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Abstract—Establishing trust between a group of individuals remains a difficult problem. Prior works assume trusted infrastructure,
require an individual to trust unknown entities, or provide relatively low probabilistic guarantees of authenticity (95% for realistic
settings). This work presents SPATE, a primitive that allows users to establish trust via mobile devices and physical interaction. Once
the SPATE protocol runs to completion, its participants’ mobile devices have authentic data that their applications can use to interact
securely (i.e., the probability of a successful attack is 224). For this work, we leverage SPATE as part of a larger system to facilitate
efficient, secure, and user-friendly collaboration via email, file-sharing, and text messaging services. Our implementation of SPATE
on Nokia N70 smartphones allows users to establish trust in small groups of up to eight users in less than one minute. The example
SPATE applications provide increased security with little overhead noticeable to users once keys are established.

Index Terms—Authentication; Security; Human factors

1 INTRODUCTION

Decentralized security infrastructure—one that al-

lows informally organized groups of colleagues to
communicate securely—remains a great idea in theory.
In practice, the idea is not much more accessible now
than when it was introduced decades ago, dogged by the
usual concerns: how to exchange keys, how to manage
keys, how to integrate with existing applications, how
to configure security policies, etc.

Consider the example of secure email. One of the most
mature systems that provides encrypted, authenticated
email exchange is PGP, first introduced in 1991. PGP al-
lows arbitrary pairs of users to exchange email securely,
without the need for centralized administrators. How-
ever, even as the software becomes streamlined and more
popular, non-expert users still have difficulty adopting
it, struggling with key management and configuration
of security policies [1]-[3].

Another important example is file-sharing. Users with-
out centralized infrastructure like NFS or AFS still wish
to share files selectively with their friends, while hiding
those files from others. Yet recent work shows that
popular file-sharing utilities make configuring security
policies difficult, and that many users inadvertently
expose private files to strangers [4]. Indeed, configuring
access-control lists might be too much to ask of casual
users.
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In light of these security problems, a growing trend
that offers promise are mobile devices—now more preva-
lent than ever with the proliferation of increasingly so-
phisticated mobile phones. As a personal agent, mobile
phones can automate most key management and secu-
rity configuration. Non-expert users are only required
to perform a small number of well-instructed proce-
dures in order to communicate securely with another
phone owner. However, prior work fails to efficiently
perform authenticated data exchange among a group
of participants in a decentralized setting [5]-[9]. An
efficient authentic exchange for groups remains a great
challenge because wireless communication is unreliable
and insecure; without physically interacting with each
group member, the members have no guarantee that the
group that is physically present is exactly the group in
which members are exchanging information wirelessly.

This paper introduces the SPATE protocol, and the
SPATE system built on top of it. The use case for SPATE
is a common one: a small ad-hoc group meets in person
and wishes to continue collaboration remotely, whether
via secure email, file-sharing, or SMS (text-messaging).
Using current tools, even this simple scenario is vexing
for the average user, requiring baroque, user-visible key
exchange protocols and confusing access control deci-
sions. The SPATE system, in contrast, takes advantage
of device mobility and face-to-face meetings to establish
trust and simplify future communication.

The foundation of the SPATE system is the SPATE
protocol, which runs on mobile phones with the ob-
jective of sharing authenticated data among members
of a small group. Participants initiate the protocol by
invoking an application on their phones and indicating
the number of people in the group. The phones then
exchange information via Bluetooth. The danger in this
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scenario is a Man-in-the-Middle (MitM) attack, by which
a nearby adversary can inject bogus data into the ex-
change. To prevent such an attack, at the end of the
protocol, all mobile devices check that they received the
correct number of data items and display a visual hash
function [10], [11] computed over the exchanged data.
The participants check that all devices agree on the hash.
If both checks succeed, then the group participants have
guarantees that: (1) each participant contributed exactly
one data element to the collective; (2) that no one outside
the group contributed data; and (3) the data distributed
is exactly what each individual user’s device intended.

The SPATE exchange is agnostic to the type of data
exchanged. In addition to flexibility (i.e., users can ex-
change any data), this can improve security. One obvious
use for such a protocol is to exchange public keys,
enabling subsequent secure remote collaboration. In such
a scenario, long-term secrets need not be stored on
mobile devices. This design provides improved security
properties when compared to other key exchange pro-
tocols (Section 4). Some applications require their long-
term secrets to be stored on the phone (e.g., our secure
SMS application). However, if the private key remains
on the user’s workstation at home, the loss of a mobile
device has zero impact on security.

Device pairing has recently attracted a significant
amount of interest from the research community, fu-
eled by the proliferation of wireless mobile devices.
Prior work addresses similar key exchanges, but either
assumes a public key infrastructure [12]-[18], cumber-
some key-exchange protocols [19], is vulnerable to mali-
cious bystanders [20], or are restricted to two-party ex-
changes [5]-[9], [21]-[25]. Other work offers mechanisms
optimized for large groups of 10 to 30 people [26]. This
work focuses on small groups where users can accurately
count the group size [27]: eight or fewer. Assuming
group size follows a Zipf distribution, the majority of
groups will be within the range covered by the SPATE
protocol.

This paper presents an implementation of the SPATE
protocol as part of a larger SPATE system, filling in
the details of how to generate cryptographic keys, how
to move keys between one’s PC and one’s phone,
how to exchange keys, and most importantly, how to
build real applications that use the exchanged keys.
We present three applications: secure email, secure file-
sharing, and secure short message service (SMS/text
messaging). These exploit device mobility to configure
useful secure-by-default policies, without requiring any
expert decisions from the users. In the email example, a
Thunderbird Mail plug-in enables encrypted and signed
email communication by default for email sent among
group members after the meeting. The file-sharing ap-
plication provides a shared folder among all group
members, which affords read and write access to group
members and denies access to all others. Secure SMS
enables users to securely send short messages between
mobile devices after the meeting. All applications have

the crucial property that security does not require undue
inconvenience. We anticipate that our approach will
provide a foundation for bootstrapping secure commu-
nication for current and future applications.

In summary, this paper offers the following contri-
butions: (1) a description of the SPATE protocol for
securely exchanging data among members of a small
group; (2) an implementation of the SPATE system on
mobile smartphones; and (3) three realistic applications
that demonstrate how SPATE enables practical secure-
by-default operation.

2 PROBLEM DEFINITION

When meeting face to face, a group can trust that what
they see and hear from other group members have not
been modified by a malicious party. Once the group
disperses, members would like to continue to have that
same level of trust for intra-group communication. Col-
lecting authentic data (i.e., public keys and application-
specific data) from other members of the group can
facilitate such secure communication. Most security ap-
plications have already been designed to handle public
keys (e.g., X.509 certificates), while other applications
can leverage public keys to setup shared keys or pass-
words within the group. However, for ease of use, some
applications may want to share additional information
(e.g., email or IP addresses to simplify contacting other
members or sharing data within the group). Once groups
have a way to exchange authentic data in person, secure
collaboration is possible without requiring members to
trust a third party.

