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Abstract

We study in detail the particle spectrum in anomaly mediated supersymmetry
breaking models in which supersymmetry breaking terms are induced by the super-
Weyl anomaly. We investigate the minimal anomaly mediated supersymmetry break-
ing models, gaugino assisted supersymmetry breaking models, as well as models with
additional residual nondecoupling D-term contributions due to an extra U(1) gauge
symmetry at a high energy scale. We derive sum rules for the sparticle masses in these
models which can help in differentiating between them. We also obtain the sparti-
cle spectrum numerically, and compare and contrast the results so obtained for the
different types of anomaly mediated supersymmetry breaking models.

PACS number(s): 12.60.Jv, 14.80.Ly

1 Introduction

Supersymmetry is at present the only framework in which the Higgs sector of the stan-
dard model (SM) is natural. It is, thus, a prominent candidate for physics beyond the
SM. Since in nature there are no supersymmetric particles with the same mass as ordi-
nary particles, supersymmetry must be a broken symmetry at low energies. The specific
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mechanism which breaks supersymmetry is important in determining the sparticle masses
and, hence, the experimental signatures of supersymmetry. At present there are several
models of supersymmetry breaking. The model of supersymmetry breaking that has been
studied most extensively is the gravity mediated [1] supersymmetry breaking model. In
this class of models, supersymmetry is assumed to be broken in a hidden sector by fields
which interact with the SM particles and their superpartners (the visible particles) only
via gravitational interactions. Whereas this mechanism of supersymmetry breaking is
simple and appealing, it suffers from the supersymmetric flavor problem. On the other
hand, in a different class of models [2], supersymmetry is broken in a hidden sector and
transmitted to the visible sector via SM gauge interactions of messenger particles. This
mechanism of supersymmetry breaking provides an appealing solution to the supersym-
metric flavor problem. Both these types of supersymmetry breaking models have their
distinct experimental signatures.

The soft supersymmetry breaking terms in the above breaking mechanisms have con-
tributions originating from the super-Weyl anomaly via loop effects. If gravity and gauge
mediation are somehow suppressed, the anomaly mediated contributions can dominate,
as may happen, e.g., in brane models [3]. If this happens, then this mechanism of super-
symmetry breaking is referred to as anomaly mediated supersymmetry breaking (AMSB).
Anomaly mediation is a predictive framework for supersymmetry breaking in which the
breaking of scale invariance mediates between hidden and visible sectors.

Since the soft supersymmetry breaking parameters are determined by the breaking of
the scale invariance, they can be written in terms of the beta functions and anomalous
dimensions in the form of relations which hold at all energies. In the minimal super-
symmetric standard model (MSSM), the pure anomaly mediated contributions to the soft
supersymmetry (SUSY) breaking parameters Mλ (gaugino mass), m2

i (soft scalar mass
squared), and Ay (the trilinear supersymmetry breaking coupling, where y refers to the
Yukawa coupling) can be written as

Mλ =
βg

g
m3/2, (1)

m2
i = −

1

4

(

∂γi

∂g
βg +

∂γi

∂y
βy

)

m2

3/2
, (2)

Ay = −
βy

y
m3/2, (3)

where m3/2 is the gravitino mass, β’s are the relevant β functions, and γ’s are the anoma-
lous dimensions of the chiral superfields. An immediate consequence of these relations is
that supersymmetry breaking terms are completely insensitive to physics in the ultravi-
olet. The degrees of freedom that are excitable at a given energy, which determine the
anomalous dimensions and beta functions, thus completely specify the soft supersymme-
try breaking parameters at that energy. In this way the gaugino masses are proportional
to their corresponding gauge group β functions with the lightest supersymmetric (SUSY)
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particle being mainly a wino. Analogously, the scalar masses and trilinear couplings are
functions of gauge and Yukawa-coupling β functions. However, it turns out that the pure
scalar mass-squared anomaly contribution for sleptons is negative [4]. There are a number
of proposals for fixing this problem of tachyonic slepton masses [5, 6, 7, 8, 9]. Additional
contributions to the slepton masses can arise in a number of ways, but some of the so-
lutions will spoil the most attractive feature of the anomaly mediated models, i.e., the
renormalization group (RG) invariance of the soft terms and the consequent ultraviolet
insensitivity of the mass spectrum. Nevertheless, there are various options to cure this
problem without reintroducing the supersymmetric flavor problem [4, 5]. A simple phe-
nomenologically attractive way of parametrizing the nonanomaly mediated contributions
to the slepton masses, so as to cure their tachyonic spectrum, is to add a common mass
parameter m0 to all the squared scalar masses [10], assuming that such an addition does
not reintroduce the supersymmetric flavor problem. As noted above, such an addition of
a nonanomaly mediated term destroys the attractive feature of the RG invariance of soft
masses. However, the RG evolution of the resulting model, nevertheless, inherits some of
the simplicity of the pure anomaly mediated relations.

