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Abstract—Persistent Scatterers Interferometry (PSI) tech-
niques are designed to measure ground deformations using
satellite Synthetic Aperture Radar (SAR) data. They rely in
the identification of pixels not severely affected by spatial or
temporal decorrelation, which in general correspond to point-
like, persistent scatterers (PS) commonly found in urban areas.
However, in urban areas we can find not only PS but also
distributed scatterers (DS) whose phase information may be
exploited for PSI applications. Estimation of DS parameters
require speckle filtering to be applied to the complex SAR data,
but conventional speckle filtering approaches tend to mask PS
information due to spatial averaging. In the context of single-pol
PSI, adaptive speckle filtering strategies based on the exploitation
of amplitude temporal statistics have been proposed which seek
to avoid spatial filtering on non homogeneous areas. Given the
growing interest on Polarimetric PSI techniques, i.e. those using
polarimetric diversity to increase performance over conventional
single-pol PSI, in this work we propose an adaptive spatial filter
driven by polarimetric temporal statistics, rather than single-pol
amplitudes. The proposed approach is able to filter DS while
preserving PS information. In addition, a new methodology for
the joint processing of PS and DS in the context of PSI is
introduced. The technique has been tested for two different urban
datasets: 41 dual-pol TerraSAR-X images of Murcia (Spain) and
31 full-pol Radarsat-2 images of Barcelona (Spain). Results show
an important improvement in terms of number of pixels with
valid deformation information, hence denser area coverage.

Index Terms—SAR interferometry, polarimetry, persistent
scatterers, subsidence, speckle.

I. INTRODUCTION

O
NE of the major sources of error inherent to any SAR

system is speckle, produced by the mutual interference

of coherent electromagnetic waves when reflected by different

elements contained in the resolution cell. Speckle behaves as

a granular random noise and is generally reduced by using

spatial filtering. However, spatial filtering comes at the cost of

resolution loss. In addition, the conventional fixed-size sliding

window filters may not be suitable for heterogeneous areas,

such as urban environments, where preserving the maximum

level of detail is desirable.

Persistent Scatterers Interferometry (PSI) techniques are

extensively used for subsidence monitoring of urban areas.
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They are based in the analysis of the interferometric phase

of pixels that satisfy some stability requirements during the

observation period. Most PSI techniques aim to identify stable,

point-like scatterers, usually referred as persistent scatterers

(PS), which are generally associated with reflections from

man-made structures. However, urban areas are complex envi-

ronments where we can also find distributed scatterers (DS),

that is, groups of neighboring pixels sharing similar reflectivity

properties that may be considered as part of the same target.

Therefore, a methodology which allows the joint processing

of PS and DS would be advantageous. We must take into

account that, whilst speckle filtering can contribute to a better

characterization of DS, too aggressive filtering strategies may

lead to the loss of information on point-like PS. Consequently,

an adaptive filtering approach is the option of choice for PSI.

So far, a number of speckle filtering approaches have been

proposed in the literature [1][2][3][4] that use spatial statistics

to adapt the shape and size of the sliding window, so that only

homogeneous, connected areas are averaged. The estimation

of spatial statistics for a given coordinate generally implies to

evaluate a significant number of neighboring samples. Small

vicinity windows can lead to biased estimates, while larger

windows incur the risk of mixing statistically unhomogeneous

areas, so a tradeoff is required. In either case, response from

PS will be masked or corrupted by the rest of samples in the

set.

In order to avoid resolution loss, adaptive speckle filtering

approaches based on the analysis of temporal statistics, such

as DespecKS [5], have been introduced in the framework of

single-pol PSI. DespecKS algorithm makes use of the two-

sample Kolmogorov-Smirnov (KS) test to evaluate whether

two neighboring pixels have amplitude data drawn from the

same probability density function (p.d.f), and thus they can be

considered statistically homogeneous pixels (SHP). Amplitude

p.d.f. of a pixel is estimated from the amplitude values at

all acquisition times, so no spatial averaging is required.

