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a b s t r a c t

Departing from the comprehensive reviews carried out in the field, we identify the key challenges that
agent-based methodology faces when modeling coupled socio-ecological systems. Focusing primarily on
the papers presented in this thematic issue, we review progress in spatial agent-based models along the
lines of four methodological challenges: (1) design and parameterizing of agent decision models, (2)
verification, validation and sensitivity analysis, (3) integration of socio-demographic, ecological, and
biophysical models, and (4) spatial representation. Based on this we critically reflect on the future work
that is required to make agent-based modeling widely accepted as a tool to support the real world policy.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The world has witnessed unprecedented changes occurring in
coupled socio-ecological systems (SES). Massive irreversible loss of
ecosystem services, and global environmental change driven by
both socio-economic changes and the adverse consequences of
climate change involve cross-scale feedbacks, adaptive dynamics,
and interactions between subsystems and their components. It is
recognized that these management challenges are best character-
ized using a complex systems paradigm. Agent-based models
(ABMs) have emerged in land and environmental science as a way
to better capture complex system characteristics of coupled SES.
ABMs for SES have evolved as extensions of other modeling tech-
niques, including analytical and statistical modeling, cellular
automata, artificial learning and others. The main added value of
ABM as a simulation technique is in its ability to represent behavior
of human actors more realistically, accounting for bounded ratio-
nality, heterogeneity, interactions, evolutionary learning and out-of

equilibrium dynamics, and to combine this representation with a
dynamic heterogenous representation of the spatial environment.
ABMs applied to SES almost always operate in a spatial environ-
ment as SES are often showing high spatial variations. The spatial
component implies that a heterogenous landscape needs to be
represented, heightening the needs for data and for accurate inte-
gration with other sub-models that simulate ecological or bio-
physical dynamics. The requirement for agents to have a partic-
ular geographical location raises further modeling questions on the
drivers of relocation, the type and extent of spatial externalities
imposed on other agents, the types of linkages between agents and
locations (e.g. one to one or one to many), and the ways in which
the heterogeneity of spatial attributes and agents’ preference may
interact. Once these complex design and representation issues are
addressed, ABMsmay help to explore dynamic paths of coupled SES
and, thus, to design proper policies to resolve key societal issues.
This exploration is especially relevant when dynamics involve
abrupt changes, crises and critical transitions stemming from cu-
mulative effects of social interactions and adaptive behavior, since
other modeling tools based on perfect information and fixed static
rational behavior may be misleading.

This paper reviews progress in spatial agent-based models
along the lines of four methodological challenges introduced
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and discussed below, in particular building on the 12 papers that
constitute this Thematic Issue. We critically reflect on how these
papers contribute to the progress toward meeting the methodo-
logical challenges in the ABM field and reflect on the future work
that is required. The paper also serves as a preface for the Thematic
Issue on ‘Spatial agent-based models for socio-ecological systems’.

1.1. Progress in agent-based models for socio-ecological systems up
to date

Several key publications from the turn of the last century
highlighted pioneering work on spatial ABM for SES (Grimm, 1999;
Kohler, 2000; Gimblett, 2001). Early work in ABMs of land-use and
land-cover change was summarized by Parker et al. (2002, 2003).
Since then, substantial work has been done to move the field for-
ward. Several excellent reviews on spatial and environmental ABMs
have done a comprehensive analysis of the published work and
crystallized the knowledge per subject area. Bousquet and Le Page
(2004) review the shifts in paradigms when studying ecological
complexity toward more explicit integration of the role of human
actions, and a consequent rise of ABM application for ecosystem
management. Matthews et al. (2007) synthesize the knowledge on
the use of ABM in land-use science, focusing on spatially explicit
and heterogenous representation of the environment. Torrens
(2010) summarizes the applications of ABMs in physical and hu-
man geography focusing on opportunities ABMs offer for extending
spatial sciences with multi-disciplinary perspectives. In the light of
complexity theory and mutual feedbacks between human actions
and environmental consequences, An (2012) reviews various de-
cision models used in ABMs for SES, highlighting their strengths
and weaknesses. In addition to compiling the knowledge on
modeling coupled SES with ABMs, scholars have produced reviews
on the application of the method to each of the subsystems: socio-
economic (Tesfatsion and Judd, 2006; Safarzynska and van den
Bergh, 2010; Chakraborti et al., 2011; Marks, 2012) and ecological
systems (Grimm et al., 2005). Substantial attention has also been
given to systemizing approaches to empirically characterize and
parameterize agents’ behavior in ABMs for SES (Janssen and
Ostrom, 2006; Robinson et al., 2007; Windrum et al., 2007;
Valbuena et al., 2008; Smajgl et al., 2011).

