
 Open access Proceedings Article DOI:10.1109/TRUSTCOM.2011.137

SPARTS: Simulator for Power Aware and Real-Time Systems — Source link

Borislav Nikolic, Muhammad Ali Awan, Stefan M. Petters

Institutions: International Student Exchange Programs

Published on: 16 Nov 2011 - Trust, Security And Privacy In Computing And Communications

Topics: Source code and Scheduling (computing)

Related papers:

 Enhanced Race-To-Halt: A Leakage-Aware Energy Management Approach for Dynamic Priority Systems

 Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor

 Dynamic integrated scheduling of hard real-time, soft real-time, and non-real-time processes

 Leakage aware dynamic voltage scaling for real-time embedded systems

 Dynamic slack reclamation with procrastination scheduling in real-time embedded systems

Share this paper:

View more about this paper here: https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-
18bzdz848z

https://typeset.io/
https://www.doi.org/10.1109/TRUSTCOM.2011.137
https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-18bzdz848z
https://typeset.io/authors/borislav-nikolic-47ugonr5p9
https://typeset.io/authors/muhammad-ali-awan-me6p7xwbdg
https://typeset.io/authors/stefan-m-petters-2vuir3fp3j
https://typeset.io/institutions/international-student-exchange-programs-2c36vhx6
https://typeset.io/conferences/trust-security-and-privacy-in-computing-and-communications-23ioaccs
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/topics/scheduling-computing-3elthrty
https://typeset.io/papers/enhanced-race-to-halt-a-leakage-aware-energy-management-4prc0lu9xq
https://typeset.io/papers/algorithms-and-complexity-concerning-the-preemptive-28lka04wdr
https://typeset.io/papers/dynamic-integrated-scheduling-of-hard-real-time-soft-real-2fy05em76y
https://typeset.io/papers/leakage-aware-dynamic-voltage-scaling-for-real-time-embedded-krt30bkev2
https://typeset.io/papers/dynamic-slack-reclamation-with-procrastination-scheduling-in-14uijlqrxb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-18bzdz848z
https://twitter.com/intent/tweet?text=SPARTS:%20Simulator%20for%20Power%20Aware%20and%20Real-Time%20Systems&url=https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-18bzdz848z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-18bzdz848z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-18bzdz848z
https://typeset.io/papers/sparts-simulator-for-power-aware-and-real-time-systems-18bzdz848z

SPARTS: Simulator for Power Aware and

Real-Time Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-111101

Version:

Date: 11-07-2011

Borislav Nikolic

Muhammad Ali Awan

Stefan M. Petters

Technical Report HURRAY-TR-111101 SPARTS: Simulator for Power Aware and Real-Time Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

SPARTS: Simulator for Power Aware and Real-Time Systems

Borislav Nikolic, Muhammad Ali Awan, Stefan M. Petters

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract

Real-time systems demand guaranteed and predictable run-time behaviour in order to ensure that no task has missed its

deadline. Over the years we are witnessingan ever increasing demand for functionality enhancements in the embedded

real-time systems. Along with the functionalities, the design itself grows more complex. Posed constraints, such as

energy consumption, time, and space bounds, also require attention and proper handling. Additionally, efficient

scheduling algorithms, as proven through analyses and simulations, often impose requirements that have significant

run-time cost, specially in the context of multi-core systems. In order to further investigate the behaviour of such

systems to quantify and compare these overheads involved, we have developed the SPARTS, a simulator of a generic

embedded real-time device. The tasks in the simulator are described by externally visible parameters (e.g. minimum

inter-arrival, sporadicity, WCET, BCET, etc.), rather than the code of the tasks. While our current implementation is

primarily focused on our immediate needs in the area of power-aware scheduling, it is designed to be extensible to

accommodate different task properties, scheduling algorithms and/or hardware models for the application in wide

variety of simulations. The source code of the SPARTS is available for download at our website.

SPARTS: Simulator for Power Aware and
Real-Time Systems

Borislav Nikolić Muhammad Ali Awan Stefan M. Petters

CISTER Research Unit, ISEP-IPP, Porto, Portugal

borni,maan,smp@isep.ipp.pt

Abstract—Real-time systems demand guaranteed and pre-
dictable run-time behaviour in order to ensure that no task
has missed its deadline. Over the years we are witnessing
an ever increasing demand for functionality enhancements in
the embedded real-time systems. Along with the functionalities,
the design itself grows more complex. Posed constraints, such
as energy consumption, time, and space bounds, also require
attention and proper handling. Additionally, efficient scheduling
algorithms, as proven through analyses and simulations, often
impose requirements that have significant run-time cost, specially
in the context of multi-core systems.