Note that other statistical tests can be applied [6]. However,

the extension of DespecKS to multi-channel (polarimetric)

data can be problematic, since it requires the estimation a

multivariate p.d.f., which in general is not straightforward and

requires a significantly larger number of samples. In addition,

the KS test is suited to real data (such as the amplitude), what

implies making some assumptions when dealing with complex

data (e.g. amplitude stability indicates phase stability).

In this paper, a polarimetric adaptive filter driven by tempo-

ral statistics is proposed. The filter relies on a likelihood ratio
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test for equality of complex Wishart matrices [7] to determine

if two temporal sample coherency matrices (as defined in

Section II) are drawn from the same distribution. In addition,

a methodology for the joint processing of PS and DS is

proposed.

The filter have been tested on urban area for dual-pol

TerraSAR-X data (Murcia, Spain), as well as for full-pol

Radarsat-2 data (Barcelona, Spain). Deformation velocity

maps have been obtained, showing an important improvement

in terms of density of pixels with valid deformation informa-

tion, in comparison with not filtered data, thus confirming the

suitability of the approach for its use on PSI.

II. FORMULATION

A. Polarimetric Homogeneity Test

In [8], a likelihood ratio test was used to assess polarimetric

stationarity of an area over time. Now, we use a similar

approach to check if two polarimetric coherency matrices

associated with neighboring pixels follow the same distribu-

tion, and therefore they can be considered polarimetrically

homogeneous pixels (PHP).

Let k be the q dimensional target vector obtained by

projecting scattering matrix S of a pixel onto the Pauli basis,

as defined in [9]. For full-pol data (q = 3) it is given by:

k =
1√
2





HH + V V
HH − V V

2HV



 , (1)

where HH and VV stand for the horizontal and vertical copolar

channels, respectively, and HV is the crosspolar channel.

Notice that we assume HV = VH due to reciprocity. In the

case of dual-pol data (q = 2) with no crosspolar information,

the target vector is reduced to:

k =
1√
2

[

HH + V V
HH − V V

]

. (2)

Let us consider a set of N samples of k obtained for the

same pixel coordinates at different dates, i. e. from different

SAR images. We can define their q × q sample temporal

coherency matrix T as:

T =
1

N

N
∑

n=1

kn · k†
n, (3)

where † stands for the hermitian or conjugated transpose.

Under the assumption that, along the stack of N images,

k follows a zero mean, circular complex multivariate Gaus-

sian, denoted as k ∼ NC
q (0,Σ), the corresponding sample

coherency matrix T follows a complex Wishart distribution

with N degrees of freedom T ∼ WC
q (N,Σ). Notice that no

spatial averaging is required at this point to compute T, since

samples are obtained from the temporal dimension.

Two pixels i and j will be considered PHP if their associ-

ated sample coherence matrices Ti and Tj follow the same

distribution, i.e. they verify the hypothesis Σi = Σj . This

hypothesis can be verified, as proposed in [7][10], by means

of a likelihood ratio test. Likelihood ratio can be obtained from

the determinants of the sample coherence matrices as follows:

Λ =
|Ti|Ni |Tj |Nj

∣

∣

∣

∣

NiTi +NjTj

Ni +Nj

∣

∣

∣

∣

Ni+Nj
, (4)

where Λ is the likelihood ratio, Ni and Nj indicate the

number of target vector samples used to compute Ti and

Tj , respectively (generally, Ni = Nj = N ). Two pixels are

considered PHP, with an arbitrarily chosen probability of false

alarm Pfa if:

Λ > cβ Pfa (cβ) = P (Λ ≤ cβ) = β (5)

Expression (5) requires formulation of Pfa (cβ), which can

not be obtained analytically in an easy way. However, an

approximated expression for Pfa (cβ) has been derived in

[7][10]. For a two pixels test with Ni = Nj = N , the

probability may be expressed as:

Pfa (cβ) = 1− γinc
(

q2/2,−ρ log(cβ)
)

− ω2

[

γinc
(

q2/2 + 2,−ρ log(cβ)
)

− γinc
(

q2/2,−ρ log(cβ)
)]

(6)

with

ρ = 1− 2q2 − 1

4qN
(7)

ω2 =
q2

4ρ2

(

q2 − 1

6

(

2

N2
− 1

(2N)2

)

− (1− ρ)2
)

, (8)

where γinc(a, b) represents the incomplete gamma function of

b at order a.

