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Abstract—Singular spectral analysis (SSA) has recently been 
successfully applied to feature extraction in hyperspectral 
image (HSI), including conventional (1-D) SSA in spectral domain 
and 2-D SSA in spatial domain. However, there are some draw-
backs, such as sensitivity to the window size, high computational 
complexity under a large window, and failing to extract joint 
spectral–spatial features. To tackle these issues, in this article, 
we propose superpixelwise adaptive SSA (SpaSSA), that is super-
pixelwise adaptive SSA for exploiting local spatial information 
of HSI. The extraction of local (instead of global) features, par-
ticularly in HSI, can be more effective for characterizing the 
objects within an image. In SpaSSA, conventional SSA and 2-D 
SSA are combined and adaptively applied to each superpixel 
derived from an oversegmented HSI. According to the size of the 
derived superpixels, either SSA or 2-D singular spectrum analy-
sis (2D-SSA) is adaptively applied for feature extraction, where 
the embedding window in 2D-SSA is also adaptive to the size of 
the superpixel. Experimental results on the three datasets have 
shown that the proposed SpaSSA outperforms both SSA and 
2D-SSA in terms of classification accuracy and computational 
complexity. By combining SpaSSA with the principal compo-
nent analysis (SpaSSA-PCA), the accuracy of land-cover analysis 
can be further improved, outperforming several state-of-the-art 
approaches.
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I. INTRODUCTION

H
YPERSPECTRAL image (HSI) presents a 3-D

hypercube that contains a 2-D spatial structure and 1-D

spectral signatures. With numerous and contiguous spectral

bands acquired from visible light to (near) infrared, HSI

is able to identify minor changes in terms of moisture,

temperature, and chemical components of objects within

the scene [1], [2]. The rich spectral and spatial information

in HSI has enabled a number of emerging applications for

object/change detection and condition monitoring—such as

agriculture [3], military [4], environmental monitoring [5],

and land-cover analysis in remote sensing [6].

However, the high spectral resolution of HSI has also

inevitably brought new challenges into data analysis. In the

classification of HSI, the spectral dimension of the data set,

i.e., the number of bands, is usually much larger than the

number of samples in the labeled classes. This has led to

a serious mismatch between the complexity of the models

and the number of training samples, namely, the Hughes phe-

nomenon [7]–[9]. In addition, data redundancy in both the

spectral and spatial domains and noise caused by environmen-

tal factors and sensors need to be considered [10]. To this end,

effective feature extraction and dimensionality reduction are

essential for land-cover classification in HSI remote sensing.

In the last few decades, a series of feature extraction

methods has been developed, especially in the spectral

domain. Some classic statistic-based methods, such as prin-

cipal component analysis (PCA) [2], [11]; linear discriminant

analysis (LDA) [12]; and maximum noise fraction (MNF) [13],

have been designed for feature transformation. As one of

the most widely used methods, PCA can transform high-

dimensional data into linearly uncorrelated variables, namely,

principal components (PCs). In HSI, several PCs images

contain main feature information and the dimension is signif-

icantly reduced compared to original data. A selected subset

of the first several PCs rather than the original spectral vec-

tors is then used for classification; thus, the feature dimension

can be significantly reduced. Besides, some manifold learning

methods are further developed to analyze the intrinsic features
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of HSI, including the Laplacian eigenmaps (LEs) [14], locally

linear embedding (LLE) [15], and its extension robust local

manifold representation (RLMR) [16]. However, these meth-

ods only consider the spectral information, leading to some

limitations due to a lack of spatial analysis.

In order to exploit the spatial characteristics of HSI,

researchers have developed a number of approaches. One

of the most widely used spatial feature extraction meth-

ods is based on morphological profiles (MPs) [17], which

applied a series of structuring elements (SEs) to extract spa-

tial geometrical details of images. By extracting MPs from

several PCs of HSI [18], the extended MPs (EMPs) achieved

a spatial–spectral feature extraction. Considering the effects of

associated SEs of MPs, morphological attribute profiles (APs)

were proposed [19], where a sequence of morphological

attribute filters was applied to reduced HSI components to

obtain its characterized multilevel features for modeling differ-

ent kinds of structural information. In [20], extinction profiles

(EPs) were introduced to precisely extract spatial features

from HSI and demonstrate their superiority in automatic fea-

ture extraction and data classification. In addition, some graph

learning-based methods have been proposed for spectral–

spatial feature extraction in recent years. Luo et al. [21]

proposed a novel spatial–spectral hypergraph discriminant

analysis (SSHGDA) method to represent the complex intrinsic

spatial–spectral of HSI. In [22], an enhanced hybrid-graph dis-

criminant learning (EHGDL) method was proposed to reveal

the complex high-order relationships of HSI and reduce the

data dimension, which achieved superior classification results

with simple classifiers.

Recently, a time-series analysis technique, singular spec-

trum analysis (SSA), has been introduced for effective feature

extraction in HSI [23], [24]. Given a pixel-based spectral

vector, SSA can decompose it into several subcomponents,

where each subcomponent has the same size as the origi-

nal vector. By selecting subcomponent(s) to reconstruct the

spectral profile, useful information can be enhanced while

noise or less representative signals can be effectively sup-

pressed for improving classification accuracy [25]. Compared

to PCA, SSA retains more spectral information and has bet-

ter separability in the subsequent task of data classification.

