The Cupola Scholarship at Gettysburg College

Environmental Studies Faculty Publications

Environmental Studies

3-25-2018

Spatial Analysis of Cirques from Three Regions of Iceland: Implications for Cirque Formation and Palaeoclimate

Heather A. Ipsen *Gettysburg College*

Sarah M. Principato Gettysburg College

Rachael E. Grube *Gettysburg College*

See next page for additional authors

Student Authors

Heather A. Ipsen '16, Gettysburg College Rachael E. Grube '16, Gettysburg College JestiowFthisea'rd, Activisburg Wollegat: https://cupola.gettysburg.edu/esfac

Part of the <u>Climate Commons</u>, <u>Environmental Sciences Commons</u>, and the <u>Environmental</u> <u>Studies Commons</u>

Share feedback about the accessibility of this item.

Ipsen, Heather A., Sarah M. Principato, Rachael E. Grube, and Jessica F. Lee. "Spatial analysis of cirques from three regions of Iceland: implications for cirque formation and palaeoclimate." Boreas 47, no. 2 (2018): 565-576.

This is the publisher's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/esfac/97

This open access article is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Spatial Analysis of Cirques from Three Regions of Iceland: Implications for Cirque Formation and Palaeoclimate

Abstract

This study is a quantitative analysis of cirques in three regions of Iceland: Tröllaskagi, the East Fjords and Vestfirðir. Using Google Earth and the National Land Survey of Iceland Map Viewer, we identified 347 new cirques on Tröllaskagi and the East Fjords region, and combined these data with 100 cirques previously identified on Vestfirðir. We used ArcGIS to measure length, width, aspect, latitude and distance to coastline of each cirque. Palaeo-equilibrium-line altitudes (palaeo-ELAs) of palaeo-cirque glaciers were calculated using the altitude-ratio method, cirque-floor method and minimum-point method. The mean palaeo-ELA values in Tröllaskagi, the East Fjords and Vestfirðir are 788, 643 and 408 m a.s.l, respectively. Interpolation maps of palaeo-ELAs demonstrate a positive relationship between palaeo-ELA and distance to coastline. A positive relationship between palaeo-ELA and latitude is observed on Vestfirðir, a negative relationship is observed on Tröllaskagi and no statistically significant relationship is present on the East Fjords. The modal orientation of cirques on Tröllaskagi and Vestfirðir is northeast, while orientation of cirques in the East Fjords is north. Palaeo-wind reconstructions for the LGM show that modal aspect is aligned with the prevailing north-northeast wind directions, although aspect measurements demonstrate wide dispersion. Cirque length is similar on Tröllaskagi and the East Fjords, but cirques are approximately 200 m shorter in Vestfirðir. Cirque widths are similar in all three regions. Comparisons with a global data set show that circues in Iceland are smaller and more circular than cirques in other regions of the world. Similar to glaciers in Norway and Kamchatka, our results demonstrate that access to a moisture source is a key parameter in determining palaeo-ELAs in Iceland. Temperatures interpreted from palaeo-ELA depressions suggest that these cirques may have been glaciated as recently as the Little Ice Age.

Keywords

Cirques, Iceland, climate record, glaciers, ice caps

Disciplines

Climate | Environmental Sciences | Environmental Studies

Authors

Heather A. Ipsen, Sarah M. Principato, Rachael E. Grube, and Jessica F. Lee

Spatial analysis of cirques from three regions of Iceland: Implications for cirque formation and palaeoclimate

Journal:	Boreas
Manuscript ID	BOR-041-2017.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ipsen, Heather; Syracuse University, Geography Principato, Sarah; Gettysburg College, Environmental Studies Grube, Rachael ; Gettysburg College, Environmental Studies Lee, Jessica; University of Delaware, Geography
Keywords:	cirque, Iceland, Geographic Information System (GIS), palaeoclimate, equilibrium-line altitude

Boreas

Spatial analysis of cirques from three regions of Iceland: Implications for cirque formation and palaeoclimate

HEATHER A. IPSEN, SARAH M. PRINCIPATO, RACHAEL E. GRUBE, AND JESSICA F. LEE

Ipsen, H.A., Principato, S.M., Grube, R.E., and Lee, J.F: Spatial analysis of cirques from three regions of Iceland: Implications for cirque formation and palaeoclimate

This study is a quantitative analysis of cirques in three regions of Iceland: Tröllaskagi, the East Fjords, and Vestfirðir. Using Google Earth and the National Land Survey of Iceland Map Viewer, we identified 347 new cirques on Tröllaskagi and the East Fjords region, and combined these data with 100 cirques previously identified on Vestfirðir. We used ArcGIS to measure length, width, aspect, latitude and distance to coastline of each cirque. Palaeo-equilibrium-line altitudes (ELAs) of palaeo-cirque glaciers were calculated using the altitude-ratio method, cirque floor method, and minimum point method. The mean palaeo-ELA values in Tröllaskagi, the East Fjords, and Vestfirðir are 788, 643, and 408 m a.s.l, respectively. Interpolation maps of palaeo-ELAs demonstrate a positive relationship between palaeo-ELA and distance to coastline. A positive relationship between palaeo-ELA and latitude is observed on Vestfirðir, a negative relationship is observed on Tröllaskagi, and no statistically significant relationship is present on the East Fjords. The modal orientation of cirques on Tröllaskagi and Vestfirðir is northeast, while orientation of cirques in the East Fjords is north. Palaeo-wind reconstructions for the LGM show that modal aspect is aligned with the prevailing north-northeast wind directions, although

aspect measurements demonstrate wide dispersion. Cirque length is similar on Tröllaskagi and the East Fjords, but cirques are approximately 200 m shorter in Vestfirðir. Cirque widths are similar in all three regions. Comparisons with a global dataset show that cirques in Iceland are smaller and more circular than cirques in other regions of the world. Similar to glaciers in Norway and Kamchatka, our results demonstrate that access to a moisture source is a key parameter in determining palaeo-ELAs in Iceland. Temperatures interpreted from palaeo-ELA depressions suggest that these cirques may have been glaciated as recently as the Little Ice Age.

Heather A. Ipsen (<u>haipsen@syr.edu</u>)

Syracuse University 900 South Crouse Ave.

Syracuse, NY 13244 USA

Sarah M. Principato (<u>sprincip@gettysburg.edu</u>) and Rachael E. Grube (rachaelgrube@gmail.com), Department of Environmental Studies, Gettysburg College, 300 North Washington St., Gettysburg, PA 17325, USA;

Jessica F. Lee (jle@udel.edu)

University of Delaware

210 South College Ave.

Newark, DE 19716 USA

Cirques are a common glacial erosive landform present in alpine regions. They are bowl-shaped depressions with a steep headwall and a gently sloping floor, created by an isolated, rotationally flowing glacier, and they periodically contain small climate-sensitive glaciers (e.g. Evans & Cox 1974; Porter 2001; Brook *et al.* 2006). The morphology, location, and aspect of ice-free cirques provide evidence of past glaciations and fluctuations in climate (e.g. Evans 1977; Meierding 1982; Evans 2006; Anders *et al.* 2010; Barr & Spagnolo 2013; 2015a,b). Quantifying cirque morphology provides information about the distribution of cirques and processes impacting cirque formation (Evans 2006; Barr & Spagnolo 2013; 2015a,b). Palaeoclimate records are commonly interpreted from cirque equilibrium line altitudes (ELAs), the elevation at which annual accumulation of snow equals annual ablation (e.g. Meierding 1982; Benn & Lehmkuhl 2000; Porter 2001). Reconstructing palaeo-ELAs is useful for palaeoclimate research because they are determined by changes in temperature and precipitation that affect the mass balance of glaciers over time (e.g. Garcia-Ruiz *et al.* 2000; Brook *et al.* 2006; Benn & Evans 2010; Bathrellos *et al.* 2014).

Synthesizing global datasets of cirques is useful for understanding morphometric parameters and the utility of cirques as palaeoenvironmental indicators. Barr & Spagnolo (2015a) provide an in-depth analysis of cirque properties including global distribution, aspect, palaeo-ELAs and morphometry. Mitchell & Humphries (2015) provide a comprehensive analysis of ice-free cirques from 56 different study areas from around the world. They quantify the altitude and relief of more than 14,000 cirques in order to demonstrate the relationship of cirque glaciation to mountain height (Mitchell & Humphries 2015).

The purpose of our study is to add to these global datasets by providing a regional analysis of ice-free circues from three regions of Iceland. We conduct a quantitative analysis of circues and palaeo-ELAs in Tröllaskagi, the East Fjords, and Vestfirðir (Fig. 1). We build upon morphometric analyses of circue glaciers on Vestfirðir by Principato & Lee (2014) and expand our analyses to include Tröllaskagi and the East Fjords region in order to create a regional comparison of cirques on Iceland. We focus our cirque analyses on morphology and palaeo-ELA reconstructions of palaeo-cirgue glaciers and compare our results from Iceland to a global dataset compiled by Barr & Spagnolo (2015a). It is generally accepted that ELA rises from the poles to the equator, although this relationship may be complicated at times by differential precipitation patterns (Benn & Evans 2010). Wind and radiation often combine to complicate the relationship between morphologic parameters and aspect (Evans 1977). Studies in Romania suggest that circuiting senerally have an aspect opposite the prevailing wind direction because glaciers tend to form on the leeward side of mountain ranges, where accumulation is greater (Mîndrescu et al. 2010). Evans (1977) suggests that glaciers generally form in shaded regions and with poleward aspects because there is a higher potential solar radiation on south-facing slopes in mid- to highlatitude regions. Radiation received increases with the steepness of slope angle relative to the position of the sun in a given area, although this relationship can also be affected by local weather (Evans 1977; Barr & Spagnolo 2013). Previous studies show that distance to moisture sources and proximity to the ocean influences the elevation of palaeo-ELAs (e.g. Benn & Evans 2010 Principato & Lee 2014; Barr & Spagnolo 2015a,b).

