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1. The cell nucleus 

1.1    A concise historical perspective 
 
The eukaryotic cell nucleus was first named in 1831 by Robert Brown when he ob-
served an opaque structure in orchid cells. Most likely, he was not the first person 
who observed the cell nucleus. Already in 1802, it was Franz Bauer who described a 
structure in plant cells that could reflect the cell nucleus. Also, it is even possible that 
van Leeuwenhoek was actually the first person who observed the cell nucleus back in 
1682 when he studied plant cells. These scientists, however, had no clue about the 
content and function of this organelle at that time. Knowledge about the constituents 
and function of the nucleus evolved rapidly after the first isolation of the nucleus in 
1869 by Friedrich Miescher (Miescher, 1871). For this isolation he used white blood 
cells derived from pus, which he treated with a pig-stomach extract and acid. Mi-
escher discovered that the nucleus contains a substance made up of large molecules 
containing phosphorus and nitrogen which he named ‘nuclein’. When the substance 
was separated into protein and acid molecules it was in 1889 referred to as nucleic 
acid by a pupil of Miescher, Richard Altmann. It was only since the discovery of the 
chemical structure of DNA by James Watson and Francis Crick in 1953 that the pre-
cise role of this molecule in life became known. 
 
1.2    What is inside the cell nucleus? 
 
1.2.1   Chromatin  
 
The mammalian nucleus is surrounded by a double membrane and contains sub-
compartments that partition macromolecular machineries to facilitate and coordinate 
the various nuclear functions, including DNA replication, DNA repair, gene transcrip-
tion, RNA processing, RNA transport and the transduction of intra- and extracellular 
signals (Stenoien, 2000; Carmo-Fonseca, 2002; Rippe, 2007). Essentially, there are 
two main compartments that can be distinguished in the cell nucleus, one is the chro-
mosome territory, and the other is the remaining space, called the interchromatin do-
main (ICD) (Cremer, 2002). The basis for this assumption is the model (for which 
substantial evidence has been presented) that each chromosome forms a distinct 
chromosome territory that shows no or little intermingling with neighbouring chromo-
somes (Manuelidis, 1985). Within a chromosome territory, DNA is folded around oc-
tamers of histone proteins forming nucleosomes separated by linker DNA. The result-
ing “beads on a string” conformation is a platform for other proteins to bind and is 
collectively called chromatin. This structure is proposed to fold into 30 nm fibers that 
form, in turn, DNA loop domains (Cook & Brazell, 1976; Paulson & Laemmli, 1977). 
These DNA loops vary in size from 20 to 200 kb and contain many genes and clusters 
of functionally related genes. DNA loops are not only thought to be important for 
gene regulation, but also for the organization of replicons (a region of DNA that 
replicates from a single origin of replication in the genome). DNA loop anchorage 
sites were shown to colocalize with replication origins (van der Velden, 1984; Razin, 
1986) and DNA loop sizes were shown to correlate with that of the replicons 
(Buongiorno-Nardelli, 1982; Marilley & Gassend-Bonnet, 1989). DNA loops are sug-
gested to be attached to the nuclear matrix via Loop Anchorage Regions (LARs). 
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These regions have a rather complex structure and may include several elements, e.g., 
topoisomerase II binding sites (for review see Razin, 1996; Vassetzky, 2000b). To-
gether, these studies suggest a strict organization principle for chromatin. The reality 
is, however, that we know very little about the organization of chromatin in the cell 
nucleus. Even there is debate whether the 30 nm fibre exists in living cells (Maeshima 
et al., 2010).  
 
Typically, euchromatin is referred to as a transcriptionally active open chromosome 
structure having ample access to the transcription and RNA processing machinery, 
while heterochromatin is referred to as a transcriptionally inactive, compact chromatin 
structure (John, 1988; Felsenfeld & Groudine, 2003). However, these morphological 
terms do not provoke a very clear functional distinction, as some genes show tran-
scriptional activity in supposed heterochromatic regions (Bühler & Moazed, 2007) 
and some are silenced in supposed euchromatic regions. Despite some cell type spe-
cific variation, heterochromatin is mainly positioned at the nuclear periphery and 
around nucleoli. It is probably also for this reason that chromatin at the nuclear pe-
riphery shows a relatively low transcriptional activity and a low gene density (Boyle, 
2001; Finlan, 2008). Transcriptionally competent regions preferentially localize to-
wards the interior of the cell nucleus and to the periphery of chromosomal territories 
(Verschure, 1999). The status of chromatin is characterized best by the presence or 
absence of specific histone and DNA modifications, rather than relying on morpho-
logical features. Histone modifications associated with transcriptional repression in-
clude methylation of histone H3 on Lysine 9 (Steward, 2005) and Lysine 36 (Strahl, 
2002), and deacetylation (leading to hypoacetylation) of histone H3 (Grunstein, 1997; 
Turner, 2000). Histone H3 lysine 9 (H3-K9) methylation creates a specific binding 

site for heterochromatin protein 1 (HP1), which is targeted there by the methylating 
enzyme SUV39H1 (Steward, 2005; Krouwels et al., 2005). However, methylated H3-
K9 is also able to suppress transcription in absence of HP1 by a mechanism involving 
histone deacetylation (Steward, 2005). 
 
