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Spatial Analysis of Air Pollution and
Mortality in Los Angeles

Michael Jerrett,* Richard T. Burnett,† Renjun Ma,‡ C. Arden Pope III,§ Daniel Krewski,¶

K. Bruce Newbold,� George Thurston,** Yuanli Shi,¶ Norm Finkelstein,�

Eugenia E. Calle,†† and Michael J. Thun††

Background: The assessment of air pollution exposure using only

community average concentrations may lead to measurement error

that lowers estimates of the health burden attributable to poor air

quality. To test this hypothesis, we modeled the association between

air pollution and mortality using small-area exposure measures in

Los Angeles, California.

Methods: Data on 22,905 subjects were extracted from the Amer-

ican Cancer Society cohort for the period 1982–2000 (5,856 deaths).

Pollution exposures were interpolated from 23 fine particle (PM2.5)

and 42 ozone (O3) fixed-site monitors. Proximity to expressways

was tested as a measure of traffic pollution. We assessed associa-

tions in standard and spatial multilevel Cox regression models.

Results: After controlling for 44 individual covariates, all-cause

mortality had a relative risk (RR) of 1.17 (95% confidence interval �

1.05–1.30) for an increase of 10 �g/m3 PM2.5 and a RR of 1.11

(0.99–1.25) with maximal control for both individual and contextual

confounders. The RRs for mortality resulting from ischemic heart

disease and lung cancer deaths were elevated, in the range of

1.24–1.6, depending on the model used. These PM results were

robust to adjustments for O3 and expressway exposure.

Conclusion: Our results suggest the chronic health effects associ-

ated with within-city gradients in exposure to PM2.5 may be even

larger than previously reported across metropolitan areas. We ob-

served effects nearly 3 times greater than in models relying on

comparisons between communities. We also found specificity in

cause of death, with PM2.5 associated more strongly with ischemic

heart disease than with cardiopulmonary or all-cause mortality.

(Epidemiology 2005;16: 727–736)

A review of the literature on the chronic health effects of

ambient air pollution suggests that studies using the

American Cancer Society (ACS) cohort to assess the relation

between particulate air pollution and mortality rank among

the most influential and widely cited. The original study1 (a

reanalysis that introduced new random-effects methods and

spatial analytic techniques2,3) and more recent studies with

longer follow up and improved exposure data have all dem-

onstrated air pollution effects on all-cause and cause-specific

mortality.4,5 As a result of this robust association and a lack

of other studies on the long-term effects, the ACS studies

together with the Six-Cities study6 have been important for

government regulatory interventions such as the U.S. Envi-

ronmental Protection Agency’s National Air Quality Stan-

dard for Fine Particles. The ACS studies have also been used

by the World Health Organization as a basis for estimating

the burden of mortality attributable to air pollution.7

The assessment of air pollution exposure using only

community average concentrations likely underestimates the

health burden attributable to elevated concentrations in the

vicinity of sources.8,9 Health effects may be larger around

sources, and these effects are diminished when using average

concentrations for the entire community. Previous ACS stud-

ies have relied on between-community exposure contrasts at

the scale of a metropolitan area giving all residents of a city

the same exposure concentrations. Exposure to air pollution,

however, may vary spatially within a city,10–14 and these

variations may follow social gradients that influence suscep-
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tibility to environmental exposures.3 Residents of poorer

neighborhoods may live closer to point sources of industrial

pollution or roadways with higher traffic density.15 This

exposure misclassification along social gradients may ex-

plain the finding of effect modification by educational status

in earlier ACS studies.2,16 The spatial correspondence be-

tween high exposure and potentially susceptible populations

within cities may further bias estimates that rely on central

monitors to proxy exposure over wide areas. Theoretically,

classic exposure measurement error induced by central mon-

itors may also bias results toward the null.17

Given the potential of the metropolitan scale to bias

health effect estimates, we have assessed the association

between air pollution and mortality at the within-community

or intraurban scale. We sought an urban location with suffi-

cient geographic scope, air pollution data, and enough ACS

subjects to test the association. Los Angeles (LA), California,

met these selection criteria. The region has high pollution

levels, large intraurban gradients in exposure over a wide

geographic area, and strong public awareness that air pollu-

tion has serious public health consequences.18

METHODS

Cohort Data
We extracted health data from the ACS Cancer Preven-

tion II survey for metropolitan LA at the zip code-area scale

(zip codes are used for U.S. mail delivery; average population

per zip code in LA is approximately 35,000, with an average

area of approximately 22.5 km2). We constructed distribu-

tion-weighted centroids using spatial boundary files based on

1980 and 1990 definitions. We were able to assign exposure

to 267 zip code areas with a total of 22,905 subjects (5856

deaths based on follow up to 2000). Some subjects reported

only postal box addresses and were therefore excluded. These

subjects had been enrolled in 1982 along with over one

million others as part of the ACS II survey. Similar to earlier

ACS analyses, availability of air pollution data and other

relevant information led to the subset of study subjects to be

used in the health effects research. Although the ACS cohort

is not representative of the general population, the cohort

allows for internally valid comparisons within large samples

of the American population. This study was approved by the

Ethics Board of the Ottawa General Hospital, Canada. Sub-

jects had given informed consent at enrollment into the study.