Study area

Iceland is located on the Mid-Atlantic Ridge and is composed primarily of basaltic volcanic rocks (Einarsson & Albertsson 1988). The bedrock in all three regions of our study, Tröllaskagi, the East Fjords, and Vestfirðir, is upper Tertiary basalt (Sigmundsson & Sæmundsson 2008). The oldest bedrock, located in east and west Iceland, is approximately 14 - 15 Ma, and bedrock in the north is approximately 12 Ma (Sigmundsson & Sæmundsson 2008). All three regions are located outside the active rift zone in central-eastern Iceland, and volcanic activity does not influence cirque glacier dynamics in these areas (Rubin 1990).

The climate in Iceland is cold-temperate and maritime, owing to its location in the path of the North Atlantic and the high-altitude westerly jet streams (Eiríksson & Geirsdóttir 1991). The Irminger Current (IC), the East Greenland Current (EGC), and the East Iceland Current (EIC) affect glaciers on Iceland (Fig. 2; Hopkins 1991; Ingolfsson et al. 1997; Stötter et al. 1999; Valdimarsson & Malmberg 1999; Principato 2008). The IC is a warm branch (> 5-8 °C) of the North-Atlantic Current (NAC) that flows north from latitudes south of Iceland (Hopkins 1991; Valdimarsson & Malmberg 1999). This current meets the cold EGC ($< 0^{\circ}-2^{\circ}C$) near the Greenland-Iceland Ridge, where it splits. One branch flows around the northwest peninsula of Iceland and eastward off the northern coast. A coastal current also runs clockwise around Iceland (Hopkins 1991; Valdimarsson & Malmberg 1999; Andresen et al. 2005). The movement of the polar front, which represents the zone between the ECG and the IC, causes changes in glacial ice extent on Iceland (e.g. Malmberg 1985; Justwan et al. 2008). The polar front also creates a climate gradient across Iceland from the colder northern areas to the warmer southern areas (e.g. Stefannson 1969; Geirstdóttir et al. 2009). Glaciation on Iceland presumably began in the Miocene and follows a glacial-interglacial cycle of about 100,000-years periodicity (Geirsdóttir

& Eiríksson 1994). Wastl *et al.* (2001) suggest that cirque glaciers on Tröllaskagi retreated from and reoccupied their cirques many times throughout Holocene. Modern glaciers are present in some cirques on Tröllaskagi, and surging behaviour has been studied by Brynjólfsson *et al.* (2012). Cirque glaciers on Vestfirðir most likely experienced similar retreat and reoccupation throughout the Pleistocene (Principato & Lee 2014), but active glaciers do not currently occupy the cirques on Vestfirðir or in the East Fjords region.

Current precipitation and temperature on Iceland are recorded by the Icelandic Meteorological Office (http://en.vedur.is/). Three weather stations on Vestfirðir and two weather stations on Tröllaskagi have continuous records from 2000 - 2011 (Table 1). The most recent continuous records from the East Fjords are from 1990 - 2001, which are recorded at three stations (Table 1). Using the methods of Dahl & Nesje (1996), Bakke et al. (2005) and Paasche et al. (2007) from studies in Norway, seasonal variations were also calculated using 1 May to 30 September for summer temperature and 1st October to 30th April for winter precipitation (Table 1). Mean annual temperature for all eight stations is similar, and variations in precipitation are observed as distance from coastline increases. Within each of the three regions, the stations closest to the coastline have the highest mean annual precipitation and higher winter precipitation compared to stations further from the coastline. Winds are stronger in the winter than summer, due to decreased insolation and heating (Einarsson 1984; Blöndal et al. 2011; Nawri *et al.* 2012). The dome shape of Iceland's topography generates higher wind speeds over the interior highlands, with the west and east regions of Iceland experiencing the lowest wind speeds due to sheltering (Nawri et al. 2012).

Boreas

Methods

Locating cirques

Cirques on Vestfirðir were identified and mapped by Principato & Lee (2014) using a combination of Google Earth and satellite imagery provided by the online map viewer of the National Land Survey of Iceland (NLSI) (<u>http://atlas.lmi.is/kortasja_en/</u>). We significantly expanded the cirque dataset for Iceland by also identifying and mapping cirques on the East Fjords and Tröllaskagi using the same methods. For all three regions, after identifying a cirque by its characteristic bowl shape in Google Earth, we imported these locations to ArcGIS. We overlaid the cirques on a 20 m digital elevation model of Iceland provided by the NLSI. Although modern cirque glaciers are also present on Iceland, we were unable to quantify subglacial bedrock topography so only ice-free cirques are used in our study.

Morphometric analyses

Morphometric characteristics for cirques on the East Fjords and Tröllaskagi, including length, width, altitudinal range, size, area, cirque-floor elevation, latitude, and distance to both the open ocean and fjord coastlines, were quantified using ArcGIS to supplement measurements made by Principato & Lee (2014) for Vestfirðir. Cirque boundaries were defined by polygons drawn manually around each landform (Fig. 3). The location of each cirque was taken as the point in the center of the cirque-floor (Bathrellos *et al.* 2014). Cirque length (L) is the length of the line dividing each cirque into two equal parts (i.e. the long axis), which connects the headwall to the toewall. Cirque width (W) is the longest line drawn orthogonal to the long axis. Altitudinal range (H), or cirque relief, is the minimum altitude in the cirque minus the maximum altitude (Barr & Spagnolo 2013). The minimum altitude was generally at the same elevation as the cirque-floor,

while the maximum altitude fell along the headwall of the cirque. From these measurements, we also determined cirque size using the equation defined by Barr & Spagnolo (2013): (L x W x H)^{1/3}. Ratios of L/H, W/H, and L/W were also quantified. The L/H ratio expresses a measure of cirque steepness, where a lower value indicates a greater rate of change in elevation (Porter 2001). L/W ratio defines cirque elongation, and a high value represents a long cirque and a low value represents a wide cirque. The W/H ratio is a measure of cirque incision, and a higher value indicates less incision.

Following the methods of Principato & Lee (2014), we measured coastal distances on Tröllaskagi and the East Fjords using the minimum distance between each cirque and the coastline in ArcGIS. The closest coastline to a given cirque could be either a fjord or the open ocean, depending on its location. We drew a polygon along the coast of each study area in ArcGIS to represent the boundary between land and the open ocean. This polygon helped us to differentiate the influence of the open ocean and the impact of fjord proximity. Spatial relationships between distance to the coastline and palaeo-ELAs were quantified using the Inverse Distance Weighting (IDW) tool in ArcGIS.

Palaeo-ELA calculations

We used three techniques to reconstruct palaeo-ELAs for Tröllaskagi and the East Fjords: the cirque-floor (CF) method, the altitude-ratio (THAR) method (summarized in Porter 2001), and the minimum-point (MP) technique (summarized in Barr & Spagnolo 2015b). Principato & Lee (2014) calculated palaeo-ELAs for Vestfirðir using the THAR and CF methods. Although some studies recommend using the glaciation limit instead of palaeo-ELA (e.g. Østrem 1966; Andrews

Boreas

1975), we chose to use palaeo-ELA to be consistent with the methods of Principato & Lee (2014).

Cirque-floor altitude represents a useful proxy for palaeo-ELAs because when cirques are occupied by glaciers confined within their limits, the steady-state ELA is generally close to the average altitude of the cirque floor (Porter 2001). We used ArcGIS to determine the elevation of circue floors on Iceland. We created a raster file based on the first derivative of the topography to determine the slope surface of the study area. Using the methods of Principato & Lee (2014), three lines were manually drawn over each cirgue: one along central axis of the cirgue, and two lines to the right and left, equidistant from the central axis. Profile graphs of each line were generated by ArcGIS to identify the headwall, toewall, and cirque floor (Fig. 3). The headwall is the point of greatest elevation of the cirque, and the toewall is the second highest well-defined peak (Fig. 3). The circue floor is interpreted as the lowest point between the headwall and toewall. We exported elevation data to Microsoft Excel to calculate the average elevation of the circue floors along the three profile lines and used this value as the circue-floor altitude. The median and minimum points along each line and their averages were also calculated to identify outliers or a skew in the data. Following the methods of Principato & Lee (2014), circues that did not have easily identifiable headwalls and toewalls were omitted from palaeo-ELA analyses, as it is likely that these circues experienced periglacial processes or mass movement resulting in postglacial modification (Beylich 2000; Decaulne & Sæmundsson 2006; Sanders et al. 2010). For this reason, we chose not to use the circue floor altitude as the absolute minimum altitude of each cirque (e.g. Spagnolo et al. 2017).

The THAR method is a second useful way to evaluate palaeo-ELAs because the firn limit on temperate glaciers at the end of the ablation season has been observed vertically

approximately midway between the head of a glacier and its lower limit when looking at its cross-section (Meierding 1982; Porter 2001). Glaciers with THAR values between 0.35-0.4 generated the most accurate results relative to actual ELA for glaciers in mid to high latitudes (Meierding 1982), and the ratio between the altitudinal range (H) of a glacier above the equilibrium line and the total altitudinal range is assumed to be 0.4 for this study. To calculate palaeo-ELAs, we used the equation summarized by Porter (2001): ELA = A_t + THAR (A_h - A_t), where A_h is the mean headwall altitude, and A_t is the mean toewall altitude for each circue. We calculated average headwall and toewall elevations for each circue based on the values determined from the CF technique above.

For circular on Tröllaskagi and the East Fjords where the toewall was difficult to identify from the DEM and slope surface, we used the MP technique (Barr & Spagnolo 2015b). Toewall locations were determined by a peak in elevation at the outlet of a circue, also known as the cirque threshold (Barr & Spagnolo 2015b). We drew a polygon based on inflection points from a 20 m contour layer created from the DEM in ArcGIS. The polygons represent the boundary of each cirque landform area, providing useful morphometric information for these additional cirques (Fig. 3). We used the minimum elevation within the polygon shape as the palaeo-ELA for the MP technique.