Moreover, SSA can be combined with other methods such as

Curvelet [10] for HSI classification. The extended 2-D version

of SSA (2D-SSA) was proposed for the case of 2-D arrays

of data, especially in images [26], which is believed to have

similar capabilities with SSA [27]. Zabalza et al. [28], [29] fur-

ther applied 2D-SSA to each band image of HSI for effective

spatial feature extraction. Unlike conventional spatial features

that are sensitive to fixed SEs or a small neighborhood (win-

dow), 2D-SSA can exploit global spatial correlation of HSI by

embedding a Hankel–block–Hankel (HbH) trajectory matrix,

outperforming a number of conventional approaches [28].

However, SSA and 2D-SSA still have some limitations in the

feature extraction of HSI. For conventional SSA, it only extracts

the spectral trend features while ignoring the abundant spatial

context information, leading to misclassification and noise in

the classification maps. Although 1.5D-SSA [30] combined

some locally similar spectral features, the improvement in

classification accuracy was limited. Applying SSA to the spatial

domain seems to be more feasible to improve the classification

performance. As for 2D-SSA, it has several main drawbacks.

First, considering the irregular shapes and inconsistent sizes of

the ground objects in remote sensing images, it is inappropriate

to extract spatial features with fixed rectangle windows as used

in 2D-SSA, which may lead to poor classification results,

especially for small regions and the object’s boundaries [31].

In other words, the regions used for spatial feature extraction

should be adaptive to such spatial structures of the HSI. In

addition, the fix-sized embedding window (or extraction scale)

cannot fully exploit the abundant spatial features. How to select

the appropriate scale of feature extraction is worth exploring.

Finally, conventional 2D-SSA suffers from large computational

costs in terms of memory and processing, especially for both

the large embedding window and huge image.

In order to make full use of the advantages of SSA and

2D-SSA in feature extraction while tackling their drawbacks,

a novel superpixelwise adaptive SSA (SpaSSA) approach is

proposed in this article for effective feature extraction in HSI,

aiming to deeply exploit the spatial features in different homo-

geneous regions. Experiments on the three publicly available

datasets are fully validated the superior performance of the

proposed SpaSSA approach. The main contributions of this

article can be summarized as follows.

1) A novel SpaSSA approach is proposed for effective

feature extraction in HSI. Whilst 2D-SSA is applied

to most of the superpixel regions from each band to

extract local spatial features of HSI, 1DSSA is used

instead in the cases when the superpixels are too small.

Actually, 2D-SSA and 1D-SSA are adaptively applied

to local homogeneous regions so as to enhance the

difference between different objects and preserve edge

characteristics.

2) The embedding window size (or the extraction scale) of

the associated 2D-SSA is adaptively determined accord-

ing to the size of the superpixels. In the adaptive

criterion of SpaSSA, for most superpixels, the largest

extraction scale within a reasonable range is selected to

effectively improve the intraclass similarity, enhance the

interclass distinction, and fully separate the noise com-

ponents. While for the remaining superpixels, small or

large, 1DSSA and 2DSSA with relatively small fixed

windows are applied, respectively, for efficiency.

3) As SpaSSA is performed in a superpixelwise way rather

than on the full image, the size of the trajectory matrix

and the computational complexity for SVD have been

significantly reduced. Hence, the computational cost is

greatly reduced and the efficiency is improved.

The remainder of this article is organized as follows.

Section II introduces the methodology of SSA and 2D-SSA.

Section III describes the proposed SpaSSA classification

method. The experimental results are presented in Section IV.

Finally, the main concluding remarks are provided in

Section V.

II. BACKGROUND INTRODUCTION

In this section, we introduce conventional SSA and 2D-

SSA methods. In terms of notations, we used capital letters to
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denote matrices, for example, X. A vector was represented as

a lowercase letter, for example, x, while the italicized letter is

used for denoting scalar, for example, x.

A. Singular Spectrum Analysis

Originally proposed for time-series analysis, SSA can

decompose a given signal into several independent compo-

nents, that is, the varying trend, oscillations, or noise [23].

Given a 1-D signal defined by x = [x1, x2, . . . , xN] ∈ RN ,

the SSA algorithm can be briefly summarized in the follow-

ing steps.

1) Embedding: Defining a window size L ∈ Z where

L ∈ [1, N], the trajectory matrix X of the vector x can be

constructed by

X =

⎛

⎜

⎜

⎜

⎝

x1 x2 · · · xK

x2 x3 · · · xK+1

...
...

. . .
...

xL xL+1 · · · xN

⎞

⎟

⎟

⎟

⎠

= (c1, c2, . . . , cK). (1)

The columns ci of the trajectory matrix is the lagged vector.

The window size should be chosen properly as the size equals

the number of extracted components. The matrix X has equal

values along the anti-diagonals and forms a Hankel matrix by

definition.

2) SVD: Letting the matrix S = XXT , the Eigenvalues of

S and their corresponding Eigenvectors are denoted as (λ1 ≥

λ2 ≥ · · · ≥ λL) and (u1, u2, . . . , uL), respectively. After SVD,

the trajectory matrix can be written as follows:

X = X1 + X2 + · · · + XL. (2)

For simplicity, L is considered equal to the rank of X; hence,

we will have

Xi =

√

λiuiv
T
i vi = XTui

/
√

λi (3)

where Xi is called the elementary matrix of rank one, and ui

and vi are the empirical orthogonal functions and the PCs of

the trajectory matrix, respectively.