Similarly to DespecKS algorithm described in [5] for single-

pol data, the proposed polarimetric homogeneity test will

be performed for each pixel on all the surrounding pixels

inside a previously defined range or window. The pixel under

analysis and all its PHP neighbors define the pixel’s parameter

estimation window (PEW). Pixels that pass the test but are

not connected to the pixel under analysis either directly or

through other PHPs will be discarded to reduce the probability

of mixing responses from different radar targets. In this work, a

15×15 test window centered on the pixel has been considered.

To determine whether a pixel should be treated as part of

a DS or as an isolated pixel, we apply a criterion based on

the size of the pixel’s PEW, L (number of spatial looks).

Pixels with L smaller than a certain number of samples

R will be considered isolated pixels for processing, hence

suitable for PS analysis. On the other hand, pixels with a

sufficiently large PEW (L ≥ R) will be considered suitable

for DS parameter estimation. Fig. 1 shows an example of

the number of PHPs (L) identified for each pixel over the

area of Barcelona, obtained with the set of 31 Radarsat-2

images described in Section III. Brighter areas correspond to

polarimetrically homogeneous regions according to the test.

The original test has been replaced by an equivalent one given

by log Λ > log cβ , and an arbitrary threshold of log Λ > −20
has been set, which ensures a Pfa < 1%. An interesting

feature of the proposed test is its great sensitiveness to the

presence of dominant scatterers, even if they only appear in
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Fig. 1. Number of identified PHP in Barcelona (Spain), for a log Λ threshold
of -20 and a test window of 15×15.

some images (such as, for example, boats in the sea). Hence,

pixels dominated by this kind of strong scatterers are generally

treated as isolated targets, which is the desired behavior for

our application.

The likelihood ratio test (also known as Box’s test) is

known to perform incorrectly in some cases. To begin with,

as aforementioned, this test relies on the assumption that T

samples follow a centered Wishart distribution, so it may

fail when this hypothesis does not hold. Particularly, in the

case of PS, the assumption that k samples are zero-mean

Gaussian distributed in time is generally not true. More robust

versions of the test have been proposed in the literature, which

account for departure from normality [11][12]. The test is

also known to be biased when the number of samples (N )

is small respect to the number of dimensions (q). Alternative

asymptotic approximations to the distribution of the likelihood

ratio test statistic, for the estimation of Pfa, can be found

in [13]. Nevertheless, from our experience, this simple version

of the test provides significantly good results in most cases of

study. Experiments carried out in [7] show good performance

of the test for full-pol data, with as few as 13 looks for

the estimation of sample covariance matrices. Finally, another

requirement for the right performance of this test is that T

(a)

(b)

Fig. 2. Detail of HH+VV amplitude image, original (a) and filtered (b). Filter
parameters are: 15×15 test window size, log Λ threshold of -20 and R = 20.

matrices have to be full-rank. The rank of the T matrices

implied in the test was evaluated for all the pixels in the

available scenes by using a SVD approach, and all of them

resulted to be full-rank (rank 2 for dual-pol data and rank 3

for full-pol data), even for pixels selected as PS.

One of the possible applications of this adaptive approach

is amplitude despeckling: once the PEWs for each pixel have

been determined, we can despeckle amplitude SAR images just

by averaging the amplitude values of the PHPs, ignoring those

pixels with L < R. Fig. 2 shows a detail of a despeckled SAR

amplitude image in comparison with the original amplitude

image, where a value of R = 20 has been considered. We

can observe how homogeneous areas have been filtered, while

high contrast details are preserved. Notice that filtering can

also be extended in the temporal dimension, by just applying

it to the time-averaged amplitude image.
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Alternatively, for applications where phase information has

to be preserved, such as PSI, the adaptive filter can be used to

improve the estimation of the polarimetric and interferometric

descriptors of DS, while keeping PS unaffected.

In this work we use the proposed filter as a preprocessing

step, followed by a polarimetric optimization that will help

us to select the best performing or most stable scattering

mechanism along time, according to certain quality criterion.

Polarimetric optimization step for both PS and DS is summa-

rized in the Section II-B.