Cirque aspect

Aspect was measured on circues with profile lines used to calculate CF and THAR palaeo-ELAs, following the methods of Platt (2014). We excluded cirgues analyzed using the MP technique from our analyses of aspect because it is not possible to quantify aspect without the profile lines in ArcGIS. We created an aspect raster from the DEM and converted it from degrees to radians.

Boreas

Cosine and sine rasters were created from this raster, and the zonal means of the cosine and sine rasters along each cirque's profile lines were calculated and exported to Microsoft Excel. The average aspect for each cirque was calculated using the arctan2 function. The average aspect for each cirque was plotted on a linear histogram. To calculate the mean direction of all cirques for each of the three study areas, we used the methods of Davis (1986). Mean resultant length was calculated to measure the dispersion of aspect (Davis 1986). Rayleigh's test was used to determine whether or not the data were randomly or non-randomly distributed (Evans 1977). We converted all of the aspect measurements to northness before running regression analyses. Northness represents a continuous north-south gradient with values ranging from 1 for northfacing slopes and -1 for south-facing slopes (Platt 2014). Unlike aspect, which is a circular measure, northness may be used directly in linear regression.

Statistical analyses

We completed statistical analyses in Microsoft Excel, VassarStats (<u>http://vassarstats.net/</u>), and SPSS Statistics version 22. Linear regression analyses determine relationships between cirque length, width, altitudinal range, their ratios, palaeo-ELAs, distance to ocean and coast, aspect, and latitude, using the correlation and regression tools. T-tests were completed using SPSS in order to determine which morphometric characteristics have the most statistically significant relationship to palaeo-ELA in each study area. Statistical analyses of aspect discussed above were calculated in either Microsoft Excel or manually using the methods of Davis (1986).

Results

Landform locations

We identified 347 new cirques on Tröllaskagi (186 cirques) and the East Fjords region (161 cirques), and combined these new data with 100 cirques previously identified on Vestfirðir by Principato & Lee (2014) (Table S1). The East Fjords has the highest density of cirques, followed by Tröllaskagi and Vestfirðir. The majority of cirques in Vestfirðir and the East Fjords are evenly spread throughout the study area, but are concentrated closest to the coastline. In Tröllaskagi, cirques are spread uniformly into the interior (Fig. 4). The range of latitude for each of the three study areas is small but is largest for the East Fjords region at 0.9 degrees latitude (Table 2). The median latitude of cirques on Vestfirðir and Tröllaskagi is 65.9° N, and cirques on the East Fjords have a median latitude of 65.1° N.

Palaeo-ELA calculations and morphometric analyses

Palaeo-ELAs are highest in Tröllaskagi, and lowest in Vestfirðir. In Tröllaskagi, mean palaeo-ELA of cirques is 788 ± 188 m using the THAR method, 760 ± 190 m using the CF method, and 697 ± 208 m using the MP method. Cirques in the East Fjords region have palaeo-ELAs of 643 ± 180 m using the THAR method, 590 ± 184 m using the CF method, and 531 ± 177 m using the MP method. Mean palaeo-ELA of Vestfirðir cirques is 423 ± 12 m using the THAR method, and 395 ± 14 m using the CF method (Principato and Lee, 2014) (Table 2). In all three regions, cirques closer to the coastline have lower palaeo-ELAs compared to cirques further inland (Fig. 5). Error values represent one standard deviation for each measurement.

Cirques are longest in the East Fjords (mean length of 706 m) compared to Vestfirðir and Tröllaskagi, but they are widest in Vestfirðir (mean width of 752 m). In Tröllaskagi and the East Fjords, cirques are rounder and have larger areas than in Vestfirðir. Cirques in Tröllaskagi are

Boreas

also generally located further from both fjord coastlines and the open ocean on average compared to the other two study areas (Fig. 6; Table 2).

At least 45 statistically significant relationships exist for each morphometric parameter measured in the overall dataset (Table 3). Aspect and area have the fewest number of significant relationships with other morphometric characteristics of cirques on Iceland (Table 3). A strong positive correlation exists between palaeo-ELA and a cirque's distance to a water source (e.g. open ocean or fjord coastlines) in all three study areas (R = 0.69 for East Fjords; R = 0.62 for Vestfirðir; R = 0.75 for Tröllaskagi; p < 0.01) (Fig. 7). Statistically significant correlations (p < 0.01) also exist between palaeo-ELA and latitude on Tröllaskagi (R = -0.77) and Vestfirðir (R = 0.35), but no statistically significant correlation is observed on the East Fjords (R = 0.10; p < 0.01) (Fig. 8).

Cirque aspect

The modal aspect of the cirques on Tröllaskagi and Vestfirðir is northeast, with mean directions of 71° and 75° respectively (Fig. 9). Rayleigh's test indicates that the northeast distribution of cirques is not random for either Tröllaskagi (n = 186, z = 16.65, p < 0.05) or Vestfirðir (n = 101, z = 24.4, p < 0.001). The modal aspect of cirques in the East Fjords is north with a mean direction of 51°, and it is also non-randomly distributed (n = 103, z = 25.4, p < 0.001) (Fig. 9). All three regions have low values (≤ 0.10) for mean resultant length of aspect showing that there is a large amount of dispersion (Davis, 1986) (Fig. 9). Based on reconstructions of global winds during the Last Glacial Maximum (LGM) by Bush & Philander (1999), the modal aspects of cirques on Iceland have the same orientation as prevailing winds on the island at that time. Present day winds are weaker, but are also generally in the north-northeast direction (Bush &

Philander 1999). It is not known whether cirques were submerged during the LGM or not, and the consistency of prevailing wind patterns from the LGM through present likely influenced cirque glacier formation.

Global comparison

L, W, H, and L/W ratios for cirques on Iceland differ from those studied in other parts of the world (Table 4). A single sample t-test shows that size parameters of Icelandic cirques overall are significantly different from the average L, W, and H values recorded for cirque studies globally. However, cirques in Iceland are within one standard deviation of the median of L, W, H, and L/W ratios from the global dataset. The L/W ratio for Iceland is close to 1, suggesting that cirques in Iceland are rounder than cirques in other areas around the world. Cirques in Spain (Garcia-Ruiz *et al.* 2000) and Antarctica (Aniya & Welch 1981) are more elongate than the rest of the global dataset. Most cirques in the northern hemisphere have a north or northeast aspect, similar to cirques in Iceland (Table 4). In a direct comparison with cirques studied in Kamchatka, Russia by Barr & Spagnolo (2013; 2015b), ratios between L, W, and H in Iceland exhibit similar patterns.

Discussion

Morphometric analyses and palaeo-ELA correlations

The strong positive, linear relationship between palaeo-ELA and distance to the open ocean in Vestfirðir, Tröllaskagi, and the East Fjords suggests that access to a moisture source is critical to cirque glacier survival in Iceland. Distance to coastline and latitude are related for cirques on Tröllaskagi, more directly than in Vestfirðir and the East Fjords. On Tröllaskagi, higher latitude

Page 15 of 55

Boreas

locations are also closer to the coastline, and both correspond to lower cirque palaeo-ELAs. The opposite is true for cirques on Vestfirðir. The East Fjords region exhibits no significant relationship between cirque palaeo-ELA and latitude, but it has the largest range of latitude compared to our other two study areas. Analyses of cirques on the East Fjords illustrate the importance of distance to coastline in determining palaeo-ELA because cirques in the southern latitudes of the region are located at similar distances from the coastline as those at northern latitudes. The cirques closest to the coastline in the East Fjords have lower palaeo-ELAs regardless of their latitude. The variation in relationships between palaeo-ELA and latitude in our three study areas suggests that latitude is not as important in determining palaeo-ELA as is distance to a moisture source in Iceland. Modern weather station data (Table 1) shows that precipitation is higher closer to the coastline compared to further inland. This finding is similar to decades of measurements of ELAs on modern glaciers in Norway, which also demonstrate that glaciers closer to the coastline have lower ELAs (e.g. Chorlton & Lister 1971; Whalley 2004).

Although distance to coastline has a large influence on palaeo-ELA, it is not strongly related to the size and shape of cirques. Other studies have suggested that location may not be as important in determining cirque morphometric characteristics as are other localized factors (e.g. Evans 2006; Barr & Spagnolo 2015a). Wind direction and local weather conditions, which vary between different regions of Iceland, may play a larger role than other processes in dictating cirque size and shape (Porter 2001; Federichi & Spagnolo 2004; Barr & Spagnolo 2015a). Statistically significant relationships observed between cirque characteristics such as L, W, H, size, and area are easily explained by the fact that length and width determine size and area by definition.

Palaeo-ELAs are highest in Tröllaskagi, lower in the East Fjords, and lowest in Vestfirðir. Cirques in the East Fjords are roundest, followed by those on Tröllaskagi and Vestfirðir. Although the bedrock lithology is similar in these three regions, regional differences in temperature, wind, and precipitation likely contribute to variations in cirque morphology (Federici & Spagnolo 2004; Benn & Evans 2010; Barr & Spagnolo 2015a). The differences in average palaeo-ELA could be attributed to coastline shapes in the three regions of study. Both Vestfirðir and the East Fjords have winding coastlines, and most of the landmass within the bounds of our study areas is close to the ocean. Tröllaskagi's coastline is smoother than that of Vestfirðir and the East Fjords, so cirques are less likely to be in close proximity to the ocean or fjord coastline (Fig. 1). Tröllaskagi is also dryer, cooler, and windier than Vestfirðir and the East Fjords, and it is not as strongly influenced by the warm temperatures of the Irminger Current. Cirques in Tröllaskagi may receive less snow accumulation due to wind removal compared to other regions of Iceland because of higher observed wind speeds (Evans 2006).