In order to further investigate the behaviour of such systems
to quantify and compare these overheads involved, we have
developed the SPARTS, a simulator of a generic embedded real-
time device. The tasks in the simulator are described by exter-
nally visible parameters (e.g. minimum inter-arrival, sporadicity,
WCET, BCET, etc.), rather than the code of the tasks. While our
current implementation is primarily focused on our immediate
needs in the area of power-aware scheduling, it is designed to be
extensible to accommodate different task properties, scheduling
algorithms and/or hardware models for the application in wide
variety of simulations. The source code of the SPARTS is available
for download at [1].

I. INTRODUCTION

Nowadays, there is an increasing need for embedded sys-

tems. Besides the demand for enhancing the functionalities,

these systems also have to accommodate even more complex

mechanisms of interaction with the environment. The most

obvious examples are avionics, automotive electronics and

mobile phones.

Some of these devices have to guarantee results within a

given time. Such systems, which have to fulfil posed con-

straints, are called real-time systems. In these systems, the

correctness of execution presents only one component of the

correct operation, another one is the actual time when the

result of the computation is available.

On top of these issues, real-time embedded systems often

have limited or intermittent power supply. There are several

possibilities to optimise the system consumption of the sys-

tem. One is to use Dynamic Voltage and Frequency Scaling

(DVFS), another is to use sleep states. This means that in the

analysis of such systems, power/energy management must be

properly considered.

This work was supported by the RePoMuC project, ref. FCOMP-01-
0124-FEDER-015050, funded by FEDER funds through COMPETE (POFC
- Operational Programme ’Thematic Factors of Competitiveness) and by
National Funds (PT) through FCT - Portuguese Foundation for Science and
Technology, and the RECOMP project, funded through the FCT under grant
ref. ARTEMIS/0202/2009, as well as by the ARTEMIS Joint Undertaking,
under grant agreement Nr. 10202.

Functionality enhancements in the applications for embed-

ded real-time systems not only require changes within the

software, but also pose significant requirements regarding

needed hardware capacities. Also, in some cases it is needed

to provide the integration of several applications with different

criticality levels into one device. For instance, in modern cars

safety critical applications are integrated with comfort func-

tionality. One solution for arising problem is the introduction

of multi-core devices in this domain.

In order to provide efficient execution of such applications

and their tasks, specific algorithms for scheduling are needed.

They are very diverse in terms of requirements and produced

results. Given those, there is the question of evaluating the

scheduling approaches and identifying the trade-offs involved

in employing one strategy over another.

One approach in tackling this problem is to build the system

model. It gives the possibility to hide unnecessary and negli-

gible details, so only aspects of interest can be implemented

and tested. This method is very fast and can provide the

comparison between different scheduling approaches. SPARTS

is a simulator that can model aforementioned different system

behaviour aspects.

The contributions of this paper are as follows. We present

the SPARTS - a slot based execution environment. The tool

itself provides extensive flexibility in task-set generation for

different scenarios and purposes. The task-sets can be used

for schedulability tests as well as simulation purposes. The

modular structure of the SPARTS allows easy development and

integration of new scheduling algorithms for both, single and

multi-core systems. The results of the simulations give indi-

cations about the performance and various overheads incurred

by different schedulers (pre-emptions, energy consumptions,

migrations for multi-cores, etc.) and can be used as a filter

before exhaustive and exact analysis on a real system is

performed. The SPARTS can be extended and adapted to fit

the needs of the user in the area of interest.

The SPARTS performs the simulation in event-driven man-

ner. Rather than doing cycle-step execution, the SPARTS

works by looking backward into the interval between two

consecutive job releases and calculates the execution without

unnecessary cycle-level granularity. With this approach we

save the computation and yet provide ”correct” execution mod-

elling. This allows to perform the simulations of large task-sets

for long periods of time with high temporal efficiency.

The rest of the paper is organised as follows. Next section

summarises related work. In Section III we introduce SPARTS

and describe its modules. Section IV describes the software

architecture of the SPARTS with the focus on the extensibility

and provides the measurements. Finally, Section V concludes

the paper with the list of future-work activities.