Other studies on adaptive multi-temporal speckle filtering

strategies can be found in the literature. In [6], different

parametric and non-parametric homogeneity tests exploiting

single-pol amplitude statistics are evaluated. One of such tests

is the Kolmogorov-Smirnov test, also used in the DespecKS

filter [5]. In the context of multi-temporal, polarimetric data,

an adaptive filter based on binary partition trees have been

recently introduced in [14].

B. Polarimetric optimization of PSI

The main objective of PSI polarimetric optimization is to

maximize the quality and number of PS and DS selected

as reliable a priori, by optimizing the parameters used as

selection criterion. In [15][16][17] we proposed a general

framework for PSI polarimetric optimization, starting from the

concept of polarimetric (or vector) interferometry introduced

in [9]: Let k be a target vector given by (1). In order to

generate an interferogram, k can be projected onto a unitary

complex column vector ω, resulting in µ = ω
†
k, where µ is a

scalar complex scattering coefficient. As a scalar complex, µ is

analogous to single-pol data, so we can make use of any known

PSI technique by applying it to µ. Hence, the proposed PSI

optimization approach consists in finding, for each pixel, the

projection vector ω that optimizes the parameter considered

as quality criterion when computed for µ.

To ease the search of the optimum projection vector (from

now on referred as the optimum channel), for fully polarimetric

data ω can be parametrized as follows:

ω =





cos(α)
sin(α) cos(β)ejδ

sin(α) sin(β)ejψ



 ,















0 6 α 6 π/2
0 6 β 6 π/2
−π 6 δ < π
−π 6 ψ < π

(9)

so the problem is reduced to finding four real parameters α,

β, δ and ψ whose range is finite and known, and whose value

is related to the geometric and electromagnetic features of the

target [18]. In the following, we will refer to this simple opti-

mization approach as ESPO (Exhaustive Search Polarimetric

Optimization). Similarly, in the case of dual-pol data, the two

components projection vector can be parameterized as:

ω =

[

cos(α)
sin(α)ejψ

]

,

{

0 6 α 6 π/2
−π 6 ψ < π

(10)

so the search is reduced to two real parameters, α and ψ.

Since the reflectivity values for different polarimetric chan-

nels can be associated with different scattering mechanisms

in the resolution cell located at different heights, hence with

different phase centers, we constrain the optimum ω obtained

for each pixel to be the same along all the stack of images.

This way we avoid introducing a varying phase term that

will result in noisy deformation estimates. This constraint is

usually found in the literature as Equal Scattering Mechanisms

(ESM) [19], and it can be interpreted as selecting the most

stable scattering mechanism over time, according to the chosen

criterion of selection.

The most commonly used criterion of selection for PS is

the Amplitude Dispersion Index DA [20]. For vector interfer-

ometry, DA can be expressed as [15][16]:

DA =
σa
ā

=
1

|ω†k|
√
N − 1

√

√

√

√

N
∑

i=1

(

|ω†
ki| − |ω†k|

)2

, (11)

where N is the total number of images and the overline

indicates empirical mean value. Points with DA below a given

threshold will be selected as Persistent Scatterer candidates, so

in this case our ESPO algorithm will search, for each pixel,

the ω that minimizes its DA.

As for DS, in order to evaluate their suitability for PSI

it is usual to rely on their average interferometric coherence

magnitude |γ| as an indicator of the quality of the estimated

interferometric phases [21][22]. In the context of polarimetric

interferometry, |γ| can be expressed as follows:

|γ| = 1

K

K
∑

k=1

|γk|, with γk(ω) =
ω

†
Ωijω

√

ω
†Tiiω

√

ω
†Tjjω

,

(12)

where subscript k denotes the k-th interferogram obtained by

combining images i and j. Polarimetric coherency matrices

Tii, Tjj and polarimetric interferometric cross-correlation

matrix Ωij are defined as in [9]:

Tii = E[kik
†
i ], Tjj = E[kjk

†
j ], Ωij = E[kik

†
j ] (13)

where E[·] is the expectation operator. These expectations

cannot be computed in practice, so they will be replaced by

their maximum likelihood estimates, given by the empirical

mean evaluated using L realizations of the target vectors. In

our case the L realizations will be given by the pixel’s PEW

determined by the proposed adaptive filter, as described in the

previous section. This way we guarantee that we are averaging

pixels with similar scattering properties, and consequently the

usual Gaussian assumption is more likely to hold. In this case,

the ESPO algorithm will be applied on each DS to find the

the ω that maximizes |γ|. ESPO and alternative polarimetric

optimization approaches are detailed in [17].