There are several alternative ways to generate these extra contributions to the soft
squared masses. In particular there are models of supersymmetry breaking mediated
through a small extra dimension, where SM matter multiplets and a supersymmetry
breaking hidden sector are confined to opposite four-dimensional boundaries while gauge
multiplets lie in the bulk. In this scenario the soft gaugino mass terms are due to the
anomaly mediated supersymmetry breaking. On the other hand, scalar masses get con-
tributions from both anomaly mediation and a tiny hard breaking of supersymmetry by
operators on the hidden sector boundary. These operators contribute to scalar masses at
one loop and this contribution is dominant, thereby making all squared scalar masses pos-
itive. The gaugino spectrum is unaltered, and the model resembles an anomaly mediated
supersymmetry breaking model with nonuniversal scalar masses [11].

Another class of models, where the problem with tachyonic slepton masses is solved,
is the models with additional residual nondecoupling D-term contributions due to extra
U(1)’s at a high energy scale [5, 6, 8, 9]. In these models one can preserve the property of
having renormalization group invariant soft terms, at least at the one-loop level [9, 12]. An
interesting feature in this type of model is that unlike in the minimal AMSB model, one
can have a light stop in the spectrum [9]. Furthermore, if the extra U(1) is anomaly-free,
then it can be shown [8] that the ultraviolet insensitivity can be preserved to all orders.

In this paper we consider the mass spectra, and the constraints on this spectra, of
the anomaly mediated supersymmetric models. In Section 2 we study the sum rules
for the scalar and gaugino masses. In Section 3 we obtain the focus points for the soft
scalar masses in the general anomaly mediated supersymmetric models. This will help in
determining whether large sparticle masses are possible in these models without violating
the constraints of naturalness. In Section 4 we present a detailed numerical study of the
sparticle spectrum in different anomaly mediated supersymmetry breaking models and
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compare and contrast them. Section 5 is devoted to a discussion and summary of our
results.

2 Sum Rules

The mass spectrum of superparticles in a particular supersymmetric model is determined
in terms of soft supersymmetry breaking parameters. These can be obtained at the weak
scale by numerical solutions of the relevant RG equations for a particular model with
specific boundary conditions at the high scale, usually taken to be the grand unified scale.
Since there are more supersymmetric particles than supersymmetry breaking parameters,
there are several relations between the sparticle masses, which can be written in terms
of the sum rules [13]. These sum rules will, in effect, test the validity of a particular
supersymmetry breaking model. Thus by examining the relations between the masses
of sparticles, one may be able to distinguish between different supersymmetric models.
In this section we shall obtain various sum rules involving sparticle masses for different
anomaly mediated supersymmetry breaking models.

2.1 Scalar sector

In the case of MSSM with gravity mediated supersymmetry breaking there are seven
physical scalar sparticle masses for the first two generations which can be written in terms
of four parameters (for a given tan β = v2/v1, v1 and v2 being the vacuum expectation
values of the two Higgs doublets of MSSM). This results in three sum rules for the sparticle
masses of the first two generations [13], which can be used to test the various assumptions
of MSSM with gravity mediated supersymmetry breaking.

In anomaly mediated supersymmetry breaking models, the anomaly mediated part of
the soft masses is not running. Since for the first two generations the Yukawa couplings
can be neglected, we do not have any contribution coming from the running of parameters
to the masses of the first two generations of squarks and sleptons. For the first two
generations, we can, therefore, write the physical masses of the squarks and sleptons at
any scale as (in the standard notation)

M2
ũL

= cQm2
0 +

(

1

2
−

2

3
sin2 θW

)

M2
Z cos 2β +

(

−
11

50
g4
1 −

3

2
g4
2 + 8g4

3

) m2

3/2

(16π2)2
, (4)

M2

d̃L
= cQm2

0 +

(

−
1

2
+

1

3
sin2 θW

)

M2
Z cos 2β +

(

−
11

50
g4
1 −

3

2
g4
2 + 8g4

3

) m2

3/2

(16π2)2
, (5)

M2
ũR

= cum2
0 +

2

3
sin2 θW M2

Z cos 2β +

(

−
88

25
g4
1 + 8g4

3

) m2

3/2

(16π2)2
, (6)

M2

d̃R
= cdm

2
0 −

1

3
sin2 θW M2

Z cos 2β +

(

−
22

25
g4
1 + 8g4

3

) m2

3/2

(16π2)2
, (7)
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M2
ẽL

= cLm2
0 +

(

−
1

2
+ sin2 θW

)

M2
Z cos 2β +

(

−
99

50
g4
1 −

3

2
g4
2

) m2

3/2

(16π2)2
, (8)