Matrices built by ui and vi are as follows:

U = (u1u2 · · · uL) ∈ RL×L

V = (v1v2 · · · vL) ∈ RK×L. (4)

The ratio of each Eigenvalue λi/
∑L

i=1 λi represents its

contribution to the matrix X.

3) Grouping: The total set of L individual components

is grouped into M independent subsets, denoted as I =

[I1, I2, . . . , IM]. Each subset is composed of one or more ele-

mentary matrices Xi. After grouping, the trajectory matrix X

becomes

X = XI1 + XI2 + · · · + XIM. (5)

4) Diagonal Averaging and Projection: The resulting

matrices XIm, m ∈ [1, M] obtained from grouping are not

necessarily Hankel type matrix as the original one. Thus, it

is necessary to apply a diagonal averaging to each matrix

by averaging those values in the matrix anti-diagonals and

projecting into a new 1-D signals, a process known as

Hankelisation. For a 1-D signal ym = [ym1, ym2, . . . , ymN] ∈

RN transformed from XIm, its elements after Hankelisation can

be obtained as follows, where aj,n−j+1 represents the elements

of XIm:

ymn =

⎧

⎪

⎨

⎪

⎩

1
n

∑n
j=1 aj,n−j+1 1 ≤ n ≤ L

1
L

∑L
j=1 aj,n−j+1 L < n < K

1
N−n+1

∑L
j=n−K+1 aj,n−j+1 K ≤ n ≤ N.

(6)

By repeating this for each matrix XIm, the original 1-D

signal x is reconstructed by

x = y1 + y2 + · · · + yM =

M
∑

m=1

ym. (7)

In HSI, SSA is used to extract the main trend of a given 1-D

pixel vector. In general, the first reconstructed component, cor-

responding to the maximum Eigenvalue, can roughly replace

the original data. This means that the Eigenvalue group-

ing (EVG) equals 1, normally showing a good performance

in classification [23]. Similarly, in our article, we fix EVG

to 1 and, thus, the performance of SSA is only dependent

on its window size L1D. In addition, considering the limited

performance of SSA in the spectral domain, we apply it in the

spatial domain aiming to utilize spatial information, especially

for small objects, which is detailed in Section III.

B. 2-D Singular Spectrum Analysis (2D-SSA)

Compared to SSA, 2D-SSA has the same steps in SVD

and grouping, yet the difference in embedding and diagonal

averaging processes are detailed below.

1) Embedding 2-D Signal: For an image P2D with a size

Nx × Ny, its matrix representation is given as follows:

P2D
=

⎛

⎜

⎜

⎜

⎝

p1,1 p1,2 · · · p1,Ny

p2,1 p2,2 · · · p2,Ny

...
...

. . .
...

pNx,1 pNx,2 · · · pNx,Ny

⎞

⎟

⎟

⎟

⎠

. (8)

A 2-D window Wij of size Lx× Ly , where Lx ∈ [1, Nx] and

Ly ∈ [1, Ny], is defined to construct the trajectory matrix

Wi,j =

⎛

⎜

⎜

⎜

⎝

pi,j pi,j+1 · · · pi,j+Ly−1

pi+1,j pi+1,j+1 · · · pi+1,j+Ly−1

...
...

. . .
...

pi+Lx−1,j pi+Lx−1,j+1 · · · pi+Lx−1,j+Ly−1

⎞

⎟

⎟

⎟

⎠

. (9)

This window uses the position of its top-left corner (i, j)

as the reference point, and the range of the reference point

comprises i ∈ [1, Nx −Lx +1] and j ∈ [1, Ny −Ly +1]. For the

given reference pixel coordinates (i, j), the corresponding 2-D

window is rearranged into a column vector vcoli,j ∈ RLxLy×1 as

vcoli,j =
(

pi,j pi,j+1 · · · pi,j+Ly−1 pi+1,j · · · pi+Lx−1,j+Ly−1

)T
.

(10)

As the window Wi,j moves from the top left to the bottom

right of the image, there are (Nx − Lx + 1) × (Ny − Ly + 1)

possible locations of the window. Therefore, the trajectory
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matrix X2D
∈ RLxLy×(Nx−Lx+1)(Ny−Ly+1) of the image P can

be derived by

X2D
=

(

vcol1,1, vcol1,2, . . . , vcol1,Ny−Ly+1

vcol2,1, . . . , vcolNx−Lx+1,Ny−Ly+1

)

. (11)

Note that the trajectory matrix X2D has a structure called

HbH, that is, Hankel by Hankel, which can be represented as

X2D
=

⎛

⎜

⎜

⎜

⎝

H1 H2 · · · HNx−Lx+1

H2 H3 · · · HNx−Lx+2

...
...

. . .
...

HLx HLx+1 · · · HNx

⎞

⎟

⎟

⎟

⎠

Lx×(Nx−Lx+1)

(12)

Hr =

⎛

⎜

⎜

⎜

⎝

pr,1 pr,2 · · · pr,Ny−Ly+1

pr,2 pr,3 · · · pr,Ny−Ly+2

...
...

. . .
...

pr,Ly pr,Ly+1 · · · pr,Ny

⎞

⎟

⎟

⎟

⎠

Ly×(Ny−Ly+1)

.

