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Abstract

Integrating computer simulation with conventional wet-lab research has proven to have much potential in furthering the
understanding of biological systems. Success requires the relationship between simulation and the real-world system to be
established: substantial aspects of the biological system are typically unknown, and the abstract nature of simulation can
complicate interpretation of in silico results in terms of the biology. Here we present spartan (Simulation Parameter Analysis
R Toolkit ApplicatioN), a package of statistical techniques specifically designed to help researchers understand this
relationship and provide novel biological insight. The tools comprising spartan help identify which simulation results can be
attributed to the dynamics of the modelled biological system, rather than artefacts of biological uncertainty or
parametrisation, or simulation stochasticity. Statistical analyses reveal the influence that pathways and components have on
simulation behaviour, offering valuable biological insight into aspects of the system under study. We demonstrate the
power of spartan in providing critical insight into aspects of lymphoid tissue development in the small intestine through
simulation. Spartan is released under a GPLv2 license, implemented within the open source R statistical environment, and
freely available from both the Comprehensive R Archive Network (CRAN) and http://www.cs.york.ac.uk/spartan. The
techniques within the package can be applied to traditional ordinary or partial differential equation simulations as well as
agent-based implementations. Manuals, comprehensive tutorials, and example simulation data upon which spartan can be
applied are available from the website.
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Introduction

The integration of computer simulation with current experi-

mental techniques has become a popular approach to aid the

understanding of biological systems [1]. Computational techniques

permit exploration of the underlying biological data on which a

simulation is based, and complement wet-lab research by

facilitating in silico experimentation impractical or impossible to

perform using current methods [2–4]. Simulations are however

abstractions of the biological systems they capture, and this

separation must be appreciated in the interpretation of in silico

results. Such simulation results may be affected by uncertainty

arising from aspects of the biological system that are currently

unknown and need to be assumed, and by uncertainty introduced

in the implementation of the simulator [5]. We recently noted that

for a majority of simulation results in the biological literature, little

attempt is made to elucidate how representative a simulation result

is in terms of the biological system captured [6]. Uncertainty and

sensitivity analyses have, however, found recent application in

exploring the behaviour of biological simulations to appreciate the

effect of uncertainty on simulation results [6–10].

Whereas a number of packages have been developed that aid

simulation development [11,12] to the best of our knowledge

there is no comprehensive package available for determining

how representative a simulation is of its biological system and

understanding how in silico results can be interpreted in the

context of the biological domain. As such, we have developed

spartan (Simulation Parameter Analysis R Toolkit ApplicatioN), a

toolkit of statistical techniques that aid understanding and analysis

of results generated through simulation. Spartan is freely available,

open-source, and implemented within the R statistical environ-

ment. The package provides implementations of previously

described statistical analysis techniques [6,7,13] that when brought

together provide a comprehensive toolkit to explore the effect

uncertainty has on simulation results. Such uncertainty may be

present in two forms: aleatory uncertainty that arises through

stochasticity inherent in both the biological and simulated systems,

and epistemic uncertainty reflecting simulation parameters for

which a value has yet to be or cannot be determined as the
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biological understanding is incomplete [5]. Appreciating this effect

is critical for interpreting simulation results with respect to the

biological system under study [6]. The use of statistical tools

provides evidence of which simulation results can be ascribed to

the dynamics of the model of the biological system implemented,

an important consideration for retaining confidence in the results

of in silico experimentation.

In previous work we have utilised computer simulation to model

the process of lymphoid tissue development [9,10]. Here we

demonstrate the use of spartan in an exploration of results

generated from this simulator: to determine the number of

simulation samples required to mitigate stochastic effects and

attain a desired level of experimental accuracy, build confidence

that our results are representative of biology as opposed to

parameterisation artefacts resulting from epistemic uncertainty,

and gain valuable biological insight through rigorous statistical

analysis of simulation results. Whereas our previous work

highlights the need to adhere to a robust method of simulation

design and development informed by wet-lab research, our case

study shows how spartan can provide a mechanism to integrate

simulation results back into wet-lab research.