Control for Confounding
We used 44 individual confounders identified in earlier

ACS studies of air pollution health effects.4 These variables

include lifestyle, dietary, demographic, occupational, and

educational factors that may confound the air pollution–

mortality association. We had more than 10 variables that

measure aspects of smoking. Sensitivity analyses revealed

that removal of individual variables had little influence on the

estimated pollution coefficients; therefore, to promote com-

parability with results from earlier studies, we report the

results with this standard set of 44 variables.

We also assembled 8 ecologic variables for the zip code

areas to control for “contextual” neighborhood confounding.

“Contextual” effects occur when individual differences in

health outcome are associated with the grouped variables that

represent the social, economic, and environmental settings

where the individuals live, work, or spend time (eg, poverty

or crime rate in a neighborhood).19–22 These contextual

effects often operate independently from (or interactively

with) the individual-level variables such as smoking. The

ecologic variables used represented constructs identified as

important in the population health literature and previously

tested as potential confounders with the ACS dataset at the

metropolitan scale.23,24 These include income, income in-

equality, education, population size, racial composition

(black, white, Hispanic), and unemployment.3 A new variable

measuring potential exposure misclassification by the propor-

tion having air conditioning was also tested. Similar variables

have been in a metaanalysis of acute effects,25 on the premise

that air-conditioned houses are more tightly sealed and have

lower penetration of particles indoors. A recent study of

personal exposures in LA reported large reductions in pene-

tration of particles for air-conditioned houses.26 This variable

adds partial control for the impact of air conditioning, which

may relate both to health outcomes (through prevention of

heat stroke) and to air pollution (because high air pollution

concentrations and lower proportions of air conditioning are

related in our study area). We thus expected the proportion of

air conditioning in the zip code area to correlate with lower

PM exposures and effects. We also computed principal com-

ponents of all 8 variables to provide maximal control for

confounding while avoiding multicollinearity among the eco-

logic variables.27,28

Exposure Assessment
To derive exposure assessments, we interpolated PM2.5

data from 23 state and local district monitoring stations in the

LA basin for the year 2000 using 5 interpolation methods:

bicubic splines, 2 ordinary kriging models, universal kriging

with a quadratic drift, and a radial basis function multiquadric

interpolator. We emphasized kriging interpolation because

this stochastic method produces the best linear unbiased

estimate of the pollution surface.29 After crossvalidation, we

used a combination of universal kriging and multiquadric

models. This approach takes advantage of the local detail in

the multiquadric surface and the ability to handle trends in the

universal surface. We averaged estimated surfaces based on

25-m grid cells. We conducted sensitivity analysis using only

the universal estimate and found the results to be similar;

therefore, only the findings from the combined model are
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reported. Sensitivity analyses were also implemented with the

kriging variance. Exposure assignments were downweighted

with larger errors in exposure estimates in these analyses (ie,

weight equal to the inverse of the standard error in the

universal kriging estimate).

Although O3 has had few associations in earlier ACS

studies using between-city contrasts,1,2,4 exposure to this

pollutant is considered a health threat in the LA region, which

has some of the highest levels in the United States.18 For O3,

we obtained data at 42 sites in and around the LA basin from

the California Air Resources Board database. We interpolated

2 surfaces using a universal kriging algorithm: one based on

the average of the 4 highest 8-hour concentrations over the

year 2000 and another based on the expected peak daily

concentration, which is a statistical measure designed to

assess the likely exceedance of the 8-hour average at the site

based on the previous 3 years (1999–2001). Both measures

are used as a basis for either federal or state designation of

nonattainment areas. They both capture extreme events, but

the expected peak daily concentration provides more stability

for estimation of spatial patterns than the 1-year measures

based on the 4 highest days. Few studies of chronic effects

have found significant ozone effects, although acute effects of

a small magnitude have been observed.30 Thus, it seems

plausible that an ozone effect would be manifest in those

areas most likely to experience exceedances.