(13)

In simple terms, the HbH matrix (X2D) is Hankel in block

terms, with each of the blocks (Hr) being a Hankel matrix by

itself.

2) SVD and Grouping: These two stages are the same

as those in SSA. However, the respective dimensions of the

different matrices change to 2-D accordingly. Specifically,

K2D = (Nx − Lx + 1)(Ny − Ly + 1) and L2D = Lx × Ly.

3) Diagonal Averaging: Similar to the 1-D case, the result-

ing matrices X2D
m in 2D-SSA are not necessarily HbH type.

Therefore, it is necessary to transform them to HbH matrices

by means of a two-step diagonal averaging process as given

in (6), that is, first applied within each block and then applied

between blocks.

Letting the 2-D signal Z2D
m ∈ RNx×Ny be transformed from

the group matrix X2D
m , it can be expressed as follows:

Z2D
m =

⎛

⎜

⎜

⎜

⎝

zm1,1 zm1,2 · · · zm1,Ny

zm2,1 zm2,2 · · · zm2,Ny

...
...

. . .
...

zmNx,1 zmNx,2 · · · zmNx,Ny

⎞

⎟

⎟

⎟

⎠

. (14)

Afterward, the original 2-D image can be reconstructed by

P2D
= Z2D

1 + Z2D
2 + · · · + Z2D

M =

M
∑

m=1

Z2D
m . (15)

In 2D-SSA, the first decomposed component contains the

main spatial trend information and, thus, is used to replace the

original image for classification [28], [29]. Similar to SSA,

the number of components used in representing the original

image is fixed as 1 (EVG = 1) and the window size Lx × Ly

in embedding is the only parameter that affects performance.

III. PROPOSED SPASSA METHOD

The flowchart of the proposed SpaSSA method is presented

in Fig. 1, which is composed of the following major parts:

1) generation of a superpixel map; 2) superpixel-based adap-

tive SSA; and 3) classification, corresponding to the three

sections of this chapter. The details are described as follows.

Fig. 1. Schematic of the proposed SpaSSA for the HSI classification
framework.

A. Generation of Superpixel Map

Superpixel segmentation provides a manner to compute

local image features that can group pixels in local regions as

clusters [32]. Superpixel algorithms generally consist of graph-

based and clustering-based segmentation methods. Typical

approaches include ERS [33] and simple linear iterative clus-

tering (SLIC) [34], which are widely used in preprocessing or

post-processing of HSI.

In ERS, the image is first mapped to a graph, in which each

pixel is considered as a vertex and the pairwise similarities

are defined as edge weights. The superpixel segmentation is

defined by graph topology maximization, using an objective

function to yield compact and homogeneous superpixels of

similar sizes [35]. The SLIC method has the same promising

performance as ERS. It can obtain regular superpixels that

adhere well and efficiently to boundaries, but it only considers

the similarity of pixels and, therefore, global image properties

cannot be captured, which may result in under segmentation

errors [34]. For this reason, in our method, we adopt ERS to

obtain the segmented regions.

In order to reduce the computational cost, we first apply

PCA on HSI and obtain the first PCs. Since the first PCs of

HSI correspond to the largest Eigenvalue, it contains the major

spatial information and can be used as the base image for

the segmentation [36]. To this end, we choose an appropriate

number of superpixels and perform ERS on the first PC to

obtain the superpixel region map.

B. Superpixel-Based Adaptive SSA

After obtaining the segmented superpixels, the proposed

SpaSSA is applied on each superpixel for extracting the spatial

features as detailed below.

1) Super-2DSSA: We denote superpixel and 2D-SSA-based

feature extraction as Super-2DSSA. As 2D-SSA can only deal

with regular image matrices in a rectangle shape, adaptation

is needed for processing irregularly shaped superpixel.

Actually, as shown in Fig. 2, Super-2DSSA is applied to

each band on the extracted map of superpixels. For each

superpixel, some adjacent pixels that may belong to other

superpixels are included to form a rectangle region, and 2D-

SSA is applied to this regular pixel region, where the results
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Fig. 2. Schematic of Super-2DSSA.

Fig. 3. Schematic of Super-1DSSA.

are the extracted superpixel from this region after process-

ing. In 2D-SSA, an appropriate embedding window is used

to extract spatial features of these local regions, so that it

can obtain spatial trend information and eliminate noise for

improved feature extraction. After applying this process to

all band images, we can obtain the features for the entire

hypercube that can be used to replace the original data for

classification.

2) Super-1DSSA: Although 2D-SSA can extract spatial

information from superpixels, it fails to cope with small

superpixels, when the embedding window becomes too

small to extract sufficient components of spatial information.

Therefore, a 1-D embedding window is used for such small

superpixels. In other words, we replace 2D-SSA by 1D-SSA to

deal with the cases of small superpixels, which forms a new

scheme, that is, Super-1DSSA. The way Super-1DSSA works

is different from Super-2DSSA.

As shown in Fig. 3, all pixels in a small superpixel region

are stretched into a 1-D spatial vector, and a 1-D embedding

window is applied on this vector. After SSA, these processed

pixels are returned to their original positions. This process-

ing can effectively reduce differences of small homogeneous

regions. In addition, as far as we know, this is the first time

SSA is applied along a spatial direction, which can explore

the spatial correlation of adjacent pixels in a local image.

