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Abstract

Spatial adaption procedures for the accurate and effi-

cient solution of steady and unsteady inviscid flow prob-

lems arc described. The adaption procedures were developed

and implemented within a two-dimensional unstructured-

grid upwind-type Euler code. These procedures involve

mesh enrichment and mesh coarsening to either add points

in high gradient regions of the flow or remove points where

they are not needed, respectively, to produce solutions of

high spatial accuracy at minimal computational cosL The

paper gives a detailed description of the enrichment and

coarsening procedures and presents comparisons with alter-

native results and experimental data to provide an assessment

of the accuracy and efficiency of the capability. Steady and

unsteady transonic results, obtained using spatial adaption

for the NACA 0012 airfoil, are shown to be of high spatial

accuracy, primarily in that the shock waves are very sharply

captured. The results were obtained with a computational

savings of a factor of approximately fifty-three for a steady

case and as much as twenty-five for the unsteady cases.

Introduction

Considerable progress has been made over the past

decade in developing methods of dynamically-adapting com-

putational meshes based on the numerical solution of partial

differential equations. 1 These methods arc being developed

to produce higher spatial accuracy in such solutions more ef-

ficiently. Spatial accuracy is obviously important when mod-

elling continuous equations with a discrete set of points. It
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is generally understood, of course, that accuracy is improved

when the number of mesh points in a fixed computational

domain is increased. Associated with an increase in the

number of mesh points, however, are increased computer

run times and memory costs, which are proportional to the

number of mesh points. Hence, for efficiency, it is important

to enrich meshes locally based on the numerical solution, in

contrast to using globally fine meshes, to minimize the total

number of mesh points and hence minimize the cost for a

given spatial accuracy. The methods of mesh adaption can

he separated into three general categories: (1) mesh regen-

eration, (2) mesh movement, and (3) mesh enrichment. The

first method, mesh regeneration, places the work of adapt-

ing the mesh on the mesh generation program rather than

on the actual numerical solution procedure of the governing

equations. In this method, a solution is first obtained, and

regions of relatively large discretizatien errors are detected.

A new mesh is then generated to concentrate points in re-

gions where the large discretization errors occur. This new

mesh may contain more _" fewer points than the original

mesh. For the second method, mesh movement, the number

of points in the computational domain remains fixed. To re-

solve more accurately the solution spatially, these points are

moved into regions where solution gradients are relatively

large. In general, this can he accomplished by two different

ways. The first way models the mesh as a spring network,

where points are joined by linear springs with spring stiff-

nesses proportional to solution gradients. The mesh is then

allowed to move into the relatively high gradient regions to

produce effectively a locally finer mesh. The second way

uses forcing functions in a Poisson-equation grid generator to

redistribute points. Either method of mesh movement is eas-

ily implemented within existing solution algorithms because

only the locations of the existing mesh points are changed.

The final method of spatial adaption is mesh enrichment. In

this method points are added to regions of relatively large so-



lution error by dividing locally the cells which make up the

mesh or by embedding finer meshes in these regions. This

method differs from mesh regeneration and movement in that

the mesh is made finer in local regions while the global mesh

topology remains the same. The method of mesh enrichment

is also generally regarded as having advantages over regen-

eration and movement, especially for transient problems, be-

cause of the higher degree of flexibility in being able to add

points where they are needed and to remove points where

they are not needed. The disadvantage, however, is that

the implementation of mesh enrichment involves significant

modification to existing solution algorithms.

For the Eulcr and Navier-Stokes equations, computa-

tional fluid dynamics algorithms are being developed based

on spatial adaption methods. With these equations, rel-

atively large spatial discretization errors may be encoun-

tered with flow features such a:_shock waves, shear layers,

boundary layers, and expansion fans. These flow features

can be resolved more accurately using the adaption meth-

ods mentioned above. Nakahashi et at2 for example, has

used tension and torsional springs to move the mesh into

regions where relatively large spatial discretization errors

occur. This mesh movement approach showed consider-
able versatility for the problems treated. However, various

constants were needed to control orthogonality and smooth-

ness, and direct control of an optimal mesh adaption proce-

dure was generally not possible. Further examples of spatial
adaption methods include the work of Usab and Murman) In

Ref. 3, embedded meshes of quadrilateral cells and nodes

were used in regions of the mesh where shock waves oc-

curred. This approach improved the spatialaccuracy of the

numerical method which resulted in highly accurate solu-

tions for steady flow problems. Dannenhoffer and Baron 4.5

extended the work in thi's area using irregularly shaped em-

bedded regions, which were coupled to the base mesh by

a multiple.grid solution algorithm. Several other examples

of spatial adaption include methods which use flow solvers

based on unstructured triangular and tetrahedral meshes in

two and three dimensions, respectively. Peraire et al. 6'7used

mesh regeneration coupled with a finite element solution al-

gorithm to sharply capture shock waves and complex shock

structures. Lohner et at.s-|3 have developed a procedure

to locally enrich the mesh for transient flow problems by

dividing elements which make up a base mesh to capture

shock waves. Further, in this procedure, elements may be

removed (coarsened) from the mesh if they are not necessary

to produce a given level of spatial accuracy.