Finally, we assessed the impact of traffic by assigning

buffers that included zip code-area centroids within either

500 or 1000 meters of a freeway. The U.S. Bureau of the

Census feature class codes define freeways as having “limited

access,” a numbered assignment, and a speed limit of greater

than 50 miles per hour.31 This distance from the zip code-area

centroid to the freeway approximated exposure to traffic

pollution, which may exert independent effects in addition to

pollutants such as PM2.5 and O3 that vary over larger areas.8

Complete residential history information was unavailable

for the entire cohort, although we do have information on

whether respondents moved between enrollment and 1992 or

thereafter (approximately 5633 in LA). Of this group, only 16%

moved during follow up, and this diminishes the potential for

exposure misclassification resulting from residential mobility.

Analytic Approach
We used Cox proportional hazards regression for our

main analyses of association between air pollution and mor-

tality.32 Because the units of analyses were small zip code

areas and previous analyses had indicated spatial autocorre-

lation in the residual variation of some health effects models,

we also developed and used a new spatial random effects Cox

model as a crossvalidation of the standard model. We have

previously shown that survival experience clusters by com-

munity and is spatially autocorrelated between communi-

ties.2,3 Lack of statistical control for these factors can bias the

estimates of air pollution effects and underestimate associated

standard errors.3,33 To characterize the statistical error struc-

ture of survival data, novel statistical methodology and com-

puter software have been developed to incorporate spatial

clustering at the zip code area. Our model can be expressed

mathematically in the form

hij s(t) � h0 s(t) �j exp(��xij s)

where hij is the hazard function or instantaneous hazard proba-

bility of death for the ith subject in the jth ZCA, whereas s

indicates the stratum (defined by sex, race, and age). Here h0, s(t)

is the baseline hazard function. The �j are positive random

effects representing the unexplained variation in the response

among neighborhoods, in this case zip code areas. Only the

moments of the random effects need to be specified within our

modeling framework: E(�j) � 1 and Var(�j) � �2. The vector xij

represents the known risk factors for the response such as air

pollution, smoking habits, and diet. The regression parameter

vector is denoted by �. Estimates of the regression vector �,

random effects, their variance, and correlation parameter are

obtained by methods previously used for random-effects sur-

vival models.33 Thiessen polygons, which ensure that all points

within the polygon are closer to the centroid of that polygon than

to any other centroid, were used to assign first-order nearest

neighbor contiguity between the zip code areas. These were

derived using ArcView 3.2 (ESRI Corp., Redlands, CA). The

standard Moran’s I tests of spatial autocorrelation were applied

to the random effects.

RESULTS
Figure 1 illustrates the pollution surface used in our

main analysis, and the Appendix Figure (available with the

FIGURE 1. PM2.5 exposure surface for Los Angeles interpolated
with a hybrid universal–multiquartic model.
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TABLE 1. Mortality Relative Risk Associated With a 10-�g/m3 Increase of PM2.5 Concentrations Based on 267 Zip Code Areas
in Los Angeles in the American Cancer Society Cohort (1982–2000 follow up) for Various Causes of Death With Adjustment
for Covariates

Covariates

Cause of Death*

All Causes
(n � 5856)

RR (95% CI)

IHD
(n � 1462)

RR (95% CI)

Cardiopulmonary
(n � 3136)

RR (95% CI)

Lung Cancer
(n � 434)

RR (95% CI)

Digestive Cancer
(n � 429)

RR (95% CI)

PM2.5 only 1.24 (1.11–1.37) 1.49 (1.20–1.85) 1.20 (1.04–1.39) 1.60 (1.09–2.33) 1.29 (0.87–1.90)

44 individual covariates 1.17 (1.05–1.30) 1.39 (1.12–1.73) 1.12 (0.97–1.30) 1.44 (0.98–2.11) 1.18 (0.79–1.75)

�Air conditioning 1.17 (1.05–1.31) 1.41 (1.13–1.76) 1.15 (0.99–1.33) 1.42 (0.96–2.08) 1.14 (0.76–1.70)

�Percent black 1.16 (1.05–1.29) 1.39 (1.11–1.72) 1.12 (0.97–1.30) 1.45 (0.99–2.13) 1.18 (0.79–1.75)

�Percent white 1.15 (1.03–1.28) 1.36 (1.09–1.70) 1.10 (0.95–1.28) 1.51 (1.02–2.23) 1.16 (0.78–1.74)

�Percent Hispanic 1.15 (1.02–1.28) 1.33 (1.06–1.67) 1.11 (0.95–1.29) 1.46 (0.98–2.20) 1.12 (0.74–1.71)

�Percent unemployed 1.15 (1.03–1.28) 1.37 (1.09–1.71) 1.13 (0.97–1.31) 1.33 (0.90–1.97) 1.18 (0.78–1.77)

�Mean income 1.17 (1.05–1.30) 1.39 (1.12–1.73) 1.13 (0.97–1.30) 1.44 (0.98–2.11) 1.19 (0.80–1.76)

