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Abstract. Species patchiness implies that nearby observations of species abundance
tend to be similar or that individual conspecific organisms are more closely spaced than
by random chance. This can be caused either by the positive spatial autocorrelation among
the locations of individual organisms due to ecological spatial processes (e.g., species
dispersal, competition for space and resources) or by spatial dependence due to (positive
or negative) species responses to underlying environmental conditions. Both forms of spatial
structure pose problems for statistical analysis, as spatial autocorrelation in the residuals
violates the assumption of independent observations, while environmental heterogeneity
restricts the comparability of replicates. In this paper, we discuss how spatial structure due
to ecological spatial processes and spatial dependence affects spatial statistics, landscape
metrics, and statistical modeling of the species–environment correlation. For instance, while
spatial statistics can quantify spatial pattern due to an endogeneous spatial process, these
methods are severely affected by landscape environmental heterogeneity. Therefore, sta-
tistical models of species response to the environment not only need to accommodate spatial
structure, but need to distinguish between components due to exogeneous and endogeneous
processes rather than discarding all spatial variance. To discriminate between different
components of spatial structure, we suggest using (multivariate) spatial analysis of residuals
or delineating the spatial realms of a stationary spatial process using boundary detection
algorithms. We end by identifying conceptual and statistical challenges that need to be
addressed for adequate spatial analysis of landscapes.

Key words: autocorrelation; landscape metrics; multivariate analysis; multiscale ordination;
spatial analysis; spatial regression; stationarity.

INTRODUCTION

Ecology has seen a paradigm shift from the as-

sumption of homogeneity to the recognition of hetero-

geneity as a key for understanding the complexity of

nature (Wiens 1989). The explicit consideration of spa-

tial structure and spatiotemporal interaction of pro-

cesses in ecological research is the main contribution

of landscape ecology to this paradigm shift. Acknowl-

edging the importance of spatial pattern and scale has

changed the way ecological studies are designed and

analyzed, and has provided new insights about ecolog-

ical processes (Allen and Hoekstra 1992). Most eco-

logical processes are inherently spatial as they operate

between neighboring units (Levin 1992). Processes are

also constrained by environmental conditions varying

in space and time and by the local interaction with other

processes, resulting in interwoven patterns at multiple

spatial and temporal scales.

As the primary concern of ecology is the identifi-

cation and understanding of ecological processes, com-

plicating factors such as spatial heterogeneity were at

first excluded from the conceptual framework of anal-
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ysis (McIntosh 1991). By doing so, ecological studies

could assume homogeneity, permitting the incorpora-

tion of environmental variation as a treatment or to

control for known relationships using covariates. For

instance, the effects of different levels of an environ-

mental factor can be tested in an experimental setting

using ANOVA-type analyses or analyzed along exist-

ing gradients using regression-type analyses. Hence by

assuming that the study area is locally homogeneous

with respect to that factor in space and time, each ex-

perimental plot, or sampling unit, is attributed to a

single factor level and the neighborhood context of the

plot or sampling unit does not matter (Fig. 1A). In

contrast, landscape ecology assumes that the neigh-

borhood context affects the ecological processes within

a plot and the interaction between plots (Fig. 1B). A

further complication is that environmental heteroge-

neity may occur at any spatial scale, and site conditions

may vary in time.

The patchiness of species, and other ecological re-

sponse variables, forms another type of spatial hetero-

geneity that ecologists need to consider (Fig. 2). Patch-

iness, created by ecological spatial processes such as

competitive interactions or dispersal, violates the as-

sumption of parametric tests that the residual errors are

independent (Legendre 1993: Fig. 1A). Indeed, patch-

iness induces autocorrelation in the error structure of
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FIG. 1. Schematic representations of the
conceptual framework of (A) ecological and (B)
landscape ecological analysis. In the ecological
framework, the ecological process (upper
graph) observed in a set of plots (white squares)
depends on the level of the environmental factor
(polygons in lower graph) measured at the plot
location. Patches/plots are internally homoge-
neous, plot context does not matter, and obser-
vations are spatially independent. In the land-
scape ecological framework, patches/plots may
be internally heterogeneous, plot context may
affect local processes, and observations may not
be independent due to spatial interaction be-
tween local processes.

an ANOVA or regression-type model (Fig. 1B), which

reduces the degrees of freedom of the associated sta-

tistical tests (Dale and Fortin 2002).

The growing acceptance of the heterogeneous nature

of ecological systems requires adapting ecological the-

ory and methods to accommodate for ‘‘heterogeneity.’’

There is, however, little consensus on the exact mean-

ing of the term (Kolasa and Rollo 1991, Li and Reyn-

olds 1995). Here, we define spatial heterogeneity as the

spatially structured variability of a property of interest,

which may be a categorical or quantitative, explanatory

or dependent variable.

When dealing with heterogeneity, one needs to con-

sider some fundamental questions about the causes,

types, and ecological consequences of heterogeneity.

Approaches to answer these questions evolved in dif-

ferent contexts, ranging from population genetics to

species diversity and ecosystem processes. Methods

were borrowed from various fields, including geogra-

phy, geology, spatial econometrics, physics, plant com-

munity ecology, and complex systems theory. While

the different approaches can be contrasted by spatial

data representation (Gustafson 1998, Dale et al. 2002,

Perry et al. 2002), objective (Liebhold and Gurevitch

2002, Ver Hoef 2002), or disciplinary background

(Liebhold and Gurevitch 2002), they often face similar

challenges in attempting to quantify heterogeneity.