With respect to solution algorithms based on unstruc-

tured meshes,theresultspublished by the authors14demon-

strated that these algorithms produce s_y and unsteady

solutions of comparable accuracy to results obtained using

structured-grid solution algorithms. The two sets of results

presented in Ref. 14 were obtained using meshes of compa-

rable density, and mesh adaption was not used. Solutions of

higher spatial accuracy are indeed possible through the use

of mesh adaption. Therefore, the purpose of this paper is to

report on modifications to the two-dimensional unstructured-

grid upwind-type Euler code of Batinats to include mesh en-

richment and coarsening procedures. The objectives of the

research arc as follows: (1) to develop time-accurate enrich-

ment and coarsening procedures for spatial adaption, (2) to

lest the procedures by performing steady and unsteady calcu-
lations for a variety of cases, (3) to determine the accuracy of

the spatially adapted solutions by making comparisons with

published solutions produced by alternative methods and ex-

isting experimental data and (4) to assess the efficiency of

the spatially adapted solutions by making comparisons of re-

quired computer resources. The eventual goal is to develop
a highly accurate and efficient solution algorithm for the Eu-

let and Navier-Stokes equations for aeroelastic analysis of

complex aircraft configurations. The paper gives a detailed

description of the mesh enrichment and coarsening proce-

dures and gives a brief description of the solution algorithm

of Ref. 15 for completeness. Steady and unsteady transonic
results are presented for the NACA 0012 airfoil to demon-

strate applications of the spatial adaption procedures. The
unsteady flow results for the NACA 0012 airfoil were ob-

lained for the airfoil pitching harmonically about the quartet
chord.

Upwind-Type Euler Solution Algorithm

The unsteady Euler equations are solved using the two-

dimensional upwind-type solution algorithm developed by
Batina) 5 The solution algorithm, which is a cell-centered

finite-volume scheme, is-17 uses upwind differencing based

on flux-vector splitting similar to upwind schemes developed
for use on structured meshes. The present unstructured grid

algorithm is thus referred to as an upwind-type solution al-

gorithm. The spatial discretization of this algorithm involves

a so-called flux-split approach based on the flux-vector split-
ting of van Leer.18The flux-split discretization accounts for

the local wave-propagation characteristics of the flow and

captures shock waves sha_ly wiifi at nitSt one grid point

within the shock structure. A further advantage is that the

discretization is naturally dissipative and consequently does
not require additional artificial dissipation terms or the ad-

justment of free parameters to control the dissipation. How-

ever, in calculations involving higher,order upwind schemes,

oscillations in the solution near shock wa_,es are expected to

occur. To eliminate these oscillations, flux limiting is usually
required. In the present study, a continuously dil'ferentiable
flux limiter was employed. 15-t7

The Euler equations are integrated in time using an

implicit time-integration scheme involving a Gauss-Seidel

relaxation procedure. |5 The relaxation procedure is imple-

mented by reordering the elements that make up the unstruc.
tured mesh from upstream to downstream. The solution is

obtained by sweeping two times through the mesh as dictated

by stability considerations. The firslsweep is performed in

.



the direction from upstream to downstream and the second

sweep is from downstream to upstream. For purely super-

sonic flows the second sweep is unnecessary. This relaxation

scheme is stable for large time steps and allows the selection

of the step size based on the temporal accuracy required for

the problem being considered, rather than on the numerical

stability of the algorithm. Consequently, very large time

steps may be used for rapid convergence to steady state and

an appropriate step size may be selected based on temporal

convergence for unsteady cases, independent of numerical

stability issues.

Weighted Averaging

A weighted averaging procedure is used in the two-

dimensional upwind-type Euler solution algorithm to inter-

poiate the cell-centered values of the primitive variables to

the nodes. As illustrated in Fig. 1, the weighted average of

the cell-centered values qi surrounding a node is given by,

?i

E lvt qi

i----!

qo - . (I)

i----1

where the nodal value qo is computed using the cell weights

wi. Several different weights have been used in this proce-

Fig. 1 Difference star for computing the weighted average

qo of surrounding cell-centered values q_.....

dure including the areas of surrounding cells and the recip-

rocal distance from the node to the locations of cell centers.

Because of the disparity in cell sizes that occur when using

spatial adaption, the most accurate weighted averaging is

desired. Therefore, a different approach for computing the

weights has been developed based on the work of Holmes

and Connell. 19 In Ref. 19, artificial dissipation for a node-

based Navier-Stokes solution algorithm was computed using

a Laplacian operator. The Laplacian L(4_0) at a node was

computed by

L(_o)=_w_(tl -_o) (2)
i=1

using the surrounding nodal values _bi and the weights wi.

The weights were derived by first noting that the Laplacian

of a linear function is exactly zero. Since this is a desirable

property to require of the computed Laplacian, the weights

wi in Eq. (2) were derived with this objective. Therefore,

the spatial locations (xl, yi) of 4,i were substituted into Eq.

(2) resulting in

t.(xo) -- _ ,.,(x,- _0) = 0
i=l

(3)

L(yo) = _ wi(yi - Yo) = 0

i=1

The weights were thcn determined by defining

(4)

wi = 1 +Awi (5)

where

67= _ (Awl) 2 (6)
i=1

is a cost function. The cost function C was minimized to

keep the weights close to unity by solving an optimization

problem given the constraints of Eqs. (3) and (4). The opti-

mization problem was solved using the method of Lagrange

multipliers where Awi was given by

Au,i = _,(xi - to) + ,_u(yl - yo) (7)

The solution yielded Lagrange multipliers, defined by

(L:yRy - I_yR_)
(8)

where

,_, = ( I,_ R_ - G_R_)
(I_ I_ - i_) (9)

/b = _ (x,-xo) (I0)

i=I

]e_ = _ (y, - yo) (11)
i=l

I_, = _ (x_ - xo)_ (12)
i=1

Iyy = _ (Yi -- YO) 2 (13)

i=1

t_ = 2_, (_, - _'o)(y, - uo) 04)
i=1

Note that the weights were computed solely from the dis-

tance between node locations and no special treatment was

required near mesh boundaries.