M2
ν̃ = cLm2

0 +
1

2
M2

Z cos 2β +

(

−
99

50
g4
1 −

3

2
g4
2

) m2

3/2

(16π2)2
, (9)

M2
ẽR

= cem
2
0 − sin2 θW M2

Z cos 2β +

(

−
198

25
g4
1

) m2

3/2

(16π2)2
, (10)

where we have parametrized the nonanomaly mediated contribution to the masses via the
parameter m0, and we have assumed that this contribution could be nonuniversal. Thus
the parameters cQ, cu, cd, cL and ce could all be different from one another. In the case of
minimal anomaly-mediated supersymmetry breaking cQ = cu = cd = cL = ce = 1. We
have also included the D-term contribution to the masses in Eqs. (4) – (10). We can use
these equations to relate the masses of squarks and sleptons, via sum rules, for different
anomaly mediated supersymmetry breaking models.

However, independently of the model, Eqs. (4), (5) and (8), (9) lead to the sum rules

M2

d̃L
− M2

ũL
= − cos 2βM2

W , (11)

M2
ẽL

− M2
ν̃ = − cos 2βM2

W , (12)

which relate the masses of squarks and sleptons living in the same SU(2)L doublet. We
note that these sum rules are the same as in the gravity mediated supersymmetry breaking
models [13]. These sum rules do not depend on the assumption of universal soft breaking
mass m0, and depend only on the D-term contribution to the squark and slepton masses.
They are, thus, independent of the supersymmetry breaking model and test only the gauge
structure of the effective low energy supersymmetric model. The other sum rules depend
on the soft parameters originating from the supersymmetry breaking mechanism, and are
thus model dependent. Depending on the coefficients multiplying m0 in Eqs. (4) – (10), as
specified by different SUSY breaking models, we have three additional sum rules. In this
section we consider in addition to the minimal anomaly mediated, the gaugino assisted
anomaly mediated SUSY breaking model [11] and an AMSB model with additional U(1)
and a light stop [9].

2.1.1 Minimal anomaly mediated supersymmetry breaking model

For the minimal model we have cQ = cu = cd = cL = ce = 1. A third sum rule can then
be obtained by taking a linear combination of Eqs. (5) – (9) and (10)

2(M2
ũR

− M2

d̃R
) + (M2

d̃R
− M2

d̃L
) + (M2

ẽL
− M2

ẽR
) =

10

3
sin2 θW M2

Z cos 2β, (13)

which is identical to the corresponding sum rule in the gravity mediated models [13]. This
sum rule depends only on the assumption of a universal m0, and is, therefore, a test of
the universality of the soft scalar masses in AMSB models as well.
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There are four remaining relations between the masses of the first two generations of
squarks and sleptons in Eqs. (4) – (10). Two of these can be used to obtain expressions
for the input parameters m0 and m3/2 in terms of the squark and slepton masses. Thus
Eqs. (6), (7), (8), and (10) give

m2
0 = M2

ẽR
−

44

3
tan4 θW (M2

ẽL
− M2

ẽR
) − 33 tan4 θW (M2

ũR
− M2

d̃R
)

+

[

−
22

3
tan4 θW +

(

1 +
187

3
tan4 θW

)

sin2 θW

]

M2
Z cos 2β, (14)

3

2
g4
2

m2

3/2

(16π2)2
= (M2

ẽR
− M2

ẽL
) −

9

4
(M2

ũR
− M2

d̃R
) −

(

1

2
−

17

4
sin2 θW

)

M2
Z cos 2β.(15)

The remaining two independent equations can then be converted to two additional
sum rules. The first one is obtained from a combination of Eqs. (6), (7), and (10):

(M2
ẽL

− M2
ẽR

) +
3

4

(

3 −
3

11
cot4 θW

)

(M2
ũR

− M2

d̃R
)

=

[

−
1

2
+

(

17

4
−

9

44
cot4 θW

)

sin2 θW

]

M2
Z cos 2β. (16)

It is well known that the left and right sleptons are almost degenerate in the minimal
AMSB model [10]. This can be easily verified explicitly from Eqs. (8) and (10),

(M2
ẽL

− M2
ẽR

) ≃ −0.038M2
Z cos 2β − 0.0078M2

2 , (17)

where we have used Eq. (1) for the gaugino mass parameters, and the experimental value
of sin θ2

W = 0.2312 [14]. Similarly one notices that in all the squark mass differences
M2

q̃i
− M2

q̃j
obtained from Eqs. (4) – (10), the contribution coming from the m0 part

and the strong coupling part cancel in the minimal AMSB model. Therefore such mass
differences are small compared to the masses themselves.