Design and Implementation

Spartan was created to provide a comprehensive toolkit of

previously described statistical techniques. Four techniques are

included, each providing a different means of analysing simulation

data to understand the effect of uncertainty on results and to

provide biological insight. The first two techniques have been

previously described [6], but this package includes the first

available implementation of these techniques. Spartan assumes that

calibration has been performed to establish the parameter values

that produce a baseline simulation behaviour [6]. Such behaviour

is measured through a set of simulation outputs (responses) that are

of biological interest and can be qualitatively compared with the

biological system. Uncertainty and sensitivity analyses can then

determine the effects of parameter perturbations on simulation

responses. As each technique utilises different parameter sampling

methods, it is not possible to use the results generated for one

technique for any other technique currently in the package.

Although Technique 1 is specifically designed for use with

stochastic simulations (such as agent-based implementations),

techniques 2–4 can be applied for both mathematical (ODE/

PDE) and agent-based implementations. For techniques 2–4,

spartan provides methods to generate parameter values and

analyse the output generated from them. For Technique 4

(eFAST), spartan includes a bespoke implementation of the eFAST

algorithm rather than makes use of available methods in other

packages for reasons of consistency and ability to analyse a range

of output from different simulation implementations. As it is not

assumed that simulation data is normally distributed, all statistical

comparisons that establish significance between sets of simulation

responses are performed using non-parametric tests.

1. Consistency (or Aleatory) Analysis: Understanding
Effect of Aleatory Uncertainty

Prior to any simulator being used as a tool to complement wet-

lab investigations, it is critical that the effect of inherent simulation

stochasticity on results be understood [5]. To illustrate, in agent-

based simulations the use of pseudo-random number generators in

dictating agent behaviour can produce different simulation results

despite use of identical parameter values. To mitigate the effects of

this uncertainty and achieve representative in silico results,

replicate simulation runs are necessary. A technique developed

by Read et al. [6] is provided that establishes the number of

replicate runs required to achieve a desired level of experimental

accuracy. In contrast to the other techniques in spartan, this need

only be applied to stochastic simulation systems.

Consistency analysis operates by contrasting distributions of

simulation responses, all generated using the same fixed set of

parameter values and containing identical numbers of simulation

samples. By varying the number of samples comprising the

distributions, the analysis determines the number required to

obtain statistically consistent distributions. Larger sample sizes

produce increasingly identical distributions, thereby mitigating the

effect of simulation stochasticity on results. In the description by

Read et al [6], 20 distributions are generated and contrasted for

each sample size, but this can be varied within spartan to suit

particular applications.

As an example, one could consider analysing sample sizes of 5,

50, 100, and 300 to determine the number of simulation runs

required to mitigate aleatory uncertainty. A set of parameter

values is fixed and used for all runs. The researcher performing the

analysis must then gather 20 sets of simulation results for each

sample size being analysed, each containing that number of

results. In this example, where a sample size of 5 is being

examined, 20 sets of simulation results should be generated, with

each containing 5 sets of simulation results. Where a sample size of

300 is being analysed, each of the 20 sets should contain the results

of 300 runs. When this is complete, each sample size is analysed in

turn. A distribution of median responses for each simulation run is

generated for each of the 20 subsets.

Distributions 2–20 are contrasted with the distribution from the

1st set using the Vargha-Delaney A-Test [14], a non-parametric

effect magnitude test that establishes scientific significance by

contrasting two populations of samples and returning the

probability that a randomly selected sample from one population

will be larger than a randomly selected sample from the other.

Statistical significance is determined by comparing this result with

measures set by the authors of the test: results above 0.71 or below

0.29 indicate a scientifically significant difference between the

populations, and 0.5 indicates no difference [14]. However spartan

provides the option to change these magnitude effects if required.

A suitable sample size is found where there is no statistical

difference between the 1st set of results and the remaining 19 sets.

This statistical difference can be seen in plots spartan produces for

each sample size. A further plot is produced detailing the

maximum A-Test score observed for each sample size, easing

identification of the number of runs required to minimise

difference between simulation results and thus mitigate aleatory

uncertainty.

2. Robustness Analysis: Determining a Simulation’s
Robustness to Parameter Perturbation

Any biological simulation will feature biologically-derived

parameters for which values are fully or partially unknown: some

biological values cannot be determined experimentally, whereas

others cannot be represented easily within a simulation. For

example, diffusion of a chemoattractant could be implemented

using a particular mathematical function for which values cannot

be verified, as biological quantities cannot currently be measured.