Modifications were made to this procedure for comput-

ing the Laplaeian in order to develop a new procedure for

computing the weights in Eq. (1). The first modification

was to express the Laplacian at the nodes using surrounding

cell-centgred values, as illustrated in Fig. 1, rather than the

surrounding nodal values. Now the Laplacian at the node

can be expressed by

?1

L(qo)= F_,w,(q,- qo)
i=1

(15)

where qo represents the unknown value at the node and q,

are the known values at the surrounding cell-centers. The

weights w, in Eq. (15) are now computed using the node

location (Zo, Yo) and the surrounding cell-center locations

(zi, yi). Recalling that the computed Laplacian for a linear

function is zero, then for a linear variation of q

n

Y] ,,,,(q,- qo)= 0
i=1

(16)

which can be rewritten in the form given by Eq. (1).

Therefore, using the weights from the Laplacian procedure,

Eq. (1) is an exact interpolation of the nodal value qo for a

linear variation of cell-centered values q,. For a nonlinear

variation of cell-centered values qi, the weighted averaging

procedure using the weights from the Laplacian procedure

is second order accurate in space. Although the procedure

is computationally more expensive than area or reciprocal

distance weighted averaging, the increased cost is relatively

small compared to the cost of solving the Eulet equations.

Spatial Adaption Procedures

In this section, the spatial adaption procedures are de-

scribed in detail. These descriptions include explanations of

the flow feature detection and the procedures used to enrich

and coarsen the mesh.

Flow Feature Detection

The first step of the spatial adaption procedure is the

detection of regions of relatively large discretization error

so that the computational mesh can be locally enriched to

improve the spatial accuracy or locally coarsened to reduce

the computational costs. These regions generally occur near

flow features such as shock waves, stagnation points, slip

lines, and expansion fans for the Euler equations, where the

dominant flow feature for the cases considered in this study

is a shock wave.

There are a number of flow parameters that can be

used for enrichment indicators based on the detection of

shock waves. Parameters such as density, pressure, or total

velocity are useful since these quantities are discontinuous

through shocks. For example, first or second, divided or

undivided differences in one of these parameters, similar

to the work by Dannenhoffer and Bm'on, 4 can be used to

detect shock waves. A specific example of an enrichment

indicator is the magnitude of the density gradient IVpl which

is often used to detect shock waves for steady flow problems.

However, for unsteady flows, a measure of the temporal as

well as the spatial variation of the solution is needed. For

this reason, the absolute value of the substantial derivative

[°o-_t[ was used as an enrichment indicator, since
of density

it is the sum of the local rate of change _ as well as the

convective rate of change ft. Vp of density. The substantial

derivative of density can also be written as

Dp Op
- + V. pff - pV - ff (17)

Dt Ot

where the first two terms on the right-hand-side of Eq. (17)

are simply the continuity equation. The third term can

be viewed as a simplified continuity equation that assumes

steady, incompressible, linear flow. Therefore, the differ-

ence between these two continuity equations results in a

measure of the 1) unsteadiness, 2) compressibility, and 3)

nonlinearities of the flow. Since the first two terms on the

right-hand-side of Eq. (17) are zero from the continuity

equation, the substantial derivative of density can be rewrit-

ten as

Dp
= -pV, ff (18)

Dt

For unsteady flows, the substantial derivative works wen for

detecting developing shock waves, whereas the more com-

monly used enrichment indicators based on the instantaneous

solution such as first or second differenc_ in density tend

to miss the initial shock wave formation. This is especially

true for cases where the shock waves periodically appear and

disappear in time. Other indicators, based on the substantial

derivative of x-momentum pu, y-momentum pv, and energy

e have also been investigated. These substantial derivatives

are written as

puv
Dpu Opu O(pu 2 + p) +

ot - + o. oy j

{°,-_. + puV.

(19)

Dpv { Opv Opuv O(pv" + p) }
Dr" = _ + _ + O,q (20)

Op "1

+ • tQ-{N

oe /oe o(,+p),,=.aT + ox + j (21)

- {v. (p,7)+ ev. a}

where once again each derivative results in the difference be-

twcen a complete conservation equation and an approximate

4



equation.The first expression in brackets on the right-hand_

side of Eqs. (19)-(21) is zero for the Euler x-momentum,

y-momentum, and energy equations, respectively. The last

expression in brackets is an approximate equation of the re-

spective conservation laws. For example, the second equa-

tion in brackets in Eq. (19) can be derived from the conser-

vation of x-momentum equation if the equation is simplified

by assuming the local rate of change _ and the convective

rate of change _. V of x-momentum is zero. Therefore,

as one might expect, if the absolute value of Eq. (19) is

used as an enrichment indicator it would detect regions of

the flow where the x-momentum is most rapidly changing.

Similarly, Eqs. (20) and (21) would detect the rate of change

of y-momentum and energy, respectively. To evaluate each

expression as an enrichment indicator, the substantial deriva-

tives of the conserved variables were computed for a tran-

sient shock problem. In this study, the performance of each

of the substantial derivatives in detecting shock waves was

found to be similar. It is not surprising, however, since all

of the indicators involve the same term V • iT.