Methylation is the most common form of alkylation, and in biochemistry it refers to 
the replacement of a hydrogen atom with a methyl group (CH3). In biological sys-
tems, DNA methylation is mediated by a conserved group of proteins called DNA 
(cytosine-5) methyltransferases (Goll & Bestor, 2005). In vertebrates DNA base me-
thylation typically occurs at cytosine-phosphate-guanine sites (CpG sites), DNA re-
gions where a cytosine is directly followed by a guanine in the DNA sequence. This 
methylation results in the conversion of the cytosine to 5-methylcytosine, and the 
formation of Me-CpG is catalyzed by the enzyme DNA methyltransferase. CpG sites 
are uncommon in vertebrate genomes but are often found at higher density near verte-
brate gene promoters where they are collectively referred to as CpG islands. The me-
thylation state of these CpG sites can have a major impact on gene activity/expression 
in somatic cells. In eukaryotes, typically 2-7% of cytosines (bases that are part of the 
nucleotides which constitute DNA) are methylated, and this methylation is often 
tissue specific (Razin & Cedar, 1991). Cytosine methylation is common to all large-
genome eukaryotes and present in only a few small-genome eukaryotes. Not only is 
there a clear correlation between gene expression and undermethylation, transfection 
experiments clearly demonstrated that this modification acts as a repressor of tran-
scription (Razin & Cedar 1991). Tissue-specific genes appear to be methylated in al-
most all cell types and presumably undergo demethylation when expressed in a spe-
cific tissue type. In contrast, housekeeping genes contain CpG islands that are 
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unmethylated in all cells (Bird, 1986). Both histone and DNA methylation can act as 
epigenetic markers providing heritable mechanisms for gene silencing (Nakayama, 
2001; Grewal & Rice, 2004). 
 
  
1.2.2   The interchromatin domain 
 
The interchromatin domain is inevitably a crowded space since both proteins and 
RNAs travel through this compartment to reach their destination or exert their func-
tion in this compartment. RNA forms together with proteins ribonucleoprotein (RNP) 
particles, which are thought to form a continuous nuclear network. This structure is 
the source of the RNP particles that are released from the nucleus by chemical or me-
chanical extraction (Smetana, 1963). RNA-selective staining procedures have made a 
complete ultrastructural characterization of the nuclear RNP network possible (Bern-
hard, 1969; Biggiogera & Fakan, 1998). Making use of EDTA regressive staining to 
localize RNA, Monneron & Bernhard were able to define, characterize and classify 
the interconnected nuclear RNP structures and distinguished interchromatin granule 
clusters, perichromatin fibrils, perichromatin granules and coiled bodies (Monneron & 
Bernhard, 1969). The discovery of these structures was important for our understand-
ing of nuclear RNA metabolism (Misteli & Spector, 1998; Misteli, 2000). Perichro-
matin fibrils are sites of RNA transcription (Bachellerie, 1975; Cmarko, 1999), 
whereas interchromatin granule clusters (or speckles) play a central role in the assem-
bly and/or modification of pre-mRNA splicing factors (Mintz, 1999; Smith, 1999; 
Spector, 2001). 
 
To ensure unimpeded exchange of molecules between the nucleus and the cytoplasm, 
the ICD has direct access to nuclear pores. Nuclear pores are multiprotein complexes 
embedded in the nuclear envelope, which mediate and regulate nucleocytoplasmic 
transport (Vasu & Forbes, 2001; Fahrenkrog & Aebi, 2003). The ‘basket’ structure at 
the nucleoplasmic side of the nuclear pore consists of eight filaments, which attach to 
a distal ‘ring’ structure. Several reports suggest that these ‘rings’ connect to filaments 
that extend into the nucleus and facilitate nucleocytoplasmic transport (Cordes, 1993; 
Parfenov, 1995; Cordes, 1997). 
  