Notice that, at this point, we have different criteria of

selection for PS and DS. Moreover, it is known that the

estimator of γk has a bias depending on the number of

looks [23], which in our case can vary for different DS because

of the adaptive filter. This is not practical if we want to

process jointly PS and DS, since both DA and |γ| are not

directly comparable. In the following subsection we propose

an alternative selection criterion that can be used for both PS

and DS.
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C. Joint processing of PS and DS

In order to process jointly PS and DS, it is convenient

to establish a common quality criterion for pixel selection,

instead of using DA for PS and |γ| for DS. The estimated

phase standard deviation σφ has been chosen given its close

relationship to both criteria. A pixel (either PS or DS) will be

selected as stable if its expected σφ is lower than a chosen

threshold, typically 15o (≈ 0.25 rad).

As demonstrated in [20], DA is an estimator of σφ for

high SNR values (generally, for DA < 0.25), so for PS

we can directly consider DA ≈ σφ if we set the selection

threshold appropiately. As for DS, σφ can be estimated from

the probability density function of the interferometric phase,

pdf(φ), which is related to the magnitude of the estimated

interferometric coherence |γ| and the number of independent

looks used in the estimation Le, as shown in [24]:

σφ =

√

∫

φ

(φ− φ0)
2
pdf(φ) dφ, (14)

with

pdf (φ) =
Γ (Le + 1/2)

(

1− |γ|2
)Le

γ cos (φ− φ0)

2
√
πΓ (Le) (1− |γ|2 cos2 (φ− φ0))

Le+1/2

+

(

1− |γ|2
)

2π
F1

(

Le, 1; 1/2; γ
2 cos2 (φ− φ0)

)

,

where F1 is a Gauss hypergeometric function, and the ex-

pected phase φ0 can be set to 0 without loss of generality.

Note that, when the number of independent samples is large

(Le > 10), σφ can be approximated as [25]:

σφ =
1√
2N

√

1− |γ|2
|γ| . (15)

Nevertheless, for a more accurate estimation of σφ in case of

low Le values, we opted for precomputing a look-up table of

σφ(|γ|, Le) based on expression (14), which can be quickly

queried at runtime.

For the sake of simplicity, σφ will be estimated taking into

account the average interferometric coherence |γ|, instead of

the different values of |γk| associated with each interferogram

k.

From expressions (14–15) it is extracted that the lower the

coherence magnitude or the number of looks, the higher the

expected phase deviation. Notice that, in general, adjacent

pixels in a SAR image will be correlated due to averaging,

oversampling or other processes, so L spatial samples will

correspond, in general, to a smaller number of independent

looks, Le. In order to account for this, we consider the

following approximation:

Le ≈
L

(ovs range) · (ovs azimuth)
, (16)

where ovs range and ovs azimuth are the oversampling factors

in range and azimuth, respectively. Oversampling factors are

obtained as the ratio between theoretical sensor resolution and

pixel spacing of the final product. Values of these parameters

for the datasets used in this work are shown in Section III.

In [5] an alternative methodology for joint processing of

PS and DS is proposed, which relies on a phase triangulation

algorithm (PTA) to obtain, for each DS, the N maximum

likelihood phase estimates from a set of K interferograms.

In that case, the goodness of fit of the PTA is used as an

extension, for DS, of the temporal coherence used in several

PS-based PSI techniques.

III. DATASET

A set of 31 full-pol SLC (Single-Look Complex) images

acquired by Radasat-2 from January 2010 to February 2012

over the urban area of Barcelona (Spain), as well as a set of

41 dual-pol (HH, VV) TerraSAR-X SLC images acquired over

Murcia (Spain) from February 2009 to May 2010, have been

used to test the proposed algorithms.