�Total population 1.17 (1.05–1.30) 1.38 (1.11–1.72) 1.12 (0.96–1.29) 1.45 (0.99–2.12) 1.20 (0.80–1.78)

�Income inequality 1.14 (1.02–1.28) 1.31 (1.04–1.64) 1.07 (0.92–1.25) 1.33 (0.90–1.98) 1.21 (0.80–1.81)

�Percent postsecondary
education

1.16 (1.05–1.29) 1.38 (1.11–1.72) 1.12 (0.97–1.30) 1.42 (0.97–2.08) 1.16 (0.78–1.72)

�All social factors (principal
component analysis)

1.15 (1.03–1.29) 1.32 (1.05–1.66) 1.10 (0.94–1.28) 1.43 (0.96–2.13) 1.20 (0.80–1.80)

�Air conditioning, mean
income, percent postsecondary
education, social factor (low
Hispanic–high income)

1.11 (0.99–1.25) 1.26 (0.99–1.61) 1.08 (0.92–1.27) 1.20 (0.79–1.82) 1.13 (0.74–1.73)

�Parsimonious contextual
covariates

1.11 (0.99–1.25) 1.25 (0.99–1.59) 1.07 (0.91–1.26) 1.20 (0.79–1.82) 1.14 (0.74–1.74)

Copollutant control

44 individual covariates � O3

(expected peak daily
concentration) � PM2.5

1.20 (1.07–1.34) 1.45 (1.15–1.82) 1.19 (1.02–1.38) 1.47 (0.98–2.20) 1.16 (0.77–1.77)

44 Individual covariates � O3

(average of 4 highest 8 h
maxima) � PM2.5

1.18 (1.06–1.32) 1.42 (1.14–1.78) 1.15 (0.99–1.34) 1.52 (1.02–2.26) 1.17 (0.78–1.76)

44 individual covariates �

intersection with freeways
within 500 m � PM2.5

1.17 (1.05–1.31) 1.38 (1.11–1.72) 1.13 (0.97–1.31) 1.46 (0.99–2.16) 1.21 (0.81–1.80)

Copollutant risk estimates

O3 (expected peak daily
concentration)

0.98 (0.96–1.01) 0.97 (0.93–1.02) 0.97 (0.94–0.99) 0.99 (0.91–1.07) 1.01 (0.93–1.09)

O3 (average of 4 highest 8 h
maxima)

0.99 (0.98–1.01) 0.98 (0.95–1.02) 0.99 (0.96–1.01) 0.97 (0.91–1.03) 1.01 (0.95–1.07)

Intersection with freeways within
500 m

0.99 (0.88–1.11) 0.90 (0.71–1.14) 0.92 (0.77–1.08) 1.44 (0.94–2.21) 0.84 (0.53–1.35)

Intersection with freeways within
1000 m

0.98 (0.89–1.06) 1.05 (0.89–1.24) 0.98 (0.88–1.11) 0.94 (0.69–1.30) 0.88 (0.63–1.22)

continued on next page

*ICD-9 code for ischemic heart disease (IHD) 410–414; for cardiopulmonary 400–440, 460–519; for lung cancer 162; for digestive cancer 150–159; for
other cancers 140–149, 160, 161, 163–239; for endocrine 240–279; for diabetes 250; for digestive 520–579; male accidents 800�; female accidents 800�.
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online version of this article) illustrates the absolute and

relative standard errors of estimation for the interpolated

universal kriging surface. Approximately 50% of the mod-

eled surface has errors that are less than 15% of the monitored

value, whereas 67% of the surface lies within 20% of the

monitored values. For the most part, absolute standard errors

for the densely populated areas of the study region are less

than 3 �g/m3. Only on the periphery of the study area do

errors become large compared with monitored values, but

these places have very few of our study subjects. Interest-

TABLE 1. Continued

Cause of Death*

Other Cancers
(n � 992)

RR (95% CI)

Endocrine
(n � 95)

RR (95% CI)

Diabetes
(n � 57)

RR (95% CI)

Digestive
(n � 151)

RR (95% CI)

Male Accidents
(n � 75)

RR (95% CI)

Female Accidents
(n � 47)

RR (95% CI)

All Others
(n � 497)

RR (95% CI)

1.09 (0.85–1.40) 3.22 (1.31–7.91) 2.38 (0.76–7.52) 2.17 (1.11–4.26) 1.52 (0.61–3.83) 1.08 (0.35–3.31) 1.11 (0.74–1.67)

1.06 (0.82–1.36) 2.75 (1.10–6.87) 2.10 (0.64–6.87) 1.98 (1.01–3.91) 1.35 (0.53–3.43) 0.86 (0.25–2.94) 1.13 (0.75–1.69)