3) Adaptive Criterion of SpaSSA: SpaSSA is further

employed to combine Super-2DSSA and Super-1DSSA for

effective feature extraction. The adaptation of this approach

is two-fold, that is: 1) adaptive selection of Super-2DSSA

and Super-1DSSA methods for a given superpixel region and

2) adaptive determining the size of the embedding window. In

general, Super-2DSSA is used for the large superpixels while

Super-1DSSA is used for small ones. According to our expe-

rience and also as suggested in [27] and [28], the optimal

2D-SSA embedding window varies according to the shape and

size of the superpixels. To this end, we propose criteria for

adaptively selecting the SSA methods and related parameters

as detailed below.

Let Ssp be a parameter to measure the size of a superpixel

region, where col and row are the width and height of the

superpixel, respectively

Ssp = min(col, row). (16)

Considering its symmetric implementation, the range of the

embedding window in 2D-SSA (Lx ×Ly with Lx = Ly for sim-

plicity) is [1, Nx/2] and [1, Ny/2] in an image of size Nx × Ny.

Thus, the range of Super-2DSSA embedding window size Lx

(or Ly) is [1, Ssp/2].

Two thresholds (T1 and T2, where T2 > T1) are used to

decide the size of the embedding window for adaptive SSA as

follows:

LSA-SSA =

⎧

⎨

⎩

L1D Ssp/2 < T1

Lx = Ly = floor
(

Ssp/2
)

T1 ≤ Ssp/2 < T2

Lx = Ly = T2 Ssp/2 ≥ T2

(17)

where LSpaSSA represents the window size, L1D denotes the

length of 1-D embedding window of Super-1DSSA, and

Lx × Ly is the 2-D embedding window of Super-2DSSA.

floor(Ssp/2) represents the floor operation that calculates the

largest integer not greater than Ssp/2.

As shown in (17), for a given superpixel region, if the region

size is smaller than threshold T1, Super-1DSSA is chosen for

this region with a 1-D embedding window size of L1D. On

the other hand, if the region size is larger than T1, Super-

2DSSA is selected. For a given region, the embedding window

of Super-2DSSA is defined as floor(Ssp/2). If the superpixel

region is larger than T2, a fixed window is used to replace the

adaptive window, mainly because the adaptive window will

lead to too much computational time, not necessarily achieving

better results.

Note that for a segmented image, the majority of super-

pixel regions are processed by Super-2DSSA with adaptively

determined embedding windows for effective mining of spatial

information in local regions. On the other hand, small super-

pixels are inevitable in most cases, for which Super-1DSSA is

used as a complementary method to improve the extraction of

spatial regions.

C. Classification

After feature extraction, the SVM classifier is employed

for pixel-based classification of HSI. Based on the mar-

gin criterion, SVM shows high robustness to dimensional

problems. In fact, SVM has been widely used in HSI for

classification [37], [38]. In addition, there are several avail-

able software tools and libraries for the implementation of

SVM for fast and accurate data modeling.

Moreover, SVM supports different types of kernel functions,

including linear, polynomial, and Gaussian radial basis func-

tions (RBFs); thus, it can be flexibly applied in a wide range

of data classification problems. As such, SVM is also used

in our article for evaluating the efficacy of the extracted fea-

tures. Following the suggestions from others [39], [40], the

RBF kernel is also used in our SVM classifier.
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(a) (b) (c)

(d)

Fig. 4. (a) False-color image of the Indian Pines dataset. (b) Ground-truth
map. (c) Segmented map (Ns = 50). (d) Class names and legend of the
different land-cover classes.

(b)(a) (c) (d)

Fig. 5. (a) False-color image of the Pavia University dataset. (b) Ground-
truth map. (c) Segmented map (Ns = 300). (d) Class names and legend of
the different land-cover classes.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets and Experimental Setup

Three publicly available hyperspectral datasets with avail-

able ground truth are adopted in our experiments for

performance evaluation of the proposed approach.

The first dataset is Indian Pines, which was acquired by

the AVIRIS sensor [41] over an agricultural study site in

Northwest Indiana, USA. With a spatial size of 145×145 pix-

els, it contains 224 contiguous bands with the wavelength

ranging from 400 to 2500 nm. In our experiments, following

the same procedure as others [23], [28], 24 water absorption

or noisy bands are removed; hence, only 200 bands remained

for classification. In Fig. 4, the false-color image of the

dataset and its ground reference map are presented in Fig. 4(a)

and (b), respectively. There are 16 land-cover classes in this

dataset, including agriculture, forest, and vegetation, as shown

in Fig. 4(d) by a color legend.

The second dataset is Pavia University, which was acquired

by the reflective optics system imaging spectrometer (ROSIS)

sensor. This dataset has a spatial size of 610 × 340 pixels and

115 bands with a wavelength range of 430–860 nm. In our

experiments, the number of bands is reduced to 103 by remov-

ing 12 noisy bands. Fig. 5(a) and (b) presents the false-color

image and related ground reference map with nine different

land-cover classes as defined in Fig. 5(d).

The third dataset is Salinas, which was also acquired by

the AVIRIS sensor over an agricultural area of Salinas Valley

in California, USA. With a spatial size of 512 × 217 pixels,

this dataset contains 224 bands, presenting a spatial resolution

of 3.7 m. Again, 20 water absorption bands are removed and

the remaining 204 bands are used for classification. In Fig. 6,

(a) (b) (c) (d)

Fig. 6. (a) False-color image of the Salinas dataset. (b) Ground-truth map.
(c) Segmented map (Ns = 200). (d) Class names and legend of the different
land-cover classes.

