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Abstract

This paper proposes a question-answering

(QA) benchmark for spatial reasoning on nat-

ural language text which contains more real-

istic spatial phenomena not covered by prior

work and is challenging for state-of-the-art

language models (LM). We propose a distant

supervision method to improve on this task.

Specifically, we design grammar and reason-

ing rules to automatically generate a spatial de-

scription of visual scenes and corresponding

QA pairs. Experiments show that further pre-

training LMs on these automatically generated

data significantly improves LMs’ capability on

spatial understanding, which in turn helps to

better solve two external datasets, bAbI, and

boolQ. We hope that this work can foster inves-

tigations into more sophisticated models for

spatial reasoning over text.

1 Introduction

Spatial reasoning is a cognitive process based

on the construction of mental representations

for spatial objects, relations, and transforma-

tions (Clements and Battista, 1992), which is

necessary for many natural language understand-

ing (NLU) tasks such as natural language navi-

gation (Chen et al., 2019; Roman Roman et al.,

2020; Kim et al., 2020), human-machine interac-

tion (Landsiedel et al., 2017; Roman Roman et al.,

2020), dialogue systems (Udagawa et al., 2020),

and clinical analysis (Datta and Roberts, 2020).

Modern language models (LM), e.g., BERT (De-

vlin et al., 2019), ALBERT (Lan et al., 2020), and

XLNet (Yang et al., 2019) have seen great suc-

cesses in natural language processing (NLP). How-

ever, there has been limited investigation into spa-

tial reasoning capabilities of LMs. To the best of

our knowledge, bAbI (Weston et al., 2015) (Fig 9)

is the only dataset with direct textual spatial ques-

tion answering (QA) (Task 17), but it is synthetic

∗Work was done while at the Allen Institute for AI.

and overly simplified: (1) The underlying scenes

are spatially simple, with only three objects and

relations only in four directions. (2) The stories

for these scenes are two short, templated sentences,

each describing a single relation between two ob-

jects. (3) The questions typically require up to

two-steps reasoning due to the simplicity of those

stories.

To address these issues, this paper proposes a

new dataset, SPARTQA1 (see Fig. 1). Specifically,

(1) SPARTQA is built on NLVR’s (Suhr et al., 2017)

images containing more objects with richer spatial

structures (Fig. 1b). (2) SPARTQA’s stories are

more natural, have more sentences, and richer in

spatial relations in each sentence. (3) SPARTQA’s

questions require deeper reasoning and have four

types: find relation (FR), find blocks (FB), choose

object (CO), and yes/no (YN), which allows for

more fine-grained analysis of models’ capabilities.

We showed annotators random images from

NLVR, and instructed them to describe objects and

relationships not exhaustively at the cost of natu-

ralness (Sec. 3). In total, we obtained 1.1k unique

QA pair annotations on spatial reasoning, evenly

distributed among the aforementioned types. Simi-

lar to bAbI, we keep this dataset in relatively small

scale and suggest to use as little training data as

possible. Experiments show that modern LMs (e.g.,

BERT) do not perform well in this low-resource

setting.

This paper thus proposes a way to obtain distant

supervision signals for spatial reasoning (Sec. 4).

As spatial relationships are rarely mentioned in ex-

isting corpora, we take advantage of the fact that

spatial language is grounded to the geometry of vi-

sual scenes. We are able to automatically generate

stories for NLVR images (Suhr et al., 2017) via

our newly designed context free grammars (CFG)

and context-sensitive rules. In the process of story

generation, we store the information about all ob-

1SPAtial Reasoning on Textual Question Answering.
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QUESTIONS:
FB:	Which	block(s)	has	a	medium	thing	that	is	below	a	black	square?	A,	B,	C
FB:	Which	block(s)	doesn't	have	any	blue	square	that	is	to	the	left	of	a	medium	square?	A,	B
FR:	What	is	the	relation	between	the	medium	black	square	which	is	in	block	C	and	the	medium	square	that	is	below	a
medium	black	square	that	is	touching	the	bottom	edge	of	a	block?	Left
CO:	Which	object	is	above	a	medium	black	square?	the	medium	black	square	which	is	in	block	C	or	medium	black
square	number	two?	medium	black	square	number	two
YN:	Is	there	a	square	that	is	below	medium	square	number	two	above	all	medium	black	squares	that	are	touching	the
bottom	edge	of	a	block?	Yes

STORY:			
We	have	three	blocks,	A,	B	and	C.	Block	B	is	to	the	right	of	block	C	and	it	is	below	block	A.	Block	A	has	two	black
medium	squares.	Medium	black	square	number	one	is	below	medium	black	square	number	two	and	a	medium	blue
square.	It	is	touching	the	bottom	edge	of	this	block.	The	medium	blue	square	is	below	medium	black	square	number
two.	Block	B	contains	one	medium	black	square.	Block	C	contains	one	medium	blue	square	and	one	medium	black
square.	The	medium	blue	square	is	below	the	medium	black	square.

(a) An example story and corresponding questions and answers.

A

C
B

Described image

choose some objects and
relations randomly and add
relationship between blocks

NLVR image

(b) An example NLVR image and the scene created in Fig. 1a, where the blocks in the NLVR image are rearranged.

Figure 1: Example from SPARTQA (specifically from SPARTQA-AUTO)

jects and relationships, such that QA pairs can also

be generated automatically. In contrast to bAbI,

we use various spatial rules to infer new relation-

ships in these QA pairs, which requires more com-

plex reasoning capabilities. Hereafter, we call this

automatically-generated dataset SPARTQA-AUTO,

and the human-annotated one SPARTQA-HUMAN.