II. RELATED WORK

The work of De Vroey et al. [2] presents not only the

simulation tool, but also the language for implementation of

new scheduling mechanisms. The generic structure of the

language requires significant effort to implement scheduling

algorithms and also to extend the language to incorporate ad-

ditional features, such as work-conserving algorithms. The tool

is focused only on scheduling policies and is computationally

very demanding, which brings constraints on both, simulation

time and number of tasks that comprise the task-set.

Diaz et al. [3] proposed Realtss - a Simulator focused

only on scheduling part. It incorporates several most common

scheduling policies and includes the mechanism for resource

sharing. However, the simulator has cumbersome mechanism

for the specification of the task-sets into the system. The

tool is only focused on periodic tasks and fails to cover

sporadicity issues. Despite the fact that simulator allows easy

implementation of new scheduling algorithms, it does not

provide the mechanism for implementing ones that consider

non-work-conserving behaviour (procrastination, sleep states

etc.).

Kramp et al. [4] present a framework for implementation of

new scheduling algorithms for the multi-cores. The framework

executes in time-driven manner, which is computationally

very expensive, even for task-sets with a small number of

tasks: consulting scheduler, dispatcher and refreshing the ready

queue on every tick of the CPUs in the simulation process.

The Cheddar developed by Singhoff et al. [5] consists of

both, feasibility analyses and simulation engine. There are sev-

eral feasibility analyses, such as analytically derived sufficient

tests and observations of worst-case response-times for the

tasks. However, these mechanisms are available only for small

number of scheduling algorithms and cannot be applied for

any newly devised ones. Also, this tool accommodates tasks

with arbitrary deadlines but works only with periodic task-sets.

The implementation of new scheduling algorithms requires

significant effort. The simulation execution is computationally

demanding.

Urunuela et al. in [6] give a description of multi-core

simulation tool for scheduling evaluation called STORM. It

comprises multiple types of tasks. Precedence constraints can

be specified. Also, the STORM measures various characteris-

tics apart from scheduling, such as energy consumption, CPU

load, etc. However, as all previously described tools, this one

also executes the simulation in time-driven manner, which is

computationally demanding.

SymTA/S [7] presents a package specialised for scheduling

analysis and optimizations applied in many areas, such as

electronic control units, buses / networks and complete em-

bedded real-time systems. Unlike SymTA/S which is generic,

RapiTime [8] targets real-time, embedded applications. It col-

lects execution traces to provide execution time measurement

statistics and to allow off-line browsing through the execution

history for debugging and optimisation purposes. It also helps

in determining the worst-case execution time, which can be

further used for optimisation purposes. However, both tools

are commercial, so source code availability and eventual

extensibility for academic purposes is questionable.

III. SPARTS

We firstly describe one concrete system model by which

we adopted the simulator for our own research purposes.

However, our approach with SPARTS is more general and

allows accommodations of various system models for different

purposes, where some existing parameters can be omitted due

to irrelevance to the current cause, while some other, which

we didn’t introduce here, can be integrated.

A. System Model

The system Γ is represented as �τ,α, µ�. Where τ is task set,

α is the scheduling algorithm and µ represents the number of

CPU-s. The τ is defined as �U, ��, where U is total utilization,

while � represents the number of the tasks. Single task is

represented as τi and is described by �Ti, Di, Ci,Θi�, which

relate to minimum inter-arrival time, relative deadline, WCET,

and task type respectively. Besides these parameters, which

apply for every scheduling algorithm and form a generic

base, we also implemented some of the features that surface

only in one specific group of schedulers. For example, by Ai

we denote the property called the budget, which is used in

reservation-based frameworks. Also, for our own simulation

purposes we assumed and used implicit deadlines for the tasks,

precisely, both scheduling algorithms that we implemented

and tested require task-sets with D = T feature. However,

SPARTS also accommodates tasks with arbitrary deadlines.

Each job is represented as ji,m and is described by

�ri,m, di,m, ĉi,m�, corresponding to release time, absolute

deadline, and actual execution time respectively. Apart from

these common, scheduler-generic properties, jobs also contain

the specific ones. One example is ai,m, which presents corre-

sponding remaining budget and is specific for the reservation

based framework. Maximum sporadic delay and best-case

execution time limits are represented as ∆ and Cb and are frac-

tions of minimum inter-arrival time and WCET, respectively.