This paper brings together some common analytical

threads related to the spatial analysis of ecological data

at the landscape level, while pointing to unresolved

conceptual and statistical challenges. We start with

summarizing the causes, types, and ecological conse-

quences of spatial heterogeneity, focusing on relevant

aspects for the design and analysis of an ecological

study. We then discuss how and to what degree three

different approaches (namely spatial statistics, land-

scape metrics and statistical modeling), deal with these

aspects of spatial heterogeneity. Specifically, we high-

light how these three spatial approaches can provide

new insights about landscape spatial pattern and to

what degree these methods can disentangle the patterns

due to species response to a spatially structured en-

vironment and those due to ecological spatial process-

es. Finally, we point to promising new approaches at

meeting the challenges of spatial analysis in a hetero-

geneous environment, including the statistical assess-

ment of changes in space and time, the quantification

of local landscape structure, and the merging of discrete

and continuous landscape models.

Causes of heterogeneity

Any spatial process operating between neighboring

units can cause spatial heterogeneity. Fig. 2A shows a

simulated random distribution of a species in a ho-

mogeneous environment, while Fig. 2B illustrates the

patchy distribution produced by a simple spatial pro-

cess starting from the pattern in Fig. 2A. Spatial anal-

ysis aims to assess the process generating these non-

random patterns. As this process is stochastic, Fig. 2B

represents only one of many possible outcomes of the

same process given the initial conditions in Fig. 2A

(Fortin et al. 2003). In practice, however, we often have

only one observed pattern representing a single reali-

zation of the process of interest, which makes inference

about this process difficult.

Inference from a pattern on the underlying process

is further hindered by variation in the process in space

or time as well as by the presence of additional, con-

founding processes. Fig. 2C shows the random distri-

bution of the simulated species in Fig. 2A but con-

strained by a linear environmental gradient, and Fig.

2D reflects the confounded pattern of patchiness and

an environmental gradient. In fact, most of the ob-

served patterns result from more than one processes

that possibly interact with each other, such as biotic

(e.g., ecological spatial processes) and abiotic (e.g.,

environmental factors) drivers (Fig. 3).

Types of heterogeneity

The heterogeneity of a categorical variable is best

described by a mosaic of patches. This includes the

special case of binary data, where only one factor level

is of interest (e.g., patches of suitable habitat) and any

other levels are collapsed into one (e.g., matrix of non-

habitat). The basic properties of a mosaic are compo-

sition and configuration: composition describes the

number and relative frequency of the factor levels (e.g.,

habitat types), whereas configuration refers to the spa-
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FIG. 2. Simulated species distribution in a grid of 40 3 40 cells under different combinations of a homogeneous envi-
ronment (A, B) or a linear environmental gradient (C, D) with random (A, C) or patchy (B, D) distribution of the species.

tial arrangement of the patches defined by the factor

levels (Gustafson 1998).

For a quantitative variable, the distinction between

composition and configuration is not as straightfor-

ward. Composition refers to the density distribution

function of the variable, whereas configuration is usu-

ally described in terms of the spatial covariance struc-

ture of the variable. The latter summarizes the strength,

range, and directionality (anisotropy) of the spatial au-

tocorrelation. The intensity of spatial autocorrelation

is related to the degree of self-similarity of the values

of a variable at nearby locations that can be expressed

in terms of fractal dimension (Palmer 1992, McGarigal

and Cushman 2005).

The type of heterogeneity depends on the nature of

the variable rather than how it is sampled, analyzed,

or displayed. For example, in geographic information

systems (GIS), categorical data typically are repre-

sented by vector data (polygon maps), whereas quan-

titative data are treated as raster data (grid surfaces).

However, drawing a line between two values of a quan-

titative variable such as biomass is artificial. Similarly,

displaying a qualitative variable as a mosaic-like grid

surface, by resampling a categorical map of patches at

regular intervals, does not make the abrupt transition

between two patches any smoother. This example il-

lustrates that ecological data may not always fit easily

in either GIS vector or raster data type, and the choice

may have implications for our ability to detect patterns

and insights about the underlying processes that gen-

erated them (Cova and Goodchild 2002, Cushman and

McGarigal 2004).

Ecological consequences of spatial heterogeneity

The pattern created by one process may affect an-

other process and its resulting pattern (Levin 1992). In

a homogeneous environment, for instance, spatial pop-

ulation dynamics can create heterogeneity in the abun-

dance of a species. Nearby locations that are linked by

dispersal tend to have interdependent population dy-

namics, leading to autocorrelation in species abundance

(Fig. 3). The land-use mosaic imposes additional con-

straints on the local population dynamics, introducing

spatial structure in species abundances due to the spa-

tial distribution of site conditions and disturbance. In

a spatially structured environment, where nearby lo-

cations tend to have similar site conditions, the pattern

induced by species response to spatially structured en-

vironmental factors may be mistaken for spatial au-

tocorrelation due to a spatial ecological process. Hence,

the environmental heterogeneity creates exogeneous

spatial dependence in the species abundance, while the

spatial interaction in the population dynamics is an

endogeneous spatial ecological process. Not only may
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FIG. 3. Spatial effects in ecological data. Species are spatially structured for several reasons: (1) ecological processes
are inherently spatial as they operate between neighboring individuals, thus creating autocorrelation; (2) species respond to
variation in environmental factors, which are themselves spatially structured, thus inducing spatial dependence in species
distributions; and (3) species respond to the environment at a specific scale, they may respond to the same factor differently
at different scales, and the response may be nonlinear. Thus, the exogenous spatial structure may be more complex than the
spatial structure of the environment.

the observed spatial pattern of abundance include both

types of underlying processes (Fig. 3), but these pro-

cesses may interact in a linear or non-linear way. For

instance, the land-use mosaic may constrain the dis-

persal of organisms if some land-use types are more

difficult to traverse than others. Thus, the probability

that two habitat patches separated by a given distance

are connected by dispersal depends on the land-use in-

between (D’Eon et al. 2002). It is clear from this ex-

ample that species patchiness and the spatial structure

induced by environmental heterogeneity depend on the

perspective of a specific organism, as habitat require-

ments, life history attributes, and dispersal abilities will

vary between species. Hence, species may respond to

environmental heterogeneity in a non-linear manner

(e.g., minimum threshold, or patch size requirements),

it may require a specific combination of factor levels

within its home range (Fahrig 2002), or it may respond

to the temporal variability of environmental factors.