Cirques in Iceland are round and shallow. Deepening of cirques is considered to be primarily governed by sub-glacial erosion (Benn & Evans 2010), and horizontal dimensions of cirques are thought to be dictated by freeze–thaw processes, glacial erosion, and bedrock geology (Sanders *et al.* 2012). The specific shape and size of cirques on Iceland are likely a result of the bedrock lithology and structure. As suggested by Principato & Lee (2014), due to lithological weaknesses, the Upper Tertiary flood basalts of Iceland are easier to erode horizontally as opposed to vertically for cirque formation on Vestfirðir, Tröllaskagi and the East Fjords (Einarsson 1973; Kristjánsson & Jóhannesson 1994; Hardarson *et al.* 1997).

Boreas

Cirque aspect

The majority of cirques in Iceland have a north-northeast aspect, similar to global analyses of cirques in the northern hemisphere (e.g. Aniya & Welch 1981; Evans & Cox 1995; Brook *et al.* 2006; Barr & Spagnolo 2015a). However, the prevailing wind direction across Iceland is in the same direction as modal cirque aspect, rather than opposite, as suggested by Mîndrescu *et al.* (2010). Although modal aspect is north-northeast, each compass direction is represented in our three regions of study (Fig. 9). The large dispersion in the aspect of cirques in Iceland suggests that the direction that cirques face is the result of a combination of many climate processes acting differently upon each cirque over time (Evans 1977, 2006).

Aspect is not significantly correlated with morphometric characteristics of cirques in Iceland. Although some studies (e.g. Aniya & Welch 1981) show that cirque glaciers with northnortheast aspect are larger, cirques in our study did not follow this pattern. Others have suggested that wind speed and snow accumulation may also dictate ELA and glaciation limits for cirques (e.g. Purves *et al.* 1999). However, our data are based on unglaciated cirques and we were unable to quantify glaciation limits or snow accumulation levels. Our results indicate that aspect is not as important as other factors in determining the morphometric features of each cirque. In support of this conclusion, other studies have found that local variations in snow accumulation, solar radiation, and/or preexisting morphological characteristics of cirque sites play a larger role in cirque formation than aspect (Evans & Cox 1995; Federici & Spagnolo 2004; Bathrellos *et al.* 2014).

Regional and global comparison

The palaeo-ELAs calculated for this study on Tröllaskagi are approximately 200 m lower than ELAs of 48 modern cirque glaciers measured by Caseldine & Stotter in the same region (1993).

At least a few glaciers on Tröllaskagi, such as Búrfellsjökull and Teigarjökull, are surging glaciers (Brynjólfsson *et al.* 2012), which may complicate palaeo-ELA interpretations. Modern cirque glaciers are not present on either Vestfirðir or the East Fjords region of this study, and a direct ELA comparison between modern cirque glaciers and glacier free cirques is not possible. However, Drangajökull, the modern icecap on eastern Vestfirðir, has an ELA of approximately 550-660 m a.s.l. (Björnsson 1979; Principato 2008). If this modern ELA is used as a frame of reference for cirque glaciers on Vestfirðir, then the region has experienced 127 - 237 m rise in ELA since these cirques were glaciated. Using a lapse rate of -6 °C km⁻¹ following the methods of Bakke *et al.* (2005) & Paasche *et al.* (2007), a 200 m change in ELA is interpreted as a 1.2 °C change in temperature. Based on weather station data collected from 1871 - 2000, a warming of $\sim 0.7 - 1.6$ °C is observed (Hanna *et al.* 2004), which suggests that several of the cirques in this study were glaciated as recently as the Little Ice Age.

Compared with a compilation of global cirque data by Barr & Spagnolo (2015a), cirques in Iceland are somewhat distinctive (Table 4). In terms of geographic location, we expect Icelandic cirques to be comparable in shape and size to those at similar latitudes. There are similarities with other cirque populations globally, since most average values for the parameters measured in other studies are within one standard deviation of mean values for Iceland. The standard deviations of morphometric measurements of cirques in this study are quite large however, suggesting that cirques in Iceland are very diverse in shape and size. Average measurements hide some of the localized differences in our study compared to others. Iceland experiences variability in changes in ocean currents and climatic conditions, with potential for different regional responses that may lead to variations in cirque morphology (e.g. Hopkins 1991; Ingolfsson *et al.* 1997; Valdimarsson & Malmberg 1999; Andresen *et al.* 2005).

Boreas

The similarly strong correlations between palaeo-ELA and access to a moisture source in Iceland and Kamchatka, Russia are likely a result of comparable site characteristics (Barr & Spagnolo 2013, 2015b). Kamchatka and Iceland are both strongly influenced by ocean currents (Valdimarsson & Malmberg 1999; Barr & Spagnolo 2013, 2015b), and both are located near volcanic zones, which could potentially influence bedrock structure and lithology in similar ways (Bernal *et al.* 2014). The bedrock in Kamchatka is dominated by Quaternary and Miocene– Pliocene volcanic complexes (Persits *et al.* 1997; Avdeiko *et al.* 2007; Barr & Spagnolo 2015b), which would presumably exhibit characteristics similar to the Upper Tertiary basalts in Iceland. However, cirques in Iceland are much more circular and smaller than those on Kamchatka, Russia. The presence of valley glaciation and ice caps on Iceland throughout the Pleistocene may have focused erosion further down valley away from cirques, leading to smaller cirques on Iceland than on Kamchatka.

Barr & Spagnolo (2013, 2015b) suggest that there is little evidence for geological control on cirque characteristics in Kamchatka. They conclude that the intensity of freeze–thaw cycles and/or glacial erosion resulted in the large and deep cirques found in their study area (Barr & Spagnolo 2013, 2015b). Glacial erosion patterns in Iceland during the LGM have not been thoroughly studied or recorded with the exception of a study conducted by Principato & Johnson (2009). However, ice streams and ice divides for the Icelandic ice sheet have been suggested (e.g. Bourgeois *et al.* 1998; Hubbard *et al.* 2006; Principato *et al.* 2006, 2016; Patton *et al.* 2017). Past analyses of marine sediment cores and seismic activity specify that the outer margins of the Icelandic ice sheet were offshore around much of the island during the LGM, unlike in Russia (e.g. Syvitski *et al.* 1999; Geirsdóttir *et al.* 2002; Principato *et al.* 2006). Consequently, variation

in cirque dimensions between Iceland and Kamchatka may be partly related to the differences in levels of intensity of erosion and climatic cycles throughout the Pleistocene and Holocene.

Conclusions

We provide detailed morphometric analyses and palaeo-ELA reconstructions of cirques in three regions of Iceland: Vestfirðir, Tröllaskagi, and the East Fjords, and build on the findings of Principato & Lee (2014). In the East Fjords region, cirques are more circular and larger than cirques in Vestfirðir and Tröllaskagi. Compared to other cirques globally, cirques in Iceland are rounder and smaller. The round shape is likely due to the structure of the basalt flows and the ease of lateral erosion. Modal cirque aspect in Iceland is north/northeast, aligned with prevailing wind direction during the LGM. The modal aspect and vector mean of cirques in Iceland match the aspect of most northern hemisphere cirques, and the wide dispersion of cirque aspect in Iceland is likely due to local weather anomalies.

Relationships between latitude and palaeo-ELA differ for all three regions with a positive relationship on Vestfirðir, a negative relationship on Tröllaskagi, and no relationship in the East Fjords. Our results suggest that the most important factor in determining past ELAs is access to a moisture source because cirques closest to the open ocean in all three regions have the lowest palaeo-ELAs. Temperatures interpreted from palaeo-ELA depressions suggest that these cirques may have been glaciated as recently as the Little Ice Age, which is consistent with previous studies.

Acknowledgements. This work was funded by a Research and Professional Development grant from Gettysburg College to SMP, by a Howard Hughes Medical Institute Grant to Gettysburg

College (Enhancing Cross-disciplinary Sciences at Gettysburg, Grant # 52007540), and by a

Kolbe summer fellowship to REG. We thank Drs. Rud Platt and Andy Wilson for their GIS

advice. The comments of Dr. Iestyn Barr, the Editor, Professor Jan A. Piotrowski, and an

anonymous reviewer greatly improved this manuscript.

References

Anders, A. M., Mitchell, S. G. & Tomkin, J. H. 2010: Cirques, peaks, and precipitation patterns in the Swiss Alps: Connections among climate, glacial erosion, and topography. *Geology 38*, 239-242.

Andresen, C. S., Bond, G., Kuijpers, A., Knutz, P. C. & Bjorck, S. 2005: Holocene climate variability at multidecadal time scales detected by sedimentological indicators in a shelf core NW off Iceland. *Marine Geology 214*, 323-338.

Andrews, J. T. 1975: *Glacial Systems: an Approach to Glaciers and their Environments*. 191pp. Duxbury Press, North Scituate.

Aniya, M. & Welch, R. 1981: Morphometric analyses of Antarctic cirques from photogrammetric measurements. *Geografiska Annaler, Series A 63*, 41–53.

Avdeiko, G. P., Savelyev, D. P., Palueva, A. A., & Popruzhenko, S. V. 2007: Evolution of the Kurile–Kamchatkan volcanic arcs and dynamics of the Kamchatka–Aleutian junction. *Geophysical Monograph Series — American Geophysical Union* 172, 37–55.

Bakke, J., Dalh, S. O. & Nesje, A. 2005: Lateglacial and early Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, western Norway. *Journal of Quaternary Science 20*, 179-198.

Barr, I. D. & Spagnolo, M. 2013: Palaeoglacial and palaeoclimatic conditions in the NW Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka Peninsula. *Geomorphology 192*, 15-29.

Barr, I. D.& Spagnolo, M. 2015a: Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. *Earth-Science Reviews 151*, 48–78.

Barr, I. D. & Spagnolo, M. 2015b: Understanding controls on cirque floor altitudes: Insights from Kamchatka. *Geomorphology 248*, 1–13.

Bathrellos, G. D, Skilodimou, H. D., & Maroukian, H. 2014: The spatial distribution of middle and late Pleistocene cirques in Greece. *Geografiska Annaler, Series A, Physical Geography*

96, 323-338.

Benn, D. I. & Lehmkuhl, F. 2000: Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. *Quaternary International 65*, 15-29.