The presence of the budget property allow easy integration of

reservation-based scheduling frameworks [9].

B. General Overview

Figure 1 summarises the general SPARTS structure. The

Simulator is divided into four different parts: 1) Task-set

Generator (TSG), 2) Job Generator (JG), 3) Job Sequencer

(JS) and 4) Execution Environment (EE). The input parameters

are delivered to the TSG, which creates the task-set. The

generated task-set is passed into the JG and job instances for

desired simulation time are produced. The JS orders the jobs

by their release times and prepares a stream for the execution.

Then, the EE executes the stream of jobs and collects required

parameters for the reporting tool to do further analyses.

C. The Task-Set Generator

The basic purpose of the TSG is to give user an ability

to craft different task-sets. A set of abstract parameters (to-

tal utilisation, distribution of tasks according to task types,

minimum inter-arrival time ranges, randomisation level, etc.)

Hardware Model

Input Parameters

Task−Set Generator

Task

Task

Task

Task

Job Job
Job

Job

Job

Job Job Job

Job

Job Sequencer Event Event Event

Job Generator

Scheduler

Execution Environment

Fig. 1. The Simulator Architecture

form the global values for the task-set and are used to create

concrete tasks. If greater control of task-set generation process

is needed, fine-tuned creation is allowed through injection of

concrete parameters into generating tasks (deadline, execution

time, minimum inter-arrival, task type, etc.), as opposed to

allowing the TSG to produce all the parameters by applying

selected randomisation level. The purpose of use defines which

of these two options is more convenient. Industry standard

XML files are used to input the parameters for both of them.

In case of the abstract input mechanism, the following tasks

parameters are taken into consideration.

Number of tasks n is self explanatory.

System Utilisation presents the target utilisation of the task-

set that will be generated as the output of this module.

Task Break Down allows distinction among tasks accord-

ing to their needs or purposes. As explained in Section I,

sometimes tasks of different types have to be incorporated

into one task-set. This possibility allows separation and dif-

ferent treatment of those tasks by the scheduler. One such

scheduling algorithm that handles different task types is Rate-

Based Earliest Deadline (RBED) [9]. For our own simulation

purposes, which focused on energy consumption properties of

scheduling, we assumed one task break down option and it

aligns with the classification of the aforementioned scheduler

(hard real time (HRT), soft real time (SRT) and best effort (BE)

tasks). However, neither the number of task types, nor their

particular use are limited and only negligible effort is required

to extend the existing mechanism for other uses/divisions.

Thus, one possible breakdown is type ∈ HRT, SRT,BE.

The total number of tasks and system utilisation are broken

down between those types. For example, a break-down of

{10, 20, 70} would allocate 10% of the total number of tasks

to HRT, 20% to SRT and 70% BE tasks. Similar break down

is possible for the total utilisation. Each task is assigned

individual utilisation Ui from the respective utilisation share of

its type, where
�

i∈HRT

Ui = UHRT . The same follows for the

SRT and BE tasks. Nevertheless, UHRT +USRT +UBE = U .

Minimum Inter-Arrival TimeBounds presents the interval

between the minimal and the maximal value for the inter-

arrival time of a task. Again, this is scheduler specific feature

by which a different treatment of task classes can be specified,

depending on the needs of the user. This interval is defined

to restrict the minimum inter-arrival time of the specific tasks

within the specified interval. For example, we have chosen that

BE tasks have longer period/minimum inter-arrival time than

RT tasks. For each task a random number from given interval

is selected and used as its minimum inter-arrival time.

Individual Task Utilisation Ui is calculated based on the

following reasoning.

Uindvar ≤ Urel ≤ 1 (1)

Ureltot =
�

Urel (2)

Ui =
Urel

Ureltot

× Utype (3)