The journal Environmental Modelling and Software (EMS) in
particular is an active platform for publicizing research involving
ABMs for SES. The topics of environmental applications of ABMs are
diverse: energy and climate change mitigation (Zhang et al., 2011;
Gerst et al., 2013), farming (Bithell and Brasington, 2009;
Schreinemachers and Berger, 2011), urban development (Brown
et al., 2004; Haase et al., 2010; Filatova et al., 2011), water man-
agement (Feuillette et al., 2003; Smajgl et al., 2009; Yu et al., 2009;
Moglia et al., 2010; van Oel et al., 2010; Murillo et al., 2011),
ecosystem management (Batten, 2007; Moreno et al., 2007;
Anselme et al., 2010; Brede and De Vries, 2010; Simon and Etienne,
2010), and tourism (Anwar et al., 2007). Individual-based modeling
involving coupled SES (de Almeida et al., 2010; Perez and
Dragicevic, 2010) as well as methodological issues related to
ABMs (Polhill et al., 2006) also receive attention.

This Thematic Issue aims to continue this effort to assemble
knowledge and experience of applying ABMs to explore the dy-
namics of coupled SES, and to critically assess the progress with
respect to key challenges identified in the field in relation to the
papers presented here.

1.2. Challenges for current and future work

As discussed above, the architecture of ABMs is attractive to
explore the dynamics of complex coupled SES. Yet, throughout the

years several challenges and research priorities have been identi-
fied. Drawing from discussions at key international meetings on
spatial ABMs for SES (including AAG, iEMSs, GLP, etc.) as well as
from the previous reviews in the field, we identify four categorical
challenges addressed in the thematic issue papers:

� Modeling agents’ behavior: how are agents’ decision models
designed and parameterized to capture behavior and in-
teractions in the real world situations? Some ABMs are highly
stylized, grounding agent behavior in one of the predominant
theories of an application domain. Others reject any theoretical
preconsiderations and focus on replicating behavior that is
observed empirically. Creating a balanced specification and
parameterization of agent behavior in ABMs in relation to (i)
one of the competing decision-making theories in social sci-
ences and to (ii) empirical observations is a major challenge.
Moreover, it is important to differentiate between and assess
the implications of behavioral assumptions. Based on social
science theories, approaches that address the explicit modeling
of cognition, power, emotions, and the dynamics of beliefs and
other insights from psychology can be followed. Here, the
reliance on entirely statistically-parameterized versus adaptive
behavioral rules largely affect models’ outcomes. Moreover,
behavioral assumptionsmay range betweenperfectly informed
rational agents to bounded rational ones. The modeler must
make conscious choices regarding an explicit modeling of
behavioral change (e.g. learning, switching to different strate-
gies, changes in agent’s preferences and perceptions), and an
accepted protocol to guide these choices has not been devel-
oped (Meyfroidt, 2012).

� Sensitivity analysis, verification and validation: how reliable
and robust are the outcomes of an ABM? The nature of ABMs
ideally calls for micro-scale information on agents behaviors
and interactions between agents. This level of detail implies a
high number of model parameters to which model perfor-
mance is potentially sensitive. Models may also be constructed
using alternative decision models or representations of spatial
structure. Finally, models often contain stochastic elements.
The sensitivity of the model to these features has to be sys-
tematically tested. Like models in any field, ABMs needs to be
assessed with respect to the soundness of their construction
and their success in replicating real-world trends and patterns
(verification and validation). Sensitivity analysis, verification,
and validation become especially vital when ABMs are applied
in a policy context to inform management challenges.