Robustness analysis examines the implications of biological

uncertainty or parameter estimation on simulation results. Where

a simulation is found to be highly sensitive to such parameters

caution must be exercised when interpreting results; they may be

artefacts of parametrisation rather than representations of the

biology [5].

Spartan: Simulation Results Analysis Toolkit
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Robustness to parameter perturbation is explored using a ‘one

at a time’ approach [6]: each parameter is adjusted independently

of others, which retain their calibrated values. The Vargha-

Delaney A-Test described previously [14] is employed to

determine if changing a parameter value leads to scientifically

significant behavioural alteration in contrast to the baseline

simulation. This indicates how robust the simulator is to alteration

of each parameter, and the points at which parameter perturba-

tions result in significant changes in simulation behaviour.

Confidence in the validity of simulation results can be gauged by

contrasting this information with biologically accepted ranges of

values. The A-Test results for each parameter are presented on a

plot, providing easy identification of parameter values that cause a

scientifically significant change in simulation response.

3. Global Sensitivity Analysis: Identification of Compound
Effects through Simultaneously Perturbing All
Parameters

Though robustness analysis elucidates affects of perturbing

single parameters, it cannot reveal compound effects that occur

when two or more are adjusted simultaneously. The effect one

parameter has may rely on the value of another. Global sensitivity

analyses reveal such effects, showing how different parameters

could be coupled, and can indicate the parameters that have the

greatest influence on simulation responses. Spartan includes a

sampling-based technique that perturbs the values of all param-

eters of interest simultaneously [6,7,13] based on a provided range

of values for each parameter. Through simultaneous perturbation

of parameters, the results of this analysis are highly representative

of simulation dynamics. Highly influential parameters indicate the

pathways and components that have a substantial effect on

simulation behaviour, and in identifying such relationships, this

analysis has the potential to offer unique biological insight into the

system the model describes. This has the potential to inform future

wet-lab investigations by suggesting specific biological components

to focus upon.

A latin-hypercube sampling approach is used to select

parameter sets from within these ranges, whilst minimising

correlations in parameter values across the sets and ensuring an

efficient coverage of parameter space [13]. The methodology used

in sampling is described in detail by Read et al [6]. Simulations are

executed for each parameter set generated, and simulation

response values determined. Where necessary these responses will

represent an averaged response over a number of runs for a

particular set of parameter values. A plot is produced for each

parameter-response pairing, revealing correlations between pa-

rameter and response values, which are quantified through

calculation of Partial Rank Correlation Coefficients (PRCC) and

are reported on the plot header. PRCCs account for non-linear

relationships between parameter and response, and correct for the

effects of other parameters on the response, giving a robust

indication of the effect this parameter has on simulation response

although others are also being perturbed.

4. eFAST: Partitioning Output Variance between Input
Parameters

The extended Fourier Amplitude Sampling Test (eFAST)

developed by Saltelli et al [15,16] also a global analysis technique,

is a variance decomposition method that partitions the simulation

output variance caused by an alteration in parameter values

between the input parameters. This provides a statistical measure

revealing the proportion of variance that can be explained by

perturbing the value of each factor, and thus determines how

sensitive the simulation and biological system is to that

parameter. Through applying this technique, highly influential

pathways can be identified as potential targets for future

laboratory investigation.

For each simulation parameter included in this analysis, a range

over which values are to be explored is provided. Taking each

in turn, values are chosen for all parameters through the use

of sinusoidal functions of a particular frequency through the

parameter space, with the frequency of the parameter of interest

being varied greatly to that used for its complementary set. A

number of parameter values are selected from points along each of

these curves, creating a set of simulation parameters for each

parameter of interest. An illustration of this sampling approach

can be seen in Marino et al [7]. The authors note that due to the

symmetrical properties of sinusoidal functions, it is possible that

the same parameter value sets could be selected. To address this, a

re-sampling scheme is encouraged where a phase shift is

introduced into each frequency, and sampling repeated using a

slightly different curve [7]. Selection of the number of re-sample

curves and parameter values chosen from the curves is an

important aspect of running this algorithm, and it is suggested that

the user makes themselves familiar with equations provided in

Marino et al [7] that aid this decision. Consequently, a number of

parameter value sets are created for each parameter of interest, for

a particular curve. This process is repeated for an extra parameter,

the ‘dummy’, which has an arbitrary value range but no impact on

simulation behaviour. This enables a comparison between the

impact of each parameter and one known to have no effect on

simulation response. As an example, for 7 parameters, plus a

dummy, three re-sample curves, and 65 parameter values from

points along the curves, 1,560 sets of parameters would be

produced. Spartan produces a csv file for each parameter of

interest and each curve, containing the parameter value sets on

which simulations should be executed. Thus in this example,

twenty-four files would be produced, each containing sixty five sets

of parameters. For analyses where a large number of parameters

are explored, this technique could be computationally expensive

[17,18].