Experiments show that, by further pretraining on

SPARTQA-AUTO, we improve LMs’ performance

on SPARTQA-HUMAN by a large margin.2 The

spatially-improved LMs also show stronger per-

formance on two external QA datasets, bAbI and

boolQ (Clark et al., 2019): BERT further pretrained

on SPARTQA-AUTO only requires half of the train-

ing data to achieve 99% accuracy on bAbI as com-

pared to the original BERT; on boolQ’s develop-

ment set, this model shows better performance than

BERT, with 2.3% relative error reduction.3

2Further pretraining LMs has become a common prac-
tice and baseline method for transferring knowledge between
tasks (Phang et al., 2018; Zhou et al., 2020). We leave more
advanced methods for future work.

3To the best of our knowledge, the test set or leaderboard
of boolQ has not been released yet.

Our contributions can be summarized as fol-

lows. First, we propose the first human-curated

benchmark, SPARTQA-HUMAN, for spatial rea-

soning with richer spatial phenomena than the prior

synthetic dataset bAbI (Task 17).

Second, we exploit the scene structure of images

and design novel CFGs and spatial reasoning rules

to automatically generate data (i.e., SPARTQA-

AUTO) to obtain distant supervision signals for

spatial reasoning over text.

Third, SPARTQA-AUTO proves to be a rich

source of spatial knowledge that improved the per-

formance of LMs on SPARTQA-HUMAN as well as

on different data domains such as bAbI and boolQ.

2 Related work

Question answering is a useful format to evalu-

ate machines’ capability of reading comprehen-

sion (Gardner et al., 2019) and many recent works

have been implementing this strategy to test ma-

chines’ understanding of linguistic formalisms: He

et al. (2015); Michael et al. (2018); Levy et al.

(2017); Jia et al. (2018); Ning et al. (2020); Du
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and Cardie (2020). An important advantage of QA

is using natural language to annotate natural lan-

guage, thus having the flexibility to get annotations

on complex phenomena such as spatial reasoning.

However, spatial reasoning phenomena have been

covered minimally in the existing works.

To the best of our knowledge, Task 17 of the

bAbI project (Weston et al., 2015) is the only QA

dataset focused on textual spatial reasoning (exam-

ples in Appendix F). However, bAbI is synthetic

and does not reflect the complexity of the spatial

reasoning in natural language. Solving Task 17

of bAbI typically does not require sophisticated

reasoning, which is an important capability empha-

sized by more recent works (e.g., Dua et al. (2019);

Khashabi et al. (2018); Yang et al. (2018); Dasigi

et al. (2019); Ning et al. (2020)).

Spatial reasoning is arguably more prominent in

multi-modal QA benchmarks, e.g., NLVR (Suhr

et al., 2017), VQA (Antol et al., 2015), GQA (Hud-

son and Manning, 2019), CLEVR (Johnson et al.,

2017). However, those spatial reasoning phenom-

ena are mostly expressed naturally through images,

while this paper focuses on studying spatial rea-

soning on natural language. Some other works on

visual-spatial reasoning are based on geographi-

cal information inside maps and diagrams (Huang

et al., 2019) and navigational instructions (Chen

et al., 2019; Anderson et al., 2018).

As another approach to evaluate spatial reason-

ing capabilities of models, a dataset proposed in

Ghanimifard and Dobnik (2017) generates a syn-

thetic training set of spatial sentences and evaluates

the models’ ability to generate spatial facts and sen-

tences containing composition and decomposition

of relations on grounded objects.

3 SPARTQA-HUMAN

To mitigate the aforementioned problems of Task

17 of bAbI, i.e., simple scenes, stories, and ques-

tions, we describe the data annotation process of

SPARTQA-HUMAN, and explain how those prob-

lems were addressed in this section.

First, we randomly selected a subset of NLVR

images, each of which has three blocks containing

multiple objects (see Fig 1b). The scenes shown by

these images are more complicated than those de-

scribed by bAbI because (1) there are more objects

in NLVR images; (2) the spatial relationships in

NLVR are not limited to just four relative directions

as objects are placed arbitrarily within blocks.

Figure 2: For “A blue circle is above a big triangle. To

the left of the big triangle, there is a square,” if the ques-

tion is: “Is the square to the left of the blue circle?”, the

answer is neither Yes nor No. Thus, the correct answer

is “Do not Know” (DK) in our setting.

Second, two student volunteers produced tex-

tual description of those objects and their corre-

sponding spatial relationships based on these im-

ages. Since the blocks are always horizontally

aligned in each NLVR image, to allow for more

flexibility, annotators could also rearrange these

blocks (see Fig. 1a). Relationships between ob-

jects within the same block can take the forms of

relative direction (e.g., left or above), qualitative

distance (e.g., near or far), and topological relation-

ship (e.g., touching or containing).

However, we instructed the annotators not to de-

scribe all objects and relationships, (1) to avoid un-

necessarily verbose stories, and (2) to intentionally

miss some information to enable more complex rea-

soning later. Therefore, annotators describe only a

random subset of blocks, objects, and relationships.

To query more interesting phenomena, annota-

tors were then encouraged to write questions requir-

ing detecting relations and reasoning over them

using multiple spatial rules. A spatial rule can

be one of the transitivity (A → B,B → C ⇒
A → C), symmetry (A → B ⇒ B → A), con-

verse ((A, R, B) ⇒ (B, reverse(R), A)), inclu-

sion (obj1 in A), and exclusion (obj1 not in B)

rules.

There are four types of questions (Q-TYPE). (1)

FR: find relation between two objects. (2) FB: find

the block that contains certain object(s). (3) CO:

choose between two objects mentioned in the ques-

tion that meets certain criteria. (4) YN: a yes/no

question that tests if a claim on spatial relationship

holds.