Fig. 7. Influence of the parameters Ns on the classification accuracies and run-
ning time of the SpaSSA the datasets of (a) Indian Pines, (b) Pavia University,
and (c) Salinas.

the false-color image and the ground reference map are shown

in Fig. 6(a) and (b), where the defined 16 different land-cover

classes are shown in Fig. 6(d).

In the stage of classification, the SVM classifier [37] is

implemented by the LIBSVM library [42] using the RBF

kernel with five-fold cross-validation. For avoiding system-

atic errors and reducing random discrepancies, all experiments

were independently carried out ten times. The training and

testing samples sets were sampling randomly without any

overlapping each time, which account for 10% (Indian Pines),

1% (Pavia University), and 1% (Salinas) of the total sam-

ples in each class, respectively. In addition, three objective

quality indices, that is: 1) overall accuracy (OA); 2) average

accuracy (AA); and 3) kappa coefficient and class-by-class

accuracy are utilized to evaluate the performance of image

classification.

B. Parameter Analysis

The proposed approach has several key parameters, which

include: 1) number of superpixels Ns; 2) the 1-D embedding

window L1D within Super-1DSSA; and 3) two thresholds T1

and T2. The sensitivity analysis of the parameters is below.

First, the number of superpixels Ns determines the degree

of oversegmentation when producing the superpixels, which is

expected to have a significant influence on the extracted fea-

tures. Considering the spatial resolutions and sizes of the three

datasets are different, the optimal Ns values for these datasets

are actually different. In our method, Ns is set to 50, 300, and

200 for Indian Pines, Pavia University, and Salinas datasets,
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Fig. 8. Influence of the parameter L1D for the three datasets in terms in
terms of (a) OA and (b) running time.

Fig. 9. Influence of the parameters T1 and T2 on the classification
accuracies of the SpaSSA method for the datasets of (a) Indian Pines,
(b) Pavia University, and (c) Salinas.

respectively, where the detailed parameter tuning results are

given in Fig. 7. For the size of superpixels, it is determined

by the number of them. The larger the total number of seg-

mented superpixels, the smaller the corresponding size. The

determined Ns in our experiment can make the segmentation

areas of different datasets as uniform as possible, as shown in

Figs. 4–6(c). In addition, different superpixel regions tend to

have similar numbers of pixels, which enables as many super-

pixels as possible to be processed by 2DSSA with adaptive

embedding windows.

On the contrary, the influence of L1D on the classifica-

tion accuracy is insignificant, as the Super-1DSSA is only

used to deal with a few small superpixels. These conclusions

are drawn mainly from a separate experiment, where relevant

results from the three datasets are shown in Fig. 8. In this

experiment, the values of Ns are set to 400, 1000, and 300 for

the three datasets, respectively, to have sufficient numbers of

small superpixels to be processed by Super-1DSSA, where

we have T1 = 3 and T2 = 11. As can be seen, the classifica-

tion accuracy obtained from different values of L1D varies in

a small range, where the running time also changes slightly.

Similar to conventional SSA, a large embedding window

brings extra computing costs. Considering both the efficiency

and efficacy, we fix the L1D to 10 in Super-1DSSA.

Finally, the thresholds T1 and T2 mainly determine the

embedding window of the SpaSSA, affecting directly the

extracted spatial information. In order to take more advan-

tage of the combination of Super-1DSSA and Super-2DSSA,

another experiment was conducted to analyze the impact of

the two parameters. In the experiment, the two thresholds are

selected from a sensible range of 3–15, and other parame-

ters have their optimal values determined as mentioned above.

According to the classification results shown in Fig. 9, the

threshold T2 is the key parameter that affects the performance

of the proposed method compared to T1. The optimal T2 is

in a relatively concentrated range of 9–13, which indicates

that a suitable window size improves the accuracy in Super-

2DSSA. In addition, for a fixed T2, the increase of T1 leads to

a degraded accuracy. This is because of too many superpixels

being processed by Super-1DSSA, which has a weaker feature

extraction effect than Super-2DSSA. In this article, the thresh-

olds T1 and T2 are fixed to 3 and 11, respectively, for a balance

between high classification accuracy and fast implementation.

C. Classification Accuracy Comparison

In this section, the efficacy of the features extracted from the

proposed SpaSSA are compared to those from: 1) the original

hyperspectral data 2) 1D-SSA; 3) Super-1DSSA; 4) 2D-SSA;

5) Super-2DSSA, where ours are numbered 6) for comparison.

The classification accuracy from SVM on the three datasets is

used for performance assessment.

For the SSA method, the window size L is selected as 10.

For 2D-SSA, the embedding window is fixed as 5 × 5 and

10 × 10 as suggested in [28]. In Super-1DSSA, the parameter

L1D is also 10. The embedding window of Super-2DSSA is

5 × 5 to ensure that all sizes of superpixels can be processed.

For the proposed SpaSSA method, the parameters including

L1D = 10, T1 = 3, T2 = 11 and the optimal Ns value cor-

responding to three different datasets are used. Moreover, the

related parameters C and γ of the Gaussian RBF kernel in

the SVM classifier are optimally obtained by a five-fold cross-

validation. Specifically, γ = 0.125 for all three datasets; whilst

C = 1000 for the Indian Pines and Pavia University datasets,

and C = 10 000 for Salinas. The classification maps and quan-

titative results of the proposed approach, in comparison to five

benchmarking ones, are shown in Figs. 10–12 and Tables I–III,

respectively.