According to Chen et al. [26], an exchange of authentic
information within a group produces a set of data that
must fulfill the following three properties:

1. Consistent: Every group member acquires the same set
of data.

2. Exclusive: Only group members’ data is in the set.

3. Unique: Each member only contributes one data ele-
ment to the set.

In addition, the exchange protocol should place lim-
ited expectations on the users. Humans are impatient
and are inaccurate when comparing numbers [25]. To
avoid frustrating users, an exchange protocol should
run quickly with only a small number of interactions
(e.g., taking pictures of or shaking devices) between
group members (i.e., for n members a total of O(n)
total interactions). To avoid human errors, the exchange
should facilitate user-friendly comparisons, rather than
requiring several users to compare hexadecimal digits.

2.1 Assumptions

In this work, we make assumptions about the hardware
and software available on members’” mobile devices, the
absence of malicious software (malware), the probability
of human error, and the user’s diligence for securing
private asymmetric keys.
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We assume users’ mobile devices are equipped with
Bluetooth radios, a color display, a camera, and an instal-
lation of our SPATE software. Commodity smartphones
can provide all of these hardware requirements.

We assume that group members’ mobile devices and
workstations (e.g., desktop or laptop) are free of mal-
ware. If malware existed on either system, a malicious
party could subvert any data distributed or collected
during a SPATE exchange. Malware is a serious threat,
but is orthogonal to the authentic exchange of data in
groups.

We also assume that humans can count and compare
images correctly within small groups of 2 to 8 members.
Prior studies have shown that users can accurately per-
form such tasks in small groups [27]. However, in groups
of more than 10 members, counting errors become more
common.

We assume individuals keep their private keys secret.
If a user were to publish their private key or share it with
other users, that key no longer provides authentication.

2.2 Trust Model

SPATE’s trust model is built upon physical interactions
via mobile devices. Having exchanged messages via the
devices, user U, with mobile device )M, trusts a message
from M, if two conditions are satisfied: 1) U, is physi-
cally located in the same place as U,; 2) the message (or
an unforgeable representation of the message) displayed
on M,’s screen is identical to the one on M,. Users
can visually verify both conditions. Therefore, users only
trust messages they have directly received but not those
relayed by someone else.

We now briefly contrast SPATE’s trust model with
Public Key Infrastructure (PKI) and PGP’s web-of-trust.

PKI A PKI certificate authority issues certificates that
bind users’ digital identities to public keys. The cer-
tificates are unable to bind a user’s physical identity to
a public key. When exchanging public keys in a PKI,
a user needs to present his certificate as proof of the
authenticity of an exchanged public key. The security
property relies on a shared trusted authority, which may
not exist in many settings.

PGP In a PGP key-signing party, user U, signs a PGP
certificate that binds a public key with another user U,’s
identity—if U, believes the identity claimed by U,. If
user U, trusts U,, U, will accept the U,-signed certificate
as a credential for U,, without interacting with Uj,.

SPATE is different in that we do not trust any third
party. We assume a stronger trust model where users
only trust a public key acquired through direct physical
interaction with another user.

2.3 Attacker Model

Attackers can eavesdrop, intercept, and manipulate any
message transmitted over the Internet and wireless net-
works. The attacker can also form a coalition of several

group members (insiders), who have control over their
own private keys and devices.

The attacker’s goal is to manipulate the exchanged
data without being detected. Manipulation includes
deletion of users” data or modification of existing data.
Note that the goal of colluding attackers is to ma-
nipulate the data of benign users. Modifying data of
other colluding attackers is not considered an attack.
An attacker can also contribute bogus data (e.g., another
user’s public key). However, without the corresponding
private key, the impersonator will be unable to perform
the operations necessary to assume the victim’s identity
online (i.e., decrypt or sign data with the appropriate
private key).

The attacker can also jam the wireless channel or insert
junk data as part of a denial-of-service (DoS) attack.
However, we do not consider DoS attacks because they
are detectable (users can tell if the protocol aborts or
gets stuck abnormally) and cannot alter any data being
exchanged.

We consider computationally bounded attackers who
cannot break basic cryptographic primitives. Hence, keys
cannot be recovered from signatures, and there is a hash
function h() that for all intents and purposes behaves
as a random oracle. But an attacker can brute-force
solutions to “small” problems, such as finding M where
h(M) ends with any given 24 bits.

3 BACKGROUND ON HASH COMPARISONS

Protocols that operate with collocated users often require
individuals to compare checksums to ensure successful
setup or authenticity of exchanged data [28]-[30]. For
such comparisons, researchers would like a mechanism
that is simple for humans, computationally efficient, and
has a quantifiable level of security.

Traditionally, such protocols require users to compare
a sequence of hexadecimal digits. Hexadecimal digits are
computationally efficient to generate and contain a fixed
amount of entropy (4 bits per digit). However, humans
trying to quickly compare digits often make mistakes
(e.g., confuse an 8 for a 0) [25].

Given humans’ inability to accurately and quickly
compare digits, researchers have proposed using
text [31], [32] or visual [10], [11] representations of these
checksums. The “Loud and Clear” system [32] expresses
hashes as syntactically correct sentences, while the UIA
system [31] expresses hashes as sequences of dictionary
terms (e.g., “meals — abut — yuck”). The entropy of
the words is easy to calculate given the size of the
dictionary from which the sequence of words is selected.
In addition, looking up words in a dictionary is com-
putationally efficient. However, comparison of words
may still require significant user effort as a quick glance
at the words may not suffice to facilitate an accurate
comparison.

Humans are good at quickly detecting differences
in images, so visual representations of the checksums
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present one promising comparison mechanism. “Ran-
dom Art” [11] and “Flag” [10] express hashes as visual
images. Random Art contains an unknown amount of
entropy, making security analysis difficult, and is com-
putationally expensive, requiring around ten seconds to
generate an image on a mobile device [26]. Flags [10]
represent an efficient alternative. However, their images
contain limited entropy and lack reference points. Such
reference points are important when comparing Flags
across mobile devices where screens are often rotated.

3.1 T-Flags for Hash Comparison

For this work, we have developed a new scheme, T-
Flags, which contains nearly twice the entropy of the
original Flag, includes a visual cue to help users quickly
determine the proper orientation during comparison
(Section 7 gives examples), and only requires around
60 ms to generate on a mobile phone. In this work, we
limited ourselves to 3 bits for 8 colors per rectangle.!
With 8 rectangles per T-Flag, a T-Flag contains 24 bits of
entropy.

To select 8 maximally distinct colors, we need to
select colors that appear different independent of display
settings (e.g., contrast or brightness) or color blindness.
Based on human perception, Glasbey et al. deduce 11
maximally distinct colors [33]. To address color blind-
ness, we eliminated Green. We thus select the following 8
colors: Black, Gray, White, Yellow, Light Pink, Red, Blue,
and Brown.

4 PREVIOUS WORK

This work is preceded by protocols that establish au-
thentic information between two devices, which is often
referred to as “pairing”. Proposed strategies include:
password entry on one or both device(s) [28], [30]; string
comparison that uses the human as a channel to ensure
authentic exchange of information [28]-[30], [34]; audio-
based comparison where the human user compares the
strings via audio representation [32]; visual-based com-
parison of graphics that encode data [10], [11]; shaking
devices to create shared entropy pools [5], [6], [35];
common properties of the wireless channel to establish
authentic or secret information [22]; and location-limited
channels [21], [23], [24].

Closely related to the SPATE exchange is GAnGS [26].
Both attempt to distribute authentic information within a
group of physically collocated users. However, GAnGS
is designed only for the exchange of public keys and
requires the installation of the private key on the user’s
device. In addition, SPATE is more efficient in that users
are required to perform fewer total interactions in the
absence of infrastructure. Specifically, for IV users SPATE
requires NV interactions while GAnGS requires 3N.