The mass difference between the right-handed squarks ũR and d̃R from the sum rule
(16) is much larger than Eq. (17) for the slepton mass difference,

M2
ũR

− M2

d̃R
≃ −85.2(M2

ẽL
− M2

ẽR
) − 3.44M2

Z cos 2β ≃ −0.2M2
Z cos 2β + 0.66M2

2 , (18)

where we have used Eq. (17) to obtain the last equality. Although the coefficients of the
two terms may not be small, it should be noticed that the part with MZ is constant and for
heavy squarks the mass difference between the ũR and d̃R squarks remains rather small.

The other independent sum rule can be obtained by combining Eqs. (4), (5), (7), and
(10) to give

(M2
ẽL

− M2
ẽR

) +

(

9

4
−

g4
2

2g4
3

)

(M2
ũR

− M2

d̃R
) −

3

16

g4
2

g4
3

(M2

d̃R
− M2

ẽR
)

=

[

−
1

2
+

(

17

4
−

5

8

g4
2

g4
3

)

sin2 θW

]

M2
Z cos 2β. (19)
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The sum rules (16) and (19) are unique to the minimal anomaly mediated supersymmetry
breaking model.

2.1.2 Gaugino assisted AMSB model

In the gaugino assisted anomaly mediated model, it is assumed that the gauge and gaugino
fields reside in the bulk of the extra dimension [11]. The hidden sector is not supposed
to contain singlets in which case the anomaly mediated contribution is the dominant
contribution to the supersymmetry breaking. As a result of the gaugino wave function
renormalization and consequent rescaling of the fields, the scalar soft masses receive contri-
butions proportional to the eigenvalues of the quadratic Casimir operators of the relevant
gauge group. In this case the coefficients of m0 in Eqs. (4) – (10) are [11]

cQ = 21/10, cu = 8/5, cd = 7/5, cL = 9/10, ce = 3/5. (20)

In the gaugino assisted AMSB model, the parameters m0 and m3/2 can be written in the
form

m2
0 =

5

3
(M2

ẽR
+ sin2 θW M2

Z cos 2β) +

(

9

55
cot4 θW − 3

)

−1 [

5M2
ẽR

−4(M2
ẽL

− M2
ẽR

) − 9(M2
ũR

− M2

d̃R
) + (−2 + 22 sin2 θW )M2

Z cos 2β
]

, (21)

6

(

g4
2 −

33

5
g4
1

) m2

3/2

(16π2)2
= 5M2

ẽR
− 4(M2

ẽL
− M2

ẽR
) − 9(M2

ũR
− M2

d̃R
)

+(−2 + 22 sin2 θW )M2
Z cos 2β. (22)

In the previous section it was stated that the sum rule (13) is a test of universality of the
mass parameter m0, since in the universal case the dependence on m0 cancels. Although
the extra contributions to the scalar masses are not universal in the gaugino assisted
AMSB model, the dependence on the m0 accidentally cancels, and the sum rule (13) is
valid also in the gaugino assisted AMSB model. Thus even if the physical masses satisfy
Eq. (13), one needs further confirmation of the universality of the extra contributions. In
the present case, a fourth sum rule, corresponding to Eq. (16), can be obtained as

3(M2
ũR

− M2

d̃R
) − M2

ẽR
= 4 sin2 θW M2

Z cos 2β. (23)

The simple form of this sum rule follows from the fact that the dependence on m0 vanishes
also in this case. Since the experimental lower bound on the selectron and smuon masses
is higher than the Z-boson mass, one can deduce from Eq. (23) that the right-handed
up-squark is heavier than the right-handed down-squark. This can also be seen from
Fig. 1, where the difference M2

ũR
−M2

d̃R
is plotted as a function of the selectron mass MẽR

.
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Figure 1: The difference ∆M2 ≡ M2
ũR

−M2

d̃R
as a function of the right-handed selectron

mass MẽR
. We have plotted the curve for tan β =10, but the curves for tan β > 3 are all

almost identical.

The curves for tan β > 3 are all practically identical to the curve shown here, since the
dependence on tan β is rather weak. This differs from the minimal AMSB model, where
M2

ũR
− M2

d̃R
depends on M2

2 instead of a scalar mass.

The last sum rule, corresponding to the sum rule (19) of the minimal anomaly mediated
supersymmetry breaking model, can, in this case, be written as

5

(

1 +
r

3

)

M2
ẽR

− 4(M2
ẽL

− M2
ẽR

) − (9 + 2r)(M2
ũR

− M2

d̃R
) −

3r

4
(M2

d̃R
− M2

ẽR
)

=

[

2 −

(

25r

6
+ 22

)

sin2 θW

]

M2
Z cos 2β, (24)

where r is given by r ≡ (g4
2 − 33

5
g4
1)/(

11

5
g4
1 − g4

3).