To detect viscous flow features, the idea of using

the difference between complete equations and approxi-

mate equations can be expanded upon by considering the

differences between the momentum or energy equation of

the Navier-Stokes equations and an approximate inviscid

equation. For example, using the momentum equation of

the Navier-Stokes equations, the substantial derivative of x-

momentum can be written as

Opu f,Opu o0,,,2+ p- ]
N-/o t + + fOx Oy

{ Op Or_x br_ }- -_z+pu_7_ Oz Ou

(22)
This, of course, is similar to Eq. (19) except that the

(a_z _ a_.._'_ have been added and subtracted
viscous fluxes \ ox , ay ]

on the right-hand-side. Therefore, using the ideas above,

an enrichment indicator E for detecting inviscid as well

as viscous flow features can be constructed by eliminating

the viscous fluxes from the second expression enclosed in

brackets of Eq. (22) and is written as

E = _x +puV" ff (23)

Although the enrichment indicator in Eq. (23) is not used

in this study, it is mentioned to demonstrate a procedure

for constructing an indicator based on the governing viscous

flow equations. The enrichment indicator used in this study,

however, was the absolute value of the substantial derivative

of density (Eq. (18)) since the Euler equations were used.

Mesh Enrichment

Generally, mesh enrichment is performed by starting

with a relatively coarse mesh of cells and then subdividing

these cells until a given level of spatial accuracy has been

obtained. To prevent cells from being enriched too many

times near flow discontinuities such as shock waves, an up

per bound is placed on the number of times a cell can be

divided. For transient problems the mesh enrichment proce-

dure may be performed at each time step of the integration

of the governing flow equations or it may be performed once

every set number of time steps.

(a) type-4 clement enrichment.

(b) tyl_-2 clement enrichment.

(c) restriction on further enrichment of type-2 elements.

(d) details on further enrichment of type-2 elements.

Fig. 2 Diagrams illustrating mesh enrichment possibilities.

Mesh enrichment is performed by using the enrichment

indicator to determine if a cell is to be subdivided into

smaller cells. To accomplish this, the enrichment indicator is

computed for each cell and compared with a preset threshold

value to determine whether a cell should be subdivided. If

the threshold is exceeded, a new node is created at the

midpoint of each edge of the triangular cell, and the cell

is subdivided into four smaller cells. Special care must be

taken, however, when an edge that is to be bisected lies

on a boundary of the mesh, since the midpoint of the edge

does not generally lie on the boundary. In this case, the

location of the new node is determined by using a parametric

spline of the boundary coordinates. Further, the values of

the flow variables for the new cells are determined from

a linear interpolation of conserved variables located at the

nodes and the cell centers of the original cells.

For a given cell to be enriched, either one edge or all

three edges are bisected. In the event that only two edges

are marked to be bisected, the third edge is automatically

bisected to prevent the creation of highly skewed or stretched

cells. Each time the mesh is enriched, a cell may be divided

in one of two ways, as shown in Figs. 2(a) and 2('13). The



firstway,shownin Fig.2(a),results when all three edges

of a cell have been marked for enrichment. In this situation

the cell is divided into four new cells where the vertices of

the inner cell are in general midpoints of edges that make

up the original cell. The original cell is thus referred to as a

type-4 element since after enrichment it becomes four new

triangular cells. The second way, shown in Fig. 2(b), occurs

if only one edge of the base cell is marked for enrichment.

In this situation, the marked edge is bisected, and two new

cells are formed. The original cell is thus referred to as a

type-2 element since after enrichment it becomes two new

cells. New cells formed from a type-4 element may be

enriched further. However, to prevent highly stretched cells,

cells formed from a type-2 element are restricted from being

divided further as indicated in Figs. 2(c) and 2(d). For cells

from a type-2 element, if any of the five edges that make up

the two new cells are marked for enrichment, the original

cell is made into a type-4 element as shown in Fig. 2(c). If

in addition to this, either or both of the bottom two edges

are marked (the lower left, right, or both), cells of the type-4

element are further enriched accordingly, as shown in Fig.

2(d).

Mesh Coarsening

Generally, mesh coarsening removes added nodes and

cells from previously enriched meshes to delete them from

local regions of the mesh where certain flow features are

no longer present. This procedure is necessary to efficiently

adapt meshes to the numerical solution of the governing

flow equations in order to minimize computational cost.

The mesh coarsening procedure starts by marking all of

the cells that do not have edges that are marked to be

bisected from the mesh enrichment procedure. Figure 3

shows an example of the coarsening procedure where the

dashed lines represent cells formed by a previous enrichment

of the mesh. In Fig. 3(a), cells which are candidates for

removal are denoted by a "1". The marked cells are then

used to determine nodes that are candidates for removal.

As shown in Fig. 3(b), the candidate nodes that may be

removed are nodes that are surrounded by cells that are

candidates for removal (identified by the "ones" in Fig. 3(a)).

Cells that are to be removed from the list of candidates are

determined by searching the tree data structure that stores

the mesh enrichment history. Cells for removal are cells that

came from type-2 or type-4 elements and are subsequently

marked for removal. Once the nodes and elements have been

selected [hey are subjected to a final simultaneous evaluation

for actual removal from the mesh. Each time the mesh

is coarsened, ceils and nodes may be removed in one of

several ways as shown in Fig. 4. (In the figure, nodes to be

removed are indicated by the open circles and fixed nodes

are indicated by the closed circles.) For a type-4 element,

if all three of the nodes that form the inner triangle are

candidate nodes, then the nodes are removed eliminating the

inner triangle as shown in Fig. 4(a). This leaves only the one

original cell that was previously divided into four. Similarly,

if two of the three nodes that form the inner triangle are

candidate nodes, the two nodes are removed and a type-2

element is formed as shown in Fig. 40)). If only one of the

candidate nodes is marked then nothing is done. For a type-

2 element there is only one node that may be removed which

is the midpoint of a previously bisected edge. Removal of

this node leaves only the cellthat was originally divided

into two as shown in Fig. 4(c).