FB, FR, and CO questions are formulated as

multiple-choice questions4 and receive a list of can-

didate answers, and YN questions’ answer is choos-

ing from Yes, No, or “DK” (Do not Know). The

“DK” option is due to the open-world assumption

of the stories, where if something is not described

4CO can be considered as both single-choice and multiple-
choices question.
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Sets FB FR YN CO Total

SPARTQA-HUMAN:

Test 104 105 194 107 510

Train 154 149 162 151 616

SPARTQA-AUTO:

Seen Test 3872 3712 3896 3594 15074

Unseen Test 3872 3721 3896 3598 15087

Dev 3842 3742 3860 3579 15023

Train 23654 23302 23968 22794 93673

Table 1: Number of questions per Q-TYPE

in the text, it is not considered as false (See Fig. 2).

Finally, annotators were able to create 1.1k QA

pairs on spatial reasoning on the generated descrip-

tions, distributed among the aforementioned types.

We intentionally keep this data in a relatively small

scale due to two reasons. First, there has been some

consensus in our community that modern systems,

given their sufficiently large model capacities, can

easily find shortcuts and overfit a dataset if pro-

vided with a large training data (Gardner et al.,

2020; Sen and Saffari, 2020). Second, collecting

spatial reasoning QAs is very costly: The two an-

notators spent 45-60 mins on average to create a

single story with 8-16 QA pairs. We estimate that

SPARTQA-HUMAN costed about 100 human hours

in total. The expert performance on 100 examples

of SPARTQA-HUMAN’s test set measured by their

accuracy of answering the questions is 92% across

four Q-TYPEs on average, indicating its high qual-

ity.

4 Distant Supervision: SPARTQA-AUTO

Since human annotations are costly, it is impor-

tant to investigate ways to generate distant super-

vision signals for spatial reasoning. However, un-

like conventional distant supervision approaches

(e.g., Mintz et al. (2009); Zeng et al. (2015); Zhou

et al. (2020)) where distant supervision data can

be selected from large corpora by implementing

specialized filtering rules, spatial reasoning does

not appear often in existing corpora. Therefore,

similar to SPARTQA-HUMAN, we take advantage

of the ground truth of NLVR images, design CFGs

to generate stories, and use spatial reasoning rules

to ask and answer spatial reasoning questions. This

automatically generated data is called SPARTQA-

AUTO, and below we describe its generation pro-

cess in detail.

Story generation Since NLVR comes with struc-

tured descriptions of the ground truth locations

of those objects, we were able to choose random

blocks and objects from each image programmat-

ically. The benefit is two-fold. First, a random

selection of blocks and objects allows us to cre-

ate multiple stories for each image; second, this

randomness also creates spatial reasoning opportu-

nities with missing information.

Once we decide on a set of blocks and objects

to be included, we determine their relationships:

Those relationships between blocks are generated

randomly; as for those between objects, we refer

to the ground truth of these images to determine

them.

Now we have a scene containing a set of blocks

and objects and their associated relationships. To

produce a story for this scene, we design CFGs to

produce natural language sentences that describe

those blocks/objects/relationships in various ex-

pressions (see Fig. 3 for two portions of our CFG

describing relative and nested relations between

objects).

The	big	black	shape	is	above	the	medium	triangle.

S								<Article>	<Object>	is	<Relation>	<Article>	<Object>.

Article													the	|	a
Relation											above	|	left	|	…
Object														<Size>*	<Color>*	<Shape|	Ind_shape>
Size																			small	|	medium	|	big
Color																yellow	|	blue	|	black
Shape																square	|	triangle	|	circle
Ind_shape									shape	|	object	|	thing

(a) Part of the grammar describing relations between objects

The	big	black	shape	is	above	the	object	that	is
to	the	right	of	the	medium	triangle
S								<Article>	<Object>	is	<Relation>	<Article>
<Object>.

Object								<Size>*	<Color>*	<Shape|	Ind_shape>	|
																	<Ind_shape>	that	is	<Relation>	<Object>

(b) Part of the grammar describing nested relationships.

Figure 3: Two parts of our designed CFG

Being grounded to visual scenes guarantees spa-

tial coherency in a story, and using CFGs helps to

have correct sentences (grammatically) and various

expressions. We also design context-sensitive rules

to limited options for each CFG’s variable based

on the chosen entities (e.g. black circle), or what is

described in the previous sentences (e.g. Block A

has a circle. The circle is below a triangle.)

Question generation To generate questions

based on a passage, there are rule-based sys-
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Left	(obj1	,	obj2)
Touching	(obj2	,	obj3)
Right	(obj4	,	obj2)

?	(obj1	,	obj4) left	^	left	=>	left

Left	(obj1	,	obj4)

Obj1

Obj2Obj3Obj4

Obj3

left

~right	=	left

1

Obj4

2

3

Figure 4: Find the implicit relation between obj1 and

obj4 by Transitivity rule. (1) Find a set of objects that

have a relation with obj1. Continue the same process

on the new set until obj4 is found. (2) Get the union

of the intermediate relations between these two objects

and it is the final answer.

tems (Heilman and Smith, 2009; Labutov et al.,

2015), neural networks (Du et al., 2017), and their

combinations (Dhole and Manning, 2020). How-

ever, in our approach, during generating each story,

the program stores the information about the enti-

ties and their relationships. Thus, without process-

ing the raw text, which is error-prone, we generate

questions by only looking at the stored data. The

question generation operates based on four primary

functionalities, Choose-objects, Describe-objects,

Find-all-relations, and Find-similar-objects. These

modules are responsible to control the logical con-

sistency, correctness, and the number of steps re-

quired for reasoning in each question.

Choose-objects randomly chooses up to three

objects from the set of possible objects in a story

under a set of constraints such as preventing selec-

tion of similar objects, or excluding objects with

relations that are directly mentioned in the text.

Describe-Objects generates a mention phrase for

an object using parts of its full name (presented in

the story). The generated phrase is either point-

ing to a unique object or a group of objects such

as "the big circle," or "big circles." To describe a

unique object, it chooses an attribute or a group

of attributes that apply to a unique object among

others in the story. To increase the steps of reason-

ing, the description may include the relationship of

the object to other objects instead of using a direct

unique description. For example, "the circle which

is above the black triangle."