Simulation results are analysed taking into account the

frequencies that were used to generate the parameter set used.

Through Fourier analysis using these frequencies, variation in

output can be partitioned between the parameters, giving an

indication of the impact each has on simulation response. Using

the equations given in Marino et al [7], two sensitivity indexes are

calculated for each parameter-response pairing: a first-order (Si)

and total order sensitivity (STi) index. The first indicates the

fraction of output variance in that response that can be explained

by the value assigned to the parameter. The latter indicates the

variance in that response caused by higher-order non-linear effects

between the parameter and the others under investigation.

Although the dummy parameter has no influence on simulation

dynamics, the algorithm may assign this parameter non-zero

sensitivity indexes due to aliasing or interference effects, or

simplifying assumptions the technique makes in calculating each

STi index [7]. Reasoning for this is given in Supplemental material

that accompanies the description of the technique in Marino et al

[7]. A determination of whether a parameter has a significant

impact on simulation response is made by examining the

sensitivity indexes, contrasting these with the indexes calculate

for the ‘Dummy’ parameter. As this is contrasting sensitivity

indexes rather than simulation responses, a statistical measure is

generated using a two-sample t-test. Spartan produces both a csv

file with these statistics and a plot for each simulation response,

detailing the Si and STi indexes for each parameter.

Spartan: Simulation Results Analysis Toolkit
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Results

The Case Study
The example simulation data, from which the results presented

here were generated, is taken from our recently published

lymphoid tissue development simulator (http://www.cs.york.ac.

uk/immunesims/frontiers) [9,10]. An agent-based simulation was

developed that captures an abstraction of the early stages of the

biological process (12 hours into a 72 hour period). The

simulation responses are cell velocity and displacement measures

taken at various time-points. All output data and tutorials that

reproduce each result described are available at www.cs.york.ac.

uk/spartan.

In our published analyses [9,10] and examples presented here,

we focus on six parameters for which a value remains unknown,

each constrained to the following respective range: chemoThres-

hold (0–1), chemoLowerLinearAdjust (0.015–0.08), chemoUpper-

LinearAdjust (0.1–0.5), thresholdBindProbability (0–1), vcamSlope

(0.25–2), and maxVCAMeffectProbabilityCutoff (0–1).

1. Consistency (or Aleatory) Analysis: Understanding
Effect of Aleatory Uncertainty

To determine the number of simulation runs required to obtain

a representative result, we analysed sample sizes of 1, 5, 50, 100,

300, and 500 runs. Parameter values were kept constant at their

calibrated values. Each sample size is analysed in turn using the

procedure described, with the generation of 20 subsets of each

sample size. This analysis thus required 19,120 individual runs.

The online tutorial examines the first five sample sizes. Spartan

produces the plots in Figure 1, where Figures 1(a,b,c) show the A-

Test scores for all simulation output responses in each of the 20

result sets, for 5, 50, and 100 samples respectively. Figure 1(d)

shows the maximum A Test score for each simulation response

over the 20 result sets, for all sample sizes analysed. The latter

indicates that reducing the effect magnitude of aleatory uncer-

tainty on simulation results to less than ‘small’ (the desired level)

requires more than 300 samples when compiling results, thus a

sample size of 500 was chosen. It is important to note however that

this is specific to our simulation, and unlikely to apply in all cases

where spartan is applied. A full analysis for this simulation is found

in Patel et al [9]; the online tutorial and results in Figure 1 stop at

300 runs to ensure the tutorial data is of manageable size for

download.