2.1.3 AMSB model with additional U(1) and a light stop

An interesting possible solution to the tachyonic slepton mass problem is to modify the
gauge group of the theory from that of the MSSM gauge group by an additional U(1) factor
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group [5, 6, 8, 9]. In the case of MSSM, it is well known that the D-term contributions to
the scalar masses are of opposite sign for left- and right-handed particles. However, if the
left- and right-handed sleptons both had positive charge under this additional U(1) gauge
group, then we could have positive contributions to the slepton masses from D terms,
and possibly solve the tachyonic slepton problem. Furthermore, by selecting the charges
suitably, one may also have renormalization group invariant soft terms, at least at the
one-loop level [9, 12]. Sum rules for a model with Fayet-Iliopoulos D terms due to extra
U(1), which are independent of MW and MZ , were derived in [8].

In Ref. [9], models with an extra U(1) and RG-invariant sum of the squares of soft
SUSY breaking scalar masses were considered. In that paper two models were explicitly
constructed, one with a spectrum similar to the minimal AMSB models and another model
with a light stop. It turns out that the U(1) charge assignment for getting a light stop is
quite constrained. One particular set of the U(1) charges that leads to a light stop is the
following:

cQ = 3, cu = −1, cd = −1, cL = 1, ce = 1. (25)

Here we will consider the sum rules for this particular light stop model. Since cu =
cd, as well as cL = ce, the formulas (14) and (15) of the minimal anomaly mediated
supersymmetry breaking model are valid in this model as well. Note that the negative
soft terms for right-handed squarks are the reason behind the light right-handed stop.

On the other hand, the sum rule (13) is no longer valid. When we take a similar
combination as in Eq. (13) of the soft mass parameters, and use the expression for m0,
we find

(

1 −
176

3
tan4 θW

)

(M2
ẽL

− M2
ẽR

) +
(

2 − 132 tan4 θW

)

(M2
ũR

− M2

d̃R
) + (M2

d̃R
− M2

d̃L
)

+4M2
ẽR

= −
2

3

[

−44 tan4 θW +
(

1 + 374 tan4 θW

)

sin2 θW

]

M2
Z cos 2β. (26)

The sum rule (16) of the minimal AMSB model is valid in this model as well. This is easily
verified by taking an appropriate combination of Eqs. (6), (7), and (10), and noticing that
in both models cu = cd, ce = 1, and that the parameter m0 is determined via Eq. (14)
in both these models. The arguments given in section 2.1.1 for the degenerate slepton
masses and small mass difference M2

ũR
− M2

d̃R
in minimal AMSB are valid in this model

as well. From the sum rule (26) one can write approximately

M2

d̃R
− M2

d̃L
≃ 4.3(M2

ẽL
− M2

ẽR
) + 9.9(M2

ũR
− M2

d̃R
) − 4M2

ẽR
− 2.72M2

Z cos 2β. (27)

One can easily check that for experimentally allowed parameter values, the right-hand side
of Eq. (27) is always negative and not small, and it decreases with the increasing selectron
mass.
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To complete the derivation of independent sum rules of this case we give the sum rule
corresponding to Eq. (19):

(M2

d̃R
− M2

ẽR
) +

8

3
(M2

ũR
− M2

d̃R
) −

(

2

3

g4
3

g4
2

+
11

3
tan4 θW

)

[

8(M2
ẽL

− M2
ẽR

) + 18(M2
ũR

− M2

d̃R
)
]

+2M2
ẽR

=

[(

2

3

g4
3

g4
2

+
11

3
tan4 θW

)

(4 − 34 sin2 θW ) +
4

3
sin2 θW

]

M2
Z cos 2β. (28)

2.1.4 Third generation of scalars

So far we have considered the first two generations of squarks and sleptons for which the
corresponding Yukawa couplings and their runnings can be neglected. For the third family
squarks and sleptons the sum rules are complicated because of the large third generation
Yukawa couplings. For small values of tan β, we can neglect the effects of the bottom-quark
Yukawa coupling, and hence the effects of mixing in the bottom-squark mass matrix. Thus
in this limit b̃L and b̃R are still the mass eigenstates, and b̃R is degenerate with d̃R to a
good approximation. However, since the evolution of Mb̃L

is controlled by the top-quark
Yukawa coupling, the situation with respect to hierarchy of the sbottom masses and the
squark masses of the first two generations in anomaly mediated supersymmetry breaking
models can be predicted only when we have a detailed knowledge of input parameters. In
the stop sector, it is easy to see that the sum rules one obtains are independent of the
model of supersymmetry breaking, and are, thus, identical to those obtained in MSSM
with gravity mediated supersymmetry breaking [13]. Similar observations can be made
with respect to the sum rules in the stau sector. Furthermore, when tan β is large, the
mixing in the third generation squark and slepton mass matrices becomes important, and
the situation becomes complicated. Thus, as far as the third generation squarks and
sleptons are concerned, one does not obtain any information which could distinguish the
anomaly mediated supersymmetry breaking models from the MSSM with gravity mediated
supersymmetry breaking.

