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Spatial Analysis to Quantify Numerical Model Bias and

Dependence: How Many Climate Models Are There?
Mikyoung JUN, Reto KNUTTI, and Doug NYCHKA

A limited number of complex numerical models that simulate the Earth’s atmosphere, ocean, and land processes are the primary tool

to study how climate may change over the next century due to anthropogenic emissions of greenhouse gases. A standard assumption is

that these climate models are random samples from a distribution of possible models centered around the true climate. This implies that

agreement with observations and the predictive skill of climate models will improve as more models are added to an average of the models.

In this article we present a statistical methodology to quantify whether climate models are indeed unbiased and whether and where model

biases are correlated across models. We consider the simulated mean state and the simulated trend over the period 1970–1999 for Northern

Hemisphere summer and winter temperature. The key to the statistical analysis is a spatial model for the bias of each climate model and the

use of kernel smoothing to estimate the correlations of biases across different climate models. The spatial model is particularly important to

determine statistical significance of the estimated correlations under the hypothesis of independent climate models. Our results suggest that

most of the climate model bias patterns are indeed correlated. In particular, climate models developed by the same institution have highly

correlated biases. Also, somewhat surprisingly, we find evidence that the model skills for simulating the mean climate and simulating the

warming trends are not strongly related.

KEY WORDS: Cross-covariance model; Intergovernmental Panel for Climate Change; Kernel smoother; Numerical model evaluation.

1. INTRODUCTION

Recent changes in the Earth’s climate [Intergovernmental

Panel on Climate Change (IPCC) 2001], related to increas-

ing anthropogenic emissions of greenhouse gases, have raised

questions about the risk of future changes in the climate sys-

tem. The most detailed knowledge of potential future climate

change comes from coupled atmosphere ocean general circu-

lation models (AOGCMs). An AOGCM is a large, determinis-

tic numerical model that simulates the Earth’s climate system.

Besides the ocean and atmosphere, AOGCMs often include a

sea ice and land surface component. AOGCMs can be used to

understand the observed changes in the climate over the indus-

trial period (Meehl et al. 2004) and to quantify the human con-

tribution to the observed changes (Barnett et al. 2005). When

these models are run under future emission scenarios from so-

cioeconomic models for greenhouse gases, aerosols, and other

radiatively active species (Nakićenović et al. 2000), they can

estimate future changes in the climate system on time scales

of decades to many centuries. These simulations, termed cli-

mate projections, form the basis for a quantitative description

of how human activities will influence the future climate for a

give scenario. This work describes a spatial statistical analysis

on a prominent suite of AOGCM simulations.

1.1 Climate Model Uncertainty

All climate projections are necessarily uncertain (Knutti,

Stocker, Joos, and Plattner 2002). The largest contribution to

this uncertainty arises due to the limited understanding of all of

the interactions and feedbacks in the climate system. Because

of computational constraints, many geophysical processes must

be simplified, and their effect is parameterized in terms of the
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large-scale variables available in the model. For example, cloud

condensation processes occur on spatial scales of micrometers,

yet the typical grid size of global climate models is on the order

of a 100 km or more. Therefore, the effect of cloud processes

within a grid cell must be represented in terms of the average

temperature, humidity, vertical stability, and other parameters

within that grid cell. The parameters used in these represen-

tations are often uncertain, being derived empirically from lim-

ited observations, or being tuned to give a realistic simulation of

observable quantities. Structural uncertainty in climate models

is introduced through the choice of processes that are explic-

itly represented, the specific form of parameterizations (e.g.,

whether cloud cover depends linearly or nonlinearly on some

other quantity), but also through the choice of the grid, and the

numerical schemes. Initial conditions are also not well known,

particularly, in the deep ocean or the biosphere, although initial

condition uncertainty is a rather small contribution to the total

uncertainty on long time scales, because only the statistical de-

scription of climate (i.e., a climate mean state and its variability

averaged over a decade or more) are assessed, not individual

weather events.

The ability of an AOGCM to reproduce twentieth century cli-

mate, for which there are observations, is a measure of the skill

of the model and provides some indication of its reliability for

future projections. Climate models are evaluated on how well

they simulate the current mean climate state, how they can re-

produce the observed climate change over the last century, how

well they simulate specific processes, and how well they agree

with proxy data for very different time periods in the past (e.g.,

the last glacial period). Although it seems a necessary condi-

tion for a model to simulate a reasonable current mean state, it

might not be sufficient to guarantee a realistic simulation of fu-

ture changes. Different models might agree well for the present,

yet disagree for the future climate (see, e.g., Stainforth et al.

2005), which is one aspect discussed in this article.

Currently, there are about 20 AOGCMs constructed by in-

stitutions and modeling groups throughout the world with the
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complexity to produce credible simulations of current climate

and future projections. Based on the uncertainty in the mod-

eling process described earlier and different choices of para-

meterizations, model components, and initial conditions, these

models would be expected to have different responses. The mo-

tivation to use several models for prediction is based on the ex-

perience from many applications that the combined information

of many models (in many cases simply an average of several

models) performs better than a single model. Examples where

this has been confirmed are seasonal weather prediction (Yun,

Stefanova, and Krishnamurti 2003), detection and attribution

(Gillett et al. 2002), health (Thomson et al. 2006), and agri-

culture (Cantelaube and Terres 2005). The average of several

models has been shown to agree better with observations for

the current mean climate state (Lambert and Boer 2001), indi-

cating that in some cases at least, errors in individual climate

models tend to cancel when many models are averaged.