Uindvar is a user defined non-negative variable less than or

equal to 1. This variable allows the variances level in the in-

dividual utilisation of the tasks within the task type and hence

controls the randomisation level. In order to equally distribute

utilisation of any type among its tasks (no randomisation), set

Uindvar = 1, which means ∀i ∈ type, Ui =
Utype

n
. With the

minimum inter-arrival time Ti and the task utilisation of Ui

the worst-case execution time is calculated as Ci = Ui ∗ Ti.
Maximum Sporadic Delay Limit ∆ places a limit for the

sporadic delay for all tasks. This is expressed as a fraction

of the minimum inter-arrival time. Each task is randomly

assigned a sporadic delay ∆i in the interval [0;∆∗Ti]. Setting

∆ = 0 creates strictly periodic system.
BCET Limit f b expresses the minimum best-case execution

time for all tasks and is expressed as a fraction of the WCET

Ci. Each task is assigned an individual BCET f b
i in the interval

[f b ∗Ci;Ci], where f b gets the value between 0 and 1. Setting

f b to 1 means that all executions will be performed with

WCET.
Similar to listed common parameters, additional, scheduling

specific parameters can be specified as well. For example,

reservation-based scheduling algorithms require budget ded-

icated to each task based on its type. Expected slack and/or

borrowing intensity from future for each task are also config-

urable properties.
The automatic generation of task-sets with configurable

randomisation level is helpful for testing the large number

of task-sets that vary in the parameters of interest. However,

in many cases it is desirable to test concrete, given task-

sets. These might be corner cases, or the scenarios which

reflect some real system. For this purpose the TSG provides

an interface to load pre-defined concrete task-sets and forward

that to the JG.

D. Jobs Generation

As previously described, the TSG is only concerned with

creating a task-set, with a number of characteristics limiting,

but not fully describing the individual characteristics of the

jobs created from that particular task. In real systems, not only

tasks vary in their requirements, the jobs of the same task also

vary in behaviour depending on external system state and input

Environment
Job Sequencer

Event Event Event

Event Event Event

Job Job Job

Job

Job

Job Job Job

Job

Execution

Fig. 2. The Job Sequencer output

parameters. We implemented this feature by varying the actual

execution times and the sporadic delays of each job prior to

their release, within the interval specified for each task. For

that purpose, BCET limit f b
i and sporadic delay limit ∆i of

the tasks are exploited.

The actual inter-arrival time of two successive jobs is

generated using a random value in the interval [0,∆i] and

adding it to the minimum inter-arrival time Ti of the task.

Similarly, the actual execution time of a job is derived from

the interval [f b
i ∗ Ci, Ci]. An obvious future extension would

be to allow the use of execution-time profiles and sporadic-

delay profiles in the process of job generation. Sporadic system

model is shaped by the maximum sporadic delay limit ∆. As

previously mentioned, by setting the value of ∆ = 0 we can

create strictly periodic behaviour. There is also a combined

approach, where with ∆ = ∆� only for the first job instance of

a task, and ∆ = 0 for the rest we simulate periodic behaviour

with specific initial offsets. Similarly, varying execution time

of the jobs can be restricted to WCET by setting f b = 1.

In this case, the randomisation of the actual execution times

is omitted. Analyses with this approach are very common in

safety critical real-time systems.

Since SPARTS is event-driven and not tied to the cycles, it

gives the possibility to choose the granularity of the system

resolution. Logically, each job release is considered as a sep-

arate event. As we use a discrete notion of time, simultaneous

releases are not uncommon. Therefore, jobs released at the

same time are considered as different events with zero time

difference. Although, the simulation process is optimised by

merging the events with the identical temporal characteristics

into one. For implementation purposes we decided that event

merely presents a carrier of time, on top of which jobs with the

same release time are concatenated. The reason for creating

the events only for job releases and not for all the activities

within the system (e.g. deadlines, pre-emptions) is twofold.

Firstly, event streams produced in this way present the order-

ing of activities within the task-set, independent of concrete

scheduler. With this in mind, the same event stream can be

forwarded to different scheduler instances within the system

for parallel execution. Secondly, event stream generation is

recognised as the performance bottleneck of the simulation

process. For efficiency purposes it is beneficial to split the

process into two stages; in the event generation stage the

events (job releases) are created and in the execution stage,

the other scheduler specific system activities, such as deadlines

and the pre-emptions, are injected.

E. Job Sequencer

The JS is the module that receives that jobs from the JG

and arranges them in timely manner. Basically, it produces

the event stream for the EE. The event stream may have

some dependence on scheduling algorithm. For instance, for

partitioned multi-core scheduling approach, multiple event

streams will be produced for different cores, as shown in

Figure 2. One the other hand, for single core and multi-core

global scheduling algorithms, a single event stream will be

created and utilised.
The event stream is generated for the specified time du-

ration. Sometimes, the simulation time is long enough to be

very demanding in both, computation and memory resources.