� Coupling socio-demographic, ecological, and biophysical
models: when being applied to study complex SES dynamics,
ABMs focusing primarily on human behavior need to be inte-
grated with other types of models. How is this integration
implemented in terms of feedback mechanisms and software
coupling? Integration of various modeling components is
strenuous for any type of modeling (Voinov and Shugart, 2013),
including ABMs. Often models are loosely coupled with one-
way feedback between social and environmental systems. Ac-
curacy and validity of a model with respect to the way these
feedbacks are implemented and the way they affect resilience
of SES is rarely tested (Schlüter et al., 2012). It can also be
challenging to identify linking variables and gather real-world
data needed to link models.

� Spatial representation: The spatial representation and
modeled landscapes in ABMs often need to capture spatial
heterogeneity of inputs and outputs across multiple spatial
scales. While the first two challenges are applicable for all
ABMs, this one is inherited by spatial ABMs from the necessity
to have a landscape. How should the spatial scale of analysis be
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defined in ABMs, and how can multiple scales of analysis be
combined in the same model? How can discrete representa-
tions of space be combined with network or diffusion models?

This thematic issue contains a series of innovative papers that
address one or more of these challenges. Such overview provides
an up-to-date evaluation of the way in which ABMs have been able
to address the challenges and live up to the expectations as well as
identifying the remaining challenges.

2. Representation of the thematic challenges

2.1. Modeling agents’ behavior: design and parameterizing of agent
decision models

Several of the papers in the special issue explicitly address the
design and parameterization of agents’ behavior, using alternative
methods. Smajgl and Bohensky (2013) advances the practice of
parameterizing agents’ decisions by using an iterative approach. It
combines household survey data, expert validation and census data
to parameterize household responses to changes in fuel price,
distinguish different response types and scale these from the sur-
vey data to the larger population. This approach bases both the
identification of agent types as well as their behavioral responses
on empirical information gathered by conducting an extensive
survey.

In the IAMO-LUC ABM, which aims to study land use change
affected by payments for ecosystem services, Sun and Muüller
(2013) introduce an innovative hybrid approach combing
Bayesian belief networks (BBNs) and opinion dynamics models
(ODM) in a spatial context. BBNs endow agents with the ability to
make land-use decisions under uncertainty while explicitly keep-
ing links between factors shaping these decisions. Agents equipped
with BBNs ‘brains’ make decisions using both qualitative empirical
information, e.g. beliefs and attitudes of stakeholders derived from
participatory workshops, and quantitative data collected via
household surveys. The combination of BBNs and ODM allows the
model to go beyond perfect economic rationality in agents’
behavior and accounting for social influences.

When studying tourist demand in response to various climate
change adaptation strategies of the Alpine touristic sector in Italy,
Balbi et al. (2013) model eight tourist profiles. The authors build
upon previous efforts of empirical ABMs to identify classes of
agents from own field survey data (snapshot of the current situa-
tion) and put this practice forward by complementing it with other
data sources such as an empirical literature review and historical
data on the frequency and duration of stays from 1985 to 2008. The
three alternative adaptation strategies of winter tourism industry
were the result of local stakeholders discussion supported with
empirical cost parameters per type of investment. Thus, the
behavior of tourists and corresponding parameters in the AWS1.0
ABM were identified based on past, current and possible future
agents’ choices.

Touza et al. (2013), use the management of deer in Scotland in
their spatial agent-based model to examine co-operative behaviors
amongst individuals managing an ecological resource. The model
simulates two landscape scenarios: one comprised only of shoot-
ing estates and one where the land is given over entirely to
biodiversity conservation. In both scenarios, agents own and
manage a single cell that contains a population of deer. While the
agents in each landscape scenario will have differing opinions
about the deer population on their cell (i.e. a valuable revenue
resource for shooting estate owners, and a pest by biodiversity
conservationists), they do share a common objective in the man-
agement of the deer population, which is to attain maximum

payoffs through effective management of this ecological resource.
Touza et al. analyze how these payoffs and ecology dynamics in-
fluence the co-operative behavior of the agents in each landscape
scenario.