1.2 Statistical Analysis of Climate Models

There has been some recent work on combining several cli-

mate model outputs (and/or ensemble simulations) with ob-

servations into probabilistic future climate projections (e.g.,

Tebaldi, Smith, Nychka, and Mearns 2005; Furrer, Sain, Ny-

chka, and Meehl 2007; Smith, Tebaldi, Nychka, and Mearns

2006). Tebaldi and Knutti (2007) have provided a more thor-

ough review, and Smith et al. (2006) have provided more ref-

erences. Most of those studies either explicitly or implicitly as-

sume that each climate model is independent from the others

and is a random sample from a distribution with the true cli-

mate as its mean. This implies that the average of a set of mod-

els converges to the true climate as more and more models are

added. Although some of the biases do indeed cancel by aver-

aging, many problems are persistent across most of the models

for the following reasons. First, many models are based on the

same theoretical or sometimes empirical assumptions and para-

meterizations. Second, all models have similar resolution, and

thus cannot adequately resolve the same small-scale processes.

And third, for practical reasons, the development of individual

models is not independent. Models are constantly compared,

and successful concepts are copied. In some cases, whole model

components are transferred to reduce the effort in model devel-

opment. In the most recent coordinated modeling effort, this is

particularly pronounced, because several institutions have sub-

mitted more than one model or model version. In some cases

only the model resolution is different, or only one component is

different (e.g., the atmosphere is different, but the ocean is the

same).

1.3 Outline

The goal in this work is to apply statistical models to quan-

tify some of the biases in AOGCMS and thus support an under-

standing of the uncertainties in model projections. Specifically,

we consider the simulated mean temperature state and the sim-

ulated temperature trend over the 1970–1999 period for North-

ern Hemisphere summer (JJA) and winter (DJF). For a reader

outside the climate science community, it should be noted that

the ensemble of 20 climate model experiments considered in

this work is currently a definitive and comprehensive archive.

This ensemble provides a nearly complete representation of

the state of the art in climate model science and was coordi-

nated for the IPCC Fourth Assessment Report, an international

collaboration of several hundred scientists. The model experi-

ments contributed by the National Center for Atmospheric Re-

search (NCAR) alone cost tens of millions of dollars in com-

puter resources and produced more than 100 terabytes of de-

tailed model output.

We use a nonstationary spatial process model to characterize

the bias in a given model to observed surface temperature or

temperature trends and quantify the similarity in biases among

different AOGCMs. Deriving a statistical model for each bias

field is important, because it facilitates testing whether correla-

tions among model biases are statistically significant. The fields

representing the correlations between model biases are esti-

mated by kernel smoothing and so provide a flexible method

that can capture nonstationarity in cross-covariances. We pro-

vide evidence that the current biases among a sample of current

AOGCMs are not independent, and thus the ensemble has a re-

duced effective sample size.

In Section 2 we describe the observations of global surface

temperature and corresponding outputs from 20 AOGCMs used

in this study (one AOGCM is omitted from most of the sub-

sequent analysis). Sections 3 and 4 present the main results

on mean state and on trend. Spatial models for the bias of

each AOGCM model, as well as estimates of cross-correlation

among different model biases, are presented, and these cor-

relations are compared with simulated correlations under the

assumption that AOGCM model biases are independent. Sec-

tion 5 concludes with a discussion.

2. DATA

2.1 Observational Data

We use surface temperature measurements (in ◦C) with

global coverage for comparison with the AOGCM simulations.

The actual “data product” that we incorporate into the analy-

sis are monthly averages given on a regular spatial grid and are

created by the Climate Research Unit (CRU), East Anglia, and

the Hadley Centre, U.K. MetOffice (Jones, New, Parker, Martin,

and Rigor 1999; Rayner et al. 2006). The surface temperature

data set is a composite of land and ocean data sets. Temperature

over land is measured at stations, whereas temperature over the

ocean is derived from sea surface temperature and marine air

temperature measurements taken by ships and buoys. Individ-

ual measurements are checked for inhomogeneities, corrected

for instrument biases, and averaged within each grid cells. Thus

the number of measurements used differs for each grid cell. In-

homogeneities in the data arise mainly due to changes in in-

struments, exposure, station location (elevation, position), ship

height, observation time, urbanization effects, and the method

used to calculate averages. However, these effects are all well

understood and taken into account in the construction of the

data set (see Jones et al. 1999 for a review). The uncertainties

in the temperature data set, particularly on seasonal averages

for a 30-year period, are small compared with the much larger

biases in the climate models compared with observations.

We consider the 30-year interval of 1970–1999, because ob-

servations tend to be more complete and of better quality toward

the end of the observational period, and because there is a strong
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signal for temperature increase during that period. A 30-year

period is commonly used to define a climatologic mean state,

which does not focus on specific weather situations. Due to the

lack of observations in high latitudes, we consider only the spa-

tial regions of the latitude range 45◦S to 72◦N, with the full

longitude range from −180◦ to 180◦. We then have only very

few missing observations, and we naively impute these by tak-

ing averages of spatially neighboring cells (eight neighboring

cells if all are available). The method of imputation has very

little impact on the results of our analysis, because there are

only 10 out of 1,656 grid cells with missing data.

For the analysis of the climatologic mean state, we focus on

Boreal winter and Boreal summer mean surface temperature;

that is, we average the monthly temperatures over December to

February (DJF) and June to August (JJA) and over 30 years. For

the trends, we calculate least squares linear trends at each grid

point, separately for DJF and JJA.