Find-all-relations completes the relationship

graph between objects by applying a set of spa-

tial rules such as transitivity, symmetry, converse,

inclusion, and exclusion on top of the direct rela-

tions described in the story. As shown in Fig. 4, it

does an exhaustive search over all combinations of

the relations that link two objects to each other.

Find-similar-objects finds all the mentions

matching a description from the question to objects

in the story. For instance, for the question "is there

any blue circle above the big blue triangle?", this

module finds all the mentions in the story matching

the description “a blue circle”.

Similar to the SPARTQA-HUMAN, we provide

four Q-TYPEs FR, FB, CO, and YN. To gener-

ate FR questions, we choose two objects using

Choose-objects module and question their relation-

ships. The YN Q-TYPE is similar to FR, but the

question specifies one relationship of interest cho-

sen from all relation extracted by Find-all-relations

module to be questioned about the objects. Since

most of the time, Yes/No questions are simpler

problems, we make this question type more com-

plex by adding quantifiers (adding “all” and “any”).

These quantifiers help to evaluates the models’ ca-

pability to aggregate relations between more than

two objects in the story and do the reasoning over

all find relations to find the final answer. In FB

Q-TYPE, we mention an object by its indirect re-

lation to another object using the nested relation

in Describe-objects module and ask to find the

blocks containing or not containing this object. Fi-

nally, the CO question selects an anchor object

(Choose-objects) and specifies a relationship ( us-

ing Find-all-relations) in the question. Two other

objects are chosen as candidates to check whether

the specified relationship holds between them and

the anchor object. We tend to force the algorithm to

choose objects as candidates that at least have one

relationship to the anchor object. To see more de-

tails about different question’ templates see Table

7 in the Appendix.

Answer generation We compute all direct and

indirect relationships between objects using Find-

all-relations function and based on the Q-TYPEs

generate the final answer.

For instance, in YN Q-TYPE if the asked relation

exists in the found relations, the answer is "Yes",

if the inverse relation exists it must be "No", and

otherwise, it is "DK"5.

4.1 Corpus Statistics

We generate the train, dev, and test set splits based

on the same splits of the images in the NLVR

dataset. On average, each story contains 9 sen-

tences (Min:3, Max: 22) and 118 tokens (Min: 66,

5The SPARTQA-AUTO generation code and the file of
dataset are available at https://github.com/HLR/

SpartQA_generation

https://github.com/HLR/SpartQA_generation
https://github.com/HLR/SpartQA_generation
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Max: 274). Also, the average tokens of each ques-

tion (on all Q-TYPE ) is 23 (Min:6, Max: 57).

Table 1 shows the total number of each question

type in SPARTQA-AUTO (Check Appendix to see

more statistic information about the labels in Tab

8.)

5 Models for Spatial Reasoning over

Language

This section describes the model architectures on

different Q-TYPEs: FR, YN, FB, and CO. All Q-

TYPEs can be cast into a sequence classification

task, and the three transformer-based LMs tested

in this paper, BERT (Devlin et al., 2019), ALBERT

(Lan et al., 2020), and XLNet (Yang et al., 2019),

can all handle this type of tasks by classifying the

representation of [CLS], a special token prepended

to each target sequence (see Appendix E). Depend-

ing on the Q-TYPE, the input sequence and how

we do inference may be different.

FR and YN both have a predefined label set as

candidate answers, and their input sequences are

both the concatenation of a story and a question.

While the answer to a YN question is a single label

chosen from Yes, No, and DK, FR questions can

have multiple correct answers. Therefore, we treat

each candidate answer to FR as an independent

binary classification problem, and take the union

as the final answer. As for YN, we choose the label

with the highest confidence (Fig 8b).

As the candidate answers to FB and CO are not

fixed and depend on each story and its question

the input sequences to these Q-TYPEs are con-

catenated with each candidate answer. Since the

defined YN and FR model has moderately less ac-

curate results on FB and CO Q-TYPEs, we add a

LSTM (Hochreiter and Schmidhuber, 1997) layer

to improve it. Hence, to find the final answer, we

run the model with each candidate answer and then

apply an LSTM layer on top of all token represen-

tations. Then, we use the last vector of the LSTM

outputs for classification (Fig 8a). The final an-

swers are selected based on Eq. (1).

xi = [s, ci, q]

~Ti = [~ti
1
, ..., ~ti

mi ] = LM(xi)

[~hi1, ...,
~hi
mi ] = LSTM(~Ti)

~yi = [y0i , y
1

i ] = Softmax(~hi
T

miW ))

Answer = {ci| argmax
j

(yji ) = 1}

(1)

where s is the story, ci is the candidate answer, q is

the question, [ ] indicates the concatenation of the

listed vectors, and mi is tokens’ number in xi. The

parameter vector, W , is shared for all candidates.

5.1 Training and Inference

We train the models based on the summation of

the cross-entropy losses of all binary classifiers in

the architecture. For FR and YN Q-TYPEs, there

are multiple classifiers, while there is only one

classifier used for CO and FB Q-TYPEs.

We remove inconsistent answers in post-

processing for FR and YN Q-TYPEs during in-

ference phase. For instance on FR, left and right

relations between two objects cannot be valid at

the same time. For YN, as there is only one valid

answer amongst the three candidates, we select the

candidate with the maximal predicted probability

of being the true answer.

6 Experiments

As fine-tuning LMs has become a common base-

line approach to knowledge transfer from a source

dataset to a target task, including but not limited

to Phang et al. (2018); Zhou et al. (2020); He et al.