Barcelona images have been acquired at a revisit time of

24 days using Radarsat-2 beam mode FQ9: nominal incidence

angle of 28o (near range) to 29.8o (far range). Nominal azimuth

and slant-range resolutions are 7.6 m and 5.2 m, whereas

nominal pixel dimensions are 5.1 m and 4.7 m, respectively.

Therefore, the resulting oversampling factors are 1.49 and

1.11 in azimuth and range. The processing has been applied

over a section of the image of 1400×3600 pixels, where non-

urban areas (mainly sea and mountains) have been masked

out. A color composite formed by the Pauli average intensities

is shown in Fig. 3. The different colors in the composite

image provide an insight about the information content of

polarimetry. The city is mostly located in the center of the

image, showing different dominant channels at different parts.

Buildings tend to behave as oriented dihedrals (due to facade-

ground double reflections), whose polarimetric response de-

pends highly on the orientation angle (OA) [26]. Dihedrals

with OA of 45o have a dominant cross-polar response, whereas

22.5o rotated dihedrals reflect equally all four polarimetric

channels.

As for Murcia images, they have been acquired at a revisit

time of 11 days with a mean incidence angle of 37.8o.

Azimuth and slant-range resolutions are 6.6 m and 1.17 m,

whereas pixel dimensions are 2.44 m and 0.91 m. The resulting

oversampling factors are 2.7 and 1.28 in azimuth and range.

The processing has been applied over a 2000×2000 portion

of the images, centered in the urban area of Murcia. Fig. 4

shows a composite image of the selected scene.

IV. RESULTS

In this section we evaluate the performance of the proposed

approach in terms of density of pixels selected and detail

of the generated deformation velocity maps. We compare

results obtained by applying conventional PSI to an arbitrary

single-pol channel (HH), to the ESPO channel (optimized

for minimum DA), and to ESPO data preprocessed by the

proposed adaptive filter. In this experiment we have considered

the same filter parameters for both Murcia and Barcelona

scenes: 15 × 15 PHP search window centered on the pixel,

a log Λ threshold of -20, and R = 20 minimum number

of PHP neighbors for the pixel to be treated as a DS. For

comparison purposes, we have also included results obtained

by using DespecKS filtering approach [5] on single channel
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Fig. 3. Composite RGB image of the area under study in Barcelona
(Spain) formed by the average intensities. Channels: R = HH-VV, G = 2HV,
B = HH+VV

Fig. 4. Composite RGB image of the area under study in Murcia (Spain)
formed by the average intensities. Channels: R = HH, G =VV, B = HH-VV

TABLE I
MEASURE POINTS SELECTED FOR DIFFERENT CHANNELS, CONSIDERING A

σφ THRESHOLD OF 0.25

TerraSAR-X PS DS MP (PS + DS) MP/km2

HH 3.60% - 3.60% 9968

DespecKS HH 3.60% 0.86% 4.45% 12321

ESPO (dual-pol) 8.63% - 8.63% 23865

log Λ filter + ESPO 8.16% 5.10% 13.26% 36682

Radarsat 2 PS DS MP (PS + DS) MP/km2

HH 2.01% - 4.07% 425

DespecKS HH 2.00% 13.88% 15.88% 3364

ESPO (full-pol) 13.83% - 13.83% 2930

log Λ filter + ESPO 13.36% 5.26% 18.62% 3945

data (HH), with R = 20 and a Kolmogorov-Smirnov two-

sample test significance level of α = 0.01 (1%).

In order to compare the density of pixels selected by each

approach, Table 1 summarizes the output of the selection

stage. For the Barcelona scene, sea and mountains have been

masked out. A distinction is made between pixels selected and

processed as PS and points processed as DS, where applicable.

The generic term MP (measure points) is given to the total

sum of PS and DS, as in [5]. Selection results are given

both in terms of % of pixels selected from the total pixels

of the scene, and in terms of MP/km2. Note that, due to

the different pixel spacing and incidence angle, an area of

1 km2 corresponds to approximately 207 × 102 = 21114
pixels (azimuth×range) for Radarsat-2 SLC images, whereas

for TerraSAR-X it corresponds to ≈ 410 × 674 = 276340
pixels, and hence the MP/km2 values differ in one order of

magnitude between the two sensors. As appreciated in the

table, the density of total selected pixels, or MP, increases

significantly with filtering.