2.2 AOGCM Output

In a recent coordinated modeling effort in support of the

IPCC Fourth Assessment Report, many AOGCMs were used

to simulate the climate over the twentieth century. Such ex-

periments are driven by observed changes in radiatively ac-

tive species at the top of the atmosphere and do not explic-

itly include any observed meteorological observations. This has

the goal of simulating the anthropogenic influence on climate

change observed so far. The model runs were then continued

into the future following several possible emission scenarios,

to quantify expected future climate change. Although the pro-

jections are not analyzed in this work, they form a cornerstone

for IPCC reports on the future of Earth’s climate. For a sta-

tistician, climate is an expectation or a long-term average of

weather events. Each AOGCM simulation produces a time se-

ries of weather that is then averaged to estimate the climate

state. If a model were run many times with just slightly dif-

ferent initial conditions, then the climate of the AOGCM could

be estimated to high accuracy. In practice, only a few realiza-

tions of the AOGCM are run, and thus there is some uncer-

tainty in the actual climate simulated. This sampling error, also

known as internal variability, contributes an additional random

component to a statistical model for the AOGCM output. How-

ever, its contribution is small for a 30-year mean. A list of the

models used here as well as their resolution is given in Ta-

ble 1. The “data” produced by all of the models are archived

in a common format and can be downloaded from the Pro-

gram for Climate Model Diagnosis and Intercomparison web-

site (http://www-pcmdi.llnl.gov/ ). In contrast to the observa-

tions, there are no missing data in the climate model output

fields. The models’ resolution, complexity, and completeness

in terms of the processes that they include vary substantially

across the models. A first comparison of each model to observa-

tions showed that model 1 (BCC–CM1) could not be used in our

Table 1. Modeling groups, country, IPCC I.D. and resolutions of the 20 IPCC model outputs used in the study

Group Country IPCC ID Resolution

1 Beijing Climate Center China BCC–CM1 192 × 96

2 Canadian Center for Climate Modelling & Analysis Canada CGCM3.1 96 × 48

3 Météo-France/Centre National de Recherches

Météorologiques France CNRM–CM3 128 × 64

4 CSIRO Atmospheric Research Australia CSIRO–Mk3.0 192 × 96

5 U.S. Department of Commerce/NOAA/Geophysical

Fluid Dynamics Laboratory U.S. GFDL–CM2.0 144 × 90

6 U.S. Department of Commerce/NOAA/Geophysical

Fluid Dynamics Laboratory U.S. GFDL–CM2.1 144 × 90

7 NASA/Goddard Institute for Space Studies U.S. GISS–AOM 90 × 60

8 NASA/Goddard Institute for Space Studies U.S. GISS–EH 72 × 46

9 NASA/Goddard Institute for Space Studies U.S. GISS–ER 72 × 46

10 LASG/Institute of Atmospheric Physics China FGOALS-g1.0 128 × 60

11 Institute for Numerical Mathematics Russia INM–CM3.0 72 × 45

12 Institut Pierre Simon Laplace France IPSL–CM4 96 × 72

13 Center for Climate System Research,

National Institute of Environmental Studies, MIROC3.2

and Frontier Research Center for Global Change Japan (medres) 128 × 64

14 Meteorological Institute of the University of Bonn,

Meteorological Research Institute of KMA, Germany/

and Model and Data group Korea ECHO–G 96 × 48

15 Max Planck Institute for Meteorology Germany ECHAM5/MPI–OM 192 × 96

16 Meteorological Research Institute Japan MRI–CGCM2.3.2 128 × 64

17 National Center for Atmospheric Research U.S. CCSM3 256×128

18 National Center for Atmospheric Research U.S. PCM 128 × 64

19 Hadley Centre for Climate Prediction and Research/

Met Office U.K. UKMO–HadCM3 95 × 73

20 Hadley Centre for Climate Prediction and Research/

Met Office U.K. UKMO–HadGEM1 192×145

NOTE: The resolution of the observation is 72 × 36 (5 × 5 degrees).
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analysis. Apart from large biases and large discrepancy in vari-

ograms compared with observations, the lack of documentation

and problems in reproducing the numerical simulation suggest

that there were issues with the model output possibly caused

not by biases in the physics of the model but by the model setup

or the data postprocessing. Model 10 (FGOALS-g1.0) also has

larger biases (particularly in the high latitudes) than the other

models (excluding model 1), but those were confirmed to be

actually produced by biases in the ocean model. This model 10

is included in the analysis. If the statistical methodology pre-

sented here works as expected, it must differentiate models with

larger biases, like model 10, from the others.

Several models have been developed by a single organi-

zation. For example, two models were developed by NOAA

GFDL (models 5 and 6), two by NCAR (17 and 18), three by

NASA GISS (7, 8, and 9), and two by the U.K. MetOffice (19

and 20). Those models often share components or parameter-

izations of subgrid-scale processes; therefore, we suspect that

these models should have similar biases compared to observa-

tions.

2.3 Registering Model Output and Observations
to a Common Grid

We quantify the model biases by comparing the AOGCM

data with observations. Specifically, we need the difference be-

tween observations and model output. Unfortunately, the model

output and observations are on several different grids. Because

the observations have the coarsest grid (see Table 1), we use

bilinear interpolation of the model output to the observational

grid. One reason for using bilinear interpolation is that because

the grid resolutions of model output and observations are not

nested, it is not obvious how we should aggregate model out-

put to match the observational grids without serious statistical

modeling. (See Banerjee, Carlin, and Gelfand 2004 for a hier-

archical Bayesian modeling approach for nonnested block-level

realignment.) Another reason is that, as reported by Shao, Stein,

and Ching (2006), bilinear interpolation seems to work better

than naive interpolation in aggregating numerical model out-

puts in general.

Instead of taking differences between observations and

model output, we could jointly model the observations and

model output. However, the difference fields tend to have a

much simpler covariance structure than the observations or

model output themselves (see Jun and Stein 2004 for details).

Furthermore, the differences are much closer to Gaussian than

the observations and model output themselves. Therefore, we

develop statistical models for the differences rather than a joint

model for the observations and model output.