2.2 Gaugino sector

In all the models discussed in this work, the gaugino sector remains the same as in the
minimal AMSB model, for which the mass difference between the lightest chargino and the
neutralino is small. The close proximity of the lightest neutralino and chargino masses is
a direct consequence of Eq. (1), which gives for the ratios of the gaugino mass parameters
|M1| : |M2| : |M3| ≃ 2.8 : 1 : 7.1 after taking into account the next to leading order
radiative corrections and the weak scale threshold corrections [10]. Thus the winos are
the lightest neutralinos and charginos, and one would expect that the lightest chargino is
only slightly heavier than the lightest neutralino in all the models considered in Section
2.1.
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It is not feasible to obtain mass sum rules for the neutralino states, since the physical
neutralino mass matrix is a 4 × 4 matrix. However, from the trace of neutralino and
chargino mass matrices, one obtains a sum rule, which does not contain the Higgs mixing
parameter µ, but which is present in the mass matrices [here the gluino mass mg̃ = M3(tg̃)],

2(M2

χ̃±
1

+ M2

χ̃±
2

) − (M2

χ̃0

1

+ M2

χ̃0

2

+ M2

χ̃0

3

+ M2

χ̃0

4

)

=
1

9

[

g4
2

g4
3

−

(

33

5

)2 g4
1

g4
3

]

m2
g̃ + 4M2

W − 2M2
Z . (29)

This average mass squared difference of the charginos and neutralinos differs from the
corresponding supergravity (SUGRA) result by the factor (33/5)2 in front of g4

1 within
the square brackets, and by factor (1/9) in front of the square bracket. We note that the
ratio of the gluino mass to the other gaugino masses is different in the AMSB models and
in the MSSM with gravity mediated supersymmetry breaking,

|mg̃|

|M2|

∣

∣

∣

∣

AMSB

= 3
|mg̃|

|M2|

∣

∣

∣

∣

MSSM

. (30)

We have plotted in Fig. 2 the sum rule (29) both in the AMSB models and the MSSM.
The average mass difference in the AMSB models is first positive, but then quickly turns
negative (solid line), while in the minimal SUGRA model it is always positive (dashed
line). Thus this sum rule could be one of the signatures of the AMSB type of models.

3 Focus points

One of the main motivations for low scale supersymmetry is that it can stabilize the
large hierarchy between the weak scale and the unification or Planck scale. This can
be realized in a straightforward way if the masses of the supersymmetric partners of the
standard model particles are of the order of weak scale. On the other hand the existence
of superpartners with masses of the order of weak scale is difficult to reconcile with limits
on flavor changing processes, unless one assumes an accurate degeneracy of squarks and
sleptons. Even with such a degeneracy, the supersymmetric contributions to CP violation
become uncomfortably large, unless squarks and sleptons are heavy. Thus one is forced to
examine supersymmetric models with large sparticle masses, thereby coming into conflict
with the basic idea of introducing weak scale supersymmetry. Recently, it has been pointed
out [15] that one can have large squark and slepton masses (above 1 TeV) without losing the
naturalness of the underlying supersymmetric theory. This is achieved by exploiting the
existence of focus points in the renormalization group evolution of the soft masses, which
make the weak scale insensitive to the variations in the unknown supersymmetry breaking
parameters at the high scale. In this approach the squark and slepton masses can be large
compared to the weak scale, though gaugino and higgsino masses can be generically lighter.
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Figure 2: The average mass difference ∆M2 ≡ 2
∑

M2

χ±i
−
∑

M2

χ0

i
in the AMSB models

(solid line), and in the minimal SUGRA (dashed line) as a function of the gluino mass
mg̃.

It is, therefore, important to investigate whether the anomaly mediated supersymmetry
breaking models considered in this paper exhibit the focus point behavior so as to admit
heavy squark and slepton masses, without violating the principle of naturalness.

In the minimal AMSB model, it has been shown that there is a focus point near the
weak scale for the soft supersymmetry breaking Higgs mass parameter m2

Hu
if tan β is not

very large [16]. The other mass parameters in this model do not have focus points near the
weak scale. Since in the more general models studied in this work the soft supersymmetry
breaking mass parameters are not universal, it is of considerable interest to find out if there
is focus point behavior in these models. In this section we shall consider this question and
investigate if these general models exhibit a desirable focus point behavior.