1. Ellison and Dohrmann [10] use 6 bits representing 64 colors per
rectangle, but with so many colors slight differences in shade may lead
to errors during comparison.

Within the PGP community, key signing parties may be
held to authenticate groups of users [19]. The purpose of
a key signing party is to extend the web of trust: users
gather in a physical location to verify the identity of
other attendees (e.g., using a passport or driver’s license)
and sign the PGP certificates linking attendees’ names
and public keys. The proposed methods are suitable
for forming groups, but cumbersome. Attendees print
their names and key fingerprints on slips of paper, to
be verified manually by other attendees. Alternatively,
a coordinator compiles a list of attendees in advance,
and each attendee must be verified at the party. For
large groups, comparing each attendee’s key fingerprint
is awkward and error-prone.

Researchers have also proposed numerous key agree-
ment protocols for groups, which rely on a PKI that
issues certificates to each user [12], [14]-[18]. These pro-
tocols all assume a common trusted certification author-
ity (CA). The CA is needed so that group members can
authenticate other members’ certificates. Unfortunately,
this assumption is invalid in many settings. Different
organizations may not have any trusted authorities in
common, or group members may lack certificates en-
tirely. The SPATE exchange is complementary to PKI-
based schemes, as it can be used to establish the authen-
ticated certificates needed to set up a group key.

Other works have examined key agreement protocols
for groups, which rely on string comparison or shared
passwords [20], [36], [37]. In contrast to SPATE, all of
these schemes aim to establish a shared secret between
the group members. After SPATE is used to exchange
authentic public keys, it is possible to set up a shared
secret within the group using any of the PKl-based
schemes. However, a shared secret lacks the properties
needed to distribute authentic public keys within a
group. Specifically, with only a shared symmetric group
key, any member can generate a message authenticator
and thus it is impossible to tell which user truly was
the source of a message (i.e., member A can claim K™ is
member B’s public key and use the shared group key to
produce the correct authenticator to support that claim).
Also, many prior works do not implement their schemes
in a real-world system, which elides numerous practical
issues.

Identity-Based Encryption (IBE) [38], [39] is another
method to distribute public keys. In such a system, a
subscriber’s identity, e.g., email address, is her public
key. With IBE, distributing public keys is easier than
when using conventional PKI systems; instead of need-
ing certificates, participants only require the correct iden-
tity of the other party. However, like traditional PKIs, IBE
requires a shared trusted authority.

Finally, there is research using location-limited chan-
nels to exchange keys [13], [21], [24]. Talking to
Strangers [21] and Capkun’s work [13] use demon-
strative identification over a location-limited channel
(e.g., infrared) to exchange authenticated public keys.
Talking to Strangers may be used for groups, but it
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lacks a step for member verification. Thus, the scheme
is vulnerable to malicious members who mount Sybil
attacks; the multiple identities of one member would
go undetected. Capkun’s work only discusses how to
establish a security association between two devices
which physically interact or share a trusted “friend”
(much like PGP’s web-of-trust). The Resurrecting Duck-
ling protocol [24] leverages a direct physical connection
between devices for key setup. In the protocol, a mother
duck (i.e., the group leader) defines and distributes a
key to the ducklings (i.e., the other members of the
group). During setup, a policy is uploaded. The policy
specifies what actions a duckling will take. Thus, the
mother duck’s policy can direct the ducklings to support
group communication. Unfortunately, this requires that
the mother duck is completely trusted. In addition,
there are several practical issues with using Resurrecting
Duckling for groups. First, imprinting ducklings is a
sequential operation. Every duckling needs to touch the
mother duck, and she becomes a choke point in the
group formation process. Second, the scheme requires a
special interface that supports physical contact. Finally,
like most other group schemes, Resurrecting Duckling
has not been implemented in a real-world system to the
best of our knowledge.

The field of Computer Supported Collaborative Work-
ing (CSCW) is closely related to many of the applications
that would use SPATE. After a group meets and per-
forms a SPATE exchange, the next logical step is to use
CSCW while the group is physically separated. Within
the CSCW field, little has been done about how to secure
applications. Foley and Jacob [40] described a formal
language for defining security requirements in CSCW,
but ignored how to enforce those requirements. SPATE
presents one potential way to enforce them.

5 SPATE

SPATE is a system that provides a foundation of trust
for secure applications. SPATE relies on visual channels
and physical interactions rather than pre-existing trusted
infrastructure (i.e., PKI) or transitive trust (i.e., PGP) to
authenticate data. Our key insight is the use of mo-
bile devices and human interaction to convert physical
interaction into digital trust. A group of users who
successfully complete the SPATE protocol are guaranteed
to have identical and authentic copies of data. The data
can be anything, e.g., public keys, IP addresses, public-
key certificates, or email addresses. The authenticated
information can be the basis for a host of different
secure applications. For example, to send an encrypted
message, the sender needs to know the correct public
key and email address of the receiver.

5.1 SPATE Protocol Overview

The SPATE protocol is designed to allow a group of
users that meet in person to exchange data which later
forms the basis of trust for an application. People often

carry their phones or other resource-constrained mobile
devices, but may leave their main workstation (i.e.,
desktop or laptop) elsewhere. As such, we have designed
the SPATE exchange to run on mobile devices because
they will be present when people physically meet. When
security applications and the SPATE exchange are run
on different devices, a mechanism is needed to transfer
the data between the device and the machine. SPATE
thus consists of three steps to allow operation of our
secure applications: 1) the one-time creation of appli-
cation dependent data and imprinting the data on the
mobile device, 2) exchange of authenticated data with
other users, and 3) retrieval of data from the mobile
device. Figure 1 depicts these three steps.?

(User A's Computer )
Application

@ create dj

@ receive data (D) from
SPATE Library

A

dA D
B’s Mobile Device

SPATE Library
SPATE Library

D @ exchange dp, collect D
A

A's Mobile Device'\

SPATE Library
@ receive dafrom computer| d
‘A

Exchange

@exchange dycollectD [
D = union of data

Ay dc

C's Mobile Device

SPATE Library
@exchange dc, collect D

@ transfer D to computer

l

Fig. 1. Steps associated with a SPATE exchange between
Users A, B, and C. Shown from the perspective of User A.

[ Creation and Imprinting of Data During the
creation and imprinting of data, a workstation (laptop
or desktop) is used to create and transfer a user’s data.
For our prototype, the user’s data (d) is a self-signed
certificate containing the user’s name, email address,
public key, and other application-specific data. In gen-
eral, SPATE users can exchange arbitrary data of their
choosing. To securely transfer d from the computer to
the mobile device we use standard Bluetooth pairing
techniques [28] to setup a secure channel between the
two. Initially, pairing requires the user to copy a passkey
from the computer to the device. Once the two have been
paired, files can be securely transferred between the two.
We chose to use Bluetooth simple pairing since users
may have already paired their mobile device with their

2. If the security application runs on the user’s mobile device,
the data always resides with the application, removing the need for
imprinting or retrieving the data (Steps 1 & 3).
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computer (e.g., to exchange calendar or contact informa-
tion). Given that a secure mechanism for the exchange
of data already exists, users may view a SPATE-specific
transfer mechanism as unnecessary and cumbersome.
If the workstation lacks a Bluetooth adapter, users can
utilize a USB cable or any other direct connection to
securely transfer data. We avoid using the Internet to
imprint data because of networking and security issues.
On current networks, mobile devices and most home
computers are behind Network Address Translation ser-
vices which prevent direct connections, stopping either
the device or the workstation from acting like a server.
Without additional setup, communication on the Internet
is vulnerable to Man-in-the-Middle attacks where a third
party modifies the data.