0 fixed cell • fLXed node

1 candidate cell to be O candidate node to be

removed removed

(a)identify cells to (b)identify nodes to (c)final mesh.

be removed, be removed.

Fig. 3 Diagrams illustrating details of the mesh

coarsening procedure.

• " f type=4(a) three nodes removed tom element.

(b) two nodes removed from type-4 element.

(c) on_ node removed from type-2 element.

Fig. 4 Diagrams illustrating mesh coarsening possibilities.



Temporal Convergence Considerations

Careful consideration must be given to the time-step

chosen to ensure temporal convergence of unsteady prob-

lems, especially when spatial adaption procedures are used.

In general the temporal convergence of the numerical solu-

tion of a time accurate problem is difficult to quantify and

is related to the nondimensional time-step At, a characteris-

tic length (A/s), and the local maximum characteristic wave

speed(lul + a) of each cell in the computational mesh. This

relation is given by the Courant-Friedrichs-Lewy (CFL)

number for each cell,

CFL _ AtA(lU I+ a) (24)

where s is the length of a cell edge, A is the area of the

cell, u is a local flow speed normal to a cell edge, and n

is the local speed of sound. For unsteady problems, expe-

rience has shown that the lee'a] CFL number must remain

below approximately 20 for solutions to be converged in

time. However, the local allowable CFL number is highly

dependent on the time-marching procedure used. For exam-

ple, either explicit or implicit time-marching procedures may

be used to integrate the governing flow equations in time for

unsteady problems. Since the allowable CFL number based

on a stability analysis of an explicit time-marching procedure

is usually small compared to 20, the time-step is restricted to

be relatively small. Therefore, the numerical stability of an

explicit time-marching procedure dictates the time-step that

can be used. For an implicit time-marching procedure, how-

ever, numerical stability of the procedure is, in general, not

an issue. Hence, the time-step should be based on minimiz-

ing the effects of lincarization errors, minimizing the effects

of relaxation errors (or factorization errors in the case of

a factored scheme), and obtaining a temporally converged

solution. Irrespective of the time-marching procedure used,

the spatial adaption procedures have a significant effect on

the allowable time-step when the CFL number is restricted

by either the temporal accuracy of the solution or the nu-

merical stability of the solution algorithm. This effect can

be demonstrated in a simple example of mesh enrichment of

a single cell. Suppose, for example, the local CFL number

for a cell is restricted to 20 for a teml_)rally converged so-

lution and the cell is enriched one level, where it is divided

into four smaller cells each with area A/4 as shown in Fig.

5. Likewise, each edge of the cell is bisected resulting in

each of the new cells having edge lengths of s/2. Since,

_A _ A/4_

•ql--- s ---_
s/2 s/2

Fig. 5 Diagram illustrating change in characteristic length

and area of an enriched computational cell

from Eq. (24), the time-step is proportion',d to the charac-

teristic length (A/s), the allowable time-step is halved when

the cell is enriched one level.

.4/4 1 A
At o_ -- = --- (25)

s/2 2 s

For unsteady problems involving a pitching airfoil in forced

harmonic motion, the effect of enrichment on the number

of time-steps per cycle of motion can also be demonstrated.

First the number of time-steps per cycle of motion N is

related to the time-step by

N - (26)
kMooAt

where k is the reduced frequency and Moo is the freestream

Mach number (since At is nondimensionalized by the

freestream speed of sound). Therefore, the number of time-

steps per cycle of motion is inversely related to the time-

step.
1

N o: A--t (27)

Since the time-step is halved as the mesh is enriched one

level, the number of time-steps required per cycle of motion

doubles for a similar level of temporal convergence. Hence,

the relationship between the number of time-steps per cycle

of motion N required on a mesh to the number of time-steps

per cycle of motion N. on the same mesh using n levels of

mesh enrichment can be stated as

N,, _ 2" N (28)

As an example, suppose an unsteady problem on a coarse

mesh requires 1250 time-steps per cycle of motion for a

temporally converged solution. The same mesh and case us-

ing three levels of enrichment would require approximately

10000 time-steFs pcr cycle of motion.

Results and Discussion

Calculations were performed for the NACA 0012 airfoil

to assess the accuracy and efficiency of the spatial adapt.ion

procedures. Steady and unsteady airfoil results are presented

for comparison with published solutions using alternative

methods and experimental data to determine the accuracy of

the results. Timing comparisons are also made between re-

sults obtained using globally (estimated) and locally adapted

meshes to determine the computational savings obtained by

using the spatial adaption proced/Jres.

Steady Results

Steady flow results were obtained for the NACA 0012

airfoil for comparison with results reported by PuUiam and

Barton 2° and several other alternative methods for an invis-

cid case cho_n by the AGARD Working Group 07, a sub-

panel of time AGARD Fluid Dynamics Panel. The case of



(a) original mesh.

Fig. 6 Comparison of meshes used in the calculation for the NACA 0012 airfoil at Moo

(b) adapted mesh.

= 0.8 and ao = 1.25 °.

(a) original mesh. (b) adapted mesh.

Fig. 7 Comparison of pressure contour lines (Ap = 0.025) from solutions obtained for the NACA

0012 airfoil at Moo = 0.8 and ao = 1.25 °.

interest is AGARD01, a NACA 0012 airfoil at a freestream

Mach number of M_ = 0.8 and an angle of attack of s0

= 1.25 °. For this ease, the starting mesh and final spa-

tially adapted mesh are presented along with corresponding

pressure contours for comparison with resulls of Ref. 20.