Overlaps and interactions of different processes pose

a formidable challenge to ecological research that ex-

plicitly investigates the spatial response of a species to

landscape heterogeneity, as is the case in metapopu-

lation studies.

SPATIAL APPROACHES TO LANDSCAPE ANALYSIS

There are important practical considerations for the

spatial analysis of landscapes (as summarized in Table

1) that should be incorporated into students’ ecological

curricula. Here, we discuss the advantages and limi-

tations of three analytic approaches to the analysis of

spatial heterogeneity: spatial statistics, landscape met-

rics and spatial regression modeling. These approaches

differ in their assumption on the number of underlying

processes and in their general objective (Table 2). To

better appreciate these considerations, we will first re-

visit the main philosophical principles assumed by

Fisherian (parametric) statistical methods used in ecol-

ogy.

Nonspatial (Fisherian) statistics

In controlled experiments, nonspatial statistics have

been extremely powerful to quantify and test ecological

relationships. Unfortunately, when applied to hetero-

geneous systems, most parametric statistics and mul-

tivariate statistics (e.g., ordination) are usually applied

in inappropriate ways (e.g., Legendre 1993, Dale and

Fortin 2002). Correlation analysis, for example, quan-

tifies the association between two response variables,

such as the abundance of two species. The method

assumes independence of the residual errors which is

usually achieved by using a random sample from a

homogeneous environment as depicted in Fig. 2A. In

the presence of patchy data, a random sampling design

(Fortin et al. 1989) and completely randomized exper-

imental design (Legendre et al. 2004) do not guarantee

that the residual errors are independent. In order to

account for patchiness (Fig. 2B), Dutilleul (1993) pre-

sented a corrected t test for pairwise correlation co-

efficients, which adjusts the degrees of freedom pro-

portionally to the degree of spatial autocorrelation pre-

sent in each variable. Alternatively, spatially con-

strained (restricted) randomization tests have been

proposed for testing interspecific interactions while ac-

counting for species-specific patchiness (cf. Roxburgh

and Matsuki 1999). Note that methods accounting for

species patchiness may still be invalid due to environ-

mental heterogeneity (Fig. 2C and 2D) if the correlation

changes with site conditions (Legendre et al. 2002,

2004).
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TABLE 1. Six ‘‘points of wisdom’’ to keep in mind for the spatial analysis of landscapes.

Problem Practical implication

A random sample does not guarantee indepen-
dent observations, but is designed to avoid
bias (Fortin et al. 1989).

If the scale of patchiness is known, it can be used to enforce an ap-
propriate minimum distance between observations for a systematic
or a random sample (Dungan et al. 2002).

Spatial autocorrelation in the residuals may ren-
der statistical tests too liberal (Cliff and Ord
1981). Individual observations may not bring
a full degree of freedom such that the signifi-
cance of parametric statistics (e.g., correla-
tion, regression, ANOVA) is not assessed
with the appropriate degree of freedom.

Tests adjusting the degree of freedom according to the degree of spa-
tial autocorrelation in the data should be used (Dale and Fortin
2002). When analyzing directional relationships (regression, ANO-
VA), this is only necessary if there is autocorrelation in the residu-
als, whereas autocorrelation in the raw data may not be a problem.

Based on data alone, it is not possible to distin-
guish between exogenous deterministic struc-
ture (spatial dependence) and endogenous
spatial autocorrelation (ecological spatial pro-
cess).

Hypothesis testing and experimental design are needed to disentangle
these two possibilities (Legendre et al. 2004).

The species–environment correlation is likely to
change with scale (Levin 1992).

A multiscale study design is needed unless the scale of response is
known (Fortin et al. 1989, Cushman and McGarigal 2004).

Stationarity assumptions concern the model of
the underlying process and allow inference
from the observed pattern to the entire study
area. Note that an observed pattern is a sin-
gle realization of that process (Fortin et al.
2003).

The presence of stationarity could be either assumed when the behav-
ior of the underlying process is known or checked by estimating lo-
cal mean and variance using a moving window approach.

Stationarity rarely prevails in real landscapes;
the data may show a trend (change in mean)
or local variability (change in variance) (For-
tin et al. 2003).

When the data show a spatial trend it should be removed only if it
has an ecological interpretation, as the observed pattern may exhib-
it trend-like structure by chance. In the case of local variability, en-
vironmental heterogeneity needs to be measured and accounted for
when quantifying spatial pattern (Wagner 2003).

ANOVA or regression models may be used for re-

lating population density to one or several environ-

mental factors, thus assuming independent observa-

tions from a heterogeneous environment. Although

such models explicitly include variability in at least

one environmental factor, they are susceptible to spatial

effects (Fig. 2C). Spatial autocorrelation in the resid-

uals may render statistical tests too liberal, making

them more likely to reject the null hypothesis when it

is true. Autocorrelated residuals indicate that some pro-

cesses are not accounted either in the sampling or ex-

perimental design, as well as in the analyses. Further-

more, parameter estimates may be wrong if there is an

unmeasured spatially structured factor or if an envi-

ronmental factor was measured at a scale different from

an organism’s scale of response (Keitt et al. 2002).