2.4 An Example of AOGCM Results for
Mean Temperature

Figure 1 shows the differences of observations and model

output for DJF and JJA climatologic averages. Examples are

given for two models with very similar bias patterns (mod-

els 5 and 6, especially for DJF), one model with poor agree-

ment [large bias pattern (model 10)], and a model with rea-

sonably good agreement [small amplitude of the bias pattern

(model 17)]. Regional biases can be large for both DJF and

JJA averages for many models. Although the DJF difference

of model 10 shows distinct patterns compared with the oth-

ers, overall many models have similar problems in regions with

steep topography (e.g., Himalayas and Andes regions), regions

of ocean deep water formation (e.g., the North Atlantic) or up-

welling (e.g., west of South America), and high-latitude areas,

where snow or ice cover influences the climate. This is not sur-

prising, because all models cannot properly resolve steep moun-

tains or ocean convection due to their limited resolution. No

single model performs consistently better than all of the other

models in all spatial regions and for both DJF and JJA.

The problems in simulating a high-altitude and high-latitude

climate in most models are illustrated in Figure 2. The left col-

umn shows the difference between observations and the multi-

model mean (i.e., the average of the 19 models) for each season.

Note that although the magnitudes of the differences between

observations and the multimodel mean are slightly less than the

magnitude of the differences in the individual models (Fig. 1),

the problems of the multimodel mean over the high-altitude and

high-latitude areas are still present. This is a first sign that the

assumption of model averages converging to the true climate is

not fully justified. If all models have similar biases in the same

regions, then adding more models with similar biases to an av-

erage will not eliminate those biases. The right column shows

the root mean squared (RMS) errors of the 19 models (i.e., the

RMS of the bias patterns of all models, averaged across all mod-

els). It shows that the regions in which model biases have large

spread (high RMS error) tend to be the same as those in which

the multimodel mean deviates from observations.

3. ANALYSIS ON MEAN STATE

3.1 Statistical Models for the Climate Model Biases

In this section we build explicit statistical models to quantify

the model biases on the mean state. Let X(s, t) denote the ob-

servations and Yi(s, t) denote the ith model output (DJF or JJA

averages) at spatial grid location s and year t (t = 1, . . . ,30).

As mentioned earlier, we model the difference of observation

and model data, or the model bias Di(s, t) = X(s, t) − Yi(s, t).

The process Di varies over space and time, and we decompose

it as Di(s, t) = bi(s) + ui(s, t). Here bi is a purely spatial field

with possibly nonstationary covariance structure and represents

the bias of the ith model with respect to observed climate. The

residual, ui , has mean 0 and is assumed to be independent of bi .

This term ui includes contributions from the measurement error

and year-to-year variation of climate model outputs. We are in-

terested mainly in modeling bi , especially the cross-covariance

structure of bi and bj for i �= j . Most of the information for

modeling bi comes from the average of Di over 30 years, that

is, D̄i(s) =
∑30

t=1 Di(s, t)/30, because the noise component of

weather in a 30-year seasonal average is small.

One may wonder whether Di(s, t) should contain a spatial

field that represents the bias due to the observational errors.

However, as mentioned in Section 2.1, the climate scientists

have fairly strong confidence in the quality of their observa-

tional data compared with the climate model biases. Therefore,

we assume that the effect of observational errors to Di is neg-

ligible. If the observational errors do turn out to be important,

then they would induce correlations among the climate model

biases.



Jun, Knutti, and Nychka: Spatial Analysis to Quantify Numerical Model Bias

JASA jasa v.2007/01/31 Prn:6/11/2007; 14:44 F:jasaap06624r1.tex; (Diana) p. 5

5

1 60

2 61

3 62

4 63

5 64

6 65

7 66

8 67

9 68

10 69

11 70

12 71

13 72

14 73

15 74

16 75

17 76

18 77

19 78

20 79

21 80

22 81

23 82

24 83

25 84

26 85

27 86

28 87

29 88

30 89

31 90

32 91

33 92

34 93

35 94

36 95

37 96

38 97

39 98

40 99

41 100

42 101

43 102

44 103

45 104

46 105

47 106

48 107

49 108

50 109

51 110

52 111

53 112

54 113

55 114

56 115

57 116

58 117

59 118

Figure 1. Differences between observation and model outputs for models 5, 6, 10, and 17 (from top to bottom). The left column is for DJF

averages, and the right column is for JJA averages. Contour levels are −3 (dashed) and +3 (solid).

We model bi as a Gaussian random field with a mean struc-

ture depending on certain covariates. The patterns in Figures 1

and 2 suggest that we need to include the latitude and altitude

in the mean term. We also find that the ocean/land indicator has

large significant effects on the differences of observation and

model outputs. Thus for i = 2, . . . ,20, we let

bi = μ0i + μ1iL(s) + μ2i1(s∈land) + μ3iA(s) + ai(s), (1)

where L denotes the latitude and A denotes the altitude (over

the ocean, A = 0). Here every term except for ai is a fixed ef-

fect. The term ai is stochastic and is modeled as a Gaussian

process with mean 0.

In modeling the covariance structure of ai , we need to have

a covariance model that satisfies at least two conditions. First,

the covariance model should be valid on a sphere. Second, it

should have nonstationary structure; even the simplest possible

model should have at least different covariance over the land

and over the ocean, because the differences over the land have

higher covariances than those over the ocean.

Jun and Stein (2007) gave a class of flexible space-time co-

variance models valid on a sphere that are nonstationary in

space. We use a spatial version of this model class to model

the covariance structure of ai . Following Jun and Stein (2007),

for di ’s that are constants (i = 2, . . . ,20), we model ai as

ai(s) = ηi

∂

∂L
Zi(s) + diZi(s). (2)

The differential operator in the first term of (2) allows for possi-

ble nonstationarity depending on latitude. Now Zi is a nonsta-

tionary process defined on a sphere, and with δi > 0, we write

it as

Zi(s) =
(
δi1(s∈land) + 1

)
Z̃i(s), (3)

where Z̃i is a Gaussian process with mean 0 and covariance

cov{Z̃i(s1), Z̃i(s2)} = αiMνi+1(βi
−1d). (4)

Here αi, βi, νi > 0; d is the chordal distance between s1 and s2;

M is the Matérn class; Mν(x) = xνKν(x); and K is a modified

Bessel function (Stein 1999). This covariance model is valid on

a sphere, because the Matérn class is valid on R
3, and through

the chordal distance d , we get a valid covariance model on a

sphere (Yaglom 1987). Due to the differential operator in (2),
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Figure 2. The difference between observation and the average of 19 models (left column) and the RMS errors (right column). The top panel

is for DJF averages, and the bottom column is for JJA averages. The solid lines represent positive levels, and the dotted lines represent negative

levels.

the smoothness parameter of a Matérn covariance function in

(4) should be >1 (νi + 1 > 0). In (3), the term δi gives higher

covariance over the land than over the ocean for the process

ai and the amount of this inflation is allowed to vary across

AOGCMs.