1.06 (0.82–1.37) 2.73 (1.09–6.84) 2.10 (0.64–6.94) 1.95 (0.98–3.85) 1.50 (0.58–3.89) 1.01 (0.29–3.58) 1.05 (0.69–1.59)

1.05 (0.82–1.36) 2.70 (1.07–6.79) 2.09 (0.63–6.89) 2.02 (1.03–3.98) 1.29 (0.50–3.31) 0.91 (0.27–3.06) 1.10 (0.73–1.66)

1.05 (0.81–1.36) 2.55 (1.00–6.51) 2.05 (0.61–6.82) 1.96 (0.98–3.92) 1.19 (0.46–3.12) 0.93 (0.27–3.23) 1.10 (0.72–1.68)

1.04 (0.80–1.36) 2.60 (1.00–6.75) 2.07 (0.60–7.15) 1.72 (0.85–3.51) 1.41 (0.53–3.76) 0.71 (0.20–2.53) 1.17 (0.76–1.80)

1.01 (0.78–1.31) 2.27 (0.89–5.78) 1.82 (0.55–6.08) 1.83 (0.91–3.65) 1.51 (0.58–3.95) 0.88 (0.25–3.08) 1.10 (0.73–1.67)

1.07 (0.83–1.37) 2.61 (1.07–6.39) 2.06 (0.64–6.65) 1.99 (1.00–3.94) 1.35 (0.53–3.44) 0.80 (0.22–2.83) 1.12 (0.75–1.69)

1.06 (0.83–1.37) 2.76 (1.11–6.86) 2.10 (0.64–6.87) 2.02 (1.02–3.98) 1.35 (0.53–3.44) 0.72 (0.21–2.49) 1.12 (0.74–1.69)

1.08 (0.83–1.40) 2.84 (1.12–7.21) 2.15 (0.64–7.19) 1.98 (0.98–3.99) 1.29 (0.50–3.37) 0.74 (0.20–2.71) 1.15 (0.75–1.75)

1.05 (0.82–1.36) 2.72 (1.10–6.76) 2.07 (0.64–6.70) 1.99 (1.01–3.93) 1.41 (0.55–3.65) 0.89 (0.26–3.12) 1.14 (0.75–1.71)

1.06 (0.82–1.38) 2.50 (0.99–6.32) 2.12 (0.64–7.07) 1.88 (0.92–3.83) 1.17 (0.43–3.20) 0.59 (0.15–2.23) 1.21 (0.79–1.86)

1.04 (0.79–1.38) 2.40 (0.92–6.27) 1.92 (0.55–6.73) 1.55 (0.74–3.26) 1.89 (0.66–5.40) 0.64 (0.15–2.79) 1.11 (0.72–1.72)

1.06 (0.80–1.40) 2.29 (0.88–5.95) 1.79 (0.52–6.21) 1.55 (0.74–3.24) 1.88 (0.66–5.36) 0.70 (0.17–2.86) 1.10 (0.72–1.70)

1.08 (0.83–1.41) 2.59 (1.01–6.63) 2.17 (0.63–7.40) 1.91 (0.94–3.89) 1.35 (0.50–3.61) 1.12 (0.30–4.21) 0.95 (0.64–1.39)

1.07 (0.83–1.39) 2.76 (1.08–7.00) 2.29 (0.68–7.70) 1.82 (0.90–3.67) 1.29 (0.49–3.40) 0.98 (0.28–3.48) 0.98 (0.67–1.43)

1.08 (0.83–1.39) 2.49 (0.98–6.32) 1.82 (0.55–6.02) 2.20 (1.11–4.37) 1.34 (0.53–3.43) 0.73 (0.21–2.54) 1.02 (0.71–1.48)

0.99 (0.94–1.04) 1.05 (0.88–1.24) 0.98 (0.79–1.22) 1.02 (0.90–1.17) 1.00 (0.83–1.21) 0.87 (0.68–1.12) 1.06 (0.99–1.14)

0.99 (0.95–1.03) 1.00 (0.88–1.14) 0.94 (0.79–1.12) 1.06 (0.95–1.17) 1.03 (0.88–1.20) 0.93 (0.77–1.13) 1.04 (0.99–1.10)

1.19 (0.89–1.59) 0.64 (0.26–1.62) 0.45 (0.12–1.70) 2.54 (1.10–5.85) 0.57 (0.17–1.91) 0.87 (0.28–2.70) 0.87 (0.58–1.29)