 
1.2.3 Chromatin organization is dynamic.  
 
It has been hypothesized that the spatial arrangement of the genome in the interphase 
nucleus is an important factor in the regulation of gene activity (Zink, 2004) and pos-
sibly also in orchestrating DNA replication and DNA repair. Gene loci positioned 
megabases apart on the same or even different chromosomes were shown to interact, 
suggesting that some genes are spatially positioned together in a microenvironment to 
coordinate their transcription and/or to facilitate the processing of their RNA tran-
scripts (Branco & Pombo, 2006; Lonard & O'Malley, 2008). Although it is a proven 
fact that the cell nucleus is an ordered and structured compartment, the same structure 
is highly dynamic to regulate key functions such as transcriptional activity in response 
to signaling events and differentiation. In particular, fluorescence in situ hybridization 
and the application of chromosome conformation capture techniques, or a combina-
tion of both, provided important insight in the existence and dynamics of long-range 
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chromatin-chromatin interactions (Dekker, 2006). Also the positioning of specific 
chromatin regions at particular nuclear bodies are examples supporting the notion that 
the genome is not randomly organized in the cell nucleus (Smith, 1995). The chal-
lenge now is to unravel the underlying mechanisms that establish and maintain this 
non-random organization of chromatin in the cell nucleus.  
 
Understanding the organization principles of the nucleus is important because rear-
rangements in nuclear organization have been observed in cells derived from various 
diseases, including cancer, and in cells with a senescent or apoptotic phenotype (Vijg 
& Dollé, 2002; Busuttil, 2004; Raz, 2008; Shin et al., 2010). Furthermore, a striking 
change in nuclear organization has been observed in embryonic stem cells at the onset 
of differentiation (Butler et al., 2009). Most profound rearrangements in chromatin 
structure have been observed when a sperm pronucleus and an egg nucleus fuse after 
fertilization. In many species, the size of DNA loops increases from ca. 50 kbp in 
early embryogenesis to 200 kbp in cells of the adult organism (Buongiorno-Nardelli, 
1982). Notably, the average size of DNA loops was observed to decrease in trans-
formed cells (Linskens, 1987). In several human cancer cell lines the DNA loop size 
was found to be about 50 kbp, i.e. significantly smaller than in normal cells where it 
varies between 70-700 kbp (Oberhammer, 1993). It is important to unravel the 
mechanisms that control these aspects of nuclear organization to understand their im-
pact on the etiology, progression, and possibly treatment of human diseases. Once un-
derstood, the hope is that this new knowledge might open possibilities for treatment 
strategies of human disease. 

 
 
1.3    Nuclear bodies 
 
In addition to soluble components, the interchromatin domain (ICD) contains differ-
ent kinds of subcompartments or nuclear bodies that vary in size, composition and 
function (Figure 3; Tsutsui, 2005). Unlike the organelles present in the cytoplasm, 
nuclear bodies are not surrounded by a membrane structure. Therefore, it is still an 
open question how these bodies assemble and maintain their unique protein constella-
tion. It came more or less as a surprise that most if not all proteins that reside in bod-
ies are in a dynamic equilibrium with their surroundings (Misteli, 2001). A few of 
these proteins have been reported to shuttle between various bodies (Snaar, 2000; Ol-
son, 2004). Thus far, up to twelve different types of bodies have been identified, 
which are either permanently or temporally present in the cell nucleus depending on 
the physiological state of the cell (Spector, 2001). The most prominent nuclear bodies 
are discussed below.   
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Figure 3. Protein domains present in the mammalian cell nucleus. 
OPT domains: transcriptionally active sites that contain a specific set of transcription factors 
and RNA pol II, appear close to nucleoli in G1. Nuclear pore complex: multiprotein complexes 
where the inner and outer nuclear membranes are fused and where materials can transit between 
the cytoplasm and the nucleus. Cleavage body: either overlap or are localized adjacent to Cajal 
bodies, they consist of factors involved in the cleavage and polyadenylation steps of pre-mRNA 
processing. Heterochromatin: inactive chromatin. PcG body: have been found to be associated 
with pericentric heterochromatin (Saurin, 1998) and contain polycomb group proteins (i.e. 
RING1, BMI1 and hPc2). Gems: Gemini of Cajal bodies, they have been found adjacent to or 
coinciding with Cajal bodies. Gems are characterized by the presence of the survival of motor 
neurons gene product (SMN) and an associated factor, Gemin2 (Matera, 1999). SAM68 nuclear 
bodies/ Perinucleolar compartments (PNC): have been identified as unique structures that are 
associated with the surface of nucleoli and are thought to play a role in RNA metabolism 
(Huang, 2000). Both structures are predominantly found in cancer cells and they are rarely ob-
served in primary cells. Other nuclear bodies are discussed in the text. (Adapted from Spector, 
2001) 