A simple modeling approach was adopted by Caillault et al.
(2013) to assess the influence of three different incentive net-
works on the land use decisions taken by farmers. Three network
scales were used: “global” which related to policy driven land use
practices, “social” which defined shared/collective land-use prac-
tices and “local” which were land-use practices influenced by
neighbors’ actions. At each time step, the farmer receives incentives
from each network encouraging him to implement a new land use
practice; however the land-use options viable for his land are con-
strained by the “age” of the current land-use type, and thenew land-
use practices are prioritized by the farmers against the viability of
their land to support its implementation. Although the model is
relatively simplistic, the authors are able to show how a combina-
tion of network incentives can affect fragmented landscapes.

On a related topic, Polhill et al. (2013) study how different policy
instruments provide incentives for the protection of species on
farm land. Similarly to the paper by Caillault et al. (2013), no
extensive work is done on empirically quantifying the decision
rules. Rather, based on knowledge of the study area, a case-based
reasoning algorithm is implemented, which reacts to the differ-
ence between the mean profit received and the aspirations of the
farmers. By accounting for fluctuations in market prices, the reac-
tion of farmers to different incentives as well as different intensities
of these incentives can be calculated.

In their model of the growth of residential housing and energy
consumption in Vienna, Gaube and Remesch (2013) use census data
to define and parameterize distributions of seven household types,
which represent different demographic cohorts with alternative
preferences for residential dwellings and energy consumption
behavior. Household status evolves during themodel run according
to a demographic cohort model that includes household division
and agglomeration. Representative household populations are
drawn from joint distributions of census data. Residential mobility
(triggers for relocation) events are parameterized based on results
from previous statistical models. Empirically defined weighting
factors for environmental amenities, centrality, transport access,
social prestige, cost effectiveness, and living space are used to rank
alternative residential properties by relocating households. Thus,
these authors demonstrate new methods to empirically simulate
the evolution of household structures and use this evolution to
trigger changes in agent decision making.

Other EMS papers demonstrate techniques that can be instru-
mental in understanding the agents’ behavior (Brown et al., 2004;
Anwar et al., 2007; Batten, 2007; Smajgl et al., 2009; Brede and De
Vries, 2010; de Almeida et al., 2010; Haase et al., 2010; Moglia
et al., 2010; Perez and Dragicevic, 2010; Simon and Etienne, 2010;
van Oel et al., 2010; Filatova et al., 2011; Murillo et al., 2011;
Schreinemachers and Berger, 2011; Zhang et al., 2011).

2.2. Sensitivity analysis, verification and validation of ABMs

In an ABM examining the effects of land set-asides on skylark
populations in Denmark, Parry et al. (2013) use Bayesian Analysis of
Computer Code Outputs (BACCO) to perform sensitivity analysis
that identifies themodel parameters towhichmodel output is most
sensitive. This method allows for global sensitivity analysis
(examining the effects of multiple parameter variations) with a
higher level of computational efficiency than previous methods,
solving an important challenge related to the computational
complexity of sensitivity analysis of ABMs. The method essentially
fits a stochastic meta-model between input parameters and output
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data, providing the opportunity for both qualitative visualization
and quantitative analysis of parameter sensitivity. Such meta-
models can provide comprehensive information about the rela-
tionship between model parameters and outputs previously only
provided through formal analysis of closed-form equilibrium
models. The authors use this method to identify input parameters
that are empirically uncertain and to which the model is most
highly sensitive.

Balbi et al. (2013) performed a sensitivity analysis for the most
relevant tourists’ behavioral parameters for each of the eight
touristic profiles under different scenarios of climate change. Each
behavioral parameter was first varied separately considering the
maximum realistic variation, and then tested under all possible
combinations of high and low values of the four parameters, to
which the model output is most sensitive. The AWS1.0 model was
capable of reproducing two main observed patterns (the seasonal
peaks of the tourism demand and the relative expenses per tourist
profiles). In addition, the model was validated through a social
experiment where local stakeholders tried to anticipate the out-
comes of the model after they were briefed about the assumptions.
The stakeholders’ expectations confirmed the aggregated ranking
of adaptation strategies that emerged in the model.