The starting coarse mesh for the calculation, shown in Fig.

6(a), contains 1854 nodes and 3628 cells and extends 20

chordlengths to a circular outer boundary. The solution

was obtained by adapting the mesh to the solution every

500 iterations for the first 2000 iterations (four levels of en-

richment), and then the solution was converged to machine

zero on the final adapted mesh. The final mesh after four

levels of enrichment, shown in Fig. 6(b), contains 8947

nodes and 17653 cells. A comparison of pressure contours

(Ap = 0.025) from the solutions obtained on the original

mesh and the adapted mesh are shown in Figs. 7(a) and

7(b), respectively. For this ease, there is a relatively strong

shock wave on the upper surface of the airfoil near 62%

chord and a relatively weak shock wave on the lower sur-

face near .30% chord. The comparison between the two SeLs
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(b) pressure contours.

Fig. 8 Results from Pulliam and Barton 2° for the NACA 0012 airfoil at M_ = 0.8 and c_o = 1.25 °.

of contour lines reveals a considerable improvement in the

shock resolution when spatial adaption is used. For further

comparison, the mesh and pressure contour lines from the

solution of Ref. 20 are shown in Fig. 8, which is believed

to be one of the most accurate of the results generated by the

alternative methods. Results from Ref. 20 were computed

on a structured mesh of C-type topology containing 560 x

65 mesh points as shown in Fig. 8(a). This mesh indicates

that points were clustered above and below the airfoil in the

shock regions to produce a more accurate resulL A compari-

son of the pressure contour lines from Pulliam and Barton, 2°

shown in Fig. 8(b), with the contour lines shown in Fig.

7(b), obtained with the present spatial adaption procedure,

indicates excellent agreement which verifies the accuracy of

the adaption procedures. Finally, comparisons of computed

lift, drag, and moment coefficienLs from the structured mesh

solutions reported in Ref. 20 and the present results are

given in Table 1. The present results are shown at the

bottom of Table 1 and the coefficients listed from solutions

5 and 5* are from Pulliam and Barton. 2° The remaining so-

lutions are from alternative methods and are included for

completeness. Solution 5* is an improved result in compar-

ison with solution 5, where improved boundary conditions

and a finer mesh were used. A comparison of coefficients

from the present solution with those of solution 5*, indicates

agreement to within 1% for the lift and drag coefficients and

to within 5% for the moment coefficient.

The computational savings for the steady flow prob-

lem can be estimated by comparing the number of cells

in the adapted mesh to the number of cells in a globally

fine mesh. The total number of cells for the globally fine

mesh is computed by multiplying the number of cells in

the starting coarse mesh by four (since each cell is divided

Table 1 Comparisons of computed lift, drag, and moment

coefficienLs from the structured mesh solutions

reported in Ref. 20 and the present results

obtained using spatial adaption for the NACA

0012 airfoil at Moo = 0.8 and c_o = 1.25 °.

Soln# Type Mesh Size cl ca cm

I C 189 X 25 0.3642 0.0225 -0.0376

2 C 188 X 24 0.3736 0.0244 -0.0411

3 O 158 X 23 0.3463 0.0223 -0.0358

5 C 249 X 67 0.3661 0.0229 -0.0430

6 O 192 X 39 0.3474 0.0221 4).0374

8 O 128 X 28 0.3500 0.0221 -0.0370

9 O 320 X 64 0.3632 0.0230 -0.0397

5* C 560 X 65 0.3618 0.0236 -0.041 !

present U 8947N, 17653C 0.3600 0.0238 -0.0390

into four smaller cells) raised to a power represented by

the number of enrichment levels. Therefore, a globally fine

mesh would contain 928768 cells (3628 x 44), which in

comparison with the final adapted mesh containing 17653

cells, results in a computational savings of approximately

lifty-three. If timing comparisons are made with solutions

obtained using structured grid algorithms, the computational

overhead of the indirect addressing of the unstructured grid

algorithm must be accounted for. For example, the compu-

tational work for steady-state solutions obtained using un-

structured grid algorithms have been shown to be 2 to 5

times more expensive than those obtained using structured

9



or(z) = 5.95 °, _ :: 26° ¢x(z)= 6.97 °, kx = 60° or(x) = 6.57 °, _ = 135° a(¢) = 5.11 °, k¢ = 174°

i
_('t) = 3.49 °, k_ = 214 ° a(_) = 2.43 °, k_ = 265 ° a(_) = 2.67 °, kT= 296 ° a(_) = 4.28 °, kx = 346°

Fig. 9 Instantaneous meshes produced by the spatial adaplion procedure for the NACA 0012 airfoil pitching

harmonically at Moo = 0.599, c_0= 4.86 °, c_1 = 2.44 °, and k = 0.0814.

c_(x)= 5.95 °, kx = 26° ct(x) = 6.97 °, kz = 60° ¢x(x)= 6.57 °, kx : 135° or(x) = 5.11 °, kx = 174°

_x) = 3.49 °, k't= 214 ° ¢x(_)-- 2.43 °, k¢ = 265 ° c_(z) = 2.67 °, _ = 296 ° o,(x) = 4.28 °, kx = 346 °

Fig. 10 Instantaneous contour lines (Ap = 0.02) from the spatially adapted solution for the NACA 0012 airfoil

pitching harmonically at Moo = 0.599, C_o= 4.86 °, _1 = 2.44°, and k = 0.0814.
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grid algorithms. 21 NoncLheless, when spatial adaption pro-

cedures are used with unstructured grid algorithms, an order

of magnitude computatonal savings can be achieved over

solutons obtained using structured grid algorithms for com-

parable spatal accuracy.