(2020b), we study the capability of spatial reason-

ing of modern LMs, specifically BERT, ALBERT,

and XLNet, after fine-tuning them on SPARTQA-

AUTO. This fine-tuning process is also known as

further pretraining, to distinguish with the fine-

tuning process on one’s target task. It is an open

problem to find out better transfer learning tech-

niques than simple further pretraining, as suggested

in He et al. (2020a); Khashabi et al. (2020), which

is beyond the scope of this work. All experi-

ments use the models proposed in Sec. 5. We

use AdamW (Loshchilov and Hutter, 2017) with

2× 10−6 learning rate and Focal Loss (Lin et al.,

2017) with γ = 2 for training all the models.6

6.1 Further pretraining on SPARTQA-AUTO

improves spatial reasoning

Table 2 shows performance on SPARTQA-HUMAN

in a low-resource setting, where 0.6k QA pairs

from SPARTQA-HUMAN are used for fine-tuning

these LMs and 0.5k for testing (see Table 1 for

information on this split).7 During our annotation,

we found that the description of “near to ” and “far

6All codes are available at https://github.com/
HLR/SpartQA-baselines

7Note this low-resource setting can also be viewed as a
spatial reasoning probe to these LMs (Tenney et al., 2019).

https://github.com/HLR/SpartQA-baselines
https://github.com/HLR/SpartQA-baselines
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# Model FB FR CO YN Avg

1 Majority 28.84 24.52 40.18 53.60 36.64

2 BERT 16.34 20 26.16 45.36 30.17

3 BERT (Stories only; MLM) 21.15 16.19 27.1 51.54 32.90

4 BERT (SPARTQA-AUTO; MLM) 19.23 29.54 32.71 47.42 34.88

5 BERT (SPARTQA-AUTO) 62.5 46.66 32.71 47.42 47.25

6 Human 91.66 95.23 91.66 90.69 92.31

Table 2: Further pretraining BERT on SPARTQA-AUTO improves accuracies on SPARTQA-HUMAN. All

systems are fine-tuned on the training data of SPARTQA-HUMAN, but Systems 3-5 are also further pretrained in

different ways. System 3: further pretrained on the stories from SPARTQA-AUTO as a masked language model

(MLM) task. System 4: further pretrained on both stories and QA annotations as MLM. System 5: the proposed

model that is further pretrained on SPARTQA-AUTO as a QA task. Avg: The micro-average on all four Q-TYPEs.

from” varies largely between annotators. Therefore,

we ignore these two relations from FR Q-TYPE in

our evaluations.

In Table 2, System 5, BERT (SPARTQA-AUTO),

is the proposed method of further pretraining

BERT on SPARTQA-AUTO. We can see that

System 2, the original BERT, performs consis-

tently lower than System 5, indicating that hav-

ing SPARTQA-AUTO as a further pretraining task

improves BERT’s spatial understanding.

Model F1

Majority 35

BERT 50

BERT (Stories only; MLM) 53

BERT (SPARTQA-AUTO; MLM) 48

BERT (SPARTQA-AUTO) 48

Table 3: Switching from accuracy in Table 2 to F1

shows that the models are all performing better than

the majority baseline on YN Q-TYPE.

In addition, we implement another two baselines.

System 3, BERT (Stories only; MLM): further pre-

training BERT only on the stories of SPARTQA-

AUTO as a masked language model (MLM) task;

System 4, BERT (SPARTQA-AUTO; MLM): we

convert the QA pairs in SPARTQA-AUTO into tex-

tual statements and further pretrain BERT on the

text as an MLM (see Fig. 5 for an example conver-

sion).

To convert each question and its answer into a

sentence, we utilize static templates for each ques-

tion type which removes the question words and

rearranges other parts into a sentence.

We can see that System 3 slightly improves over

System 2, an observation consistent with many

prior works that seeing more text generally helps

an LM (e.g., Gururangan et al. (2020)). The signif-

A big circle is above a triangle. A blue square is
below the triangle.
What is the relation between the circle and the
blue object?
Answer: Above

A big circle is above a triangle. A blue square is
below the triangle. The circle is [MASK] the blue
object.
Answer: Above

Figure 5: Convert a triplet of (paragraph, question, an-

swer) into a single piece of text for the MLM task.

icant gap between System 3 and the proposed Sys-

tem 5 indicates that supervision signals come more

from our annotations in SPARTQA-AUTO rather

than from seeing more unannotated text. System 4

is another way to make use of the annotations in

SPARTQA-AUTO, but it is shown to be not as ef-

fective as further pretraining BERT on SPARTQA-

AUTO as a QA task.

While the proposed System 5 overall performs

better than the other three baseline systems, one ex-

ception is its accuracy on YN, which is lower than

that of System 3. Since all systems’ YN accuracies

are also lower than the majority baseline8, we hy-

pothesize that this is due to imbalanced data. To

verify it, we compute the F1 score for YN Q-TYPE

in Table 3, where we see all systems effectively

achieve better scores than the majority baseline.

However, further pretraining BERT on SPARTQA-

AUTO still does not beat other baseline systems,

which implies that straightforward pretraining is

not necessarily helpful in capturing the complex

reasoning phenomena required by YN questions.

The human performance is evaluated on 100 ran-

8which predicts the label that is most common in each set
of SPARTQA
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# Models
FB FR CO YN

Seen Unseen Human* Seen Unseen Human* Seen Unseen Human* Seen Unseen Human*

1 Majority 48.70 48.70 28.84 40.81 40.81 24.52 20.59 20.38 40.18 49.94 49.91 53.60

2 BERT 87.13 69.38 62.5 85.68 73.71 46.66 71.44 61.09 32.71 78.29 76.81 47.42

3 ALBERT 97.66 83.53 56.73 91.61 83.70 44.76 95.20 84.55 49.53 79.38 75.05 41.75

4 XLNet 98.00 84.85 73.07 94.60 91.63 57.14 97.11 90.88 50.46 79.91 78.54 39.69

5 Human 85 91.66 90 95.23 94.44 91.66 90 90.69

Table 4: Spatial reasoning is challenging. We further pretrain three transformer-based LMs, BERT, ALBERT,

and XLNet, on SPARTQA-AUTO, and test their accuracy in three ways: Seen and Unseen are both from SPARTQA-

AUTO, where Unseen has applied minor modifications to its vocabulary; to get those Human columns, all models

are fine-tuned on SPARTQA-HUMAN’s training data. Human performance on Seen and Unseen is the same since

the changes applied to Unseen does not affect human reasoning.

dom questions from each SPARTQA-AUTO and

SPARTQA-HUMAN test set. The respondents are

graduate students that were trained by some exam-

ples of the dataset before answering the final ques-

tions. We can see from Table 2 that all systems’

performances fall behind human performance by

a large margin. We expand on the difficulty of

SPARTQA in the next subsection.