We shall here consider the case of tan β=10, for which all couplings other than the top
Yukawa coupling can be neglected. Following [16] we denote the supersymmetry breaking
bilinear up-type Higgs mass parameter m2

Hu
≡ m2

Hu
|AM + δm2

Hu
, where m2

Hu
|AM is the

pure anomaly mediated value, which does not run, and a similar decomposition for the
other scalar mass parameters. Then the coupled renormalization group equations for the
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relevant mass parameters are given by

d

dt







δm2
Hu

δm2
U3

δm2
Q3






=

Y 2
t

8π2







3 3 3
2 2 2
1 1 1













δm2
Hu

δm2
U3

δm2
Q3






. (31)

As was done for sfermions in Eqs. (4) – (10), one can define the coefficients cHu and cHd

which parametrize the nonuniversality for the mass parameters of the two Higgs doublets.
Here we need only cHu , which has a value cHu = 1 in the minimal AMSB model, a value
cHu = 9/10 in the gaugino assisted AMSB model, and a value cHu = −2 in the model with
an extra U(1) and a light stop. For a set of general initial conditions, m2

0(cHu , cU3
, cQ3

),
the solution can be written as







δm2
Hu

δm2
U3

δm2
Q3






=

(cHu + cU3
+ cQ3

)

6
m2

0 exp

[

6

∫ t

0

dt′
Y 2

t

8π2

]







3
2
1







+
m2

0

6







3(cHu − cU3
− cQ3

)
2(−cHu + 2cU3

− cQ3
)

(−cHu − cU3
+ 5cQ3

)






. (32)

It is easy to verify that mHu, mU3
, and mQ3

can all have focus points only if cHu = cU3
=

cQ3
= 0. Thus this case is not of interest here. One can also find conditions that need to

be satisfied if two of the mass parameters have focus points. Below we list the two mass
parameters that have simultaneous focus points, together with the relevant conditions that
need to be satisfied (here αt = exp[6

∫ t
0

dt′ Y 2
t /(8π2)]):

mHu , mU3
: cHu =

3

2
cU3

=
3(1 − αt)

5αt + 1
cQ3

,

mHu , mQ3
: cHu = 3cQ3

=
3(1 − αt)

2(2αt + 1)
cU3

,

mU3
, mQ3

: cU3
= 2cQ3

=
2(1 − αt)

3(αt + 1)
cHu .

Obviously these conditions are not realized for the models that we have considered in this
paper. Finally, the simple case of a focus point for mHu is found if cHu < cU3

+ cQ3
, for

mU3
if 2cU3

< cHu + cQ3
, and for mQ3

if 5cQ3
< cHu + cU3

. In these inequalities it is
assumed that cHu + cU3

+ cQ3
> 0. If this sum is negative, then these inequalities should

be reversed. We see that for both the minimal and gaugino assisted AMSB models we
have a focus point for mHu . The case of the extra U(1) model is qualitatively different,
since cHu + cU3

+ cQ3
= 0 by construction in this model, and thus it is not relevant to state

at which scale the boundary conditions are given.

In the gaugino assisted AMSB model the expression exp
[

6
∫ t
0

dt′
Y 2

t
8π2

]

= 14/23 at the

focus point. In Fig. 3 we depict the running of m2
Hu

for the minimal and for the gaugino
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Figure 3: Focus points for the minimal (dashed line) and gaugino assisted (solid line)
AMSB models.

assisted AMSB models. Although focus points exist for both these models, only the focus
point for the minimal AMSB seems to be physically interesting.

4 Numerical results

So far we have obtained the predictions for the anomaly mediated supersymmetry breaking
models in terms of sum rules, which can help in distinguishing between different models.
In this section we shall numerically obtain the predictions for the sparticle spectra of
these models. For the numerical evaluation of the spectra we have used the program
SOFTSUSY [17]. This program uses complete three family mass matrices and Yukawa
coupling evolution. Fermion masses and gauge couplings (α,αs) are evolved to MZ with
the three loop QCD and one loop QED equations. The full MSSM spectrum is taken into
account and decoupling threshold effects are taken into account to leading logarithmic
order as well as the finite corrections at the scale MZ . The scalar masses are evolved
via one-loop RG equations, and all other functions are evolved via two-loop equations.
Parameters are determined iteratively. For the boundary conditions at the GUT scale, we
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Figure 4: The spectrum of the minimal AMSB model.

have used the values given by Eqs. (1), (3), and m2
i + cim

2
0, where m2

i is given by Eq. (2),
and ci’s are model dependent numerical factors, which are given, e.g., by Eqs. (20) and
(25).

In Figs. 4 – 6 we have plotted the spectra for the three different AMSB models. In
all three examples we have taken tan β = 10 and m3/2 = 35 TeV. One can easily see the
distinguishing features of different models already discussed in terms of the sum rules.
In the minimal AMSB model, Fig. 4, the squarks of the first two generations are very
closely degenerate in mass. The same is true for the sleptons in this model. The third
generation, especially the lighter stop, is considerably lighter than the squarks of the first
two generations. For m3/2 = 35 TeV we see that for a value of m0 ∼ 730 GeV, the lightest
stop becomes lighter than sleptons.