Unsteady Results

Unsteady results are presented for the NACA 0012 air-

foil using spatial adaptlon for AGARD cases 3 and 5, pro-

posed by the AGARD Structures and Materials Panel. 22 Both

cases involve the NACA 0012 airfoil pitching harmonically

about the quarter chord at a reduced frequency based on

semichord of k = 0.0814. The calculations were performed

for three cycles of motion to obtain a periodic solution us-

ing 10000 time-steps per cycle starting with the same coarse

mesh (Fig. 6(a)) that was used for the non-adapted steady

flow result. During the course of the calculation, the mesh

was spatially adapted every 10 time-steps using three levels

of enrichment.

AGARD Case 3

Results were obtained for the airfoil pitching with an

amplitude of az = 2.44° at Moo = 0.599 and a0 = 4.860

(referred to as AGARD case 3). Figure 9 shows the in-

stantaneous adapted meshes and Fig. 10 shows the corre-

sponding instantaneous density contour lines (Ap = 0.02).

Upper surface - Calculated

-- -- Lower surface - Calculate_!

The instantaneous meshes and density contour lines during

the third cycle of motion were plotted at eight points in

time. In each plot, the instantaneous pitch angle _(r) and

the instantaneous angular position in the cycle kr are noted.

The instantaneous meshes (Fig. 9) clearly indicate the en-

richment in regions near the shock wave on the upper sur-

face of the airfoil and near the stagnation points. Figure 9

also shows that regions of the mesh near the moving shock

and in the wake of the airfoil have been enriched and then

coarsened throughout the cycle of motion. Specifically, the

instantaneous mesh in Fig. 9 at kr = 26* shows that the

enrichment indicator works well for detecting the develop-

ing shock wave on the upper surface as is further shown

in the density contours (Fig. 10). These density contours

during the cycle demonstrate the ability of the spatial adap-

tion procedures to produce sharp transient shock waves. The

corresponding surface pressure distributions during the third

cycle of motion arc shown in Fig. 11 for comparison with

the experimental data of Ref. 23. In each pressure plot

the instantaneous pitch angle a(r) and the angular position

kr in the cycle arc noted. During the first half of the cycle,

there is a shock wave on the upper surface of the airfoil

while the flow over the lower surface remains subcritical

throughout the entire cycle. The pressure distributions in-

dicate that the shock position oscillates over approximately

12% of the chord along the upper surface, requiring the

spatial adaption procedure to track the movement and de-

O Upper surface - Experiment

El Lower surface - Experiment

2.

-Cp

" kx = 174 °
-1-[ "w k'c= 26 °

-2. I,,.I I I I I I . I I 1 1 1 I

2.

-Cp 10"

t" m'-- o -''__(X) = 4.28

- I. [ k'X= 214 [ kz = 346 °

-2. t" , , , , , t., i i i i |

0 1 0 1 0 1 0 1

x/c x/c x/c x/c

Fig. 11 Comparison of instantaneous pressure distributions for the NACA 0012 airfoil pitching harmonically at Moo

= 0.599, c_0 = 4.86 °, _l = 2.44*, and k = 0.0814 computed using spatial adaption.
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(x('_)= 1.09 °, k¢ = 26 ° a(z) = 2.34 °, kz = 69 ° or(x) = 2.01 °, k'_ = 127 ° a('¢) = 0.52 °, k'¢ = 168 °

N
_(_ = -1.25 °, kx = 210 ° _(_) = -2.41 °, kx = 255 ° _(_) = -2.0(P, k_ = 307 ° _(_) = --0.54 °, k_ = 347 °

Fig. 12 Instantaneous meshes produced by the spatial adaption proce_w'e for the NACA 0012 airfoil pitching

harmonically at M_ = 0.755, a0 = 0.016 °, al = 2.51", and k = 0.0814.

or(x) = 1.09 °, kx = 26 ° _(z) = 2.34 °, k'_ = 69 ° (x('_)= 2.01 °, kx = 127 ° _(1: = 0.52 °, k'_ = 168 °

ct('0 = -1.250, kx = 210 ° ct(x) = -2.41 °, kz = 255 ° a(¢) = -2.00 °, kx = 307 ° o.(x) = --0.54 °, k't = 347 °

Fig. 13 Instantaneous contour lines (Ap = 0.02) from the spatially adapted solution for the NACA 0012 airfoil

pitching harmonically at Moo = 0.755, a0 = 0.016", al = 2.51", and k = 0.0814.
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velopment of the transient shock wave as it appears and

disappears during the cycle. In general, the calculated results

using the spatial adaption procedures compare well with the

experimental dam.

The computational savings obtained by using the spatial

aclaption procedures can be estimated by comparing the

total number of cells marched in time with the estimated

number of cells marched in time if a globally fine mesh

were used. The total number of cells marched in time for the

globally fine mesh is computed by multiplying the number

of ceils in the starting coarse mesh by the number of cycles,

the number of time-steps per cycle, and four raised to the

number of enrichment levels (since each cell is divided into

four smaller cells). Thexefore, for AGARD case 3, a total of

276 million cells were marched compared to 6966 million

(3628 x 3 x 10000 x 4 s) cells if a globally fine mesh were

used, resulting in a computational savings of a factor of

twenty-five. This factor does not include the computational

overhead of the spatial adaption procedure, however, which

was approximately 7% of the total CPU time.