The variance can be expected to depend much more on lat-

itude than the correlation. Thus we tried the few variations

of (3), such as Zi(s) = (δi1(s∈land) + ψi |L(s)| + 1)Z̃i(s) and

Zi(s) = (δi1(s∈land) + ψiL(s)1{L(s)>0} + 1)Z̃i(s), for ψi > 0;

however, we found no significant increase in log-likelihood val-

ues.

3.2 Results for Model Experiments

To estimate the covariance parameters, we use restricted

maximum likelihood estimation (REML) and then obtain re-

gression parameters in the mean function through generalized

least squares (Stein 1999). We find that constraining ηi = 0 in

(2) gives a likelihood comparable to ηi > 0 for all 19 models.

This may not mean that there is no nonstationarity depending on

latitude, but it may suggest that we need to allow ηi to vary over

latitude or some other appropriate variables. For parsimony, we

set ηi = 0 for i = 2, . . . ,20. We also set di = 1 to avoid the

identifiability problem in the marginal variance.

The fitted values of the parameters in (1) for DJF and JJA av-

erages are given in Tables 2 and 3. The unit of spatial distance is

km. Based on these estimates, we compare the estimated fixed

part and the random part in (1). Figures 3 and 4 compare D̄i (for

model i, i = 2, . . . ,20), the fixed part of the difference, and the

random part as in (1) for each season. For most of the mod-

els, the random part is close to mean 0 relative to D̄i and the

magnitudes of the fixed part and random part are similar. The

covariance parameters are βi , the spatial range; νi , the smooth-

ness parameter for the Matérn class; and δi , the inflation para-

meter for covariances over land. The parameter αi is related to

the sill in the sense that the variance of the process Z̃i in (3)

over the ocean is αi 2νi Ŵ(νi + 1). Note that the νi values in Ta-

bles 2 and 3 are not the same as νi in (4). Because ηi = 0, we do

not have to have the smoothness in (4) >1, as explained before,

and so we report the actual smoothness parameter values of the

Matérn class, νi . Overall, the smoothness of the bias processes

is around .5, which corresponds to the exponential covariance

class. Although δi seems small relative to αi , we inflate the co-

variance over the land by (1 + δi)
2 times the covariance over

the ocean, so it is a significant change in the covariance over

the land. Finally, we note that the estimates for DJF and JJA are

fairly similar.

3.3 Correlations Between the Model Biases

One of our main interests is how the biases of each model

outputs are correlated with each other. To build a joint statisti-

cal model for the bi ’s defined in (1), we particularly need mod-

els for σij (s) = cov{ai(s), aj (s)} (i, j = 2, . . . ,20). This is dif-

ferent from the covariance model for ai that we discussed in

Section 3.1, because σij (s) is a cross-covariance. Usual spatial

covariance functions, such as Matérn class, may not be appro-

priate for modeling σij because, for instance, it can take nega-

tive values.

Our idea for estimating σij (s) is to apply a kernel smoother to

the sample statistics ˜̄Dij (s) = ˜̄Di(s)
˜̄Dj (s). Here ˜̄Di(s) equals

D̄i(s) but with the estimated mean values using the parameter

estimates in Tables 2 and 3 subtracted. The ˜̄Di ’s are assumed to

be mean 0, and thus ˜̄Dij is related to the cross-covariances of
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Table 2. MLE estimates for DJF averages

Model μ0i μ1i μ2i μ3i βi νi αi δi

2 −.0447 .0071 1.4629 −.0006 1,305.4203 .4588 2.1599 .6477

3 .8954 −.0108 .5618 .0005 1,423.8011 .5795 3.6890 .5125

4 .8728 −.0075 .4995 .0010 1,975.6505 .4026 2.5803 .6713

5 1.6158 .0233 .6556 .0006 2,941.1116 .5336 4.8570 .4117

6 .6472 .0095 .6749 .0010 1,381.9561 .5683 2.7177 .6395

7 .1093 −.1630 .2392 .0008 5,575.8392 .3684 7.0323 .2296

8 −.4683 .0358 −.1747 0 2,063.9520 .4942 3.8876 .5642

9 .1034 .0208 .8656 .0001 1,423.0634 .5466 3.4714 .6810

10 −.1884 .1879 −.4706 −.0018 3,989.8403 .6182 31.8067 .0255

11 .9452 −.0359 .3916 −.0012 1,955.9095 .5428 5.8097 .3058

12 1.4438 −.0540 .2757 −.0009 5,202.5915 .5095 7.5262 .4763

13 1.1964 −.0381 .3456 −.0008 1,713.7778 .5538 3.3057 .5221

14 .4183 .0068 .3443 −.0010 822.8218 .6095 1.7618 .7915

15 −.5040 −.0329 .9223 .0011 1,117.3721 .4769 1.9867 .6211

16 .6465 .0231 .4969 −.0008 1,177.6320 .5385 1.9344 .4993

17 .2020 −.0130 .3952 .0004 1,021.6539 .6523 2.3250 .5074

18 1.3609 .0878 −.0802 −.0008 2,199.3238 .6468 1.0881 .0541

19 −.4049 −.0259 2.2031 .0008 2,646.4107 .1849 1.0559 1.0476

20 .9534 −.0062 2.0699 .0004 2,245.2868 .4316 3.2668 .8793

biases of model i and j . To be precise, for each AOGCM pair i

and j , we assume that

˜̄Dij (s) = σij (s) + ǫij (s), (5)