Benn, D. I. & Evans, D. J. 2010: Glaciers and Glaciation, 816 pp. Routledge, New York.

Bernal, N. F., Gleeson, S. A., Dean, A. S., Liu, X. M. & Hoskin, P. 2014: The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand. *Geochimica et Cosmochimica Acta 126*, 265–283.

Beylich, A. A., 2000: Geomorphology, Sediment Budget, and Relief Development in Austdalur, Austfirðir, East Iceland. *Arctic, Antarctic, and Alpine Research 32*, 466-477.

Björnsson, H. 1979: Glaciers in Iceland. Jökull 29, 74-80.

Blöndal, J., Birgisson, T., Björnsson, H., Jónasson, K., & Petersen, G. N. 2011: Vindhraðamælinga og sambreytni vinds. *Report VÍ 2011-014*, Icelandic Meteorological Office, Reykjavik, Iceland.

Bourgeois O, Dauteuil O, & Vliet-Lanoe Brigitte van. 1998: Pleistocene subglacial volcanism in Iceland: tectonic implications. *Earth and Planetary Science Letters 164*, 165–178.

Brynjólfsson, S., Ingólfsson, O., and Schomacker, A. 2012: Surge fingerprinting of cirque glaciers at the Tröllaskagi peninsula, North Iceland. *Jökull 62*, 153-168.

Brook, M. S., Kirkbride, M. P., & Brock, B. W. 2006: Cirque development in a steadily uplifting range: rates of erosion and long-term morphometric change in alpine cirques in the Ben Ohau Range, New Zealand. *Earth Surface Processes and Landforms 31*, 1167–1175.

Bush, A. & Philander, S. 1999: The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model. *Journal of Geophysical Research 104*, 24,509–24,525.

Caseldine, C. & Stotter, J. 1993: 'Little Ice Age' glaciation of Tröllaskagi peninsula, northern Iceland: climatic implications for reconstructed equilibrium line altitudes (ELAs). *The Holocene 3*, 357–366.

Chorlton, J. C. & Lister, H. 1971: Geographical Control of Glacier Budget Gradients in Norway *Norsk geografisk tidsskrift 25*, 159-164.

Dahl, S. O. & Nesje A. 1996: A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. *The Holocene* 6, 381-398.

Boreas

Davis, J. C. 1986: *Statistics and Data Analysis in Geology*. 646 pp. John Wiley & Sons, New York.

Davis, P. T. 1999: Cirques of the Presidential Range, New Hampshire, and surrounding alpine areas in the northeastern United States. *Géographie Physique et Quaternaire 53*, 25–45.

Decaulne, A. & Sæmundsson, Þ. 2006: Meteorological conditions during slush-flow release and their geomorphological impact in northwestern Iceland: a case study from the Bíldudalur valley. *Geografiska Annaler, Series A, Physical Geography* 88, 187–197.

Einarsson T. 1973: Geology of Iceland. Arctic Geology: American Association of Petroleum Geologists, Memoir 19, 171–175.

Einarsson, M. Á. 1984: Climate of Iceland. World Survey of Climatology 15, 673-697.

Einarsson, T. & Albertsson, K. J. 1988: The glacial history of Iceland during the past three million years. *Philosophical Transaction of the Royal Society of London B 318*, 637-644.

Eiríksson, J. & Geirsdóttir, A. 1991: A record of Pliocene and Pleistocene glaciations and climatic changes in the North Atlantic based on volcanic and sedimentary facies in Iceland. *Geology 101*, 147-159.

Evans, I. S. 1977: World-wide variations in the direction and concentration of cirque and glacier aspects. *Geografiska Annaler, Series A, Physical Geography 59*, 151–175.

Evans, I. S. 2006: Allometric development of glacial cirque form: geological, relief, and regional effects on the cirques of Wales. *Geomorphology* 80, 245–266.

Evans, I. S. & Cox, N. J. 1974: Geomorphometry and the Operational Definition of Cirques. *Area* 6, 150-153.

Evans, I. S. & Cox, N. J. 1995: The form of glacial cirques in the English Lake District, Cumbria. *Zeitschrift für Geomorphologie N.F. 39*, 175–202.

Federici, P. R. & Spagnolo, M. 2004: Morphometric analysis on the size, shape and areal distribution of glacial circues in the Maritime Alps (Western French Italian Alps). *Geografiska Annaler, Series A 86*, 235–248.

García–Ruiz, J. M., Gómez–Villar, A., Ortigosa, L., & Martí–Bono, C., 2000: Morphometry of glacial cirques in the Central Spanish Pyrenees. *Geografiska Annaler, Series A 82*, 433–442.

Geirsdóttir, Á. & Eiríksson, J. 1994: Growth of an intermittent ice sheet in Iceland during the late Pliocene and early Pleistocene. *Quaternary Research 42*, 115-130.

Geirsdóttir, Á., Andrews, J. T., Ólafsdóttir, S., Helgadóttir, G. & Harðardóttir, J. 2002: A 36 Ky record of iceberg rafting and sedimentation from north-west Iceland. *Polar Research 21*, 291-298.

Geirsdóttir, Á., Miller, G. H., Axford, Y. & Ólafsdóttir, S. 2009: Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. *Quaternary Science Reviews 28*, 2107-2118.

Hanna, E., Jónsson, T. & Box, J. E. (2004): An analysis of Icelandic climate since the nineteenth century. *International Journal of Climatology* 24, 1193-2004.

Hardarson, B. S., Fitton, J. G., Ellam, R. M. & Pringle, M. S. 1997: Rift relocation: a geochemical and geochronological investigation of a palaeo-rift in Northwest Iceland. *Earth and Planetary Science Letters* 153, 181-196.

Hassinen, S. 1998: A morpho-statistical study of cirques and cirque glaciers in the Senja–Kilpisjärvi area, northern Scandinavia. *Norsk Geografisk Tidsskrift 52*, 27–36.

Hopkins, T. S. 1991: The GIN Sea- A synthesis of its physical oceanography and literature review 1972-1985. *Earth Science Reviews* 30, 175-318.

Hubbard, A., Sugden, D., Dugmore, A. J., Norðdahl, H. & Petursson, H. G. 2006: A modelling insight into the Icelandic last glacial maximum ice sheet. *Quaternary Science Reviews* 25, 2283-2296.

Ingólfsson, O., Bjorck, S., Haflidason, H.,& Rundgren, M. 1997: Glacial and Climatic Events in Iceland Reflecting Regional North Atlantic Climatic Shifts During the Pleistocene-Holocene Transition. *Quaternary Science Reviews 16*, 1135-1144.

Justwan, A., Koc, N. & Jennings, A. E. 2008: Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. *Quaternary Science Reviews 27*, 1571-1582.

Kristjánsson, L. & Jóhannesson, H. 1994: Stratigraphy and palaeomagnetism of the lava pile south of Ísafjarðardjúp, NW Iceland. *Jökull 44*, 3-16.

Křížek, M., Vočadlová, K. & Engel, Z. 2012: Cirque overdeepening and their relationship to morphometry. *Geomorphology* 139–140, 495–505.

Malmberg, S.A. 1985: The water masses between Iceland and Greenland. *In* Stefánsson, U. (ed.): *Chemical tracers for studying water masses and physical processes in the sea: Proceedings of a Nordic Symposium in Reykjavík, August 29 - September 1, 1984. Rit Fiskideildar = Journal of the Marine Research Institute Reykjavik 9,* 127-140. Marine Research Institute, Reykjavik.

Meierding, T. C. 1982: Late Pleistocene glacial equilibrium-line altitudes in the Colorado Front Range: a comparison of methods. *Quaternary Research 18*, 289-310.

Mîndrescu, M., Evans, I. S., & Cox, N. J. 2010: Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods. *Journal of Quaternary Science 25*, 875–888.

Mitchell, S. G. & Humphries, E. E. 2015: Glacial cirques and the relationship between equilibrium line altitudes and mountain range height. *Geology* 43, 35–38.

Nawri, N., Björnsson, H., Petersen, G., & Jónasson, K. 2012: Surface Wind and Air Temperature over Iceland based on Station Records and ECMWF Operational Analyses. *Report VÍ 2012-008*, 55 pp. Icelandic Meteorological Office, Reykjavik, Iceland.

Østrem, G., Liestel, O. & Wold, B. 1966. Glaciological investigations at Nigardsbreen, Norway. *Norsk geografisk tidsskrift 30*, 187-209.

Paasche, Ø., Dahl, S.O., Bakke, J., Løvlie, R. & Nesje, A. 2007: Cirque glacier activity in arctic Norway during the last deglaciation. *Quaternary Research 68*, 387-399.

Patton, H., Hubbard, A., Bradwell, T., & Schomacker, A. 2017: The configuration, sensitivity, and rapid retreat of the Late Weichselian Icelandic ice sheet. *Earth-Science Reviews 166*, 223-245.

Persits, F. M., Ulmishek, G. F., Steinshouer, D. W. 1997: Maps showing geology, oil and gas fields and geologic provinces of the Former Soviet Union. *USGS Open-file Report 97-470E*.

Platt, R. V. 2014: Wildfire Hazard in the Home Ignition Zone: An object-oriented analysis integrating LiDAR and VHR Satellite Imagery. *Applied Geography 51*, 108–117.

Principato, S. M. 2008: Geomorphic evidence for Holocene glacial advances and sea level fluctuations on eastern Vestfirðir, northwest Iceland. *Boreas 37*, 132-145.

Principato, S. M., Geirsdóttir, Á, Jóhannsdóttir, G. E. & Andrews, J. T. 2006: Late Quaternary glacial and deglacial history of eastern Vestfirðir, Iceland using cosmogenic isotope exposure ages and marine cores. *Journal of Quaternary Science 21*, 271-285.

Principato, S. M. & Johnson, J. 2009: Using a GIS to Quantify Patters of Glacial Erosion on Northwest Iceland: Implications for Independent Ice Sheets. *Arctic, Antarctic, and Alpine Research 41*, 128-137.