According to the quantitative results in Tables I–III, the

proposed SpaSSA method always obtains the highest clas-

sification accuracy on three datasets. For Indian Pines, the

OA can be significantly increased from 79.75% to 97.97%

compared to the SVM that performs on the raw HSI data. The

SpaSSA method also beats the 2D-SSA method and improves

the classification accuracy by about 2%. In addition, Super-

1DSSA achieves superior classification accuracy, even higher

than 2D-SSA in some ground classes. Due to the small embed-

ding window, the Super-2DSSA did not effectively take the

advantage of 2DSSA and superpixel to extract spatial features,

leading to lower accuracy. Our SpaSSA method integrated

their advantages and achieved the best accuracy on most of the

ground classes. For Pavia University, the OA of our proposed

method can increase from 89.21% to 94.58% compared to

the raw data. Among all other compared methods, the Super-

2DSSA method has the best performance, and 2D-SSA with

10 × 10 window achieves the highest accuracy in meadows,

painted metal sheets, bitumen, and self-blocking bricks classes.

Although only two classes achieved the highest accuracy,

the SpaSSA can obtain higher accuracy than 2D-SSA and

Super-2DSSA in terms of OA and kappa. For Salinas, the

SpaSSA still maintained its effectiveness and outperformed

all other compared methods in most of the classes and three

indexes. These have clearly demonstrated the efficacy of the
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TABLE I
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES DATASET (10% TRAINING)

Fig. 10. Classification results for the Indian Pines dataset (10% training sam-
ples). (a) Ground Truth. (b) SVM (OA = 79.75%). (c) SSA (OA = 84.02%).
(d) Super-1DSSA (OA = 95.13%). (e) 2D-SSA in 5 × 5 window
(OA = 95.76%). (f) 2D-SSA in 10 × 10 window (OA = 96.00%). (g) Super-
2DSSA (OA = 93.79%). (h) SpaSSA (OA = 97.97%).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Classification results for the Pavia University dataset
(1% training samples). (a) Ground Truth. (b) SVM (OA = 89.21%).
(c) SSA (OA = 87.26%). (d) Super-1DSSA (OA = 90.65%). (e) 2D-SSA in
5×5 window (OA = 93.60%). (f) 2D-SSA in 10×10 window (OA = 91.96%).
(g) Super-2DSSA (OA = 93.62%). (h) SpaSSA (OA = 94.58%).

proposed feature extraction approach for HSI classification,

especially with a small number of training samples.

From Figs. 10–12, the proposed SpaSSA has yielded the

best classification maps from three datasets in comparison

to other approaches. Although SSA can improve the mis-

classification from the raw data, it performed especially not

well on the Pavia University dataset. 2D-SSA can smooth

the ground object and significantly improve the classification

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Classification results for the Salinas dataset (1% training sam-
ples). (a) Ground Truth. (b) SVM (OA = 88.07%). (c) SSA (OA = 89.32%).
(d) Super-1DSSA (OA = 94.80%). (e) 2DSSA in 5 × 5 window
(OA = 95.09%). (f) 2D-SSA in 10 × 10 window (OA = 97.33%). (g) Super-
2DSSA (OA = 93.72%). (h) SpaSSA (OA = 98.11%).

results. However, there is still misclassification within large

ground objects when using a small processing window (5×5),

whilst small ground objects tend to be misclassified or missed

when a large processing window (10 × 10) is used, espe-

cially for the Pavia University and Salinas datasets. The

other two superpixel-based SSA methods: 1) Super-1DSSA

and 2) Super-2DSSA have different degrees of classifica-

tion performance on different datasets, in other words, the

performance of the two methods alone are limited. In con-

trast, the proposed SpaSSA method can effectively overcome

these drawbacks and obtain the highest classification accuracy.

In addition, we further evaluate how the number of train-

ing samples may affect the classification accuracy, and the

results are shown in Fig. 13. For the Indian Pines dataset,

the number of training samples is ranged from 1% to 10%,

while for the Pavia University and Salinas datasets, the num-

ber of training samples is increased from 0.1% to 1%. Some

observations from Fig. 11 can be summarized as follows.

First, increasing the number of training samples can obviously

improve the classification accuracy on all three datasets. For
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TABLE II
CLASSIFICATION ACCURACY (%) FOR THE PAVIA UNIVERSITY DATASET (1% TRAINING)

TABLE III
CLASSIFICATION ACCURACY (%) FOR THE SALINAS DATASET (1% TRAINING)

Fig. 13. Effect of the number of training samples on the proposed
SpaSSA method and the compared methods for the (a) Indian Pines,
(b) Pavia University, and (c) Salinas datasets.

the SpaSSA method, for example, the OA on the Indian Pines

dataset has been improved from 78.27% to 98.06% when the

training samples increase from 1% to 10%. In almost all the

cases, the proposed SpaSSA has obtained the highest accuracy.