where ǫij (s) is a spatial process with mean 0. Then consider a

kernel estimator for σij (s),

σ̂ij (s) =

1,656∑

k=1

K

(
|s, sk|

h

)
˜̄Dij (sk) ·

[
1,656∑

k=1

K

(
|s, sk|

h

)]−1

for nonnegative kernel function K and bandwidth h. For

two spatial locations s1 and s2, |s1, s2| denotes the great

circle distance between the two locations. Now let �(s) =

(σij (s))i,j=2,...,20, and denote its kernel estimate as �̂(s) =

(σ̂ij (s))i,j=2,...,20. For each s, �̂(s) is nonnegative definite;

for ˜̄D(s) = ( ˜̄D2(s), . . . ,
˜̄D20(s))

T and for any nonzero x =

(x1, . . . , x19)
T ∈ R

19,

x
T
�̂(s)x

=

1,656∑

k=1

K

(
|s, sk|

h

)
{xT ˜̄D(sk)}

2 ·

[
1,656∑

k=1

K

(
|s, sk|

h

)]−1

≥ 0.

But �̂(s) may not be positive definite. Because we have a fixed

number of ˜̄Di ’s, and thus the dimension of �(·) is fixed, we

Table 3. MLE estimates for JJA averages

Model μ0i μ1i μ2i μ3i βi νi αi δi

2 −.0865 .0434 .2780 −.0002 1,759.548 .4376 1.4964 .6016

3 .6538 .0190 .1892 .0007 1,759.293 .5332 1.9254 .5999

4 1.0446 .0609 −1.0807 .0012 2,650.400 .2908 1.5231 .4944

5 1.1957 .0271 .1957 .0010 3,356.275 .4483 2.7490 .3808

6 .3627 .0110 −.0166 .0012 1,323.982 .4647 1.5883 .5082

7 .3979 −.0205 −.5429 .0010 2,645.100 .4027 2.5659 .4344

8 −.3541 −.0087 −.4084 .0003 1,487.233 .5427 3.2541 .4623

9 .0462 .0222 .3924 .0004 2,046.440 .5440 4.8100 .2944

10 −.9498 .0422 −.1926 −.0016 2,852.056 .4997 5.7854 .6555

11 1.3586 −.0664 .2870 −.0013 2,503.948 .5109 3.4285 .4081

12 1.4088 .0156 −.3069 −.0005 4,560.329 .5438 6.2419 .3750

13 .8719 −.0067 .2550 −.0008 2,707.467 .4745 1.9458 .8710

14 .6508 .0319 −.1562 −.0006 2,474.549 .3860 1.7212 .6869

15 −.4343 .0330 −.3780 .0016 2,101.735 .3405 1.3852 .5711

16 .7512 .0072 .8560 −.0007 1,652.461 .4671 1.2025 .9530

17 .4178 .0419 .2092 .0004 1,681.918 .5115 1.9174 .4088

18 1.6444 −.0038 .4404 −.0006 2,823.030 .5164 3.5510 .3124

19 −.2534 .0671 −.5807 .0013 2,606.165 .2826 1.8235 .3605

20 .6320 .0559 −.7369 .0012 1,830.724 .3471 1.7890 .3003
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Figure 3. Comparison of the difference between the observation and ith model output (D̄i for model i) and the estimated fixed part and

random part in (1) (DJF).

should assess the consistency of the kernel estimate �̂(·). One

technical issue is that the error ǫij in (5) is spatially correlated.

Altman (1990) discussed the consistency of kernel smoothers

with correlated errors in the one-dimensional case. Because we

expect the spatial correlation of ǫij to die out after a certain

spatial distance lag, we may expect similar consistency result

on �̂ as the bandwidth goes to 0.

In our analysis, we use a Gaussian kernel for K with band-

width h = 800 km. The choice of the bandwidth here is based

on typical spatial variations in a climatologic mean temperature

field. For every s and for all data cases, we found �̂(s) to be

positive definite.

We are interested in the correlation matrix R(s) =

(rij (s))i,j=2,...,20, with rij (s) = σ̂ij (s)/
√

σ̂ii(s)σ̂jj (s). The ma-

trix R(·) is useful for answering several questions. First, we

can quantify the correlation between biases of pairs of models

at a fixed spatial location. Second, using 1 minus the correla-

tion values as a distance measure, we can classify models into

subgroups with highly correlated biases. Third, we can identify

spatial subregions in which certain pairs of models have higher

correlated biases.

As an example, Figure 5 displays r5j over the whole spatial

domain for DJF averages, the correlation between model 5 bias

and the other model biases. They show that models 5 and 6 have

particularly highly correlated biases over the whole domain.

The models 5 and 6 are both developed by the NOAA GFDL

group and use different numerical schemes but the same physi-

cal core. This result confirms the hypothesis that models devel-

oped by the same group have highly correlated biases and thus

cannot be assumed to be independent. Similarly, other model

pairs developed by the same organization (e.g., models 8 and

9, or models 19 and 20) have noticeably higher correlated bi-

ases than other pairs of models, independent of the season (not

shown). Those types of figures also can indicate the regions in

which a pair of models has highly correlated biases.

Figure 6 gives a summary of correlation values for each pair

of model biases. Each symbol denotes a correlation between

biases of model i and j averaged over the whole spatial domain.