Spatial analysis of the residuals could reveal the pres-

ence of unaccounted spatial structures and the scale of

an organism’s response (Henebry 1995).

Multivariate statistics are sometimes used for hy-

pothesis testing in community analysis (Legendre and

Legendre 1998). For example, constrained ordination

with redundancy analysis (RDA) or with canonical cor-

respondence analysis (CCA) is frequently used to test

the effect of a set of explanatory variables on multi-

variate ecological response, such as species composi-

tion (Borcard et al. 1992). As constrained ordination

is in effect a multivariate regression analysis (Legendre

and Legendre 1998), these methods are subject to the

same problems as linear regression.

Spatial statistics

Even though spatial statistics were developed in dif-

ferent fields (geography, ecology, economics, mining),

many methods were developed as an adaptation of time

series analysis to spatial problems. However, while

time is a single dimension and temporal effects are

unidirectional, geographic space has at least two di-

mensions, and spatial processes may operate in any

direction and may not necessarily have the same in-

tensity in all directions (i.e., anisotropic processes).

The spatial statistical approaches most commonly used

by ecologists differ in their practical objectives. Geo-

statistical methods focus on the estimation of the spatial

covariance structure of a spatially structured variable

(e.g., variogram modeling) in order to use the spatial

parameters to interpolate values at unobserved loca-

tions (e.g., kriging). Spatial statistics, on the other

hand, aim at testing for the presence of a spatial process

in order to model this process or to account for spatial

autocorrelation when assessing the relationship be-

tween spatially structured variables (Cliff and Ord

1981, Fortin et al. 2001, Liebhold and Gurevitch 2002).

Spatial statistics that test for spatial autocorrelation

(e.g., Moran’s I, Geary’s c) assume stationarity, mean-

ing that the underlying process should have at least

roughly the same parameter values (mean and variance)

for the entire study area (Fig. 2B). These global spatial

statistics (Boots 2002) further assume that the spatial

covariance structure of the variable (i.e., the values of
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TABLE 2. Main spatial approaches to analyze landscapes.

No. processes Spatial pattern analyses Spatial modeling analyses

One Global spatial statistics (continuous variable) Spatial regression analysis
Landscape metrics (categorical variable) Spatial regression analysis

Several Local spatial statistics Partial canonical analysis
Local landscape metrics Residual analysis

Note: Approaches are grouped by the number of generating processes and on whether the analysis focuses on the description
or the modeling of spatial pattern.

spatial autocorrelation at different spatial distances or

lags) is similar over the entire study area. Nonstation-

ary processes imply that the mean, variance, or spatial

covariance structure of a variable vary across a study

area which may pose severe problems to spatial sta-

tistics. In spatially heterogeneous landscapes (Fig. 2D),

nonstationarity is likely to occur, so that the test may

become too liberal in rejecting the null hypothesis of

no autocorrelation.

Detrending is often used for addressing problems of

non-stationarity (Haining 1997). For instance, a large-

scale trend is removed prior to spatial analysis by fitting

a linear or polynomial trend surface as a function of

the geographic coordinates of the sampling units. De-

trending removes the mean but does not affect the var-

iance, which is often related to the mean and may still

depend on the location. Non-parametric methods may

be more robust in moderate cases of non-stationarity

(Bjørnstad and Falck 2001), and join-count statistics

have been extended to accommodate nonstationarity of

the mean (Kabos and Csillag 2002). For instance, pop-

ulation density is likely to be related to environmental

factors. When these factors are spatially structured, the

assumption of stationarity may be met by performing

spatial statistics on the residuals of an environmental

response model (ANOVA, regression). However, there

may still be problems due to nonconstant variance, or

the spatial process itself may depend on the environ-

mental factors.

Landscape metrics and related measures

The recent development of GIS provided ecologists

with a technical framework for landscape-scale anal-

ysis (Greenberg et al. 2002). GIS include tools that

characterize and quantify the properties of data (area,

perimeter, proportion). To these basic tools, some spa-

tial statistics have been added to analyze spatial pat-

terns. Spatial analyses of landscapes have also been

facilitated by the availability of remotely sensed im-

ages, from which land cover is derived into classes. In

ecology, the landscape structure of such categorical

data is usually quantified in terms of landscape com-

position (i.e., proportions of habitat patches) or land-

scape configuration (i.e., spatial arrangement of patch-

es) using landscape metrics (O’Neill et al. 1988, Gus-

tafson 1998; FRAGSTATS, available online).4

4 ^http://www.umass.edu/landeco/research/fragstats/fragstats.
html&

Landscape metrics are often used as predictors of

ecological processes, such as dispersal, which results

in the observable distribution of organisms across a

landscape, but this approach suffers from several prob-

lems (Bélisle et al. 2001). (1) While no single index

can capture landscape structure, many landscape met-

rics are strongly correlated (Gustafson 1998). Several

authors have attempted, either empirically (McGarigal

and McComb 1995, Riitters et al. 1995) or theoretically

(Li and Reynolds 1995), to identify the intrinsic di-

mensions (uncorrelated components) of landscape

structure, but this search has not yet resulted in a gen-

erally applicable minimum set of landscape metrics

(Gustafson 1998, Fortin et al. 2003). (2) Landscape

metrics are highly sensitive to scale, i.e., the assessment

of the structure of a landscape may change with the

grain (resolution) and extent (area covered) of the map

on which they are calculated (Cain et al. 1997, Turner

et al. 2001, Wu et al. 2002). (3) An organism may

respond to a landscape characteristic in a nonlinear

way, such as requiring a specific minimum patch size

or displaying threshold behavior in dispersal. In such

cases, landscape metrics need to be rescaled in terms

of organism characteristics. Alternatively, the nonlin-

ear behavior could be modeled with a nonlinear re-

gression model (e.g., by choosing an appropriate link

function using generalized linear models; Guisan and

Zimmerman 2000). (4) Landscape metrics assume the

mapped property to be nominal or binary. In general,

they do not consider ranks or other measures of gradual

differences between factor levels, such as different lev-

els of habitat suitability (Verbeylen et al. 2003). (5)