 
 
1.3.1   Nucleolus 
 
The nucleolus was one of the first subcellular structures that were identified by early 
users of the light microscope (Montgomery, 1898). Nucleoli appeared as highly 
refractive black dots in the nucleus of cells, reflecting its dense protein content. The 
nucleolus is a dynamic multifunctional nuclear domain where ribosomal RNA is 
synthesized and the ribosomal subunits are assembled (Olson, 2002). Using mass 
spectrometry, up to 700 human proteins have been characterized in purified nucleoli 
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and up to 30% of these proteins are encoded by previously uncharacterized genes 
(Andersen, 2002; Andersen, 2005). Although it is not expected that all proteins found 
in nucleoli also have a function in this structure, their diversity is consistent with the 
idea that the nucleolus performs additional roles beyond generating ribosomal subunits 
(Pederson, 1998; reviewed by Olson, 2002). For example, many proteins related to 
cell cycle regulation (about 3.5% of the identified proteome), DNA damage repair 
(about 1%) and pre-mRNA processing (about 5%) have been identified in isolated nu-
cleoli. Nucleoli have therefore been implicated in processes such as cell cycle regula-
tion (Yamauchi, 2007), virus-replication (Jacob, 1968), regulation of tumor 
suppressor and oncogene activities (Itahana, 2003), DNA damage repair (van den 
Boom, 2004), signal recognition particle assembly (Jacobson & Pederson, 1998), 
RNA modification (Sansam, 2003), tRNA processing (Paushkin, 2004), aging by 
modulating telomerase function (Kieffer-Kwon, 2004; Zhang, 2004), regulation of 
protein stability (Mekhail, 2004; Rodway, 2004), senescence (reviewed by Comai, 
1999; Rosete, 2007) and apoptosis (Baran, 2003). In addition, nucleoli are thought to 
play a role in the maturation and transport of mRNAs (Schneiter, 1995).  
 
A possible function of the nucleolus in mRNA export was proposed 25 years ago 
based on observations in interspecies heterokaryons obtained from fusing chicken 
erythrocytes with mouse cells. It was observed that in the dormant chicken nucleus 
gene expression was initiated at precisely the same time when a nucleolus became 
detectable (Sidebottom & Harris, 1969; Deák, 1972; Harris, 1972). Furthermore, it 
was observed that UV irradiation of the chicken nucleolus in these heterokaryons 
greatly suppressed chicken-specific gene expression (Perry, 1961; Deák, 1972). Addi-
tional support for a role of nucleoli in mRNA export came by the observation that 
processed myc and myoD transcripts, unlike actin or lactate dehydrogenase tran-
scripts, are present in the nucleolus of several cell types (Bond & Wold, 1993). Be-
cause myc intron 1-containing pre-mRNA was not detected in nucleoli but instead in 
the nucleoplasm, it was suggested that the nucleolar localization of Pol II transcripts is 
a general phenomenon for transcripts that have a rapid cytoplasmic turnover only 
(Bond & Wold, 1993). It should be noted, however, that these observations have thus 
far not been confirmed by others. In cells derived from species that vary from sea ur-
chins to humans, nuclear poly(A)+ RNA is found present primarily in discrete "tran-
script domains", which often concentrate around nucleoli (Carter, 1991). Thus, 
whether nucleoli are involved in some steps of nuclear mRNA export has yet to be 
confirmed.  
 

 
1.3.2   Cajal bodies 
 
Cajal bodies are spherical nuclear bodies that are generally present in dividing cells 
and in cells that show high transcriptional activity. They are prominently present in 
most tumor cells, which rapidly proliferate, and in neurons that are metabolically ac-
tive (Cajal, 1903; Ogg & Lamond, 2002). They were first reported in 1903 by the 
Spanish cytologist Ramón y Cajal who named them “nucleolar accessory bodies”, be-
cause of their prominent association with nucleoli in neuronal cells (Cajal, 1903). Ca-
jal bodies were subsequently rediscovered by numerous researchers and given a vari-
ety of names in different cell types (Gall, 2000). The name “coiled body” was coined 
by electron microscopists, referring to their morphology in EM sections. It was not 
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until 1999 that Joseph Gall suggested to link Cajal’s name to the nuclear body that 
was originally described by him in 1903 (Gall, 1999). The number and size of Cajal 
bodies varies among cell types (in mammalian cells typically 0 –10 per nucleus, rang-
ing 0.1–2 μm in diameter) and they also show cell cycle variation within cell types. 
Cajal bodies can be discriminated in the nucleus by the presence of the protein coilin, 
either by immunocytochemistry or by exogenous expression of coilin-GFP (Snaar, 
2000; Ogg & Lamond, 2002).  
 