0.90 (0.72–1.12) 1.55 (0.88–2.75) 1.77 (0.83–3.76) 0.49 (0.24–0.98) 1.05 (0.51–2.15) 2.02 (0.89–4.60) 1.15 (0.87–1.53)
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ingly, the range of exposure within LA (20 �g/m3) exceeds

what we observed in previous studies based on contrasts

among 116 cities (16 �g/m3).4

Results for all-cause and cause-specific deaths are re-

ported in Table 1. This table shows the PM2.5 effect with

varying levels of control for confounding. Relative risks

(RRs) are expressed as 10 �g/m3 exposure contrasts in PM2.5

followed by the 95% confidence interval (95% CI). Using the

example of all-cause mortality and with each succeeding

stage, including the previous individual-level controls, we

find that for PM2.5 alone and controlling just for age, sex, and

race, the RR is 1.24 (95% CI � 1.11–1.37), whereas the RR

with the 44 individual confounders4 is 1.17 (1.05–1.30). All

subsequent results include the 44 individual-level control

variables and one or more ecologic variables. For example,

with 44 individual variables and the ecologic variable of

unemployment, the RR of PM2.5 is 1.15 (1.03–1.28). When

we add 4 social factors extracted from the principal compo-

nent analysis (and accounting for 81% of the total variance in

the social variables), the RR is 1.15 (1.03–1.29). Including all

ecologic variables associated with mortality in bivariate mod-

els reduces the pollution coefficient to RR of 1.11 (0.99–

1.25). Finally, for the parsimonious model that includes

ecologic confounder variables that both reduce the pollution

coefficient and have associations with mortality, the RR is

1.11 (0.99–1.25).

Comparing these results directly with the earlier anal-

yses using between-community contrasts, the health effects

are nearly 3 times greater for this analysis (ie, 17% increase

compared with 6% in earlier studies in models that control for

the 44 individual confounders). With control for neighbor-

hood confounders, effect estimates are still approximately

50% to 90% higher than in previous analyses.

In models with only individual covariates and PM2.5,

some residual spatial autocorrelation was present in the ran-

dom effects from the model clustered on zip code area. We

attempted to remove this autocorrelation by fitting a model

with a � autocorrelation term that used mortality information

from nearest neighbors as a predictor of mortality in the

ZCA j, but the autocorrelation persisted (results not shown).

When contextual socioeconomic status variables were in-

cluded in the model, however, the Moran’s I tests revealed no

significant spatial autocorrelation. Table 2 shows the results

of the Moran’s I test for all-cause and ischemic heart disease

mortality. Visual inspection of the random effects, �j, con-

firmed the results from the Moran’s I testing.

Sensitivity analyses using weighted estimation with

weights equal to the inverse of the standard error on

the universal kriging exposure model demonstrated that

the risk estimates were robust to measurement error in the

exposure estimate (results not shown). Point estimates

remained elevated.

DISCUSSION
Our results suggest that the chronic health effects as-

sociated with intraurban gradients in exposure to PM2.5 may

be even larger than previously reported associations across

metropolitan areas. Using the direct comparison to previous

ACS studies, we see effects that are nearly 3 times larger than

in models relying on between-community exposure contrasts.

We also note convincing evidence of specificity in these

health effects, with a stronger association between air pollu-

tion and ischemic heart disease than for the more general

measures of cardiopulmonary deaths or all-cause mortality

(Fig. 2 displays the ordering in the risks presented in the

tables). These findings concur with recent studies at the

TABLE 2. Results of the Spatial Autocorrelation Analysis on the Random Effects With Various Levels of Control
for Confounding

Model

PM Effect
RR

(95% CI)
Sigma

Squared

First-Order Neighborhood
Matrix

Second-Order
Neighborhood Matrix

Spatial
Autocorrelation

Moran’s I
Normal
P Value

Spatial
Autocorrelation

Moran’s I
Normal
P Value

All-cause mortality

44 individual covariates — 0.00701 0.078 0.021 0.038 0.812

PM2.5 � 44 individual covariates 1.165 (1.027–1.321) 0.00442 0.073 0.030 0.030 0.157

PM2.5 � 44 individual covariates �

parsimonious contextual covariates
1.120 (0.996–1.260) 0.00050 0.016 0.571 �0.017 0.572

IHD mortality

44 individual covariates — 0.00476 0.025 0.419 0.037 0.154

PM2.5 � 44 individual covariates 1.391 (1.120–1.726) 0.00182 0.008 0.735 0.017 0.382

PM2.5 � 44 individual covariates �

parsimonious contextual covariates
1.269 (1.005–1.602) 0.00120 �0.016 0.733 0.010 0.583
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metropolitan level, which again demonstrate that ischemic

heart disease drives the cardiopulmonary association with air

pollution.5

Among the cancer deaths, we also observe ordering in

the risks, with decreasing risks as we move from lung cancer

to digestive cancer to all cancers. Given that the lung would

be most directly affected by air pollution, this finding gives

corroborative evidence that the association did not occur

by chance.