Principato, S.M. & Lee, J.F. 2014: GIS analysis of cirques on Vestfirðir, northwest Iceland: implications for palaeoclimate. *Boreas* 43, 807–817.

Principato, S.M., Moyer, A.N., Hampsch, A.G. & Ipsen, H.A. 2016: Using GIS and streamlined landforms to interpret palaeo-ice flow in northern Iceland. *Boreas* 45, 470-482.

Porter, S. C. 2001: Snowline depression in the tropics during the Last Glaciation. *Quaternary Science Reviews 20,* 1067–1091.

Purves, R. S., Mackaness, W.A., & Sugden, D.E. 1999: An approach to modelling the impact of snow drift on glaciation in the Cairngorm Mountains, Scotland. *Journal of Quaternary Science* 14, 313-321.

Rubin, A. M. 1990. A comparison of rift-zone tectonics in Iceland and Hawaii. *Bulletin of Volcanology 52*, 302-319.

Sanders, J. W., Cuffey, K. M., Macgregor, K. R., Kavanaugh, J. L., & Dow, C. F. 2010: Dynamics of an alpine circu glacier. *American journal of science 310*, 753-773.

Sanders, J. W., Cuffey, K. M., Moore, J. R., MacGregor, K. R. & Kavanaugh, J. L 2012: Periglacial weathering and headwall erosion in cirque glacier bergschrunds. *Geology 40*, 779–782.

Sigmundsson, F., & Sæmundsson, K. 2008: Iceland: A window on North-Atlantic divergent plate tectonic and geologic processes. *Episodes 31*, 92-97.

Spagnolo, M., Pellitero, R., Barr, I. D., Ely, J. C., Pellicer, X. M. & Rea, B. R. 2017: ACME, a GIS tool for Automated Cirque Metric Extraction. *Geomorphology* 278, 280-286.

Stefansson, U. 1969: Temperature variations in the North Icelandic coastal area during recent decades. *Jökull 19*, 18-28.

Stötter, J., Wastl, M., Caseldine, C. & Häberle, T. 1999: Holocene palaeoclimatic reconstruction in northern Iceland: approaches and results. *Quaternary Science Reviews 18*, 457-474.

Syvitski, J. P. M., Jennings, A. E. & Andrews, J. T. 1999: High-resolution seismic evidence for multiple glaciation across the Southwest Iceland shelf. *Arctic, Antarctic, and Alpine Research 31*, 50–57.

Valdimarsson, H., & Malmberg, S. A. 1999: Near-surface circulation in Icelandic waters derived from satellite tracked drifters. *Rit Fiskideildar 16*, 23-39.

Wastl, M., Stotter, J. & Caseldine, C. 2001: Reconstruction of Holocene variations of the upper limit of tree or shrub birch growth in northern Iceland based on evidence from Vesturardalur-Skidadalur, Trollaskagi. *Arctic, Antarctic, and Alpine Research 33*, 191-203.

Whalley, W. B. 2004: Glacier Research in Mainland Scandinavia. *In* Cecil, L.D., Green, J.R. & Thompson, L.G. (eds.): *Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers*, 121-139, Kluwer Academic Publishers, Dordrecht.

List of Figures

1. Location of the study area on Vestfirðir (V), Tröllaskagi (T), and East Fjords (E) in Iceland.

2. Surface ocean currents in the North Atlantic Ocean surrounding Iceland: North Atlantic Current (NAC), Irminger Current (IC), East Icelandic Current (EIC), and East Greenland Current (EGC) (modified from Justwan *et al.* 2008).

3. A. Slope of DEM of cirque from the East Fjords with three profile lines used for analysis. B. Profile from central axis of cirque illustrating easily identifiable headwall, cirque-floor, and toewall based on changes in slope. C. Photograph of a cirque from the west fjords. D. Polygon of a cirque used to calculate the minimum elevation of the cirque floor using the MP technique. Contour lines have a 20m interval.

4. Location of cirques from all three study areas on Vestfirðir (V), East Fjords (E), and Tröllaskagi (T). Each cirque is denoted by a red dot on the map.

5. Interpolation surface on Vestfirðir (V), East Fjords (E), and Tröllaskagi (T) created using Inverse Distance Weighting (IDW) in ArcGIS. The pattern demonstrates that cirques with low ELAs are located close to the ocean and cirques with higher ELAs are further from the ocean.

6. Average morphometric shape of cirques illustrating the difference in area (shaded polygon), length (solid line), and width (dashed line) of cirques from Vestfirðir (V), East Fjords (E), and Tröllaskagi (T).

7. Distance to coastline versus palaeo-ELA of cirque glaciers reconstructed using the THAR method for Vestfirðir, Tröllaskagi, and the East Fjords.

8. Latitude versus palaeo-ELA of cirques on Vestfirðir, Tröllaskagi, and the East Fjords reconstructed using the THAR method.

9. Linear histograms of aspect data for the three study regions Vestfirðir (A), Tröllaskagi (B) and East Fjords (C). Mean direction of aspect for each study area (VM) and mean resultant length or dispersion (RL) are calculated using the methods of Davis (1986).

List of Tables

Table 1. Mean annual temperature (MAT), mean annual precipitation (MAP), summer temperature (Summer T), winter precipitation (Winter P), and distance to ocean (km) collected from weather stations in Vestfirðir, Tröllaskagi, and the East Fjords. Temperature and precipitation data are provided by the Icelandic Meteorological Office.

Table 2. Comparison of morphometric parameters across all datasets. Values specify means for each study area.

Table 3. Correlation coefficients for relationships between each morphometric parameter measured in this study. One star indicates significance at p = 0.05; two stars indicates significance at p = 0.01.

Table 4. Global comparison of cirque morphometry.

Supporting Information

Table S1. Latitude and longitude of all cirques used in this study. DD refers to decimal degrees.

Page 33 of 55

	MAT	MAP	Summer T	Winter P	Distance to ocean
	(°C)	(mm)	(°C)	(mm)	(km)
Vestfirðir					
Æðey	4.03	653	8.36	62.81	34
Bolungarvík	4.02	848	8.2	87.69	8
Lambavatn	4.81	919	9.08	80.08	1
Tröllaskagi					
Akureyri	4.3	549	9.22	54.46	57
Sauðanesviti	4.3	864	7.23	71.32	0.2
East Fjords					
Egilsstaðir	3.56	853	8.62	90.4	33
Neskaupstaður	4.23	1945	7.83	208.2	2
Seyðisfjörður	4.08	1641	8.17	182.3	14

8.62 .641 8.17

	Length (m)	Width (m)	Area (km ²)	Lat. range	Dist. to fjord (km)	Dist. to ocean (km)	Modal aspect	ELA (THAR = 0.4)	ELA (CF)	ELA (MP)
Vestfirðir	515	752	0.27	0.8	2.7	13.8	NE	423	395	
Tröllaskagi	701	662	0.42	0.7	15.4	26.4	NE	788	760	697
E. Fjords	706	715	0.39	0.9	4.6	15.1	Ν	643	590	531

Page 41 of 55

Boreas

	L	W	Н	Area	Min. Elev.	Max. Elev.	THAR= 0.4	CF	Dist. to Coast	Dist. to Ocean	Lat.	Long.	
L	1	0.7**	0.7**	0.8**	-0.3**	0.1	-0.2*	-0.1*	0.02	-0.1	0.1	0.1	
W		1	0.6**	0.9**	-0.2*	0.2*	-0.1	-0.1	0.02	-0.03	0.1	0.1	
Н			1	0.7**	0.4**	0.1	-0.2**	-0.2**	-0.1	-0.1	0.2*	0.2**	
Area				1	-0.2**	0.1	-0.1	-0.1	0.04	-0.03	0.04	0.1	
Min. elev.					1	0.9**	0.9**	0.99**	0.7**	0.7**	-0.8**	0.1	
Max. elev.						1	0.9**	0.9**	0.8**	0.7**	-0.7**	0.2**	
THAR = 0.4							1	0.96**	0.8**	0.7**	-0.8**	0.2*	
CF								1	0.8**	0.7**	-0.8**	0.1*	
Dist. to coast									1	0.8**	-0.8**	0.2**	
Dist. to ocean										1	-0.8**	0.2**	
Lat.											1	0.1	
Long.												1	
Aspect													

Boreas

Region	Number of cirques	L (mean)	W (mean)	H (mean)	L/W	Aspect
Victoria Valley, Antarctica ¹	56	2116	1679	849	1.26	NE
Ben Ohau Range, New Zealand ²	92	489	536	216	0.91	
Cumbria, England ³	158	620	680	241	0.91	Ν
Wales, UK ⁴	260	667	772	269	0.86	
Senja-Kilpisjarvi, Scandinavia ⁵	539	845	888	400	0.95	NE
New Hampshire, USA ⁶	49	1687	954	442	1.77	
Central Spanish Pyrenees, Spain ⁷	206	519	691	364	0.75	Ν
Maritime Alps: France, Italy ⁸	432	672	663	355	1.01	Ν
Thessaly, Greece ⁹	50	731	473	289	0.70	Ν
Bohemian Massif: Czech Republic, Germany, Poland ¹⁰	27	788	700	272	0.95	
Romanian Carpathians, Romania ¹¹	631	654	718	209	0.91	ENE
Kamchatka, Russia ¹²	3520	868	992	421	0.88	Ν
Vestfirdir, Iceland ¹³	101	515	752	241	0.68	NE
Trollaskagi, Iceland	186	701	662	238	1.06	NE
East Fjords, Iceland	161	706	715	242	1.00	Ν
Iceland (overall)	447	661	700	240	0.98	NNE

¹ Aniya & Welch (1981) ² Brook *et al.* (2006) ³Evans & Cox (1995) ⁴Evans (2006) ⁵Hassinen (1998) ⁶Davis (1999) ⁷Garcia-Ruiz *et al.* (2000) ⁸Federici & Spagnolo (2004) ⁹Bathrellos *et al.* (2014) ¹⁰Křížek *et al.* (2012) ¹¹Mîndrescu *et al.* (2010) ¹²Barr & Spagnolo (2013) ¹³Principato & Lee (2014)

1	
2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
01	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>4</u> 1	
יד ⊿י2	
⊐ב ⊿2	
40	
44 15	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
00 EC	
00 57	
5/	
58	
59	

60

Table S1. Latitude and longitude of all cirques used in this study. DD refers to decimal degrees.