For the gaugino assisted AMSB model, Fig. 5, the first two generations of sleptons are
not degenerate anymore. Recalling that ũ1 (c̃1), d̃1 (s̃1), and ẽ1 (µ̃1) correspond almost
exactly to the right-handed squarks and sleptons, we note that the sum rule Eq. (23) is
clearly satisfied. On the other hand, the left-handed squarks, corresponding to ũ2 and d̃2
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Figure 5: The spectrum of the gaugino assisted AMSB model.

(c̃2 and s̃2), or the left-handed sleptons, ẽ and ν̃1 (µ̃ and ν̃2), remain close to each other,
a reflection of the sum rules Eqs. (11) and (12).

The spectrum of the U(1) model at the weak scale is shown in Fig. 6. It is seen that
the spectrum ends with relatively small m0, since for large enough m0 the negative charges
lead to a tachyonic spectrum. The mass squared difference of squarks d̃L and d̃R (or s̃L

and s̃R) is seen to satisfy the sum rule Eq. (26).

5 Summary and discussion

We have derived sum rules, and obtained the sparticle mass spectra, in different AMSB
models in which the problem of tachyonic slepton masses has been solved in qualitatively
different ways. Interestingly enough, the sum rules obtained uncover many of the simi-
larities and differences in these models. On the one hand this helps us to tell whether a
particular mass spectrum is due to anomaly mediation, and on the other hand it allows
us to differentiate between various anomaly mediated models.

16



tanβ=10
m3/2=35 TeV

sgn(µ)=+

m0 [GeV]

m
 [G

eV
]

0

200

400

600

800

1000

1200

1400

250 300 350 400 450 500 550

PSfrag replaements h0�01; ��1
~t1

~t2;~b2

sleptons ~e1; ~�1; ~�1~e2; ~�2; ~�2; ~�1; ~�2; ~�3

~u2; ~2; ~d2; ~s2
~u1; ~1; ~d1; ~s1;~b1

~u; ~; ~d; ~s;~b2
Figure 6: The spectrum of the U(1) model.

Apart from the well known feature of the AMSB gaugino sector, the close mass degen-
eracy of the lightest chargino and neutralino, the sum rules that we have derived reveal
another typical feature of the gaugino sector in these models, namely the average mass
difference between charginos and neutralinos. As shown in Fig. 2 the average mass dif-
ference between the charginos and neutralinos is typically negative in the AMSB type
models. This is contrary to the SUGRA type models, where the average mass difference
is positive.

Even if the mass spectrum of sparticles points towards the underlying model being of
AMSB type, there could be a wide variety of different possibilities. In such a situation,
the sum rules obtained in this paper would help in distinguishing between various models.
Comparison of the sfermion mass differences M2

ẽL
−M2

ẽR
and M2

d̃L
−M2

d̃R
can be crucial in

distinguishing between the models considered in this paper. In the minimal AMSB model
both these mass differences are small, whereas in the gaugino assisted model slepton mass
difference is not small. In the AMSB model with extra U(1) and a light stop, the squark
mass difference is considerable, but the slepton mass difference is small. These conclusions
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from the tree-level sum rules of Section 2 have been verified by the one-loop numerical
results of Section 4.

In the minimal AMSB model, mHu has a focus point near the weak scale. We have
shown that this attractive feature is, unfortunately, not shared by more general AMSB
models.

Finally, we should mention the possibility that the introduction of R-parity violating
couplings can solve the tachyonic slepton mass problem. This is an interesting possibility,
since if viable, one would have in the supersymmetry breaking sector only those terms
which arise due to the anomaly mediation. Although this idea is interesting, it turns out
that it is not to easy to find suitable R-parity violating terms for its implementation. In
[18] a hierarchy between various R-parity violating couplings was assumed, and it was
further assumed that these couplings have quasi fixed points.

However, one of the couplings used contributes to the neutrino masses [19]. Thus it
is subject to strict phenomenological bounds, due to which the scenario considered does
not seem to be viable in practice. On the other hand, if one assumes that the coupling
involved in neutrino masses is tiny, one may still generate large enough masses for all the
sleptons with the remaining two couplings used in [18], although the fixed point structure
does not hold anymore. Since one has in this case only the two unknown R-parity violating
couplings in addition to the mass parameter m3/2, one can solve for all these parameters
and obtain different sum rules. For the first two generations one has 14 masses, and thus
one gets 11 sum rules between the masses. However, we think that this model is not very
compelling and do not list these sum rules here.2
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