Landscape metrics quantify the pattern of a categorical

map and may be strongly affected by classification er-

rors (e.g., if the map was derived from remote-sensing

data) or other forms of uncertainty introduced during

the mapping process. Reliable results can only be

achieved by assessing the mapping uncertainty and its

propagation in subsequent analysis (Hess 1994, Mow-

rer 1999).

The statistical properties of landscape metrics cannot

be defined as they depend on the landscape composi-

tion, which can vary in the presence of spatial hetero-

geneity. Hence there are no standard tests for differ-

ences between two observed patterns, or rather their

generating processes (Fortin et al. 2003). While each

observed pattern corresponds to a single outcome of a

stochastic process, inference about the process requires
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knowledge of the distribution of patterns it may pro-

duce. Stochastic models can be used to derive such

distributions by simulation (e.g., neutral landscape

models), but these models typically assume stationar-

ity. The interpretation of landscape pattern indices

needs to be based on stochastic models that handle

landscape heterogeneity and where spatial parameters

are estimated from observed data (Fortin et al. 2003).

Quantifying landscape structure is rarely the ultimate

goal for ecologists, but it is an important requisite for

understanding how landscape structure affects ecolog-

ical processes. However, it is not that easy to determine

causality between process and pattern, as the correla-

tion between landscape metrics and ecological pro-

cesses is often inconsistent (Tischendorf 2001). In fact,

there is no a priori causal ordering in space as there is

in time, and there are no statistical techniques that will

unambiguously uncover species-landscape relation-

ships in the absence of informed ecological understand-

ing that poses the hypothetical relationships which the

statistics then test (Henebry and Merchant 2001). In a

hypothesis-testing framework, graph theory in con-

juncture with a resource selection model, offers a prom-

ising approach to study species-environment relation-

ships at the landscape level. This approach combines

the topological spatial arrangement of landscape ele-

ments (patches) and species responses to patch types

in terms of habitat preference (Urban and Keitt 2001,

Manseau et al. 2002).

Statistical modeling

Modeling aims at quantifying the species–environ-

ment relationships by specifying the underlying pro-

cesses (dynamic modeling) or by predicting the ob-

served patterns of the organisms from the spatial dis-

tribution of environmental factors (statistical model-

ing). A new realm of spatially explicit models exist to

model ecological processes (Dieckmann et al. 2000) as

well as disturbances and their stochasticity (Mladenoff

and Baker 1999). Here, however, we focus on statistical

modeling in a regression context, highlighting three

rather different approaches: (1) spatial regression mod-

els where a spatial term is added to a regression; (2)

partialling-out methods (e.g., ordination techniques)

where the spatial component is factored out while es-

timating species–environment relationships; and (3) re-

sidual analysis following a multiscale ordination that

identifies and characterizes spatial components due to

unsampled environmental factors or ecological spatial

processes.

Spatial regression modeling.—This approach is most

actively being developed in geography and spatial

econometrics, although it is increasingly used in ecol-

ogy (e.g., autologistic model; Lichstein et al. 2002,

Fortin et al. 2003, Burgman et al. 2005). Here, we

discuss three issues raised by Anselin (2002) in econo-

metrics that are equally relevant for ecological appli-

cations. First, spatial modeling may be based on either

of two data models, and the decision between the lattice

and the random field models has far reaching impli-

cations. A metapopulation is a good example of a sit-

uation where the lattice model is appropriate. This

model implies that each data point represents a discrete

local population and that within the extent of the study,

all local populations are included. The primary goal is

extrapolation, or inference from the observed meta-

population (n 5 1) to other metapopulations beyond

the study area. Spatial analysis is based on the network,

or topology, of local populations and requires that the

neighbors for each population are defined and assigned

appropriate weights. The specification of neighborhood

and weights is essentially arbitrary, yet it may have a

great influence on the results.

A typical example of a random field is the plant

species richness of nonadjacent sampling quadrats,

where the observations represent a systematic or ran-

dom sample of the surface of the study area. The pri-

mary goal is the prediction (interpolation) of values at

unobserved locations within the study area. The spatial

covariance structure (e.g., obtained by estimating a var-

iogram model), is fitted directly as a function of the

geographic distance between quadrats without speci-

fying neighbors or weights. However, quadrat size and

shape, which are arbitrarily defined as part of the sam-

pling design, may have a great effect on the estimated

covariance structure (i.e., modifiable areal unit problem

[MAUP]; Openshaw 1984, Dungan et al. 2002).

Second, it is important to distinguish between the-

ory-driven and data-driven specification of the spatial

regression model: is there a theoretical foundation for

a spatial process, or does the residual spatial structure

reflect shortcomings of the data? Spatial processes may

include situations where the behavior of an organism

is affected by the neighbors’ decisions, either directly

or indirectly through the shared use of a limited re-

source, or it may result from a spatial diffusion process.