1 66.0713 2 66.0598 3 66.0500 4 66.0430 5 66.0139 6 66.0070 7 65.9476 8 65.8907 9 65.8968	-18.5801 -18.5661 -18.5766 -18.6029 -18.6789 -18.6868 -18.7069 -18.7387
2 66.0598 3 66.0500 4 66.0430 5 66.0139 6 66.0070 7 65.9476 8 65.8907 9 65.8968	-18.5661 -18.5766 -18.6029 -18.6789 -18.6868 -18.7069 -18.7387
3 66.0500 4 66.0430 5 66.0139 6 66.0070 7 65.9476 8 65.8907 9 65.8968	-18.5766 -18.6029 -18.6789 -18.6868 -18.7069 -18.7387
4 66.0430 5 66.0139 6 66.0070 7 65.9476 8 65.8907 9 65.8968	-18.6029 -18.6789 -18.6868 -18.7069 -18.7387
5 66.0139 6 66.0070 7 65.9476 8 65.8907 9 65.8968	-18.6789 -18.6868 -18.7069 -18.7387
6 66.0070 7 65.9476 8 65.8907 9 65.8968	-18.6868 -18.7069 -18.7387
7 65.9476 8 65.8907 9 65.8968	-18.7069 -18.7387
8 65.8907 9 65.8968	-18.7387
9 65 8968	
) 05.0700	-18.7568
10 65.8872	-18.6948
65.9144	-18.7088
12 65.9146	-18.6802
13 65.9140	-18.7632
14 65.8887	-18.8193
15 65.8978	-18.8623
16 65.8922	-18.8718
17 65.8752	-18.8513
18 65.8796	-18.8693
19 65.8756	-18.8814
20 65.8833	-18.8944
65.8789	-18.9013
22 65.9015	-18.9206
65.8846	-18.9279
24 65.9008	-18.9923
25 65.9234	-18.9919
26 65.9135	-19.0002
65.8935	-18.9782
28 65.9040	-19.0453
29 65.9085	-19.0670
30 65.9126	-19.0868
31 65.9040	-19.1223
32 65.9203	-19.1115
33 65.9216	-19.1505
34 65.9304	-19.1879
35 65.9550	-19.1735
36 65.9613	-19.1666
37 65.9695	-19.1755

0				
2				
4	38	65.9811	-19.1734	
5	39	65.9447	-19.1028	
6	40	65.9536	-19.0507	
/ 8	41	65.9676	-19.0515	
9	42	65.9700	-19.0668	
10	43	65 9696	-19 0899	
11	44	65 9832	-19 0427	
12	45	66 0071	-19 1924	
14	46	66 0238	10 1808	
15	40	66 0208	-19.1090	
16 17	47	66.0574	-19.2030	
18	48	00.03/4	-19.1894	
19	49	66.045/	-19.1930	
20	50	65.9519	-19.2766	
21 22	51	65.9884	-19.0873	
23	52	65.9804	-18.8553	
24	53	65.9517	-18.8852	
25	54	65.9545	-18.8975	
26 27	55	65.9690	-18.8932	
28	56	65.9756	-18.8955	
29	57	66.1488	-19.0128	
30	58	66.1709	-18.9139	
32	59	66.0255	-18.8115	
33	60	66 0333	-18 8101	
34	61	66 0366	-18 7888	
35	62	66 0392	-18 7652	
37	63	66 0447	-18 7730	
38	64	66 0427	-18.7757	
39	65	66.0620	-10.7978	
40	03	00.0080	-16.6013	
42	00	66.0841	-18.7392	
43	6/	66.0902	-18./3/5	
44 45	68	66.10/2	-18.7608	
46	69	66.1100	-18.8460	
47	70	66.1145	-18.8449	
48	71	66.1201	-18.8519	
49 50	72	66.0435	-18.5655	
51	73	65.7802	-18.3259	
52	74	65.6720	-18.6222	
53 54	75	65.6696	-18.6380	
55	76	65.6711	-18.6508	
56	77	65.6418	-18.6771	
57	78	65.6465	-18.6963	
58 59				

Page	46	of	55
------	----	----	----

2			
3	79	65 6450	-18 7418
4	80	65 7276	-18 8254
6	81	65 7424	-18 8377
7	82	65 7608	-18 8827
8	83	65 7706	-18 6666
10	84	65 7806	18 6720
11	04 0 <i>5</i>	03.7890	-18.0/29
12	83	05.7818	-18.0097
13	80	65.9034	-18.834/
15	87	65.8460	-18.64/1
16	88	65.8377	-18.7704
17 18	89	65.8285	-18.8421
19	90	65.7915	-18.9449
20	91	65.7965	-18.8889
21	92	65.7891	-18.8485
22	93	65.7804	-18.8295
24	94	65.8056	-19.0031
25	95	65.8701	-19.0765
26 27	96	65.8693	-19.1125
28	97	65.8708	-19.1289
29	98	65.8698	-19.1737
30	99	65.8755	-19.2019
32	100	65 8750	-19 2195
33	101	65 8739	-19 2288
34	102	65 8789	-19 2439
35	102	65 8800	-19 2626
37	104	65 8805	-19 2714
38	104	65 8878	10 28/1
39	105	65 8607	10 1217
40	100	03.8007	-19.1317
42	107	65.8107	-19.1049
43	108	65.81/5	-19.1/68
44 45	109	65.8245	-19.1863
46	110	65.8257	-19.1943
47	111	65.8139	-19.2057
48	112	65.8227	-19.2277
49 50	113	65.8066	-19.1376
51	114	65.8013	-19.0629
52	115	65.7959	-19.1476
53 54	116	65.7973	-19.1772
55	117	65.7998	-19.2008
56	118	65.8112	-19.2415
57 59	119	65.8120	-19.0357
50 59		-	
60			

1 2				
3	120	(5.701)	10 0012	
4	120	65.7213	-18.9913	
5	121	65.7357	-19.0421	
6 7	122	65.7205	-19.0340	
8	123	65.7142	-19.0174	
9	124	65.7152	-18.9968	
10	125	65.7273	-19.0004	
12	126	65.7090	-19.0112	
13	127	65.7157	-18.8121	
14	128	65.6780	-19.0285	
15 16	129	65.6796	-19.0365	
17	130	65 6835	-19 0538	
18	131	66 1014	-18 8546	
19	132	65 7089	-19.2592	
20	132	65 7087	-19.2392	
22	133	65 6750	10 2073	
23	134	65 6997	-19.2075	
24 25	133	65 (820	-19.1/90	
26	130	05.0829	-19.1323	
27	137	65.6627	-19.1957	
28	138	65.6454	-19.1132	
30	139	65.6148	-19.2428	
31	140	65.6292	-19.2523	
32	141	65.6232	-19.1423	
33 34	142	65.6189	-19.1394	
35	143	65.5975	-19.1054	
36	144	65.6449	-19.2143	
37 38	145	65.6321	-19.1783	
39	146	65.6311	-19.1494	
40	147	65.6273	-19.1162	
41	148	65.6290	-19.2086	
42	149	65.5962	-19.1259	
44	150	65.6371	-18.9504	
45	151	65.6391	-18.9617	
40 47	152	65.5902	-19.1752	
48	153	65.5871	-19.1969	
49	154	65.5804	-19.2091	
50 51	155	65.5773	-19.2197	
52	156	65 5559	-19 1530	
53	157	65 5586	-19 1368	
54 55	158	65 5775	-19 0554	
56	159	65 5618	-19 0838	
57	160	65 5161	-19 1194	
58 59	100	05.5101	17.1177	
60				

Page	48	of	55
------	----	----	----

2			
3	161	65.5220	-19.1921
4 5	162	65 5292	-19 2161
6	163	65 5170	-19 0769
7	164	65 5108	-19 0543
8 9	165	65 5978	-18 7179
10	165	65 5974	-18 7280
11	167	65 5307	18 8125
12	107	65 1991	-10.0155
13	108	03.4884	-10.0209
15	169	65.4927	-18.7987
16	170	65.4995	-18.7935
17	171	65.5032	-18.7755
19	172	65.4983	-18.7703
20	173	65.4880	-18.7720
21	174	65.5226	-18.7656
22	175	65.5129	-18.7579
24	176	65.4846	-18.7044
25	177	65.5764	-18.6223
26 27	178	65.6155	-18.6795
28	179	65.5270	-18.6458
29	180	65.9184	-19.3157
30	181	65.9225	-19.3356
32	182	65.9152	-19.2175
33	183	66.1247	-18.6742
34	184	66 1131	-18 6573
35 36	185	66 0069	-18 6646
37	186	66 1704	-18 9458
38	187	65 6145	-23 9250
39	188	65 6264	-23 9433
41	180	65 6276	23.0473
42	100	65 6354	-23.9073
43 44	190	65 6350	-23.0987
45	191	05.0559	-23.9007
46	192	65.6405	-24.0028
47	193	65.5693	-24.1159
48 49	194	65.6084	-24.1769
50	195	65.6920	-24.0253
51	196	65.5842	-23.4558
52 53	197	65.7403	-24.0389
54	198	65.7322	-24.0557
55	199	65.7818	-24.0642
56	200	65.7693	-24.0441
57 58	201	65.7497	-24.0062
59			
60			