Moreover, the behaviour of the tasks can also be very demand-

ing in a very short time interval. To resolve this issue and

assure good performance, the simulation time can be broken

into smaller pieces, which would be sequentially introduced to

the EE on demand. We call that time window a horizon. During

specified horizon, jobs are generated for every task. Also, for

every task the information are kept about the offset of the first

next job instance that is out of the current horizon. When the

events are generated for next horizon, these information are

used. With this approach we maintain the flow of the relative

offsets between the jobs of the same task belonging to different

horizons.
While the JG produced the jobs with the relative time

offsets, the JS allows injections of absolute offsets. This means

that with multiple simultaneous releases, a critical instants can

easily be generated (initial offset equals 0 for every task). The

later allows, for instance, to analyse the longest busy period in

the Earliest Deadline First (EDF) algorithm. If one is interested

in observing the average behaviour, a random offset can be

achieved by discarding the first job release of every task.

F. Execution Environment

EE consists of two mutually interacting modules, the

Scheduler and the Execution Engine. The Scheduler consults

selected scheduling algorithm and follows its policies. It

manipulates the ready queue, selects next job for execution

and, if appropriate, performs power management instructing

the hardware to perform state changes. These decisions are

passed to the Execution Engine through the method invo-

cations. For instance, the next executing job is forwarded

along with the command to execute it. Other possibility is

to issue a command for going into particular sleep state (for

the scheduling algorithms which utilise sleep states). Also,

along with the commands, the duration of that particular

command may be specified. We implemented this feature with

the Timers mechanism. Timers present possible interrupts of

the execution process, when something that might change the

execution process happens, such as new arrivals, expirations of

the deadlines, completions of the executions. Timers are set by

the Scheduler. The Execution Engine simulates real execution

by calculating elapsed time until the first timer would fire,

decreasing the outstanding execution times of the jobs, going

into or out of the sleep states, etc. Then the control is passed

back to the Scheduler to decide future steps (e.g. select new

job for execution (if any), set new timers) and gives the control

back to the Execution Engine.

Additionally, during the execution process, if appropriate,

the power model is consulted. As mentioned, current imple-

mentation includes sleep states which are utilised by both

LC-EDF [10] and ERTH [11] schedulers but also many other

power aware scheduling mechanisms which might be imple-

mented. The power model provides the information about

the energy consumption in the state which execution unit

currently utilises. It calculates the overhead of transitions,

such as going from active to sleep state or even switching

between different sleep states, by taking into account power

properties of each state. In order to completely cover power-

aware scheduling area, we plan to extend the model to also

embrace the DVFS methodology. This model of execution

allows the incorporation of overheads of many types. Beyond

power-related aspects, like the integration of the overheads

of inter-process communication, operating system, and task

dependencies are intended.

The advantage of the event driven manner of the EE is that

it’s not required to keep the track of the execution and the

events simultaneously and thus enables a very clean and well

performing implementation. Beyond the current bandwidth

server implementations, other schedulers like FP can be easily

implemented and are planned for future work to compare

fixed-priority (FP) with the rate-based environment. Brief

description of that process is given in Section IV-B.

The simulation of elapsed time since the last event allows

easy extraction of various performance parameters such as

number of pre-emptions, energy consumption, memory ac-

cesses, resource sharing etc. The EE can easily be extended

for multi-core scheduling algorithms. For partitioned multi-

core algorithms, multiple entities of execution engines can

be instantiated to represent each core in parallel, where each

instantiation has its own event stream to execute. However,

in case of global multi-core scheduling algorithm, there exists

one single event stream and therefore one ready queue from

which every core selects the task for the execution.

G. Repeatability and Randomisation

In SPARTS we paid close attention to allow both, re-

peatability and randomisation. Existing random number gen-

erators are platform dependent (the same system call return

different values in different operating systems). In order to

allow platform independency, consistency of the results and

repeatability, we implemented self-contained pseudo-random

number generator with the uniform distribution [12] that is

based on Multiplicative Congruential Method. Our current

implementation uses uniform distribution, however, we plan to

extend the simulator in order to utilise different distributions

and use them where convenient for more realistic descriptions

of different stochastic processes in the system (sporadicity,

actual execution times, aperiodic arrivals, etc).