Alternatively, spatial structure in the data may be due

to a missing explanatory factor that is spatially struc-

tured, a mismatch of the scales of the process and the

data, or spatially interpolated explanatory variables

(Bradshaw and Fortin 2000, Dungan et al. 2002). The

different processes may create similar patterns difficult

to discriminate without experimental design and hy-

pothesis testing. Nevertheless, a model should reflect

the assumptions about the process. For example, a hy-

pothesized spatial interaction can be modeled by a spa-

tial lag model, which includes an autoregressive term

(Cressie 1993), where the response yi at location i is a

function of the neighboring values yj. A neighborhood

response of organisms to the environment can be mod-

eled by a spatial cross-regressive term where yi is a

function of the environmental factor xj at neighboring

locations j. In data-driven model specification, the resid-

ual spatial structure is interpreted as noise and modeled

by a spatially correlated error term where the error «i at

location i is a function of the neighboring errors «j.
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FIG. 4. (A) Variance components of regres-
sion analysis or constrained ordination, (B) par-
tial regression or ordination including space as
a predictor, and (C) direct multiscale ordination.
The components are (a) purely environmental
effects, explained, not spatially structured var-
iance; (b) overlap of spatial and environmental
effects, spatially structured explained variance;
(c) purely spatial effects, explained, spatially
structured variance; and (d ) unexplained vari-
ance that is not spatially structured. Compo-
nents a and b appear in reversed order in (C)
because a represents the nugget variance of the
variogram of explained variance

Third, a spatial error term can be fitted simulta-

neously for all data points (AR model) or conditionally

for each data point given the known values of its neigh-

bors (CAR model; Cliff and Ord 1981, Griffith 1988,

Keitt et al. 2002). Autoregressive models are often used

for modeling a binary response variable describing the

observed presence or absence of a species. It is im-

portant to understand that logistic regression models

the latent probability of occurrence, which cannot be

observed directly but only through its realized outcome

as presence or absence. Only the conditional model

(CAR) can deal with a spatial latent variable. However,

the conditional model cannot explain the spatial pat-

tern, and prediction is essentially limited to missing

observations with known presence/absence informa-

tion for all of its neighbors.

Partialling out the spatial component.—Spatial au-

tocorrelation in the residuals may make statistical tests

too liberal and affect parameter estimates, so that the

importance of an environmental factor may be over- or

underestimated (Keitt et al. 2002, Lichstein et al. 2002).

Dutilleul’s (1993) modified t test adjusts the degree of

freedom according to the degree of spatial autocorre-

lation in the data. Broad-scale spatial structure in the

predictor combined with local spatial autocorrelation

in the response may, however, reduce the power of

Dutilleuil’s modified t test (Legendre et al. 2002). The

effect of any ecological factor (relevant or not) may

be overestimated if it shows a similar spatial pattern

as the observed response because both depend on the

same, unmeasured environmental factor (Legendre and

Legendre 1998, Lichstein et al. 2002).

In order to avoid such problems of false correlation,

partialling-out methods can remove trends or large-

scale spatial structure in the data before estimating re-

gression parameters or performing constrained ordi-

nation. This can be achieved by fitting a polynomial

trend surface (Borcard et al. 1992) or more complex

and flexible models of spatial structure derived from

the relative spatial locations of the sampling units (Bor-

card and Legendre 2002). However, spatial dependence

may not indicate spurious correlation (Lichstein et al.

2002), nonspatial correlation does not guarantee cau-

sation, and the directionality and asymmetry of causal

relationships must be explicitly assessed. Imagine a

simple gradient with a linear increase of moisture along

a transect. The plant species composition can be ex-

plained equally well by moisture as by transect posi-

tion. After partialling out the spatial component, mois-

ture has no explanatory power, although it is the mois-

ture that the plants respond to. It is clear from this

example that the spatial-dependence component is part

of the species–environment correlation and should not

be removed for parameter estimation without careful

consideration. If the residuals are spatially correlated,

however, this implies the presence of an unknown pro-

cess, which may be accounted for by adding an auto-

regressive term or a spatial error term in the regression

analysis (Haining 1997, Keitt et al. 2002, Lichstein et

al. 2002).

Residual analysis with multiscale ordination.—Re-

sidual analysis may help to discriminate between spa-

tial autocorrelation due to an ecological spatial process

and spatial dependence induced by environmental re-

sponse, and it may indicate specification errors such as

the omission of an important factor or a mismatch of

scales of observation and response. Ordinary regres-

sion analysis and constrained ordination methods par-

tition the total variance in the uni-or multivariate re-

sponse into two components, the explained and the

residual variance (Fig. 4A). Regression residuals are

commonly checked for (1) evidence of heteroscedas-

ticity, where the variance depends on the mean (2)

systematic deviation from the normal distribution, (3)

influential observations that may have a large impact

on parameter estimates, and, increasingly, (4) spatial

autocorrelation. However, there is no equivalent for

multivariate analysis, where the large number of re-

sponse variables may make the above methods im-

practical. Partial constrained ordination can be used to

further partition both the explained and the residual

variance into a spatially structured and a nonspatial part

(Fig. 4B), so that the relative importance of purely

environmental (a) and purely spatial effects (c) can be

compared and their degree of overlap (b) be assessed

(Borcard et al. 1992).
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FIG. 5. Direct multiscale ordination with RDA (redun-
dancy analysis) of the simulated species distribution in Fig.
2D. Globally, the total variance of the binary variable is 0.25,
the explained variance 0.10, and the residual variance 0.15.
Each symbol shows a variance component estimated from
pairs of cells separated by a specific distance, thus providing
a spatial partitioning of the global estimates. Circles denote
total variance (variogram of total variance), triangles denote
the variance explained by the position along the environ-
mental gradient (variogram of explained variance), and
squares denote the residual variance (variogram of residual
variance). Only distances up to 25 cells are shown.