6.2 SPARTQA is challenging

In addition to BERT, we continue to test another

two LMs, ALBERT and XLNet (Table 5). We

further pretrain these LMs on SPARTQA-AUTO,

and test them on SPARTQA-HUMAN (the num-

bers of BERT are copied from Table 2) and two

held-out test sets of SPARTQA-AUTO, Seen and

Unseen. Note that when a system is tested against

SPARTQA-HUMAN, it is fine-tuned on SPARTQA-

HUMAN’s training data following its further pre-

training on SPARTQA-AUTO. We use the unseen

set to test to what extent the baseline models use

shortcuts in the language surface. This set applies

minor modifications randomly on a number of sto-

ries and questions to change the names of shapes,

colors, sizes, and relationships in the vocabulary of

the stories, which do not influence the reasoning

steps (more details in Appendix C.1).

All models perform worst in YN across all Q-

TYPEs, which suggests that YN presents a more

complex phenomena, probably due to additional

quantifiers in the questions. XLNet performs

the best on all Q-TYPEs except its accuracy on

SPARTQA-HUMAN’s YN section. However, the

drops in Unseen and human suggest overfitting on

the training vocabulary. The low accuracies on hu-

man test set from all models show that solving this

benchmark is still a challenging problem and re-

quires more sophisticated methods like considering

spatial roles and relations extraction (Kordjamshidi

et al., 2010; Dan et al., 2020; Rahgooy et al., 2018)

to understand stories and questions better.

To evaluate the reliability of the models, we also

provide two extra consistency and contrast test sets.

Consistency set is made by changing a part of the

question in a way that seeks for the same infor-

mation (Hudson and Manning, 2019; Suhr et al.,

2019). Given a pivot question and answer of a spe-

cific consistency set, answering other questions in

the set does not need extra reasoning over the story.

Contrast set is made by minimal modification

in a question to change its answer (Gardner et al.,

2020). For contrast sets, there is a need to go back

to the story to find the new answer for the question’s

minor variations (see Appendix C.2 for examples.)

The consistency and contrast sets are evaluated only

on the correctly predicted questions to check if the

actual understanding and reasoning occurs. This

ensures the reliability of the models.

Table 5 shows the result of this evaluation on

four Q-TYPEs of SPARTQA-AUTO, where we can

see, for another time, that the high scores on the

Seen test set are likely due to overfitting on training

data rather than correct detection of spatial terms

and reasoning over them.

6.3 Extrinsic evaluation

In this subsection, we take BERT as an example to

show, once pretrained on SPARTQA-AUTO, BERT

can achieve better performance on two extrinsic

evaluation datasets, namely bAbI and boolQ.

We draw the learning curve on bAbI, using the

original BERT as a baseline and BERT further pre-

trained on SPARTQA-AUTO (Fig. 6). Although

both systems achieve perfect accuracy given large

enough training data (i.e., 5k and 10k), BERT

(SPARTQA-AUTO) is showing better scores given

less training data. Specifically, to achieve an accu-

racy of 99%, BERT (SPARTQA-AUTO) requires
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Models
FB FR CO YN

Consistency Consistency Contrast Consistency Contrast Consistency Contrast

BERT 69.44 76.13 42.47 16.99 15.58 48.07 71.41

AlBERT 84.77 82.42 41.69 58.42 62.51 48.78 69.19

XLNet 85.2 88.56 50 71.10 72.31 51.08 69.18

Table 5: Evaluation of consistency and semantic sensitivity of models in Table 4. All the results are on the correctly

predicted questions of Seen test set of SPARTQA-AUTO.

Figure 6: Learning curve of BERT and BERT further

pretrained on SPARTQA-AUTO on bAbI.

Model Accuracy

Majority baseline 62.2

Recurrent model (ReM) 62.2

ReM fine-tuned on SQuAD 69.8

ReM fine-tuned on QNLI 71.4

ReM fine-tuned on NQ 72.8

BERT (our setup) 71.9

BERT (SPARTQA-AUTO) 74.2

Table 6: System performances on the dev set of boolQ

(since the test set is not available to us). Top: numbers

reported in (Clark et al., 2019). Bottom: numbers from

our experiments. BERT (SPARTQA-AUTO): further

pretraining BERT on SPARTQA-AUTO as a QA task.

1k training examples, while BERT requires twice

as much. We also notice that BERT (SPARTQA-

AUTO) converges faster in our experiments.

As another evaluation dataset, we chose boolQ

for two reasons. First, we needed a QA dataset

with Yes/No questions. To our knowledge boolQ

is the only available one used in the recent work.

Second, indeed, SPARTQA and boolQ are from dif-

ferent domains, however, boolQ needs multi-step

reasoning in which we wanted to see if SPARTQA

helps.

Table 6 shows that further pretraining BERT on

SPARTQA-AUTO yields a better result than the

original BERT and those reported numbers in Clark

et al. (2019), which also tested on various distant

supervision signals such as SQuAD (Rajpurkar

et al., 2016), Google’s Natural Question dataset

NQ (Kwiatkowski et al., 2019), and QNLI from

GLUE (Wang et al., 2018).