Marohn et al. (2013) validated their model based on the extent
towhich themodel could reproduce observed land use for different
population clusters. Similar comparisons were made for other key
parameters. This validation indicates to what extent the model
initialization can reproduce the current system state, but does not
necessarily indicate the model validity for simulating change.

Sun and Muüller (2013) performed a careful validation of their
ABM. First, the performance of land-user agents’ behavior based on
BBNs was tested. The authors used 80% of their survey sample (509
households and 1973 plots) to conduct network learning, and used
the remaining 20% of the cases for model verification. Their model
has high predictive power, with about 85% predicted accurately.
Sun and Müller tested the robustness of these results by repeating
the random selection of 80%e20% from the pool of the respondents
four times, as well as by varying the share of training and test
datasets (70%e30% and 50%e50%). Agents’ behavior driven by BBNs
was subject to sensitivity analyses at both the household and plot
levels. In addition to this quantitative “validation” the model was
qualitatively peer reviewed by experts who judged upon relevance
and reliability of the BBN results.

Similarly, additional papers in EMS put a special accent on
sensitivity analysis (Polhill et al., 2006; Anwar et al., 2007; Bithell
and Brasington, 2009; Murillo et al., 2011; Gerst et al., 2013) and
validation (Feuillette et al., 2003; de Almeida et al., 2010; Haase
et al., 2010; Perez and Dragicevic, 2010; Simon and Etienne, 2010;
Schreinemachers and Berger, 2011).

2.3. Coupling socio-demographic, ecological, and biophysical
models to informing management challenges

Robinson et al. (2013) loosely coupled a new agent-based model
with the ecosystem process model BIOME-BGC to investigate how
different land management strategies impact on the carbon storage
capacity of land in an exurban residential setting. Loose coupling
provides the new land change modeling framework with flexibility
to enable the authors to link in other ecosystem models at a later
stage; however the authors acknowledge there are pros and cons
associated with the loose coupling approach. However, the
approach allows the authors to link land-market and land-
management decisions directly to carbon storage.

While Balbi et al. (2013) model adaptation of Alpine touristic
sector to climate change, there is no direct coupling of economic
and biophysical models. Instead authors used data on the scenarios

of climate change from 2011 to 2050 from other models: projected
weather conditions, concerning temperature and snow cover, were
produced with the SkiSim 2.0 model considering the downscaled
climate signals of the regional climate model REMO UBA M 20064
under the A1B and B1 SRES scenarios of IPCC. Future economic
scenarios, e.g. type of market competition and composition and
total number of tourists, also served as an input to the AWS1.0 ABM.
The aggregated socio-economic output indicators could be coupled
with relevant environmental consequences.

Both Parry et al. (2013) and Rebaudo and Dangles (2013) couple
land-management models with models of mobile animal/insect
populations. Parry et al.’s model examines the effects of removal of
set-asides on skylark populations, holding socio-economic factors,
such as agricultural management activities, fixed. Farm manage-
ment and set-asides affect a vegetation growthmodel, which affects
available habitat for skylarks. Individual skylarks are represented as
spatiallymobile agents, who gain subsistence fromavailable habitat
andwhose populations evolve through a life cyclemodel. This paper
provides an excellent example of coupling of models that operate
over different spatial scales, and of the coupling of fixed andmobile
agent models. Rebaudo and Dangles’ model also holds agricultural
management choicesfixed, but examines the decisions of farmers to
invest in integrated pest management control strategies, based on
their knowledge and the pest status of neighboring fields. The
population-scale pestmodel operates through a logistic growth and
dispersal function. The paper provides an alternative example of
how processes at different scales can be integrated. Thus, these two
papers represent different approaches to coupling agricultural land
management models with species population models, as one spe-
cies model operates as an individual-based model and the other
operates at a population scale.

Marohn et al. (2013) have coupled an agent-based model of
land-use decisions to a biophysical model of plant growth, water
and soil dynamics. Central in the interaction between the socio-
economic model and the biophysical model is plant growth, as
this affected by both land management and the biophysical con-
ditions, thus providing an interface between the socio-economic
and biophysical sub-systems.