[ Exchange of Authenticated Data  Authenticated
exchange within a small group in SPATE involves four
steps: 1) selection and counting, 2) commitment, 3)
distribution, and 4) verification. In the first step, each
user selects the data she wants to share with the other
group members and indicates to the device the number
of physical members in the group (i.e., the group con-
tains N people). Once the device knows the number of
members and the data the user wishes to exchange, the
device automatically performs the commitment and dis-
tribution steps. After the device checks that the received
commitments agree with the distributed data, the device
computes a T-Flag representation of the received data. To
verify that all of the physically-present participants have
the same data, users compare the T-Flags displayed by
their devices. If everyone has received the same data, the
T-Flag on each device should be identical. Section 5.2
contains more details on how a SPATE exchange is
performed.

[ Retrieving Data from the Device After the user
has completed the SPATE exchange, the last step is
to upload any collected data from the user’s mobile
device to the user’s workstation. Uploading data from
the mobile device to the workstation is similar to the
creation and imprinting step: the two devices pair or
use an association from a previous pairing to establish
a secure channel which is used to transfer the collected
data.

5.2 SPATE Exchange of Authenticated Data

For applications where a user interacts with other users
and requires trust, users need to obtain authentic data
from the other users. Each user could pair with ev-
ery other user to securely exchange data. However, a
pair-wise protocol is inefficient in that O(N?) pairs are
needed for a group of N users. The following protocol
allows a group of N users numbered 1... N to exchange
authentic copies of data d;...dy (where d; is user i’s
data) with O(N) interactions. Figure 2 presents an out-
line of the steps of the exchange protocol.

In a SPATE exchange of authenticated data, the end
goal is for each group member to have collected an

6
Selection & Counting
1. UigMi : d; (the data to be shared)
2. U5 M, : N (number of people in the group)
Commitment
3. MZ‘ . nﬂL{O, 1}2, N «— {nz}
4. pi < h(ni), P — {pi}
D —{d:}
5. Ci < h(dszz), C « {Cz}
6. M; —x :¢
7. % — M; :cj (for j #1)
M; :C—CuUg
8. M; -if (|C| > N) or timeout
quit (incorrect number of values)
Distribution
After all phones receive N commitments
9. Mi — X . di,pi
10x — M; : dj,pj for (] 7& Z)
M; :D—DuUd;, P—PUp;
Verification
11.M; :for je1..N
if ¢; # h(d;l|p;)
uit (wrong data commitment)
12.M; : T-Flag(h(C||D||P)) (on screen)
13.U1-£>Mi : “All N T-Flags Match” or
“Some T-Flags Differ”
14.M; :if “All N T-Flags Match”
broadcast n;
else
broadcast n} (n}——{0,1}", n} # n)
quit (discard collected D)
154 — M; :nj (for j # 1)
M; :N—NUn;
16.M; sforjel..N
if (p; # h(n;)) or timeout
quit (wrong protocol commitment)
17.M; : Save D if all N values are correct

Fig. 2. Steps foruser U; (i € 1... N) to exchange data d;

with the other N — 1 users via mobile devices. U;-25 M,
indicates inputs over the user interface from user U; to
their mobile device M;. Any other transfer of data (e.g.,
M, — ) indicates wireless communication.

authentic copy of every other member’s data. This
exchange consists of four major steps: selection and
counting, commitment, distribution, and verification. To
ensure authenticity, each user must count only the num-
ber of group members present and to perform a final
comparison of T-Flags. The mobile devices perform all
other steps associated with committing to, broadcasting,
and verifying data without requiring any human inter-
action. It is important to note that the SPATE exchange
requires no encryption or signing. As such, unless the
user wants to run an application on the device that
requires the private key, all of a user’s secrets remain
on their workstation. With all of the secrets on the
workstation, a lost device has zero impact on security.
This is more secure and computationally efficient than
other protocols (described in Section 4) where the device
must perform private key operations.
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Selection and Counting (Steps 1-2) The SPATE ex-
change begins with each user selecting the data the user
wishes to share (data d; for user i) and entering the
number of users present in the group (here we represent
the user-supplied number as N). Both of these items
require human intervention. The data to be shared is
application-dependent and depends on how the user
wants to interact with the other group members. The
user must enter the number of physical members in the
group. If the device were to simply count the number
of messages it receives, a party outside the group could
inject wireless messages and infiltrate the group.

Commitment (Steps 3-8)  Once the device knows what
data the user wants to share and the size of the group,
the device generates two commitment [41] values: a
protocol commitment and a data commitment. With two
separate commitments, SPATE prevents attacks and lim-
its the impact of human errors, unless all group members
make a mistake. To generate the protocol commitment,
the device generates a random number or nonce (i.e.,
mobile device i generates n;) and hashes the nonce
(pi = h(n;)). The device hashes the protocol commitment
with this device’s data to generate the data commitment
(see Step 5). Without the data commitment, an attacker
can modify data from some group members without
being detected during verification [42]. During such an
attack, the malicious party would wait until all but one
group member had broadcast their data. The attacker
would replace the last user’s data (dy) with a different

'v such that T-Flag(h(d1||...||dn) =T-Flag(h(d]|...||dy))-
With knowledge of d; to dy_i1 and only 24 bits of
entropy in a T-Flag, an attacker could find such a d’y
in a few seconds. The protocol commitment ensures that
if at least one user correctly compares T-Flags within the
group, SPATE fulfills the three properties of an authentic
group exchange (even if some members are lazy and
skip the comparison step). Our prior work contains more
details about this use of commitments [43]. The device
records its nonce, protocol commitment, data, and data
commitment as the initial members in a set of nonces,
protocol commitments, data, and data commitments for
this group: sets N, P, D, and C, respectively. After
generating these values, the device broadcasts the data
commitment to the rest of the group (Step 6). At the
same time, the device is receiving data commitment
broadcasts from the other group members (Step 7), and
adding the received commitments to its set of data
commitments (C). If the device receives fewer than N
data commitments before a timer threshold, either the
user miscounted or a malicious party is preventing a
device from contributing its commitment. In such a case,
the protocol quits, since at least one of the N devices has
failed to contribute a data commitment. If the device
receives more than N commitments, either the user
miscounted the size of the group, or a malicious party
has inserted additional commitments. In such a scenario,
the protocol quits and any data is discarded as invalid.

Distribution (Steps 9-10) Once each device has re-
ceived the correct number of data commitments, devices
can begin to exchange data. The device broadcasts its
data and the protocol commitment used to generate its
data commitment (Step 9). At the same time, the device
receives the other devices’ data values and protocol
commitments and adds those values to the respective
sets (Step 10).