Note first that most of the correlation values are positive and

rather high. Pairs of models, some developed by same group

of people, show very high correlation values that are consistent

across seasons. Note that correlations between the model 10
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Figure 4. Comparison of the difference between the observation and ith model output (D̄i for model i), and the estimated fixed part and

random part in (1) (JJA).

bias and the other model biases are small and especially for DJF

season, some of the model biases have negative correlation with

model 10 bias (in crosses). This is another sign of the unusual

behavior of model 10.

Monte Carlo simulation is used to determine the distribution

of correlation fields when two models have independent bias

fields. Based on the spatial model for biases [as in (2) and Ta-

bles 2 and 3], we simulate bias fields that are independent be-

tween models. From these simulated values, we calculate the

correlation values in the same way as for the model and ob-

servation differences. We repeat this procedure 1,000 times,

and calculate correlation values averaged across space for each

time. These correlation values are comparable to the dots (or

crosses) in Figure 6. For reference, we calculate the 99th and

1st percentiles of the correlation for all model pairs [171 =
(

19
2

)

total pairs]. The maximum values of the 99th percentile and

minimum for the 1st percentile from 1,000 simulations are the

dotted lines in Figure 6. Another reference that is suitable for

multiple comparison is the distribution of the maximum entry

from the average correlation matrix. The 99th percentile and

1st percentile (dashed) and median (combination of dashed and

dotted) of this maximum is included in Figure 6. Many of the

symbols are above the dotted and even quite a number of the

symbols are above the dashed lines. This supports our conclu-

sion that the model biases are indeed correlated.

3.4 Verification of Our Methodology

We are able to test our methodology on initial condition

ensemble runs that were simulated by the same models. Ini-

tial condition ensemble runs are created by running the same

AOGCM but only changing the initial conditions slightly. This

results in model outputs that have a different realization of the

noise component (i.e., different weather) but very similar cli-

matologic mean states. If the statistical model were accurate,

then we would expect high correlation values for the ensem-

bles from the same model and smaller correlation values from

pairs of different models. Using four ensemble runs of model 2

and two ensembles each of models 5 and 6, and assuming that

these eight ensemble members are from eight different models,

we apply our methodology to calculate correlations among their

biases. As in Section 3.3, before calculating the correlations, we
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Figure 5. The correlation r5j for j = 2, . . . ,20 for DJF averages. The value of j is shown at the bottom right corner of each picture. The grid

points with r5j > .6 are in gray, and the rest are in white. The average value of r5j over the spatial domain is given in the lower Indian ocean

area.

subtract the mean field using the estimated parameter values in

Tables 2 and 3.

The results are consistent with our expected outcome that

climate values for each ensemble runs are similar and so cor-

relations among biases of ensembles from the same model are

all >.97. In addition, correlations among biases of ensembles

from different models are similar to the values obtained from

the original model runs.

4. ANALYSIS ON THE TREND

To study the climate model biases of the trend, we use sea-

sonal averages of surface temperature data for each of the 30

years over the whole spatial domain. We first examine the rela-

tionship between the biases on the mean state and the biases on

trend. One reason for developing climate models is to quantify

possible climate change for the future. Thus accurate prediction

of the trend is important, and comparing the simulated warming

trend over the last decades with the observed trend is a way to

assess the dynamic response of the model.

For practical reasons, models are still evaluated mostly on

their mean state. Relatively accurate data sets are available for

many variables, and the mean state requires only short equi-

librium simulations, in many cases with an atmospheric model

only. But evaluation on the trend requires a more expensive

run of the full model from a preindustrial state (before the year

1900) up to the present day. A common assumption is that cli-

mate models that simulate the present-day mean climate state

well will also be accurate in simulating the trend (Tebaldi et al.

2005). We test this hypothesis by comparing simple statistics

from the biases. Then we apply the method of calculating cor-

relations between model biases on the trend, as we did earlier

for the biases on the mean state.

4.1 Estimated Spatial Trends in Temperature

To define the biases on the trend, we determine the slope of

the temperature trend at each grid point for both observations

and model data. At each grid point, we regress the seasonal

averages on time, that is,

Z(s, t) = γ0(s) + γ1(s)(t − 15.5),

where Z(s, t) is the seasonal average of observations or climate

model output at year t for the location s (t = 1, . . . ,30). Instead
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Figure 6. Average of rij ’s over the whole spatial domain displayed

for each pair of models as points (dots or crosses) for both seasons.

When either i or j is 10, crosses are used; otherwise, dots are used.

The distribution of the points for each season is given in boxplots.

Refer to Section 3.3 for how the values for lines are obtained. Pairs

(i, j) are displayed if rij > .55 for at least one season.

of regressing on t , we regress on t − 15.5, to have γ0 and γ1

independent of each other (t = 1, . . . ,30, so that the average of

all t values is 15.5).

The left column of Figure 7 shows the slope values γ1(·) for

observations and some model outputs. The surface of slopes

for observations are rougher than those for the model output.

For both observation and model outputs, many grid cells do

not have significant slopes. Also, some grid cells have nega-

tive slopes, indicating a temperature decrease over the 30-year

period.

We define the bias of the trend as the difference between the

slope in the observations and the slope in the model data. An

alternative would be to use the ratio of the two slopes, but for

many grid cells, the very small slopes would make this ratio

unstable.

Now we compare the biases from the trend and the biases

from the mean state. Figure 8 shows scatterplots of several com-

binations of the four values: DJF RMS mean, JJA RMS mean,

DJF RMS trend, and JJA RMS trend. DJF RMS mean is calcu-

lated as the RMS of the bias in the mean state for DJF averages

(as in Fig. 1), separately for each model, and JJA RMS mean

is the same as DJF RMS mean but for Boreal summer. DJF

RMS trend is the RMS of the trend biases (observation slope −

model slope) for DJF. The DJF RMS mean and JJA RMS mean

are highly correlated (correlation value = 0.73); that is, models

that agree well with observations for one season tend to also

agree well with those for the other season. Model 10 has very

large RMS mean values for both seasons. On the other hand,

DJF and JJA RMS mean are only weakly correlated with trend

RMS for the corresponding seasons. Although model 10 has ex-

ceptionally large DJF and JJA RMS means, it does not have the

largest trend RMS. The results call into question to some degree

the common assumption that a model, that does well in simu-

lating the climate mean state can be trusted to project changes

into the future (the latter being temperature increase over time,

i.e., a trend). This assumption is either explicit (e.g., Tebaldi et

al. 2005) or implicit (e.g., IPCC 2001) in many studies.