We observe that many of the boolQ examples

answered correctly by the BERT further pretrained

on SPARTQA-AUTO require multi-step reasoning.

Our hypothesis is that since solving SPARTQA-

AUTO questions needs multi-step reasoning, fine-

tuning BERT on SPARTQA-AUTO generally im-

proves this capability of the base model.

7 Conclusion

Spatial reasoning is an important problem in natu-

ral language understanding. We propose the first

human-created QA benchmark on spatial reason-

ing, and experiments show that state-of-the-art pre-

trained language models (LM) do not have the capa-

bility to solve this task given limited training data,

while humans can solve those spatial reasoning

questions reliably. To improve LMs’ capability on

this task, we propose to use hand-crafted grammar

and spatial reasoning rules to automatically gener-

ate a large corpus of spatial descriptions and cor-

responding question-answer annotations; further

pretraining LMs on this distant supervision dataset

significantly enhances their spatial language un-

derstanding and reasoning. We also show that a

spatially-improved LM can have better results on

two extrinsic datasets (bAbI and boolQ).
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A Question Templates and statistics

Information

Table 7 shows the templates used to create ques-

tions in SPARTQA-AUTO. The “<object>” is a

variable replaced by objects from the story (us-

ing Choose-objects and Describe-objects modules),

and the “<relation>” variable can be replaced by

the chosen relations between objects (using Find-

all-relations module).

The articles and the indefinite pronouns in each

template play an essential role in understanding

the question’s objective. For example, “Are all

blue circles near to a triangle?” is different from

“Are there any blue circles near to a triangle?”, and

“Are there any blue circles near to all triangles?”.

Therefore, we check the uniqueness of the object

definition, using “a” or “the” in proper places and

randomly place the terms “any” or “all” in the YN

questions to generate different questions.

Table 8 shows the percentage of correct labels in

train and test sets. In multi-choice Q-TYPEs, more

than one label can be true.

B Sentences of the Dataset

Table 10 shows some generated sentences in

SPARTQA-AUTO with some specific features that

challenge models to understand different forms of

relation description in spatial language.

C Additional Evaluation Sets

Here we describe three extra evaluation sets pro-

vided with this dataset in more detail, including

unseen test, consistency, and contrast sets.

C.1 Unseen Evaluation Set

We propose an unseen test set alongside the seen

test of SPARTQA-AUTO to check whether a model

is using shortcuts in the language surface by de-

scribing objects and relations with new vocabular-

ies in the samples. This set has minor modifications

that should not affect the performance of a consis-

tent and reliable model. The modifications are ran-

domly applied on a number of generated stories and

questions and include changing names of shapes,

colors, sizes, and relationships’ names (describing

relationships using different language expressions).

The modification choices are described in Table 9.

C.2 Contrast and Consistency Evaluation

For probing the consistency and semantic sensitiv-

ity of models, we provide two extra evaluation test

sets, Consistency and Contrast9.

Consistency set is made by changing parts of

the question in a way that it still asks about the

same information (Hudson and Manning, 2019;

Suhr et al., 2019). For instance, for the question,

“What is the relation between the blue circle and

the big shape? Left,” we create a similar question

in the form of “What is the relation between the big

shape and the blue circle? Right”. Answering these

questions around a pivot question is possible for

human without the need for extra reasoning over

the story and based on the main questions’ answer.

Hence, the evaluation on this set shows that models

understand the real underlying semantics rather

than overfit on the structure of questions.

Contrast set: This set is made by minor changes

in a question that changes the answer (Gardner

et al., 2020). As an instance, in the question “Is

the blue circle below the black triangle? Yes,” we

create a contrast question “Is the blue circle below

all triangles? No” by changing “the black trinagle”

to “all triangles”. The evaluation on this set shows

the robustness of the model and its sensitivity to the

semantic changes when there are minor changes in

the language surface 10.

D Extra Annotations

Alongside the main SPARTQA-AUTO’s stories and

questions we provided some extra annotation to

help the models to understand the spatial language

better.

D.1 Detailed Annotation and Scene-Graphs

Providing in-depth human annotations is quite ex-

pensive and time-consuming. In SPARTQA-AUTO,

we generated fine-grained scene-graph based on

the story. This scene-graph contains blocks’ de-

scription, their relations, and the objects’ attributes

alongside their direct relations with each other. The

scene-graphs can be used for the models to under-

stand all spatial relations directly mentioned in the

textual context. Figure 7 shows an example of this

scene-graph. The scene-graph can provide strong

supervision for question answering challenges and

9for some questions, it is not possible to generate a com-
plementary set

10Based on the original contrast set paper, consistency and
contrast set should be generated manually to control the se-
mantic change. In our case that we are probing the spatial
language understanding of models, we must change parts that
affect spatial understanding, which can be implemented by
some static rules.
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Q-Type Q-Templates Candidate answer

FR what is the relation between <object>and <object>?

Left, Right, Below,

Above, Touching,

Far from, Near to

CO

What is <relation >the <object>?

an <object1>or an <object2>?

Which object is <relation >an <object>?

the <object1>or the <object2>?

Object1, object2,

Both, None

YN
Is (the | a )<object1><relation>(the | a) <object2>?

Is there any <object1>s <relation>all <object2>s?
Yes, No, Don’t Know

FB
Which block has an <object>?

Which block doesn’t have an <object>?
Name of blocks, None

Table 7: Questions and answers templates.

Figure 7: Scene-graph

can be used to evaluate models based on their steps

of reasoning and decisions.

D.2 SpRL Annotation

We also provided spatial annotations for each sen-

tence and question, based on Spatial Role Labeling

(SpRL) annotation scheme (Kordjamshidi et al.,

2010)(Fig. 11). This annotation is generated by

hand-crafted rules during the main data generation.