Verification (Steps 11-17)  Once a device has received
the entire set of data, data commitments, and proto-
col commitments, the verification stage of the protocol
begins. The device verifies that the data and proto-
col commitments match the original data commitments
(Step 11) by comparing the data commitment with the
hash of the received nonce and protocol commitment.?
Provided all of the data commitments are correct, all that
remains to ensure authenticity is for the device to verify
that the values it received match the values the other
devices received and that the other devices received
its data. To verify each member’s device received the
same information, each device displays a T-Flag which
represents the hash of the data commitments, data, and
protocol commitments exchanged during the protocol
(Step 12). At this time, the group members will compare
the T-Flags on the devices’ screens and indicate to their
device if “All N T-Flags Match” or if “Some T-Flags
Differ” (Step 13). The use of commitments and a final
comparison where users verify the T-Flags on every
device match ensures with high probability that all of the
devices in the group received the same information. With
a T-Flag containing 24 bits of entropy, the probability of
the same T-Flag on each device with different under-
lying data is 2724, (Our prior work contains a security
analysis [43].)

Impatient group members may click “All N T-Flags
Match” without looking at the T-Flags in the group. In
SPATE, the use of protocol commitments and nonces al-
lows the actions of one or more diligent group members
to protect such impatient users from saving incorrect
data in the case of an attack. After a user indicates
the T-Flags agree, the device will reveal its nonce (see
Step 14) and expect to receive the correct nonce from
the other N — 1 group members (see Step 15) before
the device saves ). An incorrect n is an indicator that
a member indicated “Some T-Flags Differ” and dictates
that members should discard D since D is inconsistent
across some of the devices.* An incorrect nonce can be
detected by comparing the hash of the nonce to the
associated protocol commitment (see Step 16). When all
N nonces are correct, every group member agrees that
“All N T-Flags Match”, and every device will save D.
The nonces ensure that any saved data fulfills the three

3. To ensure the proper protocol commitment, data, and data com-
mitment are compared, all sets are ordered with respect to a unique
sender value (e.g., Bluetooth or MAC address), as opposed to the value
of the element.

4. A malicious party can inject an incorrect number to force members
to discard data, but this is only a denial of service attack.
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properties needed for authentic information exchange
within a group, even if N — 1 or fewer group members
click “All N T-Flags Match” without even looking at
their devices.

SPATE guarantees authentic information exchange if
at least one member correctly compares T-Flags within
the group. When all members are impatient to check
the consistency of T-Flags, an addition to the SPATE
verification step (between Steps 11 and 12) can prevent
the device from saving bogus data as follows: SPATE
periodically instructs the device to display a challenge
T-Flag, chosen at random, before displaying the original
T-Flag which represents the hash of the exchanged infor-
mation as shown in Step 12. SPATE ensures that devices
with an identical copy of data (i.e., 2(C||D||P)) switch to
the challenge phase together. Because the challenge T-
Flags are chosen at random, they will be different within
the group with high probability (1—-2724=1). As a con-
sequence, some users must report “Some T-Flags Differ”
in the challenge phase, in which case SPATE proceeds to
show the original T-Flags (Step 12). On the other hand,
SPATE aborts if all users click “All N T-Flags Match”
without even looking at the display. Despite reducing
the impact of human errors, this change requires an
additional round of T-Flags comparison and broadcast,
thus increasing the protocol runtime.

6 APPLICATIONS

The SPATE system allows users to exchange public
keys in a secure and convenient way. To demonstrate
the usefulness of the SPATE system, we design and
implement three applications on top of SPATE. In this
section, we present a high-level overview of a secure
email application, a secure file sharing application, and
a secure short message service (SMS). In the following
sections, we present our implementation and evaluation.

6.1 Secure Email

In an ad-hoc group meeting, people may exchange their
physical business cards, or simply email addresses, to
enable subsequent communication. Each group member
needs to distribute her cards to all the other group
members, and she will receive a different business card
from each of the other group members. Not only does
distributing physical cards consume time and resources,
but each user then needs to enter the received infor-
mation into her digital address book later. Distributing
vCards [44] using Bluetooth wireless communication
may save time by eliminating typing, however, it re-
quires pairwise Bluetooth pairing to provide any au-
thenticity guarantees for the received information. This
approach does not scale: even for small groups with 8
users, there are 28 pairs.

Our secure email application provides a convenient
mechanism for importing other users” public keys and
email addresses. Using the secure email application,
a user can imprint a self-generated X.509 public key

certificate from their workstation onto their mobile de-
vice. During the exchange of authenticated data, she
will obtain other users’ certificates. When she retrieves
the collected certificates, the application will extract the
email addresses and names from the certificates and
automatically import them into the application’s address
book. Then, the user can send secret and authentic
emails. Our application is built as a plug-in to Thun-
derbird [45], enabling simple adoption.

We can summarize the features of the secure email
application as follows:

1) Convenient to import contacts. The user does not
have to perform any operation per received certifi-
cate. The uploading process is fully batched and
automated.

2) Authenticated and confidential email. We provide
an alternative to PGP- and PKl-based solutions.
Thanks to the physical contact between human
users, we can assert that the contact information
and public key that a user received is from the
person she met.

3) Compatible with an existing mail client. Thunder-
bird is one of the most popular POP/IMAP email
clients. Existing Thunderbird users can adopt our
application by installing it as a plug-in.

6.2 Secure File Sharing

In many scenarios, people may want to share files after
a social gathering. For example, scholars meet at a
conference and wish to start up a research project, or
students at a party want to share video games and music.
In these cases, the participants want to block people
outside the group from accessing the files. Also, they
would like to share the files with proper access control,
but without frustrating management overhead. Good
and Krekelberg show that users have trouble correctly
setting permissions on files [4]. Furthermore, the file
system should maintain accountability information and
revocability to help detect and stop misbehaving users.
Current solutions (e.g., BitTorrent [46], Dropbox [47], and
KaZaA [48]) do not meet these requirements.

We present a secure file sharing application that does
satisfy the above requirements. Each user downloads
her workstation’s configuration file and its public key to
her mobile device in advance. During the distribution of
certificates with SPATE, a user voluntarily provides her
storage space for file sharing. The configuration file of
this user is now distributed to other users in the group,
and the user collects the other users” public keys. That
user uploads other users’ public keys to our application,
which will automatically create a session for this group
of users. They will have a separate directory which only
this session’s users can access. Other users upload the
configuration file to their respective workstations and

5. Of course, we cannot avoid errors if the person she met gave false
information. This problem cannot be solved even if PGP or a PKI is
used.
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mount the remote file system. We implemented this
application on top of sshfs [49], a file system that works
over the SSH protocol.

Our application has the following advantages over
past solutions:

1) Secure transport. SSH tunnels protect file transfers
from eavesdropping and tampering.

2) Conuvenient access control. Shares on the server corre-
spond one-to-one with successful SPATE protocol
exchanges. They are created automatically, with the
policy that only users present at the physical key
exchange can access the files in the share.

3) Accountability and revocability for misbehaving users.
Each user is connected to the remote machine as an
individual user. Any misbehavior by the user can
be attributed to her user name. For instance, it is
suspicious if many sessions simultaneously connect
to the server using the same login credentials. The
machine owner can then revoke or suspend this
user. The file system could also be extended to use
the SPATE exchanged public keys to enable non-
repudiation for changes made to the shared files
via digital signatures.

4) User-friendliness. Users do not need to remember
hostnames, usernames, or passwords. The host ad-
dress and usernames are exchanged during the
Distribution phase of SPATE. Since authentication
is done using public key authentication in SSH,
no passwords are required. Of course, our system
does assume that the server machine is globally-
routable. Servers behind NAT can work but are
more difficult to configure.