In the case of Murcia TerraSAR-X data, the DespecKS

approach applied to only the HH channel does not render

as good results as dual-pol ESPO. DespecKS achieves an

increase of MP of around ×1.24 with respect to unfiltered

HH channel (4.45% vs. 3.6%) due to the selection of new

DS. However, given the heterogeneity of the scene and the

fine resolution of the sensor, this increase in the number of

DS is not so significant as the increase in PS achieved by the

ESPO approach, of around ×2.4 with respect to HH (8.63%

for ESPO compared to 3.60% for HH). Now, if we apply the

proposed adaptive filter preprocessing to ESPO, the increase

is even more spectacular, obtaining 3.7 times more pixels (a

total of 13.26%) than for HH.

For the Barcelona full-pol Radarsat-2 set, the increase of

pixels density of ESPO w.r.t. HH is around ×6.9 (13.83%

for ESPO compared to 2.01% for HH). However, in this case

the DespecKS filtering approach selects a larger percentage

of pixels (15.88%), by revealing a significant number of DS.

Nevertheless, note that in the ESPO approach all selected

pixels are treated as PS, and hence their resolution will not

be degraded by filtering. DespecKS, on the other hand, is not

contributing to the detection of new PS, but DS. Finally, if we

apply the polarimetric filter proposed in this paper to ESPO,

we obtain an increase of around ×9.27 in comparison with

HH (18.62% of pixels selected, from which 13.36% are to

be treated as PS). We noticed that in this case, the proposed
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HH (3.60%) DespecKS, HH (4.45%)

ESPO, Quad-Pol (8.63%) log Λ filter + ESPO Quad-Pol (13.26%)

Fig. 5. Deformation velocity maps obtained for Murcia scene using different configurations, and percentage of selected pixels.
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HH (2.01%) DespecKS, HH (15.88%)

ESPO, Quad-Pol (13.83%) log Λ filter + ESPO Quad-Pol (18.62%)

Fig. 6. Deformation velocity maps obtained for Barcelona scene using different configurations, and percentage of selected pixels.

filtering approach is more sensitive to changes in the scene

than DespecKS, for the parameters considered. Consequently,

the average number of homogeneous neighbors per pixel is

significantly smaller for the log Λ filter (≈ 65 PHP) than for

DespecKS approach (≈ 102 SHP), and thus a larger number

of pixels are treated as PS.

Deformation velocity maps have been generated for both

scenes using an implementation of the PSI technique described

in [27], which has been adapted to process both PS and DS as

described in this paper. Fig. 5 (Murcia) and Fig. 6 (Barcelona)

show the obtained velocity maps for each channel, as well as

the percentage of points selected.

We can clearly observe in both cases the significant im-

provement rendered by the inclusion of the proposed adaptive

filter. The benefits are specially evident when we consider

fully polarimetric data. We can see how man-made, flat homo-

geneous structures, such as roads or airstrips, are now more

likely to be selected in spite of their low backscattering power,

since filtering allows us to reduce deviation of phase estimates

for DS. Additionally, since PS information is preserved (and

enhanced by polarimetric optimization), we still achieve a

good characterization of structures such as small buildings.

Fig. 7 and Fig. 8 show an augmented view of representative

areas containing the aforementioned structures, where we can
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HH DespecKS, HH

ESPO, Dual-Pol log Λ filter + ESPO Dual-Pol

Fig. 7. Detail of deformation velocity maps, Murcia - Highway bridge. Same
color scale as in Fig. 5 is used.

HH DespecKS, HH

ESPO, Quad-Pol log Λ filter + ESPO Quad-Pol

Fig. 8. Detail of deformation velocity maps, Barcelona - “El Prat” airport.
Same color scale as in Fig. 6 is used.

appreciate the new deformation details revealed. Notice that

pixel colored markers have been set to a size slightly larger

than the resolution cell, in order to ease their visualization.

Validation of obtained results is yet to be addressed, since

we do not dispose of the required ground-truth data at the

moment, though a qualitative comparison with other works

on Murcia area [28] and Barcelona area [29] using different

sensors or datasets shows a good agreement with presented

results.