Finally, Polhill et al. (2013) couple an agent-based model of
farmer decision responses to agri-environmental policy incentives
to a meta-population model in order to explore which incentives at
what intensity have the best cost/benefit relation in terms of the
protection of species richness. Interestingly the authors identify for
some incentives a threshold in the increase of benefits for biodi-
versity upon a further intensification of the policy incentives. Non-
linearities in the effects of policy incentives on biodiversity are
dependent on context and the ways in which the policies are
implemented. This way the coupled model system provides an
analysis of the consequences of policy incentives, not only for de-
cision making, but also for the biodiversity preservation at which
the policies are targeted. This approach is unique in identifying
potential non-linear responses to policies in the fully coupled
system.

EMS has further examples of other coupled socio-ecological
models that are important for management applications (Moreno
et al., 2007; Bithell and Brasington, 2009; Anselme et al., 2010;
Simon and Etienne, 2010; Schreinemachers and Berger, 2011).

2.4. Spatial representation

Spatial representation of diversity in the environmental context
of the agents as well as the divergent outcomes of the model
simulations is an important component of many models. Different
approaches are used to represent spatial heterogeneity in model
inputs and outputs in the papers in this issue. The papers do
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effectively represent the suite of current methods for spatial rep-
resentation in ABMs. However, the papers do not systematically
indicate the rationale of the choices toward choosing a specific
spatial resolution or extent. In many cases the spatial representa-
tion is chosen based on the typical data available and consistent
with the spatial variation in the processes described.

Smajgl and Bohensky (2013) use census data to scale their agent
types to a large geographic extent. Consequently, the spatial reso-
lution of the model is bounded by the administrative units for
which census information was available. Gaube and Remesch
(2013) intersect “city area types” with administrative districts to
create 59 spatial divisions for the city of Vienna, thereby also
modeling at a fairly coarse spatial resolution. Rebaudo and Dangles
(2013) model at the farm scale, using spatial neighbor relationships
to also define social neighbor influences. Parry et al. (2013) also run
their model at a farm scale, but their individual-based skylark
model contains territory location and foraging models that create
more complex spatial network patterns. Marohn et al. (2013) use a
high spatial resolution in the model as in their model an assess-
ment of the spatially variable biophysical impacts of land change
decisions is important. These include a.o. soil dynamics, which can
only be simulated in a very heterogenous landscape if a high spatial
resolution is considered. Sun and Muüller (2013) used GIS data on
heterogenous characteristics of land (lot size, soil quality, distances,
slope) enriched by participatory mapping data (indications of land
use, landmarks and boundaries) from 17 villages in China. The re-
sults of the IAMO-LUC ABM simulation can potentially serve as an
input to other environmental models (e.g., habitat fragmentation
models or water run-off models).

Barnaud et al. (2013) have not only looked at the ways in which
spatial diversity can be represented in models, but have also
analyzed the role of spatial presentations of modeling results on the
use of models as a negotiation tool with stakeholders. Interestingly,
they found that while spatial representations provide stakeholders
with a comprehensive frame for negotiations, they also caused
stakeholders to focus more on division of space, rather than a focus
on multifunctional use of spatial resources.

Dynamic social space (a network through which opinion dy-
namics is transmitted) and heterogenous bio-physical space (the
landscape) coexist in the IAMO-LUC framework (Sun and Muüller,
2013). Land-use decisions are influenced by peer agents con-
nected through a small-world network. Since the data was
collected at the village and household level, the social network for
opinion dynamics is implemented in a hierarchical way linking
farmers within one village with a stronger probability than linking
them to farmer of another community.

Spatial heterogeneity and analysis also plays an important role
in many other EMS papers (Anwar et al., 2007; Moreno et al., 2007;
Bithell and Brasington, 2009; Yu et al., 2009; Anselme et al., 2010;
Haase et al., 2010; Perez and Dragicevic, 2010; Simon and Etienne,
2010; van Oel et al., 2010).

3. Discussion and conclusions

The above discussion indicates that the challenges for ABMs of
SES are explicitly addressed by the papers in this thematic issue.
However, to what extent does this mean that the challenges for
agent-based modeling as they were identified in earlier review
papers are addressed? In this section we critically reflect on the
progress the papers from this thematic issue have achieved along
the line of four key challenges.