6.3 Secure SMS

Short messaging service (SMS) is a very popular mobile
phone service. In 2008, UK phone subscribers sent more
then 1.1 billion text messages every week [50]. As mobile
devices become more complex and are used for multiple
functions, many attacks becomes possible. For example,
criminals may send unsolicited fraudulent messages to
subscribers informing them that they have won big
prizes. Deceived recipients might send their banking
information to the criminals in hopes of claiming such
prizes. Several solutions have been proposed to protect
users [51]-[54]. However, the security of these solutions
depends on the trust establishment and security algo-
rithms applied, with secure key distribution being the
main bottleneck.

Our Secure SMS application leverages SPATE to
achieve secure key distribution. Unlike the previous
applications, Secure SMS uses symmetric cryptography
with keys derived from mobile device generated Diffie-
Hellman values. The private Diffie-Hellman value is
kept secret in phone storage while the public value
is distributed during the SPATE exchange. After the
exchange, each member uses Diffie-Hellman key agree-
ment to create pairwise keys with every other member.

This pairwise symmetric key allows encryption and au-
thentication of SMS messages with limited computation
and bandwidth overhead.

Secure SMS can provide the following benefits:

1) Effective Key Distribution. Each user’s mobile device
generates her own Diffie-Hellman values. During
a SPATE exchange, members exchange authentic
public values which the mobile devices use to agree
upon shared keys, without per pair exchanges.

2) Authentic and confidential SMS. A successful SPATE
exchange ensures the authenticity of the public
values and thus the security of the shared key.
The shared key is used to authenticate and encrypt
SMS messages between the two devices, preventing
other devices from impersonating the devices or
accessing their communication.

3) Efficient performance. Symmetric cryptography re-
quires less computation and bits to provide the
same privacy and authentication as asymmetric
cryptography. These facts are crucial when using
computationally limited mobile devices which pay
per message.

7 |IMPLEMENTATION

We have fully implemented the SPATE system and
three applications on Nokia N70 and E51 smart phones
and commodity Dell workstations running Windows XP
and Ubuntu Linux. The system contains four parts: 1)
the SPATE Mobile Client that supports key exchange
for the email, file-sharing, and SMS applications, 2) a
Thunderbird plug-in to enable secure email, 3) a file
sharing application, and 4) a Secure SMS application
(Figure 3). We have also implemented the SPATE system
on Apple iPhones. However, Apple’s isolation between
applications prevents us from implementing secure SMS
on the iPhone. In the following sections, we describe the
implementation details of these programs.

7.1 Nokia SPATE Mobile Client

The SPATE Mobile Client is implemented in C++ for
Symbian OS v8.1a (with Nokia Series 60 second gen-
eration graphical user interface) running on Nokia N70
smart phones equipped with a digital camera and Blue-
tooth radio. The size of the Symbian Installation System
(SIS) binary for the SPATE Mobile Client is 47 KB, en-
abling deployment over even bandwidth-limited GPRS
networks. We have also ported the SPATE Mobile Client
to the newer Nokia E51 with Symbian OS v9.1 (Series
60 third generation); however, we focus on our N70
implementation for comparability with prior work on
authenticated exchange [8], [26].

Figure 3 shows the architecture of our SPATE Mobile
Client: it includes a library of commonly used functions
and email-, file sharing-, and SMS-specific modules. The
SPATE Library includes communication and visual en-
gines. The communication engine is responsible for data
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transmission and contains the Bluetooth module. The
visual engine is used to generate T-Flags. As described
in Section 5.2, SPATE requires devices that support mes-
sage broadcast. Bluetooth does not support broadcast;
however, it does support a piconet of up to eight devices.
We employ Bluetooth piconets to simulate broadcast by
forming a star network with a volunteer leader during
a SPATE exchange. Our simulated broadcast also has
the advantage of isolating different groups in the same
physical space, thereby eliminating crosstalk between
groups of well-behaved devices (the common case).

Additionally, we desire to circumvent the Bluetooth
device and service discovery process, as it can introduce
overheads of tens of seconds, as well as user confu-
sion [55]. Thus, we augment our visual engine to gener-
ate, photograph, and decode two-dimensional barcodes
(2D barcodes) which we use to circumvent Bluetooth
device discovery, as proposed by Scott et al. [55].

The Bluetooth module is used for all data exchange
(between mobile devices and between a mobile device
and a workstation). Note that this is a design decision
we made for our implementation; other communication
interfaces (e.g., infra-red, USB, WiFi, or the cellular
network) are also viable. Ideally, during the SPATE ex-
change, we would have a broadcast primitive available.

2D Barcodes are generated, photographed, and de-
coded using the VisualCodes module from Rohs and
Gfeller [56], ported to work with newer versions of
Symbian OS. The T-Flags module is used at the end of
an authenticated data exchange; it displays a visual hash
on devices” screens (Figure 4).

Fig. 4. Our Mobile Client displaying T-Flags on N70 smart
phones during a SPATE exchange. The left and center T-
Flags are identical, but the right T-Flag is different.

7.2 SPATE Exchange Walk-Through

Here we provide a walk-through of a SPATE exchange
using our implementation, in accordance with the SPATE
protocol from Section 5.2. The only significant departure
from the SPATE protocol in Section 5.2 is the additional
requirement that the people in the prospective group
agree on a leader to serve as the hub of the star network
to simulate broadcast with Bluetooth. Figure 5 provides
a chronological breakdown of the individual actions
performed by a user during the exchange.

Step 1, Selection and Counting, begins automatically
when the user starts a Mobile Client or initiates an
exchange within the Secure SMS App on her mobile
device. Step la in Figure 5 shows the library prompting
the user to count the number of prospective group
members: “How many people?” The user may enter
a number between 2 and 8 (the maximum number
of devices supported by Bluetooth piconets, and the
threshold above which humans begin to make counting
errors [27]). Once the count has been entered, the library
prompts the user as to whether she would like to act as
the leader for this SPATE exchange: “Act as Leader?”
The user may select Yes or No.

The devices must now establish Bluetooth connectiv-
ity. We use 2D barcodes to circumvent the Bluetooth
discovery process. The leader uses her device’s camera to
photograph the barcodes on the remaining prospective
group members’ devices (which encodes each device’s
Bluetooth address). Step 1c shows a SPATE Library
displaying a barcode, and Step 1d shows the leader’s
library successfully decoding the barcode on another
device. Once the leader has photographed all members’
barcodes (detected automatically since the library can
compute the expected number of distinct barcodes from
the count entered by the user in Step 1a), her device can
construct a Bluetooth piconet between all of the devices.
The leader’s device serves as the master and the remain-
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Fig. 5. Execution Flow of a SPATE Exchange. Step 1: Selection and Counting, Step 2: Commitment, Step 3:
Distribution, Step 4: Verification. Steps 1b, 1c and 1d are necessary in our implementation because Bluetooth does

not support broadcast.

ing devices are slaves. The result is a network with a
star topology connecting all prospective group members’
devices to the leader’s device. The leader’s device can
then simulate broadcast by unicasting messages to all
connected slave devices.