Spatial structure in the residuals may be due, how-

ever, to a spatial process or an unaccounted spatially

structured environmental factor, and we have little

power to tell these apart. Urban et al. (2002) suggested

the development of partial Mantel correlograms to fur-

ther investigate the spatial structure of the variance

components. Direct multiscale ordination (MSO) with

RDA or CCA (Wagner 2004) provides this information

by estimating the total variance, the explained and the

residual variance as well as the eigenvalues of ordi-

nation axes for a series of distance classes (Fig. 4C).

The distance-dependent variance components, which

are estimated from all pairs of observations that fall

into a given distance class, are plotted against distance,

resulting in a set of empirical variograms that effec-

tively partition ordination results by distance. Fig. 5

provides an example of direct MSO for the simulated

species distribution in Fig. 2D, which mimics the

patchy distribution of a species along a simple envi-

ronmental gradient. The global RDA results showed a

total variance of 0.25, an explained variance of 0.1 and

a residual variance of 0.15. Spatial partitioning byMSO

revealed the spatial structure of the different variance

components. The variogram of the total variance (cir-

cles) exhibited a continuous increase of variance with

distance. After accounting for the environmental gra-

dient, the variogram of the residual variance (squares)

showed an initial increase before reaching a constant

level. The spatial structure at larger distances was con-

tained in the variance explained by the environmental

gradient (triangles). The results of MSO can be used

for checking modeling assumptions:

1) The variogram of the residual variance (Fig. 4C,

thin line) provides an estimate of the scale of patchiness

and may indicate problems with non-stationarity. For

a stationary process, patchiness causes reduced vari-

ance at short distances, whereas at larger distances be-

yond the range, the variance reaches a constant level

(sill). The range indicates the distance beyond which

observations are spatially independent and may be used

as a minimum distance in subsequent sampling (Fortin

et al. 1989, Dungan et al. 2002, Legendre et al. 2004).

In the presence of a sill, a Mantel test can be used to

test each distance class for significant spatial autocor-

relation (Wagner 2003, 2004). A continuous increase

of the variance with distance, however, is often asso-

ciated with spatial trend (Fig. 2C and D) and may in-

dicate the presence of an unaccounted environmental

factor that is spatially structured. If this is the case, the

trend-like structure, which often exhibits directional

(anisotropic) behavior, is likely contained in the first

non-canonical axis. This can be checked by investi-

gating the variogram of the respective eigenvalue. Plot-

ting the axis scores in geographic space may help to

identify the missing factor.

2) A systematic difference between the variogram of

the total variance (Fig. 4C, bold line) and the sum of

the variograms of the explained and residual variances

(Fig. 4C, dashed line) may indicate problems with

scale-dependence in the species–environment correla-

tion. The global significance of an observed deviation

can be tested using a point-wise confidence envelope

for the variogram of total variance (Wagner 2004).

CONCEPTUAL AND STATISTICAL CHALLENGES

Assessing changes in space and time

A major step forward in landscape ecology will lead

from the ‘‘snap-shot mode’’ quantification of landscape

structure to the ‘‘movie mode’’ assessment of changes

in landscape structure in space and time. Testing the

hypothesis that the generating process differs between

landscapes or between time steps will have to rely on

modeling of stochastic processes. Remmel and Csillag

(2003) proposed a general framework for comparing

two categorical maps, which might also be adapted to

quantitative data: first, the composition and configu-

ration of each map needs to be estimated accounting

for their interdependence (Fortin et al. 2003). Replicate

landscapes are simulated based only on these param-

eters (cf. Hargrove et al. 2002, Fortin et al. 2003) and

the landscape metrics are computed for each realization

to generate a confidence interval at some specified level

(conditional simulation). The two patterns are consid-

ered significantly different if their confidence intervals

don’t overlap. While this procedure is relatively

straightforward assuming a stationary process, the ex-
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tension to nonstationary processes poses a formidable

challenge both conceptually and computationally

(Remmel and Csillag 2003).

Quantifying local landscape structure

It is likely that different species respond to their

environment at different scales and that these scales

are related to the movement ranges of organisms (e.g.,

D’Eon et al. 2002, Holland et al. 2004). This implies

that instead of analyzing global landscape patterns, one

should quantify the local landscape structure across

space as it may be experienced by the organism of

interest (Potvin et al. 2001, McGarigal and Cushman

2005). Local versions exist for many spatial statistics

(Boots 2002, 2003), but have not yet been widely

adopted by ecologists (Pearson 2002).

Holland et al. (2004) provided an algorithm for iden-

tifying the scale of maximum correlation between spe-

cies abundance and landscape characteristics through

resampling of spatially independent observations with

increasing size of the window within which the land-

scape metrics are calculated. Thompson and McGarigal

(2002) systematically varied both the grain and extent

of the environmental predictors to assess the activity-

dependent scale or multiple scales of environmental

response by maximizing a correlation measure.

Landscape metrics can be calculated within a spec-

ified neighborhood around each cell using a moving

window (Potvin et al. 2001; FRAGSTATS, see footnote

4). Such moving window analysis provides a distri-

bution of values for each landscape metric obtained

from all possible window positions. This implies that

moving window analysis may be an alternative to con-

ditional simulation for the statistical comparison of ob-

served landscapes (Potvin et al. 2001), but this requires

the assumption that the local landscapes are true rep-

licates with an independent history but comparable

conditions, so that the ecological processes are iden-

tical.

Currently, most GIS and other software performing

moving window analysis are using geometric windows

(e.g., circles or squares) of arbitrary size that do not

reflect the spatial structure of the species or the envi-

ronment (Bradshaw and Fortin 2000). Research in geo-

graphical information sciences should address this is-

sue in order to provide tools for detecting the patchiness

or zone of influence of the data (e.g., by using local

spatial statistics), and implementing flexible geograph-

ical (e.g., watershed) or behavioral (e.g., home range)

windows that can be adapted to a specific situation.