4.2 Correlation of the Trend Biases

To quantify the correlation between the model biases on the

linear warming trend, we apply the same analysis described in

Section 3.3 to the biases of the trend. Our goal is to test the

relationship between pairs of models with highly correlated bi-

ases on the mean state and on the trend. Figure 9 shows the

correlations among the biases of trend for both seasons. The

pairs of models with high correlations are not the same as the

pairs of models from the analysis on the mean state (Fig. 6).

But what is more surprising is that for almost all model pairs,

the correlation level is consistently high [Fig. 9(a)]. Several fac-

tors could cause such a result. The observations are obviously

only one possible realization and contain internal variability.

Whereas the noise contribution is small in a 30-year climato-

logic mean, linear trends at a single grid point can be influenced

substantially by noise, that is, the internal unforced variability

in the climate system. Part of that result also could be caused

by some local biases in the observations, particularly in regions

with poor data coverage. Those obviously would not be picked

up by any climate model, so all models would differ from the

observations in a similar way. Another possible explanation is

that many models do not include all of the radiative forcing

components. For example, the cooling effect of volcanic erup-

tions is not included in some models, causing them to over-

estimate temperature in most regions shortly after a volcanic

eruption.

We are particularly concerned about the rough surface of

slopes from the observation. To quantify the effect of this on

the correlation values, we recreated Figure 9(a) but smoothed

the observation and model slopes with a Gaussian kernel and

bandwidth of 1,600 km before the correlation analysis, to re-

move some of the high-frequency signals. The results are not

sensitive to the particular choice of kernels or to the bandwidth.

With the smoothed data, there are more grid points with signif-

icant positive slopes. Furthermore, Figure 9(b) shows that the

average correlation level has decreased significantly, whereas

the maximum correlation has remained at a similar level. The

pairs of models with highly correlated biases have not changed

much for the original data and the smoothed data. An interest-

ing point here is that a comparison of Figures 6 and 9 reveals no

obvious correspondence in the correlation across models for the

biases of the mean state and the biases of the trend. Recall that

in Figure 8, DJF RMS for trend and JJA RMS for trend have

negative correlation (top right). However, in Figure 9, the cor-

relations from both seasons seem to have high correlation; pairs

of models with high correlated biases on trend for DJF averages

tend to have high correlated biases on trend for JJA averages as

well.
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Figure 7. Plot of γ1(s) for observation and models 2, 10, and 18 outputs (top to bottom) from DJF averages. The left column shows values

from the original data, and the right column shows the smoothed data (with bandwidth 1,600 km). The grid points with crosses are where p

values of the regression are >.1.

5. CONCLUSIONS AND DISCUSSION

We have presented the results of quantification of AOGCM

model biases and their dependence across different models.

Based on our analysis, many AOGCM models (especially those

developed by the same parent organizations) have highly cor-

related biases, and thus the effective number of “indepen-

dent” AOGCM models is much lower than the actual num-

ber of models. This lets us form subgroups of models that

share “common” features and to find a better strategy for com-

bining the information from different model outputs rather

than taking a naive average. We also have demonstrated that

the performance of AOGCM models on the mean tempera-

ture state has little relationship with its performance in re-

producing the observed spatial temperature trend. This con-

flicts with a standard assumption used to interpret different

AOGCM projections of future climate. Our results suggest the

need for better model validation procedures that are multivari-

ate.

The reason why we fit the ai(s)’s separately instead of mod-

eling them jointly is because in building a joint multivariate

model for a(s) = (a2(s), . . . , a20(s)), we need to specify the

cross-covariance structure between ai(s) and aj (s), i �= j . This

is a challenging problem, and we are not aware of flexible

cross-covariance models that would be suitable for modeling

the a(s)’s. We contend that using a limited and inflexible cross-

covariance model for modeling the ai(s)’s jointly would lead

to less satisfactory estimates for the rij ’s compared with our

results.
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Figure 8. Comparison of biases the mean state and the trend for each season. The biases are summarized over the whole spatial region as rms

errors. Each number denotes the model number; the number in gray is the correlation between the two rms errors.

Eventually we are interested in building joint statistical mod-

els to combine all of the climate models with observations. Our

results demonstrate that the statistical approaches of Tebaldi et

al. (2005), Furrer et al. (2007), and Smith et al. (2006) may need

to be extended due to the biasedness of the climate models and,

more importantly, the dependence among biases from differ-

ent AOGCMs. Achieving this requires flexible cross-covariance

models that are valid on a sphere. Another challenge in this

task is the spatial analysis of large data sets. Dealing with a

large number of global processes and modeling them jointly

(a) (b)

Figure 9. Similar figures as in Figure 6 for the biases of the trend from the original data (a) and from the smoothed data (b), with Gaussian

kernel, bandwidth 1,600 km. Pair numbers displayed are pairs of model biases with correlation >.7 (a) or .71 (b) for at least one season.
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requires significant computing resources and efficient compu-

tational methods.

Our correlation estimates are based on the maximum likeli-

hood error estimates given in Tables 2 and 3, and the necessary

uncertainty about these estimates has not been discussed in the

article. To study the uncertainty of the estimates, it would be

natural to consider a Bayesian hierarchical model framework.

[Received December 2006. Revised May 2007.]
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