2. Robustness Analysis: Determining a Simulation’s
Robustness to Parameter Perturbation

In our case study [9], we analysed the six simulation parameters

for which biological values are currently unknown using the

Figure 1. Use of spartan to mitigate aleatory uncertainty in stochastic simulations. Spartan’s consistency analysis technique that can
determine the number of runs required to generate a representative result from a stochastic simulation. A, B, C: A-Test scores for sample sizes of 5, 50,
and 300 runs respectively. D. Maximum A Test score for each simulation response over 20 result sets for all sample sizes analysed. Scores below 0.5
are assigned corresponding values above 0.5 as direction of effect is not important. The effect magnitude thresholds are indicated.
doi:10.1371/journal.pcbi.1002916.g001

Spartan: Simulation Results Analysis Toolkit
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robustness analysis. The online tutorial demonstrates how both the

parameter samples and results described in this section have been

generated for two of these parameters.

Parameter sampling. Parameter value sets for the six

parameters were created using the methods in the spartan package.

These are output as comma separated value files, one for each

parameter, then post-processed into a format that can be read by

the simulator. The sampling method begins at the parameters

lower value and increases the value by a set increment until the

upper limit is reached. For the six parameters under examination

here, the increments used were: chemoThreshold (0.1), chemo-

LowerLinearAdjust (0.005), chemoUpperLinearAdjust (0.05),

thresholdBindProbability (0.1), vcamSlope (0.25), and maxVCA-

MeffectProbabilityCutoff (0.1).

Analysis. Each parameter is addressed in turn, and simula-

tion results for each value assigned to that parameter analysed. 500

simulation executions are performed for each parameter value in

accordance with consistency analysis results. In our case, this

resulted in 32,500 individual simulation runs. The distribution of

response values obtained for each parameter value is contrasted

with a distribution obtained using baseline parameter values using

the Vargha-Delaney A-Test [14].

Spartan produced the plots in Figure 2, where Figures 2(a,b)

show the A-Test scores for an alteration in the values of two

simulation parameters that model expression of chemoattractant

molecules. The x-axis details the range of values explored and the

y-axis shows the A test scores obtained by contrasting response

values for perturbed parameter values with calibrated values.

Figure 2(c) shows the effect that adjusting the value of the

parameter in 2(a) has on cell displacement as a box-plot of

response distributions. Results suggest that a change in the initial

expression of chemoattractant molecules has a statistically

significant effect on simulation response, and is more critical than

the upper limit of expression, which has no statistically significant

impact. This suggests that the initial expression level of chemoat-

tractant molecules is an important factor influencing cell

behaviour at this time-point in development. Laboratory investi-

gations could then examine this experimentally through blocking

chemokine expression at certain time-points in development, to

determine if this prediction holds.

3. Global Sensitivity Analysis: Identification of Compound
Effects through Simultaneously Perturbing All
Parameters

In this analysis we sought to identify any compound effects that

become apparent when the values of the six parameters examined

in Technique 2 above are perturbed simultaneously. This has

revealed the parameters that are highly influential on simulation

behaviour, and provided unique biological insight into the factors

that are important at this stage of tissue development. The online

tutorial demonstrates how both the parameter samples and results

described in this section have been generated.

Parameter sampling. Using the latin-hypercube sampling

approach, 500 sets of simulation parameter values were generated.

Analysis. Five hundred parameter value sets were generated

from the parameter space using the latin-hypercube sampling

approach. With results from Technique 1 suggesting 500

Figure 2. Use of spartan to determine the simulators robustness to parameter perturbation. A: A-Test scores for simulations perturbing
the initial expression level of a chemoattractant. This parameter has a large effect on both simulation responses. B: A-Test scores for simulations
perturbing the upper limit of chemoattractant expression, which when perturbed has no significant effect on simulation response. C: Distribution of
cell displacement responses for the parameter perturbed in A.
doi:10.1371/journal.pcbi.1002916.g002

Figure 3. Use of spartan to identify compound effects between parameters. A: Parameter that captures the chemoattractant expression
level required to influence cell motility. No trend or effects are apparent. B: Parameter which captures the level of adhesion required to restrict cell
motility. A clear trend is apparent suggesting this has a large influence on simulated cell behaviour.
doi:10.1371/journal.pcbi.1002916.g003
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simulation executions are required to gain a representative result

from our simulation, a total of 250,000 simulation executions were

performed to generate the data required for this analysis. Median

output responses for each of the parameter value sets were then

calculated from the 500 sets of results. Taking each parameter in

turn, median response values are plotted against the parameter

value that generated them, and partial rank correlation coefficients

are calculated.

