance, there are still a number of parameters that
need to be set, e.g., the gamma constant and the regularization
parameters. Future work can include investigation of methods
to automatically set these parameters.
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