1			
3	202	(
4	202	65.7592	-23.9633
5	203	65.7707	-23.9514
6	204	65.7405	-23.8525
8	205	65.7380	-23.8768
9	206	65.7287	-23.8900
10	207	65.7258	-23.9094
11	208	65.7170	-23.8967
13	209	65 7121	-23 8874
14	210	65 6955	-23 8332
15	210	65 6950	23.0352
16 17	211	65 7064	-23.9250
18	212	05.7004 65.7141	-23.0137
19	213	65./141	-23.8101
20	214	65.7209	-23.7809
21	215	65.6750	-23.7427
23	216	65.6843	-23.6846
24	217	65.7052	-23.6745
25	218	65.6901	-23.6657
26 27	219	65.7176	-23.4084
28	220	65.7120	-23.3829
29	221	65.7050	-23.3529
30	222	65.8285	-23.1240
32	223	65.8214	-23.1452
33	224	65.8286	-23.2603
34	225	65 8092	-23 2632
35 36	226	65 8044	-23 3366
37	227	65 7949	-23 3352
38	228	65 7806	-23 3988
39	220	65 8222	-23 3650
41	22)	65 7000	22.5050
42	230	65 9192	22.5555
43	231	05.0105	-23.5365
44	232	03.8237	-23.0301
46	233	65.8283	-23.6006
47	234	65.8417	-23.5867
48 49	235	65.8533	-23.6207
50	236	65.8538	-23.7345
51	237	65.8619	-23.6968
52	238	65.8685	-23.6734
53 54	239	65.8759	-23.6596
55	240	65.8873	-23.7029
56	241	65.8918	-23.7609
57 58	242	65.9382	-23.3050
59			

Page	50	of	55
------	----	----	----

2			
3	243	65 9366	-23 3282
4	244	65 9469	-23 3433
6	245	65 9708	-23 3794
7	245	65 0245	-25.577 4 -27.517 7
8	240	03.9243	-25.5172
9 10	247	65.9465	-23.4884
11	248	65.9579	-23.5323
12	249	65.9711	-23.5100
13	250	65.9825	-23.4778
14	251	65.9786	-23.5215
15	252	65.9858	-23.5261
17	253	65.9488	-23.6331
18	254	65 9567	-23 6003
19	255	66 0445	-23 6645
20 21	255	66 0288	23,6330
22	250	65 0866	-23.0337
23	257	03.9800	-23.1808
24	258	65.9934	-23.1536
25 26	259	66.0027	-23.1317
27	260	66.0328	-23.1252
28	261	65.9977	-23.3406
29	262	66.0171	-23.3533
30 31	263	66.0599	-23.3592
32	264	66.0713	-23.3730
33	265	66.0759	-23.4036
34	266	66.0606	-23.4661
36	267	66 0724	-23 5236
37	268	66 0813	-23 5469
38	260	66 1120	23.6160
39	20)	66 0800	22.1756
40 41	270	66.0800	-23.1730
42	271	66.0937	-23.1443
43	272	66.1118	-23.1782
44 45	273	66.1089	-23.2058
45	274	66.1357	-23.3048
47	275	66.1555	-23.3283
48	276	66.1642	-23.3766
49 50	277	66.1753	-23.5105
50 51	278	66.1966	-22.8168
52	279	66.2118	-22.8393
53	280	66 2372	-22.4333
54 55	281	66 3660	-22 4641
56	201	66 /19/	_22.1011
57	202	00.4104 66.2006	-22.3174
58	283	00.3900	-22.0440
59 60			
00			

1			
2			
4	284	66.3936	-22.6977
5	285	66.4417	-22.8341
6	286	65.6130	-23.9040
7 8	287	65.5939	-13.8763
9	288	65.4550	-14.0221
10	289	64.7135	-14.4525
11 12	290	64.7015	-14.4246
13	291	64.7320	-14.4940
14	292	64.7297	-14.4654
15 16	293	65.4618	-14.0514
17	294	65.4337	-13.9905
18	295	65.4276	-13.9685
19 20	296	65.4220	-13.9118
21	297	65 4224	-13 8677
22	298	65 3851	-13 7762
23	299	65 3859	-13 6836
25	300	65 3904	-13 6744
26	301	65 3913	-13 9880
27	302	65 5930	-13 9065
29	302	65 4079	-14 0945
30	304	65 3689	-14 0382
31	305	65 3672	-14 0118
33	306	65 3166	-14.0563
34	307	65 3122	-13 0733
35	308	65 3269	13 7050
37	308	65 2252	12 7576
38	309	65 2740	12 6226
39	211	65 2673	13 6244
41	212	65 2529	-13.0244
42	512 212	03.2338	-13.0982
43	313 214	65 2202	-13.9423
45	514 215	65.2303	-13./0/8
46	315	65.2239	-13.9407
47	316	65.2139	-14.1068
49	317	65.1//6	-13.0433
50	318	65.1682	-13.6/10
51	319	65.1710	-13.6522
52 53	320	65.1668	-13.7721
54	321	65.1675	-13./918
55 56	322	65.1746	-13.8470
50 57	323	65.1572	-13.8798
58	324	65.5397	-13.9036
59 60			
00			

Page	52	of	55
------	----	----	----

2			
3	325	65 1608	-13 8956
4	326	65 1631	-13 9287
6	327	65 1658	-13 9719
7	220	65 1664	14 0105
8	328	03.1004	-14.0103
9	329	65.1665	-14.0428
11	330	65.1628	-14.0708
12	331	65.1604	-14.0895
13	332	65.1377	-14.0711
14	333	65.1316	-14.1841
16	334	65.1291	-14.2039
17	335	65.5018	-13.9531
18	336	65 0886	-14 2848
19	337	65 0960	-14 2886
20	228	65.0702	14 14 28
22	330	05.0702	-14.1420
23	339	65.0661	-14.1820
24	340	65.1015	-13.5751
25	341	65.0940	-14.1868
27	342	65.1095	-13.5547
28	343	65.0771	-13.5363
29	344	65.0653	-13.5314
30 31	345	65.0485	-13.5670
32	346	65.5202	-13.9232
33	347	65.0582	-13.5706
34	348	65 0594	-13 5397
35	349	65 0501	-13 6516
37	250	65 0499	12 5071
38	350	05.0400	-13.3971
39	351	65.04//	-13.6165
40 41	352	65.0569	-13.6239
42	353	65.0580	-13.6450
43	354	65.1062	-13.5665
44	355	65.0509	-13.7831
45 46	356	65.1098	-13.9794
40 47	357	65.4880	-13.9530
48	358	65.1136	-13.9970
49	359	65,1228	-14.0226
50 51	360	64 9981	-13 6654
52	361	64 9707	-14 2740
53	262	64 0015	14 2217
54	262	04.7713	-14.231/
55 56	303	03.0///	-14.4550
57	364	65.0882	-14.429/
58	365	65.0596	-14.4019
59			
60			

1				
2				
4	366	65.0324	-14.4024	
5	367	65.0388	-14.4286	
6	368	65.4849	-14.0078	
7 8	369	64.9879	-14.1892	
9	370	64.9849	-14.1693	
10	371	64.9797	-14.1409	
12	372	64.9863	-14.1029	
13	373	64.9517	-13.9388	
14	374	64.9602	-14.3228	
15	375	64.9052	-14.1382	
17	376	64.8871	-14.0320	
18	377	64.8867	-14.0064	
20	378	64.8586	-13.8774	
21	379	65.4638	-14.0242	
22	380	64.8061	-13.9068	
23 24	381	64.8246	-13.9933	
25	382	64.8554	-14.0849	
26 27	383	64.9614	-14.5392	
28	384	64.9164	-14.4768	
29	385	64.7238	-14.1432	
30 31	386	64.8262	-14.4534	
32	387	64.8376	-14.5123	
33	388	64.8437	-14.5295	
34 35	389	64.8590	-14.5336	
36	390	64.7194	-14.2437	
37	391	64.8321	-14.0221	
38 39	392	64.8142	-13.9648	
40	393	64.8120	-13.9294	
41	394	64.8161	-13.9966	
42 43	395	64.8821	-13.9762	
44	396	64.8665	-13.9445	
45	397	64.8613	-13.8310	
46 47	398	64.9191	-13.7062	
48	399	64.9437	-13.8304	
49	400	64.9532	-13.8529	
50 51	401	64.7396	-14.2632	
52	402	64.9486	-13.9131	
53 54	403	64.9553	-13.9541	
54 55	404	64.9799	-13.9454	
56	405	64.9805	-14.2187	
57	406	64.9841	-14.0803	
59			-	

Page	54	of	55
------	----	----	----

3	407	(10570	14 2024
4	407	64.9570	-14.3024
5	408	64.9435	-14.2642
7	409	64.9653	-14.3591
8	410	65.0117	-13.7271
9	411	65.0041	-13.7019
10	412	64.7630	-14.3032
12	413	65.0471	-13.7495
13	414	65.0928	-13.6777
14 15	415	65.0841	-13.6931
16	416	65.0846	-13.9237
17	417	65.0910	-14.0015
18	418	65.1269	-14.0406
20	419	65.0552	-13.6040
21	420	65.2719	-14.0606
22	421	65.2194	-14.0524
23	422	65.2213	-14.0373
25	423	64.7947	-14.3163
26	424	65.2232	-14.0154
28	425	65.2279	-13.9750
29	426	65.2212	-13.7997
30	427	65.2474	-13.6882
32	428	65.2574	-13.6753
33	429	65.2548	-13.9554
34	430	65.2101	-14.0659
36	431	65.2058	-14.0956
37	432	65.2717	-13.6597
38	433	65.3233	-14.0099
40	434	64 7309	-14 2622
41	435	65 3066	-14 0514
42	436	65 3922	-13 9216
43	437	65 4956	-13 9377
45	438	65 5137	-13 9407
46	439	65 4083	-13 8315
47	440	65.6068	-13 8995
49	441	64 7384	-14 1935
50	442	65 0769	-14.1555
52	442	64 8965	-14.1054
53		64 0022	-14 4066
54 55	445	65 0000	-14 4145
55 56	лл6	6/ 0/01	-14 2058
57	110 117	61 8756	-14 1164
58 50	·+·+ /	04.0/30	-17,1107
60			