The larger effects in LA raise the question of whether

some underlying aspect of this subcohort differs in charac-

teristics that modify the association between mortality and air

pollution. We compared the full cohort with the LA subco-

hort and found no major differences in attributes likely to

modify the air pollution–mortality association, with the ex-

ception that the LA cohort was better educated. Based on the

findings from the earlier analyses in which subjects with lower

education experienced larger health effects,1,2,4 we would expect

the effect size in LA to be smaller than in the full cohort. Thus,

differences in underlying characteristics appear unlikely to ex-

plain the larger effects we observed in LA.

In comparing our results with the earlier national-level

ACS studies, we examined the reduction in PM2.5 levels in

LA to 50 other metropolitan areas that had data for 1980 and

for the year 2000 we used in our study. (See Krewski et al2

for a description of the data.) The mean reduction was 31%,

with a range from 0.4% to 59%. LA experienced a reduction

of 24.5%, just above the lowest quartile of 23.5%. PM2.5 has

therefore declined at a slightly slower rate in LA compared

with much of the United States. If we assume that current

PM2.5 in LA is at 75.5% (ie, accounting for 24.5% reduction)

of the 1980 value and the average metropolitan area is at 69%

of the 1980 value, some of the increase in the risks may be

attributable to the relatively smaller reductions in LA. We

tested this scaling effect by computing the ratio of reductions

(0.69/75.5 � 0.914) and multiplied our raw coefficients by

this factor before estimating the RR. The RR declines for

all-cause mortality with the 44 individual variables to just

over 15% and with maximal adjustment for confounders to

10%. Although reduced by up to 1.6%, we conclude that the

majority of the increase over previous estimates reported by

Pope et al34 is probably not attributable to relative differences

in the rate of reduction in ambient air pollution.

The findings for endocrine deaths also reveal another

interesting possibility. Chronic air pollution exposure, similar

to acute exposures,34 may adversely affect people with dia-

betes more than the general population. Alternatively, the

finding may indicate some uncontrolled confounding because

we expect people with type 2 diabetes to live in neighbor-

hoods with poorer social environments. This possibility ap-

pears unlikely because of the extensive control we applied for

contextual neighborhood variables. This potential problem

appears improbable because we see internal validity in the

effects of social confounders measured in the zip code areas.

Although the accidental deaths were unexpectedly ele-

vated in men, subsequent analyses revealed that the risks

were attributable to deaths in the early years of the cohort

before causes of death were coded in detail. As a result, we

were unable to assess specific causes for this elevation.

Ozone had few elevated risks in any of our analyses and

did not confound the relationship between particles and

mortality. This finding agrees with earlier ACS studies indi-

FIGURE 2. Risk plots summarizing mortality relative
risks (RR) and 95% CIs associated with a 10-�g/m3

increase in ambient PM2.5 by cause of death.
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cating that ozone is not associated with elevated mortality

risk,2,4 but contradicts studies on nonsmoking Adventists in

southern California, where associations between lung cancer

in males and ozone exposure were detected.35 Recent national

studies have reported elevated acute risks of ozone expo-

sure,30 but risk estimates were small, as would be expected of

a study on acute as compared with chronic effects.36

In assessing the association with freeway buffers, point

estimates were particularly elevated for lung cancer, endo-

crine, and digestive mortality. The PM—mortality associa-

tion remained robust to the freeway buffer, and risk estimates

were unchanged when this variable was included in the

model. Although imprecision in the freeway exposures re-

sulting from the zip code area assignment of proximity may

have biased our results toward the null, we did observe a RR

for lung cancer of 1.44, and the other cause-specific mortality

metrics indicate that more precise estimation of traffic effects

are warranted in future research.

In previous studies based on the ACS cohort, all indi-

viduals within the same metropolitan area were assigned the

same level of exposure based on the average ambient con-

centration observed at fixed-site air pollution monitors in that

city. We hypothesized that the use of such a broad ecologic

indicator of exposure leads to exposure measurement error,

which in turn can bias estimates of mortality associated with

air pollution exposure. Mallick et al37 analyzed the effect of

this source of exposure measurement error based on plausible

assumptions about error magnitude in the Six-Cities Study of

air pollution and mortality.6 This investigation suggested that

the RR of mortality resulting from particulate air pollution

may be underestimated by a factor of approximately 2- to

3-fold as a consequence of exposure misclassification, a

finding consistent with the present results.