In Table IV, we further compare the running time of our

approach and those from compared methods. For SSA, its

computing time shows a linear increment as the image size,

number of pixels, increases. While Super-1DSSA can save

more calculation time than SSA because it processes each

superpixel region instead of pixels. As 2D-SSA is applied to

each band image rather than each pixel as SSA does, the num-

ber of iterations has been significantly reduced. However, as

the size of the embedding window increases, the computation

time increases exponentially, due mainly to the large HbH

matrix and the following on SVD decomposition. Although

the embedding window of Super-2DSSA is small, the number

of superpixels increases the processing times of 2DSSA, lead-

ing to the rise of computational cost inevitably. SpaSSA takes

more time than Super-2DSSA. How to further improve the

efficiency of SpaSSA will be further investigated.

TABLE IV
COMPUTATION TIME FOR DIFFERENT SSA METHODS ON THREE

DATASETS

D. Comparison With Other State-of-the-Art Approaches

Considering the great potential in combining 2D-SSA with

PCA [28], the proposed SpaSSA method is also combined

with PCA, aiming to achieve more effective extraction of

spectral–spatial features. Accordingly, several spectral–spatial

feature extraction and classification approaches are used for

benchmarking, which are divided into two groups. In the

first group, the original hypercube is used for classification

without dimensionality reduction, including the 3-D convolu-

tional neural network (3DCNN) [43], spectral–spatial residual

network (SSRN) [44], double-branch multiattention mech-

anism network (DBMA) [45], local adaptive joint sparse

representation (LAJSR) [46], and our SpaSSA. In the second

group, dimension reduction methods are focused, including

PCA, RLMR [16], superpixelwise PCA (Super-PCA) [47]

and 2DSSA-PCA [28], as well as SpaSSA combined with

PCA (SpaSSA-PCA). The best classification results from each

method on the three datasets are given in Tables V–VII for

comparison.
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TABLE V
CLASSIFICATION ACCURACY (%) COMPARISON WITH THE STATE-OF-THE-ARTS FOR THE INDIAN PINES DATASET (ALMOST 10% TRAINING)

TABLE VI
CLASSIFICATION ACCURACY (%) COMPARISON WITH THE STATE-OF-THE-ARTS FOR THE PAVIA UNIVERSITY DATASET (ALMOST 1% TRAINING)

TABLE VII
CLASSIFICATION ACCURACY (%) COMPARISON WITH THE STATE-OF-THE-ARTS FOR THE SALINAS DATASET (ALMOST 1% TRAINING)

For experimental settings, the methods in the first group

select the optimal parameters according to [43]–[46]. For the

dimension reduction methods, the dimension is reduced to

20 for the four methods, where 2DSSA and SpaSSA use

the same configurations as given in Section IV-C and Super-

PCA uses the optimal number of superpixels as in [47]. The

same three datasets are used, yet the training percentage is

a little different from previous experiments. Considering the

training mode of CNN, the number of selected training sam-

ples is relatively even. The percentage of training samples is

about 10%, 1%, and 1% for the Indian Pines, Pavia University,

and Salinas datasets, respectively.

As shown in Tables V–VII, the classification accuracy of

SpaSSA is superior to 3DCNN and LAJSR, while lower

than SSRN and DBMA. For the Indian Pines and Salinas

datasets, the performance of SpaSSA is very close to SSRN

and DBMA, and even better than SSRN on the latter dataset.

However, SpaSSA achieved relatively low accuracy on the

Pavia University dataset compared to SSRN and DBMA,

mainly because the trend features extracted by SpaSSA ignore

some small ground features. Besides, the SpaSSA-PCA further

improves the accuracy of SpaSSA, outperforming all other

dimension-reduction-based methods, despite a slightly lower

OA than Super-PCA on Salinas. The performance of SpaSSA-

PCA is comparable to state-of-the-art SSRN and DBMA, and

even better than the latter on Indian Pines and Salinas. In

conclusion, the proposed SpaSSA method has superior clas-

sification performance, and the extended SpaSSA-PCA can

indeed further improve the efficacy of spatial–spectral features

extraction for improved classification.

V. CONCLUSION

Feature extraction is an essential stage in hyperspectral

data classification, which can deeply exploit data charac-

teristics in both the spectral and spatial domains. Many

spectral and spatial feature extraction techniques have been

proposed in recent years, such as SSA and its 2-D version

(2D-SSA). However, 2D-SSA only considers the global spatial

information yet ignores the local spatial context of the pixels,

that is, object-alike regions, which has limited its applicability

and efficiency. To this end, a novel SpaSSA is proposed to

tackle these issues.

Superpixel segmentation can group pixels into homoge-

neous regions, namely, object-alike superpixels. The adap-

tation of the SSA methods with appropriate parameters

setting has been proved effective for extracting spatial fea-

tures, allowing improved discrimination ability. The proposed

SpaSSA approach can effectively reduce the intraclass vari-

ance within superpixels and enhance the discrimination

among different superpixels, leading to improved classification

accuracy.

Experiments carried out on three publicly available hyper-

spectral datasets have fully validated the superior performance

of the proposed SpaSSA approach over existing SSA and 2D-

SSA. In addition, the combination of SpaSSA-PCA can further

improve the classification accuracy and outperform several

state-of-the-art approaches.

Future works will focus on more efficient implementation

of SpaSSA and its new applications in remote sensing

image analysis, which include: 1) weakly supervised learn-

ing [48], [49] and context-aware learning [50], [51]; 2) various

deep learning, including rotation-invariant CNN [52], autoen-

coders [53] and deep fusion [54]; and 3) saliency

detection [55] even with selected bands [56], [57].
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