All SPATE protocol operations for Step 2 (Commitment)
and Step 3 (Distribution) are automatically executed by
the SPATE Library. We design our library to avoid all
non-essential user interactions in an effort to make the
exchange as smooth and fast as possible. The final step
(Verification) again involves the user. If the SPATE proto-
col successfully verifies all message commitments, then
each device will compute the final hash of the prospec-
tive group members’ public keys and commitments and
display it as a T-Flag (Step 4a in Figure 5). The user is
prompted to determine whether the T-Flags match. If the
protocol fails during the automated message exchange,
the user is informed that there has been an error and
that she should retry.

It is now the responsibility of the prospective group
members to compare the T-Flags displayed by each of
their devices. If the users agree that all of the devices
are displaying identical T-Flags, they select “All T-Flags
Match” (Step 4b). Otherwise, they select “Some T-Flags
Differ.” If the user indicates that the flags do match,
then her device stores the newly received information
for use with the associated application. It also displays
the message, “SPATE Exchange Complete!” (Step 4c).

7.3 iPhone SPATE Library

SPATE implementation and operation on the iPhone
is similar to that on the Nokias, but is hindered by
Bluetooth limitations on the iPhone. The library imple-
mentation uses Apple’s Game Kit Framework to connect
collocated devices using Bluetooth. Unfortunately, the kit
is structured such that the Bluetooth discovery phase
cannot be bypassed. As such, iPhones are forced to
use traditional device discovery, rather than capturing
barcodes, to connect to other group members. Once the
group members have counted and are connected, the
remainder of SPATE operation is the same: commitment,
distribution, and verification via T-Flag.

7.4 Secure Email

We enable secure (with authenticity, integrity, and se-
crecy if desired) email communication between users
without a PKI. We implemented our secure email appli-
cation as a Thunderbird extension using only 4135 lines
of code. The extension uses OpenSSL [57] to generate a
public/private signing keypair encapsulated in an X.509
certificate and PKCS12 file for the user. This happens
once during initial setup. The certificate includes the
user’s email address and is imported into Thunderbird
as a trusted certification authority (CA). The user’s cer-
tificate serves as a CA to authenticate future certificates
received from other users via the user’s Mobile Client.
Next, the user can download her certificate from the
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extension to her mobile phone, thus imprinting it with the
user’s digital identity. She is now ready to participate in
SPATE exchanges, as described in the previous section.

After the user has participated in a SPATE exchange,
her device will have obtained self-signed public key
certificates from other users. She can upload all received
certificates from her Mobile Client to the Thunderbird
extension. The extension automatically signs® the re-
ceived certificates with the user’s private signing key
and imports them into Thunderbird’s address book.
Users can then exchange secure emails through Thunder-
bird’s built-in S/MIME [58] functionality. In accordance
with S/MIME, the email content can also be encrypted
under the receiver’s public key (in addition to being
signed by the sender’s private key).

7.5 File Sharing

Our file sharing program is built for Linux using Java
6 and shell scripts, on top of the SSH File System
(SSHFS) [49]. SSHFS allows a client to mount a remote
file system tunneled through the SSH protocol. When the
program is first started, it creates a server configuration
file with its host’s IP address and the public host key
that is used by the host’s SSH server. It also generates
a public/private signing keypair for the Mobile Client.
After key generation, the user imprints her mobile phone
(via downloading) with her workstation’s configuration
file and her public key. Her device is now ready to
participate in SPATE exchanges to identify users with
whom she would like to share files.

The Mobile Client of the user that volunteers to be
the leader of the group during the SPATE exchange will
distribute both the file-sharing configuration file and the
user’s public signing key. Other users only send out their
public signing keys. At the end of this phase, every client
will have received the leader’s server configuration file
and the leader will have received all the clients” pub-
lic key certificates. The leader later uploads the other
clients’ certificates to her workstation.

The file-sharing application (acting on behalf of the
group leader) briefly requires root privileges to complete
the following tasks: 1) generate a group name with the
hash of received certificates; 2) create an account for
each client, using the filename of her public key as the
username; 3) register their public keys as authorized SSH
users; and 4) restrict their SSH access to reading and
writing files only (e.g., using scponly [59]). Finally, it
creates a directory for the group and adds each client
into the group. The user may also assign the group a
“friendly name” after importing the other users’ public
keys.

Each of the non-leader users uploads the received con-
figuration file from their Mobile Client to the file-sharing
application running on their workstation. The applica-
tion will read the server’s IP address from the config-

6. Thunderbird does not accept public keys unless they are signed
by a trusted CA.
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Joe's Wedding 2 users Carol
Mobisys 2008 3 users David
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Fig. 6. Screen shot from the file-sharing application. The
application lists the shared folders on the local host and
folders mounted from remote systems.

uration file and append the server’s public host key
into its list of known hosts (7/.ssh/known_hosts).
The application mounts the remote file system using
the SSHFS engine. Since the server and the client use
their exchanged public keys for authentication (i.e., the
public key-based authentication method offered by a
standard SSH installation), there are no passwords for
authentication.

The file-sharing application displays information
about currently shared folders, active groups, and active
users on the local machine (Figure 6). It also enables the
user to mount shared folders from remote machines.

7.6 Secure SMS

Secure SMS leverages a SPATE exchange and an applica-
tion on the mobile phone to provide secret and authentic
communication between group members without a PKI.
The secure SMS application consists of three modules:
a vCard module, a SMS module, and a cryptographic
module. The vCard module creates a vCard from the
device’s information and extracts information from other
devices vCards after a successful SPATE exchange. The
SMS module handles the sending or receiving of SMS
messages. The cryptographic module contains primitives
to perform symmetric and asymmetric cryptographic
operations and KeyGen and KeyProtect modules to gen-
erate and protect secrets, respectively.

To use secure SMS, the application creates the user’s
vCard, distributes the vCard and receives others’ vCards
during a SPATE exchange, uses the received vCards
to established shared keys, and uses a shared key to
securely send or receive messages. vCard generation
includes the generation of Diffie-Hellman values using
the KeyGen module and packing the public value with
the user’s name, phone number, and any other data
the user wants to share (e.g., a personal photo). After a
SPATE exchange, the vCard module extracts the public
Diffie-Hellman value and contact information from the
received vCards. Rather than performing key agreement
for every message, the cryptographic module performs
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Fig. 7. The data transferred as part of secure SMS and
the decrypted message at the receiver.

Diffie-Hellman key agreement after each successful ex-
change to generate shared secrets. When not in use,
the KeyProtect sub-module uses a password to encrypt
the user’s private Diffie-Hellman value and any shared
secrets stored on the phone.

When a user wants to send a secure SMS, the shared
key is retrieved and session encryption and authentica-
tion keys are generated and used to secure the message
before it is sent. After defining the recipient and entering
the desired message, the user enters her password to
access any secrets stored on the phone. With access to
the shared keys, the cryptographic module generates an
encryption key for use with AES-CBC and an authenti-
cation key for use with HMAC-SHAT. These symmetric
operations provide space and computational efficiency
compared to using asymmetric encryption or authenti-
cation. The cryptographic module encrypts the message,
and generates the corresponding MAC. HMAC-SHA1
takes input ciphertext and IV (initialization vector) to
output the MAC [60], [61]. Finally, the SMS Module
sends the data over the cellular network (see Figure 7 (a)
for an example ciphertext). After receiving the encrypted
message, the receiver enters her password to access the
corresponding shared key. The cryptographic module
can then decrypt and verify the authenticity of the
message (see Figure 7 (b) for the decrypted and verified
message).