Recent studies indicated that Cajal bodies play a role in the assembly and/or modifica-
tion of the transcription and RNA-processing machinery (Gall, 1999; Jády, 2003). Ca-
jal bodies are enriched in snRNPs (small nuclear ribonucleoproteins) and snoRNPs 
(small nucleolar ribonucleoproteins) spliceosome subunits. Solid evidence has been 
provided that the final steps in snRNP maturation including snRNA base modifica-
tion, U4/U6 snRNA annealing, and snRNA-protein assembly of both snoRNAs and 
snRNAs occur in Cajal bodies (Darzacq, 2002; Verheggen, 2002; Jady, 2003; Stanek, 
2008). Despite their role in splicing factor maturation, Cajal bodies do not represent 
major sites of transcription per se, but they were observed frequently in association 
with a few specific genes coding for small nuclear snRNAs and histone genes in in-
terphase cells. Because Cajal bodies do not contain either DNA (Thiry, 1994) nor 
non-snRNP protein splicing factors (Raska, 1991; Carmo-Fonseca, 1992) it is unlikely 
that these bodies are sites of transcription or pre-mRNA splicing. Thus, the current 
view is that Cajal bodies play a crucial role in the spliceosome cycle in which the pro-
duction of new snRNPs is promoted by the import and modification of substrates (re-
viewed by Staněk & Neugebauer, 2006). In addition, Cajal bodies may play a role in 
the recycling of snRNPs from splicing complexes that are released after finishing pre-
mRNA splicing. Interestingly, also the RNA subunit (hTR) of the enzyme telomerase 
was shown to accumulate in Cajal bodies (Jady, 2004; Zhu, 2004). During the S-
phase, when telomerase is likely to act, hTR has been found to associate with a subset 
of telomeres while Cajal bodies are present at close distance (Jady, 2006; Tomlinson, 
2006 ). Mutant hTR, which fails to accumulate in Cajal bodies, was fully capable of 
forming catalytically active telomerase in vivo. Telomere extension, however, turned 
out to be strongly impaired (Cristofari, 2007). This functional deficiency was accom-
panied by a decreased association of telomerase with telomeres suggesting that Cajal 
bodies also play an important role in telomere elongation.  

 
 
1.3.3   Speckles 
 
Speckles, also referred to as SC35 domains or interchromatin granule clusters (IGC), 
are thought to be storage sites of factors involved in mRNA synthesis, splicing, and 
RNA export (Dirks, 1999; reviewed by Lamond & Spector, 2003). The prevailing 
view is that splicing factors are recruited from speckles to sites of active transcription 
(Dirks, 1997; Misteli, 1997). At the electronmicroscopical level of resolution, IGCs 
range in size from one to several micrometers in diameter and are composed of 20–
25-nm granules that are connected by thin fibrils, resulting in a beaded chain 
appearance (Thiry, 1995)..Other splicing factor containing structures in the nucleus 
are perichromatin fibrils, Cajal bodies and interchromatin-granule-associated zones, 
also referred to as paraspeckles (Visa, 1993). Speckles, however, can be easily dis-
criminated from these structures by their morphology and protein content and are pre-
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sent throughout the nucleoplasm in regions that contain little or no DNA (Thiry, 
1995). Furthermore, in situ hybridization studies revealed that speckles do not contain 
genes. Instead, active transcription sites were found positioned throughout the 
nucleoplasm and also next to speckles. Some genes have been reported to localize 
preferentially close to speckles (Huang, 1991; Xing, 1993; Xing, 1995; Smith, 1999; 
Johnson, 2000).  
 
These observations indicate that speckles are functionally related to gene expression. 
Hall and coworkers proposed that speckles are hubs that spatially link the synthesis of 
specific pre-mRNAs to a rapid recycling of copious RNA metabolic complexes, 
thereby facilitating expression of many highly active genes (Hall, 2006). In addition 
to increasing the efficiency of each step, sequential steps in gene expression might be 
structurally integrated at each speckle, consistent with evidence that the biochemical 
machineries for transcription, splicing, and mRNA export are coupled (Hall, 2006). 
The observation that speckles also contain poly(A)+ RNA led to the suggestion that 
speckles play a role in RNA metabolism and export (Carter, 1991, 1993; Molenaar, 
2004). A substantial amount of mature mRNA is found to be retained in nuclear 
speckles until ATP is added, suggesting that speckles prevent the export of otherwise 

fully processed mRNAs until an energy-requiring cellular signal releases them 
(Schmidt, 2006). 
 