We implemented a two level randomisation approach for

generating task and job parameters. With this we simulated the

variances in the minimum inter-arrival time and the execution

time. For instance, to derive the execution time, each task τi

gets a random number y, selected within an initial range of

[Cb, 1] ∗Ci. This randomly selected number y creates another

range [y, 1]∗Ci to select the actual execution time Ĉ for each

job ji,m of the task τi. Thus, tasks differ in the amount of

variation of the execution times for individual jobs of a task.

This approach gives the possibility to effectively control the

influence of the randomisation on the simulation process and

in the same time allows the reproduction of the same results

with the same parameters, which is of paramount importance

in post-simulation analysis.

IV. USE AND APPLICATION

A. Input and Output Mechanisms

The simulation itself requires many input parameters. Our

approach was to use Convention over Configuration. This

means that all the parameters in the system already have

default values, which can be explicitly overridden by the user.

Some of the default parameters are located into the system

XML files, while the other are embedded into the code. The

users can change the parameters by accessing exposed XML

files. At the start up, the SPARTS checks whether user altered

some parameters and if so, uses them during the execution. In

similar manner, the system provides output results in readable

form through the CSV format.

B. Architecture and Extensibility

The simulator is developed in the Java programming

language in the Eclipse Framework. Aforementioned parts

(TSG, JG, JS, EE) are all different software modules that

are communicating through defined interfaces. The purpose

for introduction of the loose coupling mechanism was the

assumption that some users may be interested in enhancing the

functionality of one part of the system without any knowledge

about the rest. This approach separates the responsibilities

among the modules, so any potential extensions, in most cases,

require the alteration of only one module.

C. Interfaces and Modularity

The modular design of the SPARTS also allows independent

usage of its parts for different purposes. For that reason we

provide brief description of the interfaces between the modules

and potential separated use. This modular break-down allows

easy invocation of desired scenarios for testing purposes, such

as corner cases. Therefore, SPARTS not only provides the

possibility to test the average case with the average task-

set like the majority of the simulators do, but also to further

investigate the behaviour of different scheduling mechanisms

slightly below, above, or exactly at the threshold.

TSG provides the possibility to create large amounts of

task-sets for substantial testing purposes. In this way, the

TSG is used as a single module which is fed with the task-

system properties. As an output the module generates and

provides the task-sets. Populated objects can be passed to

another application for analyses or can be saved into a file.

These task-sets can be used for deriving a comparison and

analysis of the acceptance ratios for different scheduling tests.

JG & JS can also act as stand-alone parts and can be

initialised by the task-sets provided in the the files or from

some other applications. As an output, theses modules produce

the event streams ready for the execution. The streams can also

be passed to another software for different analyses.

EE can solely be used apart from the rest of the SPARTS for

execution purposes. The parameters for the execution can be

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

2.5

3

3.5

Horizon Size (Logarithmic Scale)

A
c
tu

a
l
S

im
u

la
ti
o

n
 T

im
e

 (
in

 S
e

c
o

n
d

s
)

LC−EDF

Fig. 3. Horizon size trade-off

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number of Tasks

A
c
tu

a
l
S

im
u

la
ti
o

n
 T

im
e

 (
in

 S
e

c
o

n
d

s
)

LC−EDF (No Horizon)
ERTH (No Horizon)
LC−EDF (With Horizon)
ERTH (With Horizon)

Fig. 4. Execution time with respect to task-set size

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

A
c
tu

a
l
S

im
u

la
ti
o

n
 T

im
e

 (
in

 S
e

c
o

n
d

s
)

Simulated Time (in Seconds)

LC−EDF (No Horizon)
ERTH (No Horizon)
LC−EDF (With Horizon)
ERTH (With Horizon)

Fig. 5. Simulation time vs actual simulated time

provided by some other application. The execution itself is also

closely tied to the reporting mechanism which can populate

the statistics or the analysis findings in desired way.

D. Examples

In order to illustrate the performance of the SPARTS, we

have simulated both LC-EDF [10] and ERTH [11] schedul-

ing algorithms. We also included horizon mechanism for

the performance comparison. The hardware used during the

simulations consists of Intel Core 2 Duo CPU (3 GHz)

with 2 GB of ram. Firstly, we analysed the trade-off when

choosing the horizon length. The simulation assumed task-

set size |T | = 100, U = 75% and the simulated period

t = 1000 seconds. We varied the horizon length from 1

50
of

maximum inter-arrival time for HRT tasks to the size of the

complete simulated period (the execution without the horizon

mechanism). From the Figure 3 it is clear that small time-

windows bring unnecessary overheads. The extension of the

horizon gives better results, but from one point onwards, the

simulation time again starts to increase, due to very large lists

and queues as a direct result of the horizon length. We found

for this particular set-up that the size of 0.6 of the maximum

inter-arrival time for the HRT tasks gives the best results and

we used it in the other experiments for comparison.