8 EVALUATION

We evaluate the performance of authenticated exchange
using our SPATE Mobile Client implementation. We do
not discuss the performance of data exchange between
a mobile device and a workstation (i.e., imprinting the
device initially and then retrieving newly acquired data),
since synchronizing data between a mobile device and
workstation is a widely available operation.

45 : : : :
N70 Communication <3
40 + N70 Connection &sssy
N70 Collection mu—n
35+ iPhone Communication
iPhone Connection

Time (In Seconds)
N
[6)]

2 3 4 5 6 7
Number of Users

Fig. 8. Time consumed during a SPATE exchange.

8.1 Method

We ran SPATE on two to eight Nokia N70 smart phones
and two to eight Apple iPhones. Each data point repre-
sents the average of 10 runs. Time consumed by auto-
mated protocol steps (i.e., without involving the human;
Step 2 from Figure 1) is recorded in the experiment.
We measured the time consumed by Collection, Connec-
tion, and Communication. Collection represents the time
consumed by the leader while she photographs the 2D
barcodes on others’ screens. Connection represents the
time needed to establish a Bluetooth piconet. Commu-
nication includes the time for data transfer during the
automated Commitment and Distribution (Steps 2 and
3 from Section 5.2 and Figure 5) steps of the SPATE
exchange. The iPhone forces applications to use tradi-
tional Bluetooth discovery and thus lacks any collection
(see Section 7.3). We also ran Seeing-is-Believing [8] and
GANGS [26] on the Nokia N70s to compare the total
runtime for each protocol. To eliminate human factors
in the execution time, these tests were performed by
experienced operators of all three systems.

8.2 Results

Figure 8 shows the time consumed by Collection, Connec-
tion, and Communication for the N70 and iPhone based
implementations. Unfortunately, in our experience, the,
iPhone’s underlying Bluetooth library becomes unstable
when more than 6 devices attempt to form a piconet, so
we only present results for 2 to 6 devices.

During Collection, the leader photographs N — 1 2D
barcodes from the other users. In our experience, the
leader needs 2-3 seconds to successfully photograph one
2D barcode. While this is the leading source of time con-
sumption in the Nokia implementation, 2-3 seconds is
considerably less than the delay we would have incurred
using Bluetooth device and service discovery. To confirm
the overhead of Bluetooth discovery (and to validate the
results of Scott et al. [55]), we implemented a Symbian
C++ program to record the time spent on device and
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Fig. 9. N70 Bluetooth discovery overhead.

service discovery. We conducted this experiment twice:
once in an open cubicle environment with many nearby
Bluetooth devices, and once in a closed apartment iso-
lated from other Bluetooth devices. Figure 9 shows our
results; each data point is the average of five runs. Even
the best-case result requires almost 30 seconds for two
devices to discover each other, connect, and query for
the desired service.

Once all of the Bluetooth addresses have been col-
lected by the leader during N70 Collection, the leader’s
device establishes a Bluetooth piconet. This results in
the N70 Connection overhead in Figure 8, which takes
roughly one to ten seconds, depending on how many
devices are involved.

The iPhone implementation forces devices to perform
Bluetooth discovery. This causes highly variable iPhone
Connection times as seen in Figures 8 and 10. Figure 10
represents the average time needed for the iPhone imple-
mentation to form a piconet with 2 to 6 devices while in
a closed environment. Compared to the N70, the iPhone
provides faster average Bluetooth connections (Figure 9
versus Figure 10). However, the current iPhone Blue-
tooth library fails to provide the same scalability (i.e.,
piconets of 7 or 8 devices cannot be reliably established
in a reasonable amount of time) and suffers from high
variability even with zero interfering devices.

Once the connections are established, Communication
consumes less than five seconds even with a full eight
devices. Even with our star network topology, Bluetooth
has sufficient bandwidth to rapidly transfer the data,
commitments, and nonces, which make up no more
than a few kilobytes. Verification of the commitments
consumes less than 200 milliseconds. We omit it from
the figure since it would not be visible.

The time consumed by the human user to count
the number of participants, photograph barcodes, and
compare flags also contributes overhead. We find that
these operations can be done within 30 seconds by
users familiar with SPATE, enabling a complete run of
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the SPATE exchange with eight users in less than one
minute.

Comparison with Existing Systems Next, we present
a comparison between SPATE and two prior key-
exchange systems using the N70 smart phones: Seeing-
is-Believing and GAnGS (Figure 11). Note that SiB is
designed for key exchange between two parties. Our SiB
experiment was performed with two people; we then
extrapolated to obtain the expected overhead where each
member must pair with every other member for a total
of O(n) rounds of pairing. Without the additional time
needed to move about the group or keep track of who
has paired with whom, our SiB results can be interpreted
as best-case.

SPATE, SiB, and GAnGS all use the barcode format
proposed by Rohs and Gfeller [56]. In our experience,
recognition is efficient and accurate. However, SiB and
GAnGS use an extension to support multiple, cycling
barcodes where, e.g., four barcodes are cycled every
second. We have found that the requirement to success-
fully recognize all four barcodes significantly degrades
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usability. With SPATE, the only information to be con-
veyed in the barcode is the Bluetooth address and service
channel: 48 + 3 = 51 bits. We can therefore employ
a single static barcode, greatly improving recognition
times. In addition to slower barcode recognition, SiB and
GAnNGS require bidirectional barcode recognition (i.e., A
reads B’s barcode, and B reads A’s barcode). GAnGS
is a multi-round protocol designed for scalability and
denial of service resilience. However, for smaller groups
multiple rounds introduce overhead and thus slower
performance. With a single round, fewer barcodes to
recognize, and faster barcode recognition, SPATE out-
performs SiB and GAnGS for groups of three to eight
users.

9 DISCUSSION

In this section, we discuss whether counting is necessary
or not.

In SPATE, group members count the number of mem-
bers present to prevent non-group members from adding
their data. However, if users exchange personally iden-
tifiable information (e.g., names and pictures), counting
is optional. After running SPATE (without counting),
group members can examine the acquired data and
verify that they received information from the expected
group members and only those people. For example,
user A will verify that running SPATE with users B
and C yields data with B’s name and data with C’s
name. During this extra verification step, the user can
detect any additional data inserted by an outsider, O.
If O simply adds itself to the group, A can detect the
unexpected data labeled with O’s name. If O tries to
impersonate a legitimate group member (e.g., O submits
a different public key or email, but the same personally
identifiable information as C'), A will notice the duplicate
entries for C. If O tries to delete a group member,
the T-Flag comparison will detect the attack. Without
counting, SPATE requires the user to press a button to
indicate when the commitment phase is complete (i.e.,
without N, the device does not know when it has the
proper number of commitments). Therefore, there is a
tradeoff to ensure security; users have to count before
the commitment phase or carefully examine the data as
part of the verification phase.

10 CONCLUSION

We have presented SPATE, a system for authentic ex-
change of information in groups of up to eight people.
SPATE represents a unique point in the design space for
ad hoc group key establishment. We trade off scalability
and denial-of-service resilience for speed and ease of
use. Indeed, only symmetric cryptographic primitives
are employed on the mobile device.

We rely on the user to accurately compare images
across other users’ devices and count the number of
prospective group members, but we limit the maximum

group size to eight people. In our experience, the result-
ing system is easy and fun to use, finally providing the
opportunity to achieve easy-to-use secure email, secure
file sharing, and secure SMS.
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