1.3.4   PML bodies 
 
The most mysterious of all nuclear bodies is the PML body, also known as ND10 (nu-
clear domain 10) or Kremer bodies (Kr) (Dyck, 1994; Koken, 1994; Weis, 1994). 
Promyelocytic leukemia bodies (PML bodies) are nuclear protein bodies, ranging in 
size from 0.3 µm to 1.0 µm in diameter and are characterized by the presence of the 
PML protein. Typically there are 10-20 PML nuclear bodies (PML-NB) present in the 
cell nucleus and they are believed to be tightly associated with nuclear matrix proteins 
(Stuurman, 1992). Electron microscopy studies have shown that PML-NBs are 
composed of a ring-like protein structure that does not contain nucleic acids in the 
centre of the ring (Boisvert, 2000; Dellaire & Bazett-Jones, 2004). At the periphery of 
the ring, however, PML-NBs are believed to make extensive contacts with chromatin 
fibers through protein-based threads that extend from the core of the bodies (Eskiw, 
2004). These contacts have been proposed to be essential for maintaining the integrity 
and positional stability of PML-NBs in the nucleus. 
 
PML bodies were originally characterized using human auto-antibodies derived from 
patients with primary biliary cirrhosis (Bernstein, 1984; Szostecki, 1990; Maul, 2000). 
Using such antibodies, Bernstein et al. described in 1984 the presence of certain typi-
cally speckled structures, which later came to be known as nuclear domain 10 
(ND10), PML bodies, or PODs. PML bodies, however, were first named after exam-
ining cells derived from patients with acute promyelocytic leukemia (APL) (de The, 
1991). Most APL patients carry the chromosomal translocation t(15,17), resulting in a 
fusion protein between the retinoic acid receptor-α (RAR) and the PML protein (de 
The, 1991; Melnick & Licht, 1999). The PML-RARα fusion protein fails to locate to 
PML bodies (Melnick& Licht, 1999) and is thought to block differentiation of bone 
marrow cells (Naeem, 2006). In addition, the leukemic blast cells of APL patients re-
veal fragmented or dispersed PML bodies. Treatment of APL patients with all-trans-
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retinoic acid or arsenic trioxide results in the degradation of the PML-RARα fusion 
protein, restoration of PML bodies and remission of the disease (Koken, 1994; Weis, 
1994). Recently, it has been shown that arsenic-induced degradation of PML or PML-
RARα is mediated by the ubiquitin ligase RNF4 (Lallemand-Breitenbach, 2008; 
Tatham, 2008).  
 
In PML bodies, nearly eighty different proteins have been found present. Among 
them are Sp100, Sp140, SUMO-1, HAUSP (USP7), CBP and BLM, Daxx, pRB, and 
p53 (Hodges, 1998; LaMorte, 1998; Alcalay, 1998; Zhong, 1999; Zhang, 1999; 
Zhong, 2000; for a review see Salomoni & Pandolfi, 2002). Because of this variety of 
proteins, PML bodies have been implicated in many different functions, such as tran-
scription regulation, protein storage, senescence and interferon-induced antiviral de-
fense (Chelbi-Alix, 1995; Maul, 1998). Concerning transcription regulation, PML 
bodies have been suggested to be involved in both transcriptional activation (Maul, 
1998; Zhong, 2000) and transcriptional repression (Everett, 1999). However, whether 
PML bodies play indeed an essential role in transcription is not clear since PML-/- 
mice show a very moderate phenotype. PML-/- mice are morphologically normal and 
do not have higher rates of spontaneous cancers than littermate controls (Wang, 
1998a; Wang, 1998b). Some regions of the human genome that display high transcrip-
tional activity do, however, associate frequently with PML NBs, although RNAi-
mediated knockdown of PML did not perturb the expression of these genes (Wang, 
2004).  
 