Obviously, the inclusion of the filtering step affects the total

processing time. Computational cost mainly depends on the

type of input data (higher for full-pol than for dual-pol), the

number of images and generated interferograms, and the scene

features. Generally, the larger the number of pixels treated as

DS, the higher the computational cost, since isolated scatterers

do not require speckle filtering. DA is calculated in a matter

of seconds for the whole scene, whilst coherence estimation

on distributed scatterers may take several hours. In addition

to the increased computation time due the filter, the additional

cost related to the polarimetric optimization step has to be also

accounted for. Moreover, due to the larger number of pixels

selected for processing, final deformation velocity estimation

stages will take longer to compute as well.

We have carried out our experiments on a

DellTMWorkstation equipped with a 12-core AMD Opteron

processor (2.3 GHz) and 192 GB of RAM. Speckle filtering

and polarimetric optimization approaches have been written

in IDL (Interactive Data Language). The remaining of the PSI

processing chain has been implemented in C language. As

expected, the computational cost of the proposed approach

is higher for the full-pol Barcelona case of study, because

of the higher dimensionality of data and density of DS.

Nevertheless, given the larger number of images and

interferograms considered for the dual-pol Murcia scene,

the difference in total processing time is not so significant

between the two cases. Approximate computation times for

each stage are summarized in Table 2. For comparison, we

also included computation times for our implementation of the

DespecKS filtering approach. We can clearly observe that the

polarimetric optimization stage is the most time-consuming

step of the proposed technique. However, likelihood ratio

test is significantly more efficient (around 3× faster) than

the Kolmogorov-Smirnov test used in DespecKS, hence total

computing times are in a similar order of magnitude.

These times represent approximately a 25% of the complete

PSI processing time chain. Since computation time is generally

not a critical factor for PSI (processing is carried out when

a sufficient number of SAR images is available, which may

take years depending on the satellite revisit time), the potential

benefit in terms of maps pixel density clearly justifies the

increase of computational complexity.

V. CONCLUSIONS

In this work we propose a new spatial polarimetric adaptive

speckle filter driven by temporal statistics, which is able

to preserve PS information while filtering DS. Additionally,

a simple methodology for joint processing of PS and DS

is presented, based on a common criterion of quality, the

estimated phase standard deviation σφ.

The approach has been tested using dual-pol TerraSAR-

X data and full-pol Radarsat-2 data. PSI results show an

important improvement in terms of area coverage (i.e. pixels

with deformation information) compared with unfiltered data,

either single-channel or polarimetrically optimized data. For

filtered TerraSAR-X dual-pol data, area coverage is increased

by over ×1.5 w.r.t. unfiltered ESPO data, and ×3.7 w.r.t

unfiltered single-pol data. As for filtered Radarsat-2 full-pol

data, area coverage is increased by ×1.35 w.r.t. unfiltered

ESPO data, and ×9.3 w.r.t unfiltered single-pol data. The

combination of adaptive filter and polarimetric optimization on

full-pol data is the configuration that provides the best results.

Validation of presented results with ground-truth data is

yet to be addressed. However, the increase of pixels density

will generally contribute to the robustness of PSI approaches,

adding redundancy and hence improving the accuracy of the

phase estimates.
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TABLE II
APPROXIMATE COMPUTATION TIMES FOR MAIN SPECKLE FILTERING STAGES.

Murcia (TSX, dual-pol) Homogeneity test Polarimetric optimization Interferogram filtering and pixels selection Total

log Λ filter + ESPO 5 h 13 h 4.35 h 22.35 h

DespecKS HH 16 h - 1.5 h 17.5 h

Barcelona (RDS2, full-pol) Homogeneity test Polarimetric optimization Interferogram filtering and pixels selection Total

log Λ filter + ESPO 6 h 17.2 h 6.7 h 29.9 h

DespecKS HH 17 h - 2.5 h 19.5 h

The performance and optimum configuration of the adaptive

filter depends mainly on the features of the scene under study,

as well as the sensor specifications. As a future research

line, performance of the filter on different scenarios as a

function of configuration parameters will be carefully revised.

Additionally, different tests for PHP discrimination will be

studied and compared.
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