Substantial progress has been made in recent years to empiri-
cally support the choice of agent behavioral models and parame-
terize the decision rules based on empirical data. Many agent-based
models of land change and other environmental applications now

employ a range of empirical techniques to create a typology of
different decision making types and parameterize the decision
making rules in the model based on household survey results
(Robinson et al., 2007; Valbuena et al., 2008; Smajgl et al., 2011).
The papers by Smajgl and Bohensky (2013), Balbi et al., 2013 and
Sun and Muüller (2013) are good examples of this empirical
approach. Gaube and Remesch (2013) extensively use census data
and results of other statistical models to define agents and their
residential mobility rules. Although the behavioral models in the
other papers are also loosely based on observations of decision
making in the real world, they do not make use of intensive
empirical analysis of empirical data to derive the decision rules
employed. From the papers, it is clear that amix of methodologies is
used and that the selection of the behavioral model applied is not
always informed by a deep analysis.

In a recent review of decision making in land change, Meyfroidt
(2012) concludes that in land-change science, the representation of
the cognitive aspects of decision making is deficient. His overview
of alternative decision making models is synthesized by the notion
that (i) land-use choices result from multiple decision-making
processes and rely on various motives, influenced by social
norms, emotions, beliefs, and values toward the environment; (ii)
socialeecological feedbacks are mediated by the environmental
cognition, that is, the perception, interpretation, evaluation of
environmental change, and decision-making; and (iii) human
agents actively re-evaluate their beliefs, values, and functioning to
adapt to unexpected environmental changes. The latter is especially
vital for ABM, as the methodology is based on the assumption of
adaptive behavior. While the field is generally quite advanced in
applying various learning techniques (Brenner, 2006), there are still
only few applications of artificial learning and evolutionary dy-
namics in the domain of spatial and socio-ecological ABMs
(Kellermann and Balmann, 2006; McNamara and Werner, 2008;
Ettema, 2011; Magliocca et al., 2011), with little guidance on which
of them is most empirically sound. In order to design the agent
behavior in ABMs of SESs, much more work is needed to better
understand alternative decision-making processes and their in-
teractions, the underlying environmental cognition and the role of
context in determining which representation of agent behavior is
suited in a specific case. Advancing these understandings requires a
combination of empirical investigation, theory development and
model-based testing of alternative behavioral specifications.
Comparing modeling results to observed dynamics by means of
validation will help to discover which assumptions about behavior
and its adaptive change are most realistic.

In order to have validation of models achieve the objective of
enhancing our understanding of the ways in which the model
representation deviates from reality, the validation efforts need to
move beyond a simple comparison of model outputs with obser-
vations (Messina et al., 2008). The papers in this issue illustrate that
the need for such analysis is acknowledged in the ABM community.
Three of the included papers (Balbi et al., 2013; Parry et al., 2013;
Sun andMuüller, 2013) have stepped beyond a simple validation by
doing a full sensitivity analysis of their model to find which model
mechanisms are providing robust results and where model as-
sumptions are critical determinants of the results. As the specifi-
cation of the behavioral assumptions will always contain a high
degree of uncertainty, such sensitivity analysis can show if this
uncertainty critically influences the results of the model. While the
methods for sensitivity analysis and validation have advanced,
there are still challenges to trace back poor validation results and
high sensitivities to the underlying mechanisms implemented in
the model. Only when the uncertainties and errors can be attrib-
uted to the specific components in the design or parameterization
of specific decision rules it is possible to learn where our
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representation of reality in the model is incorrect; as such allowing
us to learn about SES functioning and identifying critical knowl-
edge gaps in representing these systems. Such iterative process in
which validation results are used to further inform SES represen-
tation is not addressed explicitly in the papers in this thematic
issue. Often validation results are presented and no further action is
taken based on these.