PML bodies have also been implicated in DNA damage repair as several repair fac-
tors transit through PML bodies in a temporally regulated manner (Graham & Bazett-
Jones, 2004). Furthermore, PML bodies have been shown to recruit single-stranded 
DNA (ssDNA) molecules in response to exogenous DNA damage (Bøe, 2006). PML 
bodies are also associated with the sites of initial viral DNA transcription/ replication 
in virus infected cells (Maul, 1996; Maul, 1998; Guldner, 1992; Stadler, 1995). PML 
bodies are subsequently disrupted at later stages in the infectious viral cycle (Maul, 
1993). Upon treatment of cells with interferon, PML is induced and the number of 
nuclear bodies increases dramatically (Lavau, 1995; Gaboli, 1998). This suggests a 
role for PML and the nuclear bodies as part of the anti-viral defense machinery acti-
vated by interferons in viral infections. DNA and RNA viruses have a variety of ef-
fects on PML body morphology, where arenaviruses and the human immunodefi-
ciency virus (HIV) transport PML to the cytoplasm, and herpesviruses “unwind” PML 
bodies (Borden, 1998; Melnick & Licht, 1999; Maul, 2000; Turelli, 2001). However, 
findings with HIV infected cells are somewhat controversial, since another group did 
not see PML NBs translocate during infection (Bell, 2001). 
 
It has been established that PML is the primary essential component of PML NBs, 
and conjugation of SUMO-1 to PML is suggested to be a prerequisite for PML body 
formation (Ishov, 1999;  Zhong, 2000). PML SUMOylation likely plays a regulatory 
role in the structure, composition, and function of PML bodies (Sternsdorf, 1997). 
Elegant studies demonstrate that the RING domain of PML directly interacts with 
Ubc9, an enzyme which covalently attaches the SUMO1 protein onto distal regions of 
PML, including one B-box and a region near the nuclear localization signal (Duprez, 
1999).    
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It has been demonstrated that PML contains a SUMO binding motif that is independ-
ent of its SUMOylation sites and is required for PML-NB formation. A model for 
PML-NB formation was proposed in which PML SUMOylation and noncovalent 
binding of PML to SUMOylated PML through the SUMO binding motif constitutes 
the nucleation event for subsequent recruitment of SUMOylated proteins and/or pro-
teins containing SUMO binding motifs to the PML NBs (Shen, 2006). 
  
Alternatively, PML bodies may have the ability to self-assemble. Purified RING-
domains (small zinc-binding domains) of PML and other proteins have been shown to 
self-assemble into supramolecular structures in vitro that resemble the structures they 
form in cells (Kentsis, 2002). Over-expression of SUMO-1 prevented the stress-
mediated breakdown of PML bodies, indicating that PML body stability is partially 
dependent on SUMO-1 (Eskiw, 2003). Interestingly, many of the proteins found in 
the PML NBs have been shown to be SUMOylated (Seeler & Dejean, 2003).  
 
Like PML bodies, also the PML protein has been implicated in different cellular func-
tions including suppressing cell growth and cell transformation (Mu, 1994; Ahn 1995; 
Koken, 1995; review: Melnick & Licht 1999). Transduction of APL patient derived 
NB4 cells with a retrovirus harboring the coding sequence for PML suppressed the 
ability of these cells to form colonies in soft agar. In addition, conditioned medium 
from these cells suppressed colony formation of wild-type NB4 cells, suggesting the 
release of negative growth control factors (Mu, 1994). Furthermore, PML-
overexpressing NB4 cells, when injected into nude mice, yielded smaller tumors that 
appeared with a longer latency than vector-expressing cells (Mu, 1994). In various 
human tumors, PML expression was shown to be decreased (Gurrieri, 2004a) and in 
some cases it was shown that low levels of PML correlated with poor disease outcome 
(Chang, 2007). Consistent with a role as tumor suppressor, it has been reported that 
overexpression of PML suppresses the growth of various cancer cells (Liu, 1995; Mu, 
1997; Le, 1998). Also, PML knockout mice revealed an increased susceptibility to 
chemical-induced carcinogenesis (Wang, 1998a) and spontaneous tumorigenesis 
(Trotman, 2006).  
  
Probably one of the most important functions of PML is to control apoptosis. The 
physiological relevance of this is emphasized by in vivo studies demonstrating that 
mice and cells that lack PML are resistant to a vast variety of apoptotic stimuli 
(Wang, 1998a). Although the molecular mechanism remains largely unknown, PML 
is thought to be a pivotal factor in γ irradiation-induced apoptosis (Wang, 1998a) and 
essential for the induction of programmed cell death by Fas, tumor necrosis factor α 
(TNF), ceramide and type I and II interferons (IFNs) (Wang, 1998a; Quignon, 1998). 
In support of these thoughts, PML−/− mice and PML−/− cells are resistant to the le-
thal effects of γ-irradiation (Wang, 1998a; Yang, 2002). 
 