Figure 4 depicts the effect of the variation in the task-

set size over the actual execution time for both algorithms,

with and without the horizon mechanism. For this experiment

we used t = 100, U = 0.75, and the |T | is varied from

100 to 1000 tasks. The actual simulation time increases, as

expected, with the number of tasks because the system has

to evaluate denser event stream, as the number of events

increases with an increase in the number of the tasks and vice

versa. However, it is clear that simulations with the horizon

mechanism outperform several times ones without it.

The effect of varying the execution time is studied in Fig-

ure 5. We fixed the |T | = 100 and U = 75%. t is varied from

100 to 1000 seconds. The actual simulation time increases

approximately linearly with the increase of the simulated time

for the same |T |. The conclusion holds for both algorithms.

The same reasoning about the performance of the simulations

with and without the horizon mechanism can be drawn here.

V. CONCLUSIONS AND FUTURE WORK

The SPARTS is under active development and is being

extended. The features presented throughout the paper are

ones that we have already implemented. However, as indicated

in the individual sections, further extensions to this simulator

are possible and desirable. For instance, the incorporation of

resource demands within tasks and resource sharing mecha-

nisms is intended. Besides run-time priorities, tasks may also

have pre-defined static priorities. This allows implementation

of fixed-priority and also some of dual-priority scheduling

mechanisms [13]. From multi-core perspective, a task can

have specific properties, such as favourable core, penalty for

execution on unfavourable core, migration overhead etc.
The source-code of our current simulator is available on our

website for downloading [1]. Along with it, a technical report

with the in-detail explanations about our concrete implemen-

tation, and about the possibilities for the extensions can be

found there. Finally, our primary goal is not only to develop

the simulator for our own research needs and to share the

results with the scientific community, but also to allow other

interested parties to contribute, develop and extend different

parts of the simulator that are areas of their own research.

REFERENCES

[1] B. Nikolic, M. A. Awan, and S. M. Petters, “Simulator for power aware
and real-time systems: Sparts,” 2011. http://webpages.cister.isep.ipp.pt/
∼borni/.

[2] S. De Vroey, J. Goossens, and C. Hernalsteen, “A generic simulator of
real-time scheduling algorithms,” in 29th Simul. Symp. 1996, pp. 242
–249, Apr 1996.

[3] A. Diaz, R. Batista, and O. Castro, “Realtss: a real-time scheduling
simulator,” in 4th Int. Conf. Electric. & Electron. Engin. (ICEEE 2007),
pp. 165–168, Sep 5-7 2007.

[4] T. Kramp, M. Adrian, and R. Koster, “An open framework for real-time
scheduling simulation,” in Int. WS Parall. & Distr. Processing, pp. 766–
772, 2000.

[5] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real
time scheduling framework,” in ACM SIGAda international conference,
(New York, NY, USA), pp. 1–8, ACM, 2004.

[6] R. Urunuela, A. Deṕlanche, and Y. Trinquet, “Storm a simulation
tool for real-time multiprocessor scheduling evaluation,” in Emerging
Technologies & Factory Automation (ETFA), 2010 IEEE Conf., pp. 1
–8, Sep 2010.

[7] “Symta/s, Symtavision GmbH.” http://www.symtavision.com/symtas.
html.

[8] “Rapitime, Rapita Systems Ltd..” http://www.rapitasystems.com/
products/RapiTime.

[9] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-time
processes,” in 24th RTSS, (Cancun, Mexico), Dec 2003.

[10] Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for
reducing leakage power in hard real-time systems,” in 15th ECRTS,
pp. 105 – 112, jul. 2003.

[11] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware
energy management approach for dynamic priority systems,” in 23rd
ECRTS, 2011.

[12] P.-C. Wu, “Multiplicative, congruential random-number generators with
multiplier ± 2k1 ± 2k2 and modulus 2p−1,” TOMS, vol. 23, pp. 255–
265, June 1997.

[13] R. Davis and A. Wellings, “Dual priority scheduling,” in 16th RTSS,
pp. 100 –109, Dec 1995.