Due to their flexibility in the choice of temporal and spatial
scales and scheduling of dynamics at various resolutions, ABMs
offer wide opportunities for coupling socio-demographic, ecolog-
ical, and biophysical models. Yet, one needs to decide how this
integration will be implemented in terms of feedback mechanisms
and software coupling (Verburg, 2006; Voinov and Shugart, 2013).
This requires identification of a set of variables at various spatial
scales to represent hypothesized chains of causality and feedbacks
scheduled at certain time scales. Parker et al. (2008) distinguish
between 3 ways to link SES: (i) one-way linkage when natural
science models are inputs to social systems, (ii) a chain of one-way
linkages naturalesocialenatural with natural system input and
output models potentially differing, and (iii) two-way linkage with
endogenous determination of common variables in natural and
social system models through interactions between social and
environmental systems (for example, timber harvest decisions
depend on carbon storage, and climate change due to timber har-
vest subsequently affects carbon storage rates, and thus harvest
incentives). The majority of ABMs in coupled SES in general, and in
this thematic issue in particular, represent the cumulative dy-
namics of human behavior, with some individual-based models
(IBM) simulating ecological dynamics (Parry et al., 2013; Rebaudo
and Dangles, 2013). While scholars involved in modeling SES
highlight the importance of two-way linkages, current research still
tackles type (i) or (ii) linkages primarily. Balbi et al. (2103) is a one-
way linkage model with climate change and economic growth
scenarios coming as inputs to the ABM, which offers a potential for
associating aggregated of socio-economic output indicators with
relevant environmental consequences, thus heading to type (ii)
models. A chain of one-way linkages, i.e. type (ii), is the primarily
way of coupling socio-demographic ABMs, ecological process or
IBM, and biophysical models, as demonstrated by Parry et al.
(2013), Rebaudo and Dangles (2013), Robinson et al. (2013) and
Polhill et al. (2013). The paper by Marohn et al. (2013) is the only
one in the current issue realizing two-way linkage, i.e. type (iii):
plant growth is determined endogenously, being affected by both
land management and the biophysical conditions. Implementation
of such two-way linkages in coupled SES models is an essential
direction of research. It is especially vital for studying non-linear
interactions between human and natural systems, when gradual
changes in one subsystem may lead to abrupt critical transitions in
the other one (Matthews et al., 2007; Filatova and Polhill, 2012).
While empirical evidence of such regime shifts, crisis and cata-
strophic behavior is growing (Scheffer, 2009), development of
models (including ABMs) that are able to simulate two-way feed-
back between human and environment system and predict
crossing critical thresholds are still under way.

In part through improved methods for parameterizing agent
populations and decision models, ABMs have improved the detail
of their spatial representation of heterogenous human influences,
as seen in the models of Gaube and Remesch (2013), Marohn et al.
(2013), and Sun and Muüller (2013). From an ecological perspec-
tive, field data is also used to create detailed spatial representations
of the behavior of species (Parry et al., 2013) and species biodi-
versity (Polhill et al., 2013). Progress is being made also on more
complex challenges, such as the need to create compound spatial
unit definitions that combine different land covers under a single
management unit (Robinson et al., 2013), to generating simulated

landscapes whose properties match an empirical distribution, to
develop algorithms to divide large parcels into new subdivisions
(Wickramasuriya et al., 2013), and to generate new dwellings in
intensifying landscapes (Gaube and Remesch, 2013). On the output
side, new methods from outside the ABM world could be used
visualizing simulated landscapes, especially using novel three-
dimensional visualization techniques (Walz et al., 2008; van
Lammeren et al., 2010; Griffon et al., 2011).

As the ABM field advances, significant progress is observed in
designing and parameterizing agent decision models, in approaches
to verify and to validate ABMs aswell as inways to handle sensitivity
analysis, in coupling ABMs with other models and in the richness of
spatial representation. Yet, the new societal challenges and, conse-
quently, the demands for modeling that is capable of supporting
policies to manage coupled SES are growing.While this special issue
provides a nice display of various applications of ABM in environ-
mental and land sciences, further methodological developments are
required. Advances in collecting micro-level and interaction data
(field work and role-playing games, laboratory experiments, social
networking apps and online services) may help in specifying
theoretically-solid and empirically-justified adaptive decision rules
and evolution of agents’ attributes, and provide data for validation at
multiple scales. Progress in integratedmodelingmay offer newways
of software coupling, while newly available georeferenced environ-
mental and socio-economic data at various resolutions opens new
opportunities to fully exploit potential of the ABM methodology.
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