AGARD Case 5

Results were oblained for the airfoil pitching with an

amplitude of _1 - 2.510 at Moo = 0.755 and _o = 0.016 o

(referred to as AGARD case 5). Figure 12 shows the instan-

taneous adapted meshes and Fig. 13 shows the correspond-

ing instantaneous density contour lines (Ap = 0.02). The

instantaneou_ meshes and density contour lines during the

third cycle of motion were plotted at eight points in time.

In each plot, the instantaneous pitch angle a(r) and the in-

stantaneous angular position kr in the cycle are noted. The

instantaneous meshes (Fig. 12) clearly indicate the enrich-

ment in regions near the shock waves and near the stagnation

points. They also show coarsened regions where previously

enriched regions have relatively small flow gradients. The

density contours during the cycle (Fig. 13) demonstrate the

ability of the spatial adaption procedures to produce sharp

transient shock waves. The corresponding surface pressure

distributions during the third cycle of motion are shown in

Fig. 14 for comparison with experimental data. Z3 In each

pressure plot the instantaneous pitch angle a(r) and the an-

gular position kr in the cycle are noted. During the first part

of the cycle there is a shock wave on the upper surface of

the airfoil, and the flow over the lower surface is predomi-

natcly subcritical. During the latter pan of the cycle the flow

about the upper surface is subcritical while a shock forms

•along the lower surface. The pressure distributions indicate

that the shock position oscillates over approximately 25%

of the chord along the upper and lower surfaces, requiring

the spatial adapUon procedure to accurately track the move-

ment and development of the transient shocks. In general

the calculated results using the spatial adaption procedures

compare well with the experimental data. Figure 15 shows

Upper surface - Calculated O Upper surface - Experiment

-- -- Lower surface - Calculated [] Lower surface - Experiment

0.8 • o o

0.4

-Cp 0.0 *

-0.8_.__.j _ [', kl:= 127 [-i k'_= 168°
[A , I I t ,

0 1 0 1 0 1 0 1
x/c x/c x/c x/c

Fig. 14 Comparison of instantaneous pressure distributions for the NACA 0012 airfoil pitching harmonically at Moo

= 0.755, ao = 0.016 °, ,_1 = 2.51", and k = 0.0814 computed using spatial adaption.
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Fig. 15 Variationof number of cellsthroughouta

cycleof motion fortheNACA 0012 airfoil

pitchingharmonicallyatMoo = 0.755,r_o =

0.016°,al = 2.51°,and k = 0.0814.

the variation of the number of cells in the mesh throughout

the third cycle of motion. In this figure, the maximum

number of cells is approximately 14400 and the minimum

number of cells is near 12900. These values indicate a sig-

nificant computational savings when spatial adaption is used

when compared to using a globally fine mesh of 232192

cells (comparable mesh density of 3 levels of enrichment on

starting coarse mesh of 3628 cells is 3628 x 4a = 232192

cells) for similar spatial accuracy.

The computational savings obtained by using the spatial

adaption procedures can again be estimated by comparing

the total number of cells marched in time with the number of

cells marched in time ira globally fine mesh were used. For

AGARD case 5, a total of 413 million cells were marched

compared to 6966 million cells for the globally fine mesh

resulting in a computational savings of a factor of 17. This

factor shows a decrease in savings compared to the savings

factor obtained for AGARD case 3 due to the presence of

a shock wave during the majority of the cycle of motion.

Further, the computational savings factor does not include

the computational overhead of the spatial adaption procedure

which was approximately 7.5% of the total CPU time.

Concluding Remarks

Spatial adaption proc&lures fofthe accurate and effi-

cient solution of steady and unsteady inviscid flow problems

were described. The adaption procedures were developed Ill

and implemented within a two-dimensional unstructured-

grid upwind-type Euler code. These procedures involve

mesh enrichment and mesh coarsening to either add points

in high gradient regions of the flow or remove points where 121

they are not needed, respectively, to produce solutions of

high spatial accuracy at minimal computational cost. A

novel approach for detecting flow features based on the sub-

stantial derivative of density was used as an enrichment in-

dicator. This enrichment indicator worked well for detecting

developing shock waves in unsteady flows. This is a signifi-

cant improvement over the more commonly used enrichment

indicators based on the instantaneous solution (such as first

or second differences in density) that miss the initial sht×k

wave formation, especially for cases where the shock waves

periodically a_ and disappear in time.

Steady and unsteady transonic results were presented

for the NACA 0012 airfoil to demonstrate applications of the

spatial adaption procedures to two-dimensional problems.

The unsteady flow results were obtained for an airfoil pitch-

ing harmonically about the quarter chord. Both the steady

and unsteady solutions obtained using spatial adaption were

shown to be of high spatial accuracy, primarily in that the

shock waves were very sharply captured. Comparing the

cost of results obtained on a spatially adapted mesh with the

estimated cost of results obtained on a globally fine mesh of

comparable mesh density, a computational savings of a fac-

tor of approximately fifty-three was achieved for the steady

calculations using four levels of enrichment. Similar calcu-

lations using structured grid algorithms were estimated to be

an order of magnitude more expensive for comparable spatial

accuracy. Comparisons of coefficients from the spatial adap-

tion solution with those of Pulliam and Barton, 2° indicated

agreement to within 1% of the lift and drag coefficients and

to within 5% for the moment coefficient. Similarly, for the

unsteady calculations, a computational savings of a factor of

as much as twenty-five was achieved and comparisons that

were made with experimental pressure data indicated good

agreement.
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