SpRL is used for recognizing spatial expressions

and arguments in a sentence. This annotation is use-

ful for applications that need to detect and reason

about spatial expressions and arguments.

E QA Language Models for Spatial

Reasoning over Text

Figures 8a and 8b depict the architecture used for

further fine-tuning language models on SPARTQA

described in section 5.

F bAbI and boolQ Datasets

Figure 9 shows an example of the bAbI dataset (We-

ston et al., 2015) task 17.

To solve task 17 of bAbI , we implement two

SpRL+rule-based and neural network models. The

Language Model
(FB-CO)

CLS SEPSEPQ1 Q2 Qn S1 S2 Sm

0 100 0 0 1 1 1

Token
Embedding

Segment
Embedding

Question Story

Last layer
representation

LSTM

Classifier

Correct Answer 

SEPC1

0

Ck

0

Candidate
option

0

ECLS ESEPESEPEQ1 EQ2 EQn ES1 ES2 ESmESEPEC1 ECk

TCLS TSEPTSEPTQ1 TQ2 TQn TS1 TS2 TSmTSEPTC1 TCk

(a) LMQA Architecture for CO and FB Q-TYPEs

Language Model
(YN-FR)

CLS SEPSEPQ1 Q2 Q3 Qn S1 S2 S3 Sm

Boolean classification
candidate options 1

0 100 0 0 0 1 1 1 1

Token
Embedding

Segment
Embedding

Question Story

ECLS ESEPESEPEQ1 EQ2 EQ1 EQn ES1 ES2 ES3 ESm

Last layer
representation

Correct Answer 

TCLS TSEPTSEPTQ1 TQ2 TQ1 TQn TS1 TS2 TS3 TSm

Boolean classification
candidate options 1Boolean classification

candidate options 1

Inference 

(b) LMQA Architecture for FR and YN Q-TYPEs

Figure 8: LMQA for Spatial Reasoning over Text

“The pink rectangle is below the red square. 
The red square is below the blue square.”
1. Is the red square below the pink rectangle? No
2. Is the pink rectangle below the blue square? Yes

Figure 9: An example of bAbI dataset, task 17.

SpRL+rule-based model first, finds different spa-
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Q-TYPE Candidate Answers train test

FR

(Multiple

Choices)

Left 20.7 17.9

Right 21.4 16.7

Above 26.9 25.4

Below 37.2 42.9

Near to 5.8 2.9

Far from 1.3 0.56

Touching 0.57 0.27

DK 0.52 0.32

FB

(multiple

Choices)

A 49.8 49.4

B 50.1 50

C 35.1 62

[] 7.1 90.5

CO

(Single

choice)

Object1 25.4 26

Object2 25.3 24.9

Both 44.3 43.9

None 4.9 5.0

YN

(Single

choice)

Yes 53.3 50.5

No 18.7 23.6

DK 27.8 25.9

Table 8: The percentage of each correct label in all sam-

ples. *The candidate answers for the FB Q-TYPE can

be varied, based on its story. **CO can be considered

as a multiple choice or single choice question. E.g.,

in "which object is above the triangle? the blue cir-

cle or the black circle?" you can consider two labels

with boolean classification on each "blue circle" and

"black circle" or consider it as a four labels classifica-

tion: "blue circle," "black circle," "both of them," and

"None of them." *** DK, None, [], all mean none of

the actual labels are correct.

tial relation triplets (Landmark, Spatial-indicator,

trajector) for each fact in a story the applies spatial

rules over these extracted triplets and report all pos-

sible relations between two asked objects. Finally,

it checks whether the asked relation existed in the

find relation. This model solves task 17 of the bAbI

with 100% accuracy.

To implement the neural network approach, we

use huggingface implementation of pre-trained

BERT (Devlin et al., 2019). We apply a boolean

classifier on the output of “[CLS]” token from the

last layer of BERT model for each “Yes” and “No”

answers (the same as model used on YN question

types.) We use Adamw (Loshchilov and Hutter,

2017) optimizer and 2e− 6 learning rate with neg-

ative log-likelihood loss objective and train the

model on the 10k, 5k, 2k, 1k, 500, and 100 por-

tion of bAbI’s training questions. The model yields

100% accuracy on 10k, and 5k and 99% accuracy

Type Original Set Unseen Set

Shapes
Square, Circle,

Triangle

Rectangle, Oval,

Diamond

Relations
Left, Right,

Above, Below

Left side,

Right side,

Top, Under

Colors
Yellow, Black,

Below

Green, Red,

White

Size
Small,

Medium, Big

Little, Midsize,

Large

Table 9: Modifications on the unseen set

on 2k and 1k training samples.

Figure 10 shows an example of boolQ dataset.

To Answering the questions of this dataset, we use

the same setting as neural network model on bAbI

to further fine-tune BERT on boolQ.

Figure 10: An example of boolQ dataset.
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Figure 11: SpRL annotation for an example sentence from SPARTQA.
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Examples Features

Block A is above Block C and B. Using conjunction to describe relation between

more than two blocks.

The small circle is above the yellow square and

the big black shape.

Using conjunction to describe relationships be-

tween more than two objects.

The yellow square number one is to the right

of and above the blue circle.

Using conjunction for more than one relation.

Block B has two medium yellow squares and

two blue circles.

Describing a group of objects with the same

properties. In the next sentences, they are men-

tioned by an asigned number. For example, the

blue circle number two.

The blue circle is below the object which is to

the right of the big square.

Using nested relations between objects in their

description.

A small blue circle is near to the big circle. It

is to the left of the medium yellow square.

Using coreferences for an entity described in

the previous sentences.

There is a block named A. One small yellow

square is touching the bottom edge of this block.

The verb matches the number of the subject.

What is the relation between black object and a

big circle?

Using shape, object, and thing, which are a gen-

eral description of an object. It could be the

“black triangle” or the “black circle” mentioned

in the story.

Table 10: Particular features of the dataset


