
Journal of Arti�cial Intelligence Research 5 (1996) 1-26 Submitted 12/95; published 8/96

Spatial Aggregation: Theory and Applications

Kenneth Yip yip@martigny.ai.mit.edu

MIT Arti�cial Intelligence Laboratory, 545 Technology Square

Cambridge, MA 02139 USA

Feng Zhao fz@cis.ohio-state.edu

Department of Computer and Information Science, The Ohio State University

Columbus, OH 43210 USA

Abstract

Visual thinking plays an important role in scienti�c reasoning. Based on the research in

automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kine-

matic mechanisms, and uid motion, we have identi�ed a style of visual thinking, imagistic

reasoning. Imagistic reasoning organizes computations around image-like, analogue rep-

resentations so that perceptual and symbolic operations can be brought to bear to infer

structure and behavior. Programs incorporating imagistic reasoning have been shown to

perform at an expert level in domains that defy current analytic or numerical methods.

We have developed a computational paradigm, spatial aggregation, to unify the descrip-

tion of a class of imagistic problem solvers. A program written in this paradigm has the

following properties. It takes a continuous �eld and optional objective functions as input,

and produces high-level descriptions of structure, behavior, or control actions. It computes

a multi-layer of intermediate representations, called spatial aggregates, by forming equiv-

alence classes and adjacency relations. It employs a small set of generic operators such

as aggregation, classi�cation, and localization to perform bidirectional mapping between

the information-rich �eld and successively more abstract spatial aggregates. It uses a data

structure, the neighborhood graph, as a common interface to modularize computations.

To illustrate our theory, we describe the computational structure of three implemented

problem solvers { kam, maps, and hipair | in terms of the spatial aggregation generic

operators by mixing and matching a library of commonly used routines.

1. Introduction

It is commonly believed that there are two styles of scienti�c thinking: analytical, a logical
chain of symbolic reasoning from premises to conclusions, and visual, the holding of imag-
istic, analogue representations of a problem in one's mind so that perceptual and symbolic
operations can be brought to bear to make inferences. Neither style is to be preferred a
priori over the other. However, for problems whose complexity precludes a direct analytical
approach, a certain amount of qualitative and visual imagination is needed to provide the
necessary \feel" or \understanding" of the physical phenomena. Once the picture is clear,
the analytical mathematics can take over and lead more e�ciently to logical conclusions.
This \feel and physical understanding" is often considered to be informal, imprecise, and
apparently unteachable, but necessary for scientists and engineers.

We believe part of this ability to visualize and imagine must consist of skills to generate
images, discover structures and relations in the images, transform the structures, and predict
how the structures respond to internal dynamics or external forcing.

c1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Yip & Zhao

While most AI work in visual reasoning has focused on diagrams and their role in
controlling search, in recent years we have seen the development of a class of problem
solvers that are imagistic, i.e., the problem solvers derive their power primarily from the
use of visual apparatus and only secondarily from search and analytical methods. These
problem solvers have been designed to perform tasks in many di�erent domains: control
and interpretation of numerical experiments (Yip, 1991; Nishida & et al., 1991; Zhao,
1994), kinematics analysis of mechanisms (Joskowicz & Sacks, 1991), design of controllers
(Zhao, 1995; Bradley, 1992), analysis of seismic data (Junker & Braunschweug, 1995), and
reasoning about uid motion (Yip, 1995). However, there are important commonalities
underlying them. In this paper, we present a framework to provide a uni�ed description of
this class of problem solvers. Our framework consists of three ideas:

� The �eld ontology: The input is a �eld, a mapping from one continuum to another.
It is an image-like analogue representation. The �eld is assumed to have a metric so
that it is meaningful to talk about closeness and continuity.1

� Structure discovery: A central problem to be solved is the transformation of the
information-rich input to abstractions well-suited for concise structural and behavioral
descriptions. The transformation can be thought of as successive mappings of the
input space into more abstract spaces that hide details and group similar objects into
equivalence classes.

� Multi-layer spatial aggregates: We propose (1) as representation the neighborhood
graph to encode explicitly adjacency relations among objects at one level of abstraction,
and (2) as building blocks of computational processes a small set of generic operators
to construct, transform, classify, and search the neighborhood graph. The operators
are recursively used to implement task-speci�c applications. The multi-layer theory
has two advantages: (1) A nonlocal property of a lower layer can be redescribed as
a local property of a higher layer, and (2) On each layer the neighborhood graph
provides a common interface to support identical modular computations.

A �eld is a mapping from one continuum (say Rm) to another (say Rn). More concretely,
one can visualize a m-dimensional space with a n-vector attached to each point in the space.
Fields are commonplace in science and engineering applications. They are used to describe
how physical quantities vary over space and time. Temperature in a room is a three-
dimensional scalar �eld. Weather data can be described as a 4D-spacetime �eld with a 6-
vector attached to each point: velocity (three components) of air ow, temperature (scalar),
pressure (scalar), and density (scalar). Other examples of �elds include the brightness
intensity array in vision, the con�guration space in mechanism analysis, and the phase
space (vector �eld) of dynamical systems.

In actual computer representations, we often approximate a �eld with a grid. The grid
may be uniform or non-uniform. The �eld can be reconstructed from numerical simulation

1. Forbus et al. (1991) proposed a general methodology for qualitative spatial reasoning: the Metric Di-
agram/Place Vocabulary (MD/PV). We generally agree with their methodology. Their paper inspired
us to look for a more re�ned framework to unify a class of problem solvers that integrate visual and
symbolic reasoning.

2



Spatial Aggregation: Theory and Applications

or measurements. A �eld does not contain any symbolic abstractions; it is completely
numerical. Fields are composable. One can extend the dimension of the underlying space
and/or the number of components in the vector attached to each point of the space.

As a representation for physical systems, a �eld has two distinguishing characteristics.
First, it is information-rich in the sense of the Shannon-Weaver measurement of information.
An instantaneous �eld of a 1283-grid ow simulation may contain on the order of 108 bits
of information. Second, it is pictorial in the sense that structures and relations are only
implicitly represented in the �eld.

As a consequence of both the information-richness and the pictorial quality, we argue
that in reasoning about �elds the central computational problem is the e�cient transforma-

tion of a pointwise �eld description of a physical system into economical symbolic abstrac-

tions well suited for explaining the structure and behavior of the system.2 Figure 1 illustrates
how the �eld ontology relates to the other commonly used ontologies in Qualitative Physics:
device (DeKleer & Brown, 1984), process (Forbus, 1984), and constraint (Kuipers, 1986).
To be useful, the symbolic descriptions must impose a conceptual structure on the system
so that the complexity of the system can be understood in terms of well-de�ned parts and
subparts and interactions among them. The relevant parts and interactions are often ab-

stract global properties of the �eld. An abstract property is a property whose support is
large and nonlocal, whereas the support of a property is de�ned as the subset of a �eld
on which the property depends. On the other hand, for computational complexity reasons
we prefer to build the recognition procedures from basic routines that are local and in-
dependent of task-level information as much as possible. These considerations lead us to
adopt an architecture where the pointwise description and the �nal symbolic descriptions
are mediated by layers of equivalence classes of objects with explicit adjacency relations.
We call such a layer of objects a spatial aggregate.

Where do spatial aggregates come from? In a real �eld, there tend to be continuities of
properties (such as intensity or temperature or pressure) so that the �eld can be divided into
equivalence classes, i.e., open regions where a particular property varies in an approximately
uniform way. With continuities we can achieve an economy of description by focusing on the
open regions and their boundaries instead of the pointwise �eld. Higher-order continuities,
i.e., continuities of properties de�ned on the open regions, can similarly be used to build
more abstract spatial aggregates.

The formation of equivalence classes presupposes the existence of continuity. This brings
us to a methodological point. It is important to clearly identify the source of continuities in
the �eld or equivalently in the physical system the �eld represents. The discovery of valid
and general continuities in the physical system is as much a scienti�c contribution as the
subsequent computational use of them to form an articulated conceptual model to explain
structure and behavior.

Our motivation for this paper comes from the desire to understand the computational
structures shared by a class of automatic problem solvers that integrate visual, symbolic,
and numerical methods. We would like to make this computational structure explicit so that
comparisons and generalizations can be made. Our goal is to develop a way of organizing

2. Inferring structural descriptions from a �eld can be an ill-posed problem (e.g., recovering 3D shapes from
2D images). To avoid these di�culties, we will assume the structure-recovery problem to be well-posed
so that our main concerns are computational e�ciency and appropriate abstractions.

3



Yip & Zhao

modeling

modeling

modeling

modeling
functions
analytical

simulation
numerical

interpret

equations
differential

constraint

process

device

measurement

HARD!
analytical methods

field
physical
system

envisionment
incremental analysis

process inference
qualitative simulation

structural
description

class clustering
equivalence

description
behavioral
qualitative

Figure 1: Field as an ontological abstraction for reasoning about physical systems. The
diagram depicts the relationships among di�erent ontologies used in Qualitative
Physics. The central computational problem in �eld reasoning is the recovery
of economical structural descriptions for qualitative behavior description and ex-
planation. A key step in the structural recovery is the formation of equivalence
classes. Identifying general and valid continuities on which useful equivalence
class relations are based is an important scienti�c contribution.

programs around image-like analogue representations, and an appropriate language to make
programs written in this style clear.

The next section develops the theory of spatial aggregation in detail. Section 3 describes
a language to support programs that are organized around neighborhood graphs. Section 4
illustrates the usefulness of the language by describing succinctly the computation structure
of three implemented programs { kam, maps, and hipair. We choose these programs as
illustrations largely because of our familiarity with them. Section 5 shows how to program
in the spatial aggregation language, using an example from image analysis. We plan to
investigate the applicability of our framework to several other programs, such as those
constructed by Kuipers and Levitt (1988), Forbus et al. (1991), Gelsey (1995), and Junker
and Braunschweug (1995).

4



Spatial Aggregation: Theory and Applications

2. Spatial Aggregation Theory

Given a �eld, a spectrum of reasoning tasks can be de�ned. The following list is roughly in
the order of increasing complexity:

� Infer structural descriptions. Find out objects, if any, that exist in the �eld.
What are their shapes, sizes, and locations? How are they distributed? How are they
created? How do they evolve as some parameter (say time) is varied?

� Classify. Assign semantic labels to objects and con�gurations.

� Infer correlations. Determine how the geometry and distribution of one type of
objects correlate with those of another type?

� Check consistency. Given two objects or con�gurations, test if they are equivalent
or if they are pairwise consistent.

� Infer incremental behavior. Given an instantaneous con�guration, predict its
possible short-term behaviors.

� Infer behavioral descriptions. Explain and summarize the evolution of objects by
a set of domain-speci�c interaction rules.

2.1 Requirements of imagistic reasoning

Partly motivated by Ullman's theory of visual analysis (Ullman, 1984), we �nd desirable
the following general requirements on imagistic reasoning:

� Abstractness. The problem solver should be able to �nd objects de�ned by abstract
global properties.

� Open-endedness. The problem solver architecture should be applicable to a variety
of domains (uid motion, seismic data, weather data, phase space, or con�guration
space). This requirement implies that the basic recognition routines must be modular
and composable. Task-speci�c knowledge a�ects the choice and ordering of these
routines.

� E�ciency. The \building blocks" of the recognition machinery must be local and
non-goal-speci�c. \Non-goal-speci�c" means the operations of the building blocks do
not depend on the interpretation of the objects they manipulate. This requirement
implies that the basic routines should have local supports and in principle can run in
parallel.

� Soundness. The structural and behavioral descriptions must be consistent with
known physical and mathematical principles.

� Succinctness. The structural and behavioral descriptions should contain the quali-
tatively important distinctions relevant to the high-level tasks at hand.

5



Yip & Zhao

2.2 Theory

Our theory of imagistic reasoning postulates the existence of multi-layers of spatial aggre-
gates. Figure 2 shows the layers of spatial aggregates and computations organized around
them. A primitive aggregate is de�ned as an equivalence class of subsets of the pointwise
�eld representation. An aggregate is composed of equivalence classes of primitive aggre-
gates. The �eld is assumed to have a task-dependent metric. The metric induces a topology
on the space and hence it is meaningful to talk about adjacency. The data structure for a
spatial aggregate is a neighborhood graph whose nodes represent objects and edges repre-
sent adjacency relations among the objects. The input �eld is sampled to form the lowest
layer of abstraction; the �eld can also be a�ected by control actions from the higher-level
abstraction layers.

Just as the stream construct in the scheme programming language provides a common
interface for organizing signal processing computations, the neighborhood graph is our con-
ceptual glue for piecing together operations that manipulate �elds. We like to visualize
nodes of neighborhood graph as open sets (in topology) in some appropriate space. Two
nodes are adjacent if their respective open sets are contiguous.3

The topological notion of adjacency is amazingly useful in reasoning about physical sys-
tems. In grouping objects into equivalence classes, a cluster tends to give rise to a connected
component of the neighborhood graph. In reasoning about kinematics, the neighborhood
graph provides the essential connectivity information among free space regions. In �nding
\interesting" structures, the pairwise consistency of the adjacent nodes localizes search re-
gions. In isolating bifurcation patterns, the mismatch of adjacent objects provides a hint
for further analysis. In constraint propagation and path search, the adjacency structure
imposes locality to increase computational e�ciency. Prevalence and simplicity { these two
aspects of the neighborhood graph make it a powerful data structure for unifying many
spatial computations.

Our theory revolves around the computation of the neighborhood graph and the nature
of the processes that construct, �lter, transform, and compare neighborhood graphs. We
isolate a set of generic operators aggregate, classify, re-describe, and search which correspond
to the important conceptual pieces common to a class of imagistic problem solvers such as
kam (Yip, 1991), maps (Zhao, 1994), and hipair (Joskowicz & Sacks, 1991).

The next section discusses these operators in detail. Section 4 illustrates the use of these
operators in a rational reconstruction of three implemented computer programs.

3. The Language of Spatial Aggregation

We present a language for describing computational processes organized around spatial
aggregates. The language provides a small set of operators to construct and manipulate
neighborhood graphs. The operators make the conceptual structure of several implemented
programs clear.

3. Let A and B be two open sets. A and B are contiguous if either �A\B 6= ; or �B \A 6= ; where �A is the
closure of the set A. In particular, if A and B overlap, then they are contiguous.

6



Spatial Aggregation: Theory and Applications

Behavioral

search

analyze
incremental

N-graph

classify

aggregate

consistent?

mapfilter

search

analyze
incremental

N-graph

classify

aggregate

consistent?

mapfilter

primitive

primitive

re-describe

sample control

objects

objects

localize

FIELD

Model

description
Structural

Behavioral
description

description
Structural

description

Figure 2: A schematic representation of the computational structure for analysis of a �eld
ontology. There are multi-layers of spatial abstraction. An abstraction level is de-
�ned by the neighborhood graph, a data structure representing spatial aggregates
and adjacency relations. The input �eld is fed to the lowest abstraction layer.
Note the identical computational structure on each layer. The aggregate operator
computes adjacency relations based on a task-speci�c metric. The neighborhood
graph is the common interface for map and �lter routines. The remaining opera-
tions correspond to the generic analysis tasks. A repertoire of task-independent
geometric manipulation routines (which are not shown) are accessible by the
generic operators.

7



Yip & Zhao

3.1 Task-level operators

The task-level generic operators consist of aggregate, classify, re-describe, localize,
search, incremental-analyze, together with the predicates pairwise-consistent? and
consistent?. The neighborhood graph is the \conceptual glue": it allows the computation
of hierarchical structural descriptions to be organized in a uniform manner. The following
box summarizes what the language provides and what a user needs to supply in order to
write programs in spatial aggregation.

Language Features

� User interface functions:

aggregate, classify, re-describe, localize, search,

incremental-analyze, pairwise-consistent?, consistent?

A user must specify the neighborhood relation, �eld metric, and equivalence

relation for these operators.

� Data types:

{ N-graph and its constructors, accessors, modi�ers.

Examples of N-graph include 4-adjacency arrays, minimal spanning tree,
and Voronoi diagram.

{ Fields:

bitmap, vector �eld, etc.

� Libraries:

{ Geometric utilities:

intrinsic-geometry, contain?, intersect, @, �.

{ Numerical and image processing routines:

FFT, convolution, integrator, linear system solver, vector/matrix algebra.

1. aggregate(objects combiner)

The aggregate operator assembles a collection of objects into a spatial structure
using the combiner procedure and explicates the spatial relations among the objects
in terms of the neighborhood graph.4 The operator returns a neighborhood graph
(N-graph). The N-graph can be lazily built.

For example, to recognize a trajectory in a phase space, the aggregate operator might
be given a set of discrete points and a combiner procedure (such as minimal spanning
tree) to establish adjacency relations. The combiner procedure might use a metric or
topological properties of the underlying space.

2. classify(N-graph cluster-proc class-rules)

4. Recall the nodes in a neighborhood graph are objects and edges are adjacency relations.

8



Spatial Aggregation: Theory and Applications

The classify operator forms equivalence classes according to an equivalence relation
(using the cluster-proc), and assigns a semantic label to each equivalence class | a
subgraph of the input N-graph | according to the classi�cation rules. For example,
the orbit clustering procedure groups orbits into ow pipes.5 The classi�cation rules
are a set of production rules. The operator returns a labeled N-graph.

The catalog of the classi�cation labels is domain-speci�c. These classi�cation labels
serve as indices for storage and retrieval of shared class properties and methods for
instantiating them.

3. re-describe(N-graph desc-type)

The re-describe operator changes the representation of a primitive object. Like a
lambda abstraction in scheme, this operator allows a compound object (say a subset
of a N-graph) to be treated as a primitive.

Given a classi�ed object, the description-type procedure instantiates additional prop-
erties speci�c to that class of objects. For example, if a point set is classi�ed as
a space curve, it becomes sensible to compute additional geometric properties like
length, curvature, and torsion.

4. localize(N-graph select-proc enumerate-proc)

The localize operator systematically enumerates members of an equivalence class
(nodes of N-graph) and selects those according to the select procedure. This operator
\opens up" an abstraction to allow individual members of the equivalence class to be
singled out.

5. search(N-graph initial-states goal-p combiner)

The search operator returns paths starting from the initial-states and satisfying the
goal-p predicate. The combiner procedure controls the order in which the graph is
traversed.

6. incremental-analyze(N-graph state-desc delta)

Given a N-graph and a description of states and constituent laws, the incremental-
analyze operator computes the in�nitesimal change to the qualitative state due to
a small perturbation. The perturbation delta might be in the temporal, state, or
parameter space.

There are predicates pairwise-consistent? and consistent?:

� pairwise-consistent?(obj1 obj2 consistency-rules)

The pairwise-consistent? predicate decides if two objects are consistent according
to the consistency-rules. The objects can be primitive objects such as nodes of an
N-graph or N-graphs themselves.

� consistent?(obj consistency-rules)

Consistent? tests if an object is well-formed according to the consistency-rules.

5. A ow pipe is a class of orbits that can be continuously deformed into each other. It is an example of
the homotopy equivalence class.

9



Yip & Zhao

3.2 Generic data structure and routines

The neighborhood graph is constructed by

� N-graph-constructor(objects neighbor-p)

The N-graph-constructor takes a set of primitive objects and a neighborhood predicate
as arguments, and returns a neighborhood graph. An example of such a neighbor-
hood graph is the Voronoi diagram. The predicate neighbor-p tests if two nodes are
neighbors.

The set of task-independent routines operate on the objects in the neighborhood graphs
and support the task-level operations.

� map(N-graph proc)

The map routine transforms a neighborhood graph using a prespeci�ed procedure.

� filter(N-graph mask)

A �lter selects a subset of the neighborhood graph for further processing.

In addition to the generic operators, the language provides routines to perform common
geometric manipulation. The following routines are especially useful:

1. intrinsic-geometry(obj properties) computes intrinsic geometric properties of
objects (e.g., area, curvature, surface normal).

2. contain?(obj1 obj2) checks if obj2 is inside obj1.

3. intersect(obj1 obj2) computes intersection of two objects.

4. @(object) is the boundary operator that returns the boundary of an object. The
dimension of boundary is co-dimension 1.

5. �(object) is the co-boundary operator that returns a new object whose boundary is
the object. The dimension of the new object is one higher than that of the object.

6. convolve(object mask) performs pointwise convolution with the given mask.

4. Examples of Spatial Aggregation

In this section, we describe the architecture of three implemented systems kam (Yip, 1991),
maps (Zhao, 1994), and hipair (Joskowicz & Sacks, 1991) in terms of the spatial aggregation
framework. Although these programs are designed for di�erent tasks, their computations
share a strikingly similar pattern: These programs construct spatial objects, and interpret
them via multi-layers of abstraction by object aggregation, classi�cation, and re-description.
Composite objects at a lower level are labeled and manipulated as primitive units at the
next higher level.

Despite the fact that we are the authors of two of these programs, the structural simi-
larities among these programs are not apparent to us until we carefully reconstructed these

10



Spatial Aggregation: Theory and Applications

programs by de�ning the appropriate neighborhood graphs and generic operators. Analyz-
ing these programs in a common framework will help us to understand not only what the
programs do, but also greatly enhance our ability to construct future programs by a few
spatial aggregation operators.

4.1 KAM

The task for kam is to explore the dynamics of Hamiltonian systems and produce high-level
summaries of their qualitative behaviors.

Given the state equations of a Hamiltonian system, kam derives a symbolic description
of its qualitative behavior | in terms of orbit types,6 orbit bundles, phase portraits, and
bifurcation patterns | from a collection of point sets representing orbits (or trajectories) in
the phase space (see Figure 3). The point sets can be obtained from numerical simulation
or measurements. To provide a useful interpretation of the point set, kam has to decide (1)
where to look for interesting orbits, and (2) how to group these orbits into larger structures.
Kam proceeds via a sequence of intermediate representations that allow the gradual recovery
of orbit structures and eventually the more global dynamical properties of the system. Kam
is able to view an object at multiple levels of abstraction. For example, an orbit can be
viewed as points in the phase space or a curve or part of an orbit bundle.

The computations in kam are organized into four layers (as shown in Figure 4): (1) orbit,
(2) orbit bundle, (3) phase portrait, and (4) bifurcation pattern. We will walk through the
�rst level in su�cient detail to illustrate how the computation is synthesized from the
spatial aggregation operators and neighborhood graph. Details of the remaining levels are
described by Yip (1991).

The input is a point set. The aggregate operator imposes an adjacency relation on
the point set by constructing a minimal spanning tree (MST). Two points are adjacent or
neighbors if they are connected by an edge in the MST. Although the MST is appropriate
for orbit interpretation, other applications might require di�erent adjacency relations (such
as Voronoi diagrams or k-nearest neighbors). The output of the aggregate operator is a
neighborhood graph that encodes the edges of the MST.

The consistent? predicate checks if there are any inconsistent edges, i.e., edges that
are signi�cantly longer than their nearby edges, in the neighborhood graph. Deleting the
inconsistent edge will partition the graph into subgraphs each of which represents a cluster
of the original point set.

Next, the classify operator assigns a label, an orbit type, to the neighborhood graph
according to the shape of the MST and the number of clusters. If the assignment is un-
successful, kam assumes the input point set does not contain enough points to reveal the
structure of the orbit. Kam will request more points and repeat the aggregation step.

If the assignment is successful, the re-describe operator takes the labeled neighborhood
graph and �lls in information that is relevant to that particular orbit type. For example,
if the orbit is a periodic orbit, the period of the orbit is determined. After �lling in the
details, the re-describe operator packages the orbit as a primitive object and passes it to

6. We introduce some useful terminology here. A dynamical system is a smooth vector �eld. An orbit is
an integral curve of the vector �eld. An orbit bundle is a collection of adjacent orbits having the same
qualitative behavior. A phase portrait is the collection of orbits that �ll the phase space. A bifurcation

pattern is a characteristic change in the structure of a phase portrait as some system parameters vary.

11



Yip & Zhao

(a)

(b-1) (b-2)

Figure 3: Top: (a) The phase portrait of a Hamiltonian system. The geometric structures
in the phase portrait can vary drastically as the system parameter A changes.
Like an expert dynamicist, kam explores the dynamics of a nonlinear Hamiltonian
system by �nding interesting structures in the phase space. It decides what initial
conditions and parameter values to try. It interprets what it �nds and uses the
structures it draws for itself to guide further exploration.
Bottom: (b-1) The minimal spanning tree representation of a point set. (b-2)
Magnifying the boxed region | crosses (�) are inconsistent edges. Kam imposes
adjacency relations on a point set representing a trajectory in phase space. The
structure of the minimal spanning tree reveals the type of the trajectory.

12



Spatial Aggregation: Theory and Applications

bifurcation properties

bifurcation classification rules

bifurcation

pattern
bifurcation

neighbors
nearest

portraits
phase

rules
consistency consistent?

N-graphaggregate

redescribe

classify

consistency consistent?

N-graphaggregate

redescribe

classify

orbit
bundles

phase
portraitrules

portrait classification rules

portrait properties

portrait

wavefront
propagation

classify

orbitredescribe

aggregate N-graph

consistent?

orbits

wavefront
propagation

bundle

classify

redescribe

aggregate N-graph

consistent?
rules

orbit bundle classification rules

orbit bundle properties

consistency
orbit bundle

rules
consistency

tree consistent?

orbit classification rules

orbit propertiesN-graph

algorithm
MST

aggregatepoint
set

redescribe orbit

classify

rules
tree consistent?

orbit classification rules

orbit propertiesN-graphaggregatepoint
set

redescribe orbit

classify

Figure 4: The computational structure of kam viewed as spatial aggregation operators act-
ing on neighborhood graphs. It has four layers of abstraction: orbit, orbit bundle,
phase portrait, and bifurcation pattern. The computation is organized around
neighborhood graphs. The structural similarities among the layers are apparent.

13



Yip & Zhao

R
2

1control u

control u

force control
is switched on

flow pipe

Region R is projected
onto the initial phase plane.

S

G

Figure 5: Left: Buckling of a beam due to an axial load.
Right: Phase spaces for the buckling beam (upper) and locally controlled beam
(lower). To stabilize the buckling beam far from the unbuckled state | the
unstable equilibriumG, maps (1) �nds a ow pipe, a group of qualitatively similar
trajectories, that reaches G, (2) deforms the trajectory emanating from the initial
state via a force control until the trajectory is close to G, and then (3) switches to
a conventional linear controller to achieve the desired stabilization. Let region R
in the lower phase plane be a linearly controllable region with control u2. Starting
from an initial state S and initial control u1, the system evolves along a trajectory
within the ow pipe until it is close to the projection of the region R. The force
control u1 is turned on to deform the trajectory so that the system moves into
the region R where a linear controller drives the system to the desired unbuckled
state G.

the next level of abstraction, the orbit bundle level, where the same process of aggregation,
consistency checks, classi�cation, and re-description is repeated.

4.2 MAPS

Maps' task is to analyze the qualitative phase-space structures of dissipative systems and
use the analysis results to guide the synthesis of control laws.

Like kam, maps extracts high-level dynamical information from the phase space struc-
tures. But maps goes beyond kam in two important aspects: (1) maps deals with three-
dimensional structures explicitly (whereas kam reasons with cross-sections of three-dimensional
structures), and (2) maps uses the phase space structures to synthesize nonlinear control
actions.

Maps synthesizes a global control path geometrically (see Figure 5). Given an initial
state and a desired state for the system under control, maps searches for a path in the phase
space that connects the initial and the desired state. If the goal is not directly reachable
from the initial state, maps pieces together multiple path segments by varying the control
actions. A brute-force search for individual control paths in a continuum is clearly infeasible.
Maps partitions the continuous phase space into a manageable discrete set of objects |

14



Spatial Aggregation: Theory and Applications

ow pipes | by de�ning appropriate equivalence relations, and searches out the ow pipes
for good control paths.

The computations in maps are organized into four layers (as shown in Figure 6): (1) sta-
bility region, (2) ow pipe, (3) phase portrait, and (4) ow pipe graph. The input are the
�xed points of the dynamical system7. Two �xed points are adjacent if they are connected
to the same saddle by trajectories. The adjacency relation is represented by a neighborhood
graph. The trajectories passing through the saddles are classi�ed into equivalence classes
and assigned stability region boundary labels. The re-describe operator computes the re-
gions delimited by the stability region boundaries and represents them by polyhedra. The
stability regions are fed to the next layer.

In the second layer, a stability region is triangulated by the Delaunay method. The
aggregate operator constructs a neighborhood graph of the triangulation using the ad-
jacency relation de�ned by the Voronoi diagram, the dual of the Delaunay triangulation.
The triangulated sub-regions are classi�ed into equivalence classes according to a topolog-
ical criterion which states that two adjacent sub-regions are equivalent if the trajectories
passing through them can be connected in a consistent manner. Equivalence classes of
sub-regions are classi�ed as ow pipes. Recall each ow pipe is a coarse representation of a
set of trajectories having the same qualitative properties. The use of ow pipes simpli�es
considerably the control path planning problem.

The third layer aggregates the ow pipes to form a phase portrait.
The fourth layer is where control decisions are made. Flow pipes from di�erent phase

portraits are aggregated to form a larger structure, the ow pipe graph, which is the fun-
damental data structure supporting path planning in the phase space. Two ow pipes
are adjacent if the phase space regions covered by the ow pipes overlap. Intuitively, one
can switch from one ow pipe to an adjacent one by setting appropriate control parameters
that generate the phase portraits in question. Given an initial and desired state, the search
operator searches the ow pipe graph for solution paths.

Information can also be passed down the abstraction layer. Once a connected sequence
of ow paths is found to satisfy a control objective, individual trajectory segments within
the ow pipe are found by the localize operator using a shooting method.

4.3 HIPAIR

Hipair performs kinematic analysis of �xed-axes mechanisms built of rigid parts. Given a
description of the shapes and motion types (such as translation and rotation) of the parts,
hipair derives realizable con�gurations of the mechanism.

Hipair derives realizable con�gurations of a mechanism by constructing and manipu-
lating the con�guration space of the mechanism (see Figure 7). The con�guration space is
the space of positions and orientations of the parts that make up the mechanism. hipair
partitions the con�guration space into free space regions where parts do not overlap, and
blocked space regions where they overlap. Only con�gurations that correspond to the free
space regions are realizable. The boundaries of the free space regions are determined by the

7. Fixed points, or equilibrium points, are critical points in the phase space where the velocity vector
vanishes. Fixed points are classi�ed into three types according to the behavior of the nearby trajectories.
A �xed point is an attractor if the nearby trajectories all move towards it. It is a repellor if they all
move away from it. It is a saddle if some move towards and some move away from it.

15



Yip & Zhao

saddle trajectories

reachability rules 

classify

flow pipe graph

method
shootinglocalizesearch

graph
pipe
flow

pipes
flow

flow pipe properties

flow pipe classification rules

flowconsistency
sub-region

stability region

regions
stability

stability

stability region properties

stability region classification rules

points
fixed

consistency

portraits
phase

rules
consistency consistent?

aggregate

consistency consistent?

N-graphaggregate

redescribe

classify

phase
portraitrules

portrait classification rules

portrait properties

portrait

wavefront
propagation

classify

redescribe

aggregate N-graph

consistent?

classify

redescribe

aggregate N-graph

consistent?
rules

consistent?

N-graphaggregate

redescribe

classify

consistent?

N-graphaggregate

redescribe

classify

redescribe

regions

pipes

rules

N-graph

flow pipe region overlap

Voronoi diagram

Figure 6: The computational structure of maps viewed as spatial aggregation operators
acting on neighborhood graphs. It has four layers of abstraction: stability regions,
ow pipes, phase portrait, and ow pipe graph. Note the structural similarities
between kam and maps. Control synthesis is implemented by the search and
localize operators acting on the neighborhood graph representing the ow pipe
graph.

16



Spatial Aggregation: Theory and Applications

θ
follower

cam
x

x
5

−5
π−π

θ

Figure 7: Left: The 3-�nger cam-follower. Right: The con�guration space for the cam-
follower. � is the cam rotation. x is the follower displacement. The shaded
regions are the blocked space, indicating that the parts overlap. The free space
regions are the realizable con�gurations of the cam-follower. The boundaries of
the free space regions are determined by the contact relations between the cam
�ngers and the follower.

contact relations among the parts that touch each other. A region diagram is a graph whose
nodes are free space regions and edges specify region adjacencies. The region diagram of
the mechanism is composed of the regions diagrams of its pairwise interacting parts. For
example, the region diagram of a mechanism with 10 parts is constructed from the region
diagrams of 45 possibly interacting pairs.

The computations in hipair are organized into three layers (as shown in Figure 8): (1)
free space region, (2) subassembly region diagram, (3) mechanism region diagram. The
input are the shapes of parts and their motion types. Hipair �rst considers a pair of inter-
acting parts. It looks up the equations of the contact curves, i.e., curves in the con�guration
space for the pair corresponding to the con�gurations where the two parts touch, from a
pre-compiled table of common contact curves. A contact curve is partitioned into segments
by intersection points of the curve with either another contact curve or the boundaries of the
con�guration space. Two segments are adjacent if they share an endpoint. The aggregate
operator assembles the segments and their adjacency relations into a neighborhood graph.
The search operator traverses the neighborhood graph to �nd all closed chains of segments,
where a closed chain of segments is a sequence of segments that intersect itself. Each closed
chain of segment encloses a free space region. The consistent? predicate discards closed
chains that lie inside other closed chains. The classify operator assigns a label to each
closed chain, and the re-describe operator computes the free space regions delimited by
the closed chains. Each free space region is subdivided into convex regions.

The input to the second layer are free space regions. They are aggregated into a neigh-
borhood graph. Two free space regions are adjacent (or neighbors) if they touch. Given
an initial con�guration S0 of an interacting pair, the search operator �nds the free space
regions reachable from S0 by a depth �rst search. The neighborhood graph is re-described
as a subassembly region diagram.

17



Yip & Zhao

diagram

region diagram classification rules

sub-region

region diagram properties

region diagram properties

mechanism classification rules

classify

redescribe

aggregate N-graph

consistent?
rules

classify

redescribe

aggregate N-graph

consistent?
rules

rules
consistent?

N-graphaggregate

redescribe

classify

consistent?

N-graphaggregate

redescribe

classify

rules

classify

redescribe

aggregate N-graph

consistent?

consistency

regions

sub-region
consistency

contact
curve
segments

shared endpoint

closed chain

search

free
space
regions

free space properties

free space classification rules

free
space

region adjacency search

subassembly
region
diagram

consistency

search

subassembly
region
daigrams

region adjacency

mechanism
region

Figure 8: The computational structure of hipair viewed as spatial aggregation operators
acting on neighborhood graphs. It has three layers of abstraction: free space
regions, subassembly region diagram, and mechanism region diagram. Note the
structural similarities between hipair, kam, and maps. The search operator
determines reachability conditions in all three layers.

On the third layer, hipair combines all the subassembly region diagrams into a mecha-
nism region diagram. The mechanism region diagram is a neighborhood graph whose nodes
are realizable sets of free space regions and edges specify the adjacency of free space regions.
A set of free space regions is realizable if their intersections are non-empty. For example,
let M0 = fR0; S0; T0g be a set of free space regions containing the initial con�guration
of a mechanism with three parts P1; P2; and P3, where R0, S0, and T0 are the free space
regions in the subassembly region diagrams of the pairs fP1; P2g; fP1; P3g, and fP2; P3g
respectively. Suppose R0 has one neighbor R1, S0 has one neighbor S1, and T0 has none.
Then there are three candidate neighbors of M0 given by:

M1 = fR1; S0; T0g

18



Spatial Aggregation: Theory and Applications

M2 = fR0; S1; T0g

M3 = fR1; S1; T0g

The consistent? predicate checks each of the candidate neighbors and discards the unre-
alizable ones.

5. An Illustration

In this section, we show what it is like to program in the spatial aggregation language.
The example is a boundary tracer for line drawings.8 We pick this example because image
analysis routines can be quite naturally written in the spatial aggregation style.

Boundary tracing is a basic operation in image analysis.9 The operation might be used
to identify and group boundary segments from the same object. For example, consider a
line drawing of overlapping 2D objects (see Figure 9). To group the boundary segments,
one might �rst decompose the �gure into segments, and junctions. A tracing process then
joins colinear segments.

The input to the boundary tracing program is a bitmap:

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 1 1 1 1 1 0

0 1 0 1 0 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 1 0 0 0 0 0 1 0

0 1 1 1 1 1 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

The bitmap is rendered in Figure 10(a). Figure 11 illustrates how the output in Fig-
ure 10(b) and (c) is computed from the input bitmap, using the spatial aggregation opera-
tors.

We �rst de�ne a neighborhood relation between pixels by the 4-adjacency (namely, the
neighbors of a pixel are the pixels in its immediate north, east, south, and west). Because
there is often no e�cient way to construct N-graphs directly from neighborhood relations, we
de�ne an explicit N-graph neighborhood constructor that �nds all the 4-adjacency neighbors
of a given pixel.

Next the aggregate operator assembles the pixels into an N-graph by the N-graph
constructor. Pixels in the N-graph are considered similar if they are neighbors and neither
is a junction, where a junction is de�ned as a pixel whose value is one and which has more
than two one-value neighbors. The classify operator groups the pixels into equivalence

8. The details of the interpretor for the language, implemented in scheme, are discussed elsewhere (Bailey-
Kellogg, Zhao, & Yip, 1996).

9. Jim Mahoney introduced us to a uni�ed description of high-level operations on images.

19



Yip & Zhao

Figure 9: A line drawing of two overlapping objects.

(a) (b) (c)

Figure 10: Boundary tracing operation in image analysis: (a) Pixels on boundaries of two
overlapping objects; (b) Pixels are grouped into boundary segments; (b) Bound-
ary segments are grouped into distinct object contours.

classes using a similarity threshold and returns the foreground equivalence classes, shown
in Figure 10(b).

The foreground equivalence classes are then re-described as higher-level objects, bound-
ary segments, which are in turn aggregated into a new N-graph using a di�erent neighbor-
hood relation. Speci�cally two boundary segments are neighbors if their minimum separa-
tion distance is less than a speci�ed separation. Next, adjacent boundary segments which
are colinear are grouped into equivalence classes, called contours. A contour represents the
complete boundary of an object. Figure 10(c) shows the result of grouping.

We might want to check for impossible contours. A contour is legal if it is closed and not
self-intersecting. Such conditions are expressed in a standard pattern language. Pairwise
consistency rules can likewise be de�ned.

The program written in the spatial aggregation language is shown in Figure 12 and
Figure 13.10

10. In the actual implementation of the language described by Kellogg, Zhao, and Yip (1996), the syntax of
the operators di�ers slightly from those in Section 3.

20



Spatial Aggregation: Theory and Applications

4-adjacency

classify

pixel similarity,
threshold

threshold
colinearity,

classify

redescribe

redescribe

boundary segment classes

pixel classes

aggregate

neighborhood
nearness

aggregate

neighborhood

pixels

object
contours

segments
boundary

consistency

segments
boundary

contour

rules
consistent?

N-graph
segment

pixel
N-graph

Figure 11: Boundary tracing operation: data ow in the spatial aggregation implementa-
tion.

6. Related Work

The literature in visual and spatial reasoning is enormous (e.g., Kosslyn, 1994; Glasgow,
1993). In this section, we discuss only the computationally oriented approaches.

The �rst line of work investigates how diagram-like representations aid heuristic search.
Gelernter (1963) used diagrams in his geometry theorem prover to prune goals that are
obviously false. Nevins' geometry theorem prover constrained forward deduction to con-
clude facts about objects explicitly depicted in the diagrams (Nevins, 1975). Stallman
and Sussman (1977) exploited the connectivity and locality of lumped-parameter model
to guide forward reasoning and implement symbolic constraint propagation. In a similar
spirit, Larkin and Simon (1987) showed that in elementary mechanics problem a diagram-
matic representation can reduce search because the diagram provides convenient indices for
clustering objects and relations.

The second line of work concerns analogue simulations in naive physics. Funt's whisper
program is the �rst AI program that uses primarily perceptual primitives to predict dynami-
cal events in a simple blocks world (Funt, 1980). Arguing that the commonsense predictions
of solid or uid behavior cannot possibly depend on the solution of complicated equations,
Gardin and Meltzer (1989) proposed a \molecular" simulation of strings and uids. A
body of uid, for example, is decomposed into macro-molecules interacting with each other
according to a small set of local rules. Chandrasekaran and Narayanan (1990) proposed
a direct analogue simulation of the motion of a sliding block on an inclined plane. Their

21



Yip & Zhao

;; 4-adjacency pixel neighborhood:

;; neighbors are pixels one unit away using nearness ngraph

(define image-ngraph-fac

(ngraph-near/instantiate image-field-fac 1))

;; Form a neighborhood graph for pixels

(define image-ngraph

(aggregate pixels image-ngraph-fac))

;; Pixel classifier: two adjacent nodes are equivalent if they

;; have the same value and neither is a junction.

(define pixel/classify

(classify-standard/instantiate

image-ngraph-fac

(lambda (n1 n2)

(if (and (not (is-junction? n1))

(not (is-junction? n2))

(= (pixel/value n1) (pixel/value n2)))

0 1))))

;; Form equivalence classes of foreground pixels

(define pixel-classes

(filter

(lambda (cl) (= (pixel/value (car cl)) 1))

(pixel/classify image-ngraph pixels *threshold1*)))

;;; Form boundary segments

(define segments

(redescribe pixel-classes segment/create))

Figure 12: Boundary tracing operation program (part 1): group pixels into boundary seg-
ments.

objective is to develop a cognitive architecture for visual perception and mental imagery.
The direct representation of a scene they propose consists of a hierarchical, multi-resolution
symbol structure encoding spatial relations among objects, and is linked to an analogical
representation of the scene (image). The major challenge in analogue simulation is how
to provide a reliable simulation without incorporating extensive physics and geometrical
modeling.

The third line of work consists of spatial reasoning research in qualitative physics.
Kuipers and Levitt (1988) described an approach to spatial reasoning in robot navigation
and mapping of large-scale spaces. They proposed a four-level hierarchical representation
incorporating topological and metric descriptions in terms of entities such as places, paths,
distances, and angles. Forbus et al. (1991) developed the Metric Diagram/Place Vocabulary
theory. The metric diagram contains both numerical and symbolic descriptions of a scene,

22



Spatial Aggregation: Theory and Applications

;; Boundary segment neighborhood defined by separation distance

(define segment-ngraph-fac

(ngraph-near/instantiate segment-field-fac separation))

;; Form a neighborhood graph for boundary segments

(define segment-ngraph

(aggregate segments segment-ngraph-fac))

;; Boundary segments classifier: two adjacent segments are

;; equivalent if they are colinear. Two thresholds are used in

;; determining colinearity: delta is the threshold for separation

;; distance between two end-points and epsilon is for the angle

;; between the tangent vectors at these end-points.

(define segment/classify

(classify-standard/instantiate

segment-ngraph-fac

(lambda (s1 s2)

(if (and (> (length (segment/points s1)) 1)

(> (length (segment/points s2)) 1)

(segment/colinear s1 s2 delta epsilon))

0 1))))

;; Form contours, i.e., equivalence classes of boundary segments

(define segment-classes

(segment/classify segment-ngraph segments *threshold2*))

;; Contour consistency check: closed and not self-intersecting

(define contour-consistency-rules

'(if (and (closed? ?c)

(not (self-intersecting? ?c)))

#t #f))

Figure 13: Boundary tracing operation program (part 2): group boundary segments into
distinct object contours.

while the place vocabulary is a quantization of the space according to task-speci�c crite-
ria (see also footnote 1). Comparing the spatial aggregation framework and the MD/PV
framework, we note two major di�erences. First, whereas a metric diagram is a mixed
symbolic/quantitative representation, a �eld is purely numerical and does not encode any
structures explicitly. Second, our theory postulates multi-layer spatial aggregates with iden-
tical computational structure at each layer. By focusing on the �eld ontology, which can be
thought of as a special class of metric diagrams, we are able to emphasize the importance
of the structure-recovery problem, and the commonalities underlying several implemented
programs.

23



Yip & Zhao

7. Conclusion

We have developed the spatial aggregation paradigm as a realization of imagistic reasoning.
The paradigm systematizes the important task of interpreting time-varying information-rich
�elds. The paradigm consists of three ideas: (1) a �eld ontology, an image-like analogue
representation, as input, (2) structural discovery { the e�cient transformation from point-
wise �eld representation to economical symbolic descriptions { as the central computational
problem, and (3) a multi-layer neighborhood graph as the common interface and a small
set of generic operators { aggregate, classify, redescribe, and search { as building blocks for
computational processes that derive symbolic abstractions from the analogue representa-
tion. The paradigm relies on the important observations that the physical constraints on
a real �eld (such as continuity and conservation) provide useful equivalence relations and
economical descriptions, and a nonlocal property of a lower layer can often be redescribed
as a local property of a higher layer.

The spatial aggregation paradigm supports the recovery of abstract properties via the
multi-layer neighborhood graphs. It produces concise descriptions by manipulating equiv-
alence classes of objects as primitives. It constructs modular programs from generic opera-
tors by mixing and matching a library of commonly used routines. It expresses task-speci�c
knowledge in terms of �eld metric, adjacency relations, consistency predicates, classi�cation
rules, and redescription properties.

To illustrate our theory, we examine the computational structure of three implemented
programs { kam, maps, and hipair { that integrate symbolic, numerical, and visual rea-
soning. We show a small set of generic operators that construct, transform, �lter, classify,
and search neighborhood graphs capture the commonalities of these programs. We develop
a language, a way of organizing programs around neighborhood graphs, to make programs
written in this style clear.

We are currently developing a toolkit to support problem solving using the generic
operators of the spatial aggregation paradigm. Many research questions are still open.
Can the operators be interfaced with computational geometry and with numerical analysis
to build robust, e�cient programs? What scienti�c problems can be solved by spatial
aggregation?

Imagistic reasoning is a powerful strategy for mapping between analog signals generated
by physical systems and discrete, symbolic representations of the systems. Spatial aggrega-
tion is only one of its many realizations. We believe that reasoning methods that derive their
power primarily from perceptual operations on analog representations and only secondar-
ily from search and analytical methods might prove e�ective in automating commonsense
reasoning as well.

Acknowledgements

We thank Chris Bailey-Kellogg for the help in implementing the spatial aggregation lan-
guage, and the following people for helpful discussions and comments on the earlier drafts
of this paper: Harold Abelson, Andy Berlin, B. Chandrasekaran, Gregor Kiczales, John
Lamping, Shiou Loh, Jim Mahoney, Je� May, Neal McDonald, Pandurang Nayak, Toyoaki
Nishida, Elisha Sacks, Brian Smith, Jack Smith, Gerry Sussman, and Brian Williams.

24



Spatial Aggregation: Theory and Applications

KY is supported by an NSF National Young Investigator Award ECS-935777. FZ is
supported by an NSF National Young Investigator Award CCR-9457802, an Alfred P. Sloan
Foundation Research Fellowship, a grant from Xerox Palo Alto Research Center, a grant
from AT&T Foundation, and an NSF grant CCR-9308639.

References

Bailey-Kellogg, C., Zhao, F., & Yip, K. (1996). Spatial aggregation: language and applica-
tions. In Proceedings of AAAI. To appear.

Bradley, E. (1992). Taming chaotic circuits. Tech. rep. AI-TR-1388, MIT Arti�cial Intelli-
gence Lab.

Chandrasekaran, B., & Narayanan, N. (1990). Towards a theory of commonsense visual
reasoning. In Nori, K., & Madhavan, C. (Eds.), Foundations of Software Technology

and Theoretical Computer Science. Springer.

DeKleer, J., & Brown, J. (1984). A qualitative physics based on conuences. Arti�cial

Intelligence, 24.

Forbus, K. (1984). Qualitative process theory. Arti�cial Intelligence, 24.

Forbus, K., Nielsen, P., & Faltings, B. (1991). Qualitative spatial reasoning: the CLOCK
project. Arti�cial Intelligence, 51.

Funt, B. (1980). Problem solving with diagrammatic representations. Arti�cial Intelligence,
13.

Gardin, F., & Meltzer, B. (1989). Analogical representations of naive physics. Arti�cial

Intelligence, 38.

Gelernter, H. (1963). Realization of a geometry-theorem proving machine. In Computers

and Thought. McGraw-Hill.

Gelsey, A. (1995). Automated reasoning about machines. Arti�cial Intelligence, 74.

Glasgow, J. (1993). The imagery debate revisited: a computational perspective. Computa-
tional Intelligence.

Joskowicz, L., & Sacks, E. (1991). Computational kinematics. Arti�cial Intelligence, 51,
381{416.

Junker, U., & Braunschweug, B. (1995). History-based interpretation of �nite element
simulations of seismic wave �elds. In Proceedings of IJCAI.

Kosslyn, S. M. (1994). Image and Brain: the resolution of the imagery debate. MIT Press.

Kuipers, B. (1986). Qualitative simulation. Arti�cial Intelligence, 29.

Kuipers, B., & Levitt, T. (1988). Navigation and mapping in large-scale space. AI Magazine,
9(2).

25



Yip & Zhao

Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science, 11.

Nevins, A. (1975). Plane geometry theorem proving using forward chaining. Arti�cial

Intelligence, 6.

Nishida, T., & et al. (1991). Automated phase portrait analysis by integrating qualitative
and quantitative analysis. In Proceedings of AAAI.

Stallman, R., & Sussman, G. J. (1977). Forward reasoning and dependency-directed back-
tracking in a system for computer-aided circuit analysis. Arti�cial Intelligence, 9.

Ullman, S. (1984). Visual routines. Cognition, 18.

Yip, K. M. (1991). KAM: A system for intelligently guiding numerical experimentation by

computer. MIT Press.

Yip, K. M. (1995). Reasoning about uid motion: �nding structures. In Proceedings of

IJCAI.

Zhao, F. (1994). Extracting and representing qualitative behaviors of complex systems in
phase spaces. Arti�cial Intelligence, 69(1-2), 51{92.

Zhao, F. (1995). Intelligent simulation in designing complex dynamical control systems. In
Tzafestas, & Verbruggen (Eds.), Arti�cial intelligence in industrial decision making,

control, and automation. Kluwer Academic Publishers.

26