 

2. The nuclear matrix 
2.1 Evidence for a nuclear matrix structure? 
 
For more than 30 years it has been hypothesized that the mammalian cell nucleus con-
tains a filamentous framework, referred to as nuclear matrix or karyoskeleton, which 
provides structural support to the various nuclear components and a framework for all 
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nuclear activities. It is the observation that nuclei withstand strong hydrodynamic 
shear force, compression and friction during cell or tissue homogenization as well as 
extreme osmotic pressure that prompted scientists to believe in a nuclear matrix struc-
ture (Maggio, 1963a; Penman, 1966; Blobel & Potter, 1966; Dounce, 1995; Pederson 
1997). The term ‘nuclear matrix’ was first used in 1974 to describe a filamentous 
structure that remained present when cell nuclei were salt extracted using 1.0- 2.0 M 
NaCl (Berezney & Coffey, 1974). Numerous studies followed since, using variations 
on extraction protocols until proteins, RNA- and DNA-sequences were all shown to 
be connected to the nuclear matrix (Berezny & Jeon, 1995). Interestingly, Jackson and 
Cook observed in 1988 an extensively anastomatized nuclear network of filaments 
after performing nuclear extractions of cells that were encapsulated in agarose spheres 
(Jackson & Cook, 1988). This network is believed to resemble the filamentous struc-
ture that remains present after a high ionic strength extraction of the nucleus (Capco, 
1982). Many studies found 3-5 and 10-30 nm ribonucleoprotein elements/filaments 
remaining present in the nucleus after extraction using RNP-depleted and RNP-
containing resinless electron microscopy (resin is an embedding material that scatters 
electrons in a similar way as the embedded specimen does) or whole mount electron 
microscopy (Monneron & Bernhard, 1969; Berezney & Coffey, 1974; Comings & 
Okada, 1976; Capco, 1982; Small, 1985; Fey, 1986; Jackson & Cook, 1988). RNP 
filament domains are thought to be very important  for nuclear matrix organization 
and for some time it was not possible to remove chromatin from the nucleus without 
removing the RNP filament domains as well (Fey, 1986).  
 
These ultrastructural studies of sectioned cell nuclei did, however, not confirm the 
presence of a filament system that was thought to comprise the nuclear matrix in situ. 
In fact enormous doubt was raised concerning the procedures used to extract cell nu-
clei could possibly reveal the nuclear matrix structure that may exist in vivo. All nu-
clear matrix preparation procedures used thus far involved harsh treatments, including 
the removal of nucleic acids, heat (Mirkovitch, 1984; Martelli, 1991), Cu 2+ (Mirk-
ovitch, 1984; Neri, 1997), sulfhydryl cross-linking (Kaufmann & Shaper, 1984), and 
highly concentrated monovalent salts such as 2 M NaCl (Berezney & Coffey, 1977). 
Significantly, it has been noted that such treatments themselves result in protein rear-
rangements and protein aggregations (Palade & Siekevitz, 1956; Tashiro, 1958; Madi-
son & Dickman, 1963; Lothstein, 1985). Also, protein-protein interactions and van 
der Waals forces between proteins and water change profoundly when high ionic 
strength is used (Kauzmann, 1959; Varshavsky & Ilyin, 1974), which is true for most 
standard nuclear matrix preparation procedures. Consequently, such artificially intro-
duced protein filaments might easily be interpreted as a nuclear matrix structure 
(Finkelstein, 1997). The existence of a nuclear matrix still needs to be confirmed by 
other techniques, like for example live cell imaging and RNA interference.  
  
Many who did not believe in the existence of the nuclear matrix became converted by 
the idea that ribonucleoproteins are functionally integrated elements of the nuclear 
architecture. Several groups reported pre-mRNA and splicing-intermediates to be re-
tained in RNP-containing nuclear matrix preparations (Ben Ze'ev, 1982; Ciejek, 1982; 
Mariman, 1982; Ross, 1982; Gallinaro, 1983; Ben Ze'ev & Aloni, 1983). Also, several 
studies showed that the hyperphosphorylated form of the largest subunit of RNA po-
lymerase II is associated with nuclear sites that are rich in pre-mRNA splicing factors, 
and importantly, are retained in nuclear matrix preparations (Mortillaro 1996, Vincent 
1996). Hyperphosphorylation of RNA polymerase II is functionally linked to the most 
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active form of this enzyme (Dahmus, 1996). Taking all this evidence into account it 
can be concluded that it is very likely that there is a nuclear matrix, but still further 
research is necessary to precisely define its components.  
  
Recent advances in the study of the protein composition of the nuclear matrix allowed 
the characterization of several proteins that are specifically associated with the nu-
clear matrix in tumor cells (Konety & Getzenberg, 1999). Some of these proteins are 
used for the diagnosis of cancer; e.g., NMP22 is specifically present in the nuclear 
matrix of bladder