For online tutorial 3, spartan produces the plots in Figure 3.

These detail cell velocity responses for two parameters. In

Figure 3(b), detailing the effect of cellular adhesion, a clear trend

emerges. The correlation coefficient reveals this parameter’s

significant influence on the simulation response. The same

conclusions cannot be drawn for the parameter in Figure 3(a),

where no trend emerges. Whereas the previous technique

identified initial chemokine expression as an influential factor

when the parameters where perturbed individually, this result

suggests adhesion factor expression is the highly influential

pathway at this time-point. Such a prediction could be verified

experimentally through examining cell behaviour when expression

of adhesion factors are blocked.

4. eFAST: Partitioning Output Variance between Input
Parameters

In this analysis we examined the same six parameters as above,

and determined the proportion of variation in simulation response

that can be explained by perturbing the value of each parameter.

Through use of the eFAST approach [7,16] we have determined

how sensitive the simulation is to each parameter, and thus

suggested the impact of each biological factor on tissue develop-

ment. The online tutorial demonstrates how both the parameter

samples and results described in this section have been generated.
Sampling. Parameter value sets have been generated using

the sinusoidal curve sampling approach. We have seven param-

eters (six plus the ‘dummy’ used for statistical comparison), taken

65 parameter values from each curve, and employed three re-

sampling curves, producing 1,365 parameter value sets, 195 per

parameter.
Analysis. Simulation responses are analysed using the Fourier

frequency approach [7,15]. 500 runs were performed for each set

of parameter values, as suggested by results generated using

Technique 1, and median responses calculated. With 1,365

individual parameter sets, this analysis therefore required

682,500 runs in our case. Plots are created for each simulation

output response (velocity and displacement), detailing the first-

order (Si) and total-order (STi) sensitivity indexes calculated for

each parameter of interest. Indications of significance of each

parameters sensitivity index, contrasted to those calculated for the

‘Dummy’ parameter using a two-sample t-test, are output to a

CSV file in the directory specified by the user prior to running the

analysis. For online tutorial 4, spartan produces the plots in

Figure 4. In our published study [9], we utilised our simulator and

statistical methods described in techniques one to three, and

determined no significant role for chemoattractant factors at an

early stage of tissue development. Results shown in Figure 4

examine the same time-point with this additional analysis method,

and support these conclusions. We suggest that the factor that

influences cell velocity at this early stage in development is the

level of expression of cellular adhesion factors (maxVCAMeffect-

ProbabilityCutoff parameter). This supports predictions made by

use of Technique 3, but counters the accepted view in the

literature, where chemokines are known to have an influential role

in tissue development [19,20]. However results in the literature

draw these conclusions from an examination of the whole tissue

development time-period (72 hours), rather than just the early

stage (12 hours) focused on here and in our previous study [9].

Thus potentially our analysis, using spartan, suggests that different

factors could be important at different stages of development.

Examining a later time-point in development, both in the lab and

through use of spartan, may suggest that this is indeed the case, and

the tissue development period is more complex than previously

thought.

Availability and Future Directions

Spartan has been developed and runs within the platform-

independent R statistical environment (version 2.13.1 or greater),

and can be freely downloaded from http://www.cs.york.ac.uk/

spartan or from the Comprehensive R Archive Network (CRAN).

The package is open source and available under the GNU General

Public License (GPLv2). The release of spartan as an R package

rather than as standalone software allows simulation developers to

build spartan into their analysis routine and extend the analysis with

methods provided in additional packages where necessary.

Manuals, comprehensive tutorials, and simulation data used are

available from the website. Spartan remains in on-going development

in parallel to further simulation case studies being developed in our

group, and thus further suitable sensitivity analysis techniques will

be added when appropriate. In similarity to recent advances in

simulation development toolkits [11,12], a graphical user interface

will also shortly be released for spartan and made available on the

website, aiding use of the tool for use unfamiliar with R.

Supporting Information

Software S1 Spartan R package for Linux and Mac OS.

Includes tutorials for each technique.

(ZIP)

Software S2 Spartan R package for Windows OS. Includes

tutorials for each technique.

(ZIP)
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between that parameter and the others explored. Error bars are standard error over three resample curves. A: Velocity response. B: Displacement
response.
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