Merging of discrete and continuous

landscape models

Landscape ecologists have been preoccupied with

the patch–matrix model of discrete landscapes, which

is highly compatible with the theory of island bioge-

ography and with metapopulations (Turner et al. 2001).

The gradient-based concept of landscape structure

(McGarigal and Cushman 2005) is ideally suited for

integrating landscape analysis with niche theory and

the study of changes in ecological communities along

environmental gradients, a core topic of community

ecology. Multiscale ordination as discussed above is

based on a formal integration of geostatistics with mul-

tivariate ordination methods, and its great potential for

the empirical integration of spatial analysis and gra-

dient analysis needs yet to be explored.

Gradient analysis in plant community ecology could

profit from an explicit consideration of local hetero-

geneity and the organism-specific scale of response:

organisms including plants are likely to respond not

only to a local average of an environmental factor, but

also to its variability in space and time at a scale related

to the organisms size, mobility, and life span. This

could be quantified by calculating the standard devi-

ation or a local spatial statistic within a moving window

of an appropriate size. However, compared to landscape

metrics, these statistics for continuous variables pro-

vide rather crude measures of the spatial configuration

of the environmental factor. As an equivalent to land-

scape metrics for continuous environmental data,

McGarigal and Cushman (2005) proposed applying

surface metrology metrics (Pike 2001), which are used

for quantifying surface roughness in microscopy and

molecular physics.

The patch–matrix and the gradient concepts of land-

scape structure represent two extremes of landscape

structure, with most real landscapes falling somewhere

in between. While the best choice will always depend

on the research question, it will be increasingly im-

portant to incorporate internal heterogeneity and grad-

ual differences between habitat types into landscape

metrics as well as discontinuities into spatial statistics.

Dorner et al. (2002) proposed modifications to land-

scape metrics so as to reflect topographic variability.

When applying spatial statistics to landscapes with a

discontinuous, mosaic-like structure, homogeneous ar-

eas dominated by the same stationary process can be

delimited empirically using boundary detection algo-

rithms (Fagan et al. 2003). Furthermore, ecological

boundaries and ecotones determined from species data

can be spatially related to environmental boundaries

(Fortin et al. 2000), so that their spatial coincidence

can be tested (Fortin et al. 1996) and their effects mon-

itored.

Fuzzy set theory has been successfully applied to the

problem of gradual transitions between ideal vegetation

types (Roberts 1989): rather than drawing an arbitrary

line for classification, a degree of membership to each

type is attributed to each observation. Habitat maps

could be represented in a similar way as multivariate

surfaces of membership. Such an approach would not

only accommodate internal heterogeneity within for-

merly discrete, assumedly homogeneous patches, but

also retain information on mapping uncertainty, so that
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its propagation through subsequent analyses could be

assessed (Brown 1998, Bolliger and Mladenoff 2005).

Wavelet analysis provides a promising alternative for

characterizing and partitioning landscapes in the pres-

ence of multiple, overlapping processes (i.e., not sta-

tionary), and this method can easily handle large data

sets (i.e., continuous data) such as remote sensing data

(Bradshaw and Spies 1992, Csillag and Kabos 2002;

McGarigal and Cushman 2005). The integration of dis-

crete and continuous landscape concepts may also prof-

it from attempts in geography and GIS to combine dis-

crete and continuous data models through the definition

of fields of spatial objects (Cova and Goodchild 2002).

Similar efforts are made towards representation of

space–time data, another important shortcoming of GIS

that is impeding the integration of spatial and temporal

processes in ecology (Henebry and Merchant 2001,

Peuquet 2001). Finally, spatiotemporal analysis of

landscape dynamics could help to assess the impor-

tance of ecological memory or answer the question of

how much randomness there is in real landscapes (Pe-

terson 2002).

Conclusion

The basic problem of spatial analysis of landscapes

is that several processes creating heterogeneity often

operate at the same time. These processes may interact,

so that the parameters of one process change with the

heterogeneity resulting from other processes. This

means that the observed pattern can rarely be attributed

to a single, stationary process, as many methods of

spatial analysis assume. Furthermore, most spatial pro-

cesses in ecology are stochastic, so that many replicates

are needed for an accurate quantification of the un-

derlying process. However, replications are hard to ob-

tain because the parameters of the process are likely

to change through space or time due to environmental

heterogeneity.

Local spatial statistics offer a way to accommodate

spatial variation in pattern and even to obtain replicate

landscapes at a finer scale. However, the size of such

local landscapes needs to be determined in an ecolog-

ically meaningful and methodologically sound way.

Statistical methods for testing hypotheses about non-

stationary processes urgently need to be developed. As

the hypothesis concerns the spatial process (which is

not directly observable) rather than the empirical pat-

tern, confidence intervals are best derived by condi-

tional simulation. Local statistics and statistical tests

that can accommodate nonstationarity are needed for

the analysis of discrete patterns with landscape metrics

as well as for the quantification of continuous surfaces

with spatial statistics. However, both gradients and dis-

continuities are a reality in ecological systems, and we

need to find ways of integrating discrete and continuous

aspects of heterogeneity.

Facing these challenges may enable ecologists to go

beyond quantifying patterns in order to finally address

the interaction between environmental heterogeneity

and the ecological processes causing species patchi-

ness. This can only be achieved by distinguishing, both

conceptually and empirically, between endogeneous

autocorrelation due an ecological spatial process and

exogeneous spatial dependence induced by environ-

mental response.
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