We recognize the possibility of exposure measurement

error from using recent exposure models for a cohort enrolled

in 1982. There are empiric as well as theoretical reasons that

prevent this potential problem from seriously limiting the

results. Empirically, other ACS analyses done at the metro-

politan scale have found that these more recent exposure

estimates predicted mortality with results similar to those

based on earlier monitoring data.4 Also, the well-known

meteorologic and topographic conditions of LA, along with a

dominant on-shore breeze and steep mountains to the north

and east, control much of the spatial pattern of pollution in

the region. Our results agree with findings of earlier studies

on the pattern of spatial variation in PM.38 Although levels

may rise and fall in absolute terms, major changes in the

spatial patterns within the region over time appear unlikely,

and the rank ordering among assigned exposures should be

maintained.

From a theoretical perspective, even if spatially heter-

ogeneous changes to pollution levels within a city occurred as

a result of new emissions during the follow up, this would

lead to larger exposure measurement error, and a bias toward

the null would dominate, assuming a classic error structure.

With a Berkson error structure, the variance of the dose–

response estimate would be inflated.17 In either case, with

current exposure models, the health effects likely have a

lower probability of false-positive error, and we would expect

the measurement error to reduce effect sizes and inflate their

variance. High dose–response relationships can be caused by

underestimation of concentrations in the high-exposure areas,

but for these areas, the monitoring networks tend to be dense

and the kriging errors were smaller than in most of the study

area. Finally, the findings were robust to weighting for errors

in the kriging estimate (ie, eastern parts of the LA region),

which decreases the likelihood that elevated risks arise as a

result of underestimation in the high-exposure groups.

Although we are unable to reconstruct likely exposures

to PM2.5 for our exposure surface, we have assessed the

relationship at 51 central monitors between PM2.5 measured

in 1980 and those of a period similar to that of our 2000

estimates (ie, 1999–2000). These data were used in previous

national studies,4 in which details on their derivation are

available. Figure 3 illustrates the regression scatterplot for the

1999–2000 values on the 1980 measurements. The coeffi-

cient of determination is approximately 61%, and overall the

latter periods are predicted well by the earlier measurements.

In addition, we examined the relationship of historical

PM10 data in the LA area with the 2000 PM2.5 estimates used

in our analysis. The period of maximal overlap between the

sites occurs in 1993, where we had 8 PM10 readings at the

same locations as the subsequent PM2.5 measurements. By

FIGURE 3. 2000 PM2.5 regressed onto 1980 PM2.5 (n � 51
cities, R2

� 0.61).
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regressing the 2000 PM2.5 measurements on those PM10 mea-

surements in 1993, we observe an R2 value of 90% (Fig. 4).

In both of these correlation analyses comparing earlier

monitoring data with more recent PM2.5 measurements, we

found evidence that areas with higher particle concentrations

in earlier periods were likely to retain their spatial ranking.

Those metropolitan areas likely to be high in 1980 also had a

similar tendency in 2000.

Only the Norwegian cohort study has used time win-

dows of exposure.39 In this study, the authors found that

timing of the exposure window had little influence on the

estimation of health effects; they used exposure windows in

the middle of the follow-up period for most of their results.

All of the other cohort studies have taken a similar approach

to ours and computed the risk based on relatively short-term

air pollution monitoring data. A case–control study in Stock-

holm, Sweden, investigated time windows for lung cancer.40

This study found that windows of exposure 20 years before

disease onset were more strongly associated with cancer than

later periods. In our study, we found elevated risks of lung

and digestive cancers, even with the more recent exposure

model. The likely stability in the spatial pattern of exposure

in LA probably accounts for this similarity of our findings to

the 2 European studies that have used time windows.

Generally, our results agree with recent evidence sug-

gesting that intraurban exposure gradients may be associated

with even larger health effects than reported in interurban

studies. Hoek et al8 reported a doubling of cardiopulmonary

mortality (RR � 1.95; 95% CI 1.09–3.52) for Dutch subjects

living near major roads. Canadian cohort studies controlling

for medical care utilization and preexisting chronic condi-

tions through record linkage have also uncovered large health

effects with proximity to major roads at the intraurban

scale.16 Recent results from the cohort in Norway also sug-

gest associations between intraurban gradients in gaseous

pollutants and mortality.40 All of these studies have impli-

cated traffic as the source of pollution associated with the

larger observed effects. In LA, the proportion of primary

particles attributable to traffic is approximately 3.7%,

whereas in the rest of the country, it is 0.75%.41 Thus, beyond

improved precision in the exposure models, the larger health

effects reported here may be partly the result of higher

proportions of traffic particulate in LA.

No previous studies have assessed associations based

on a continuous exposure model with PM2.5, which limits the

use of the estimates for current policy debates that tend to

focus on fine particles. In this study, we used PM2.5 with a

continuous exposure metric that promotes comparison with

previous studies on health effects and contributes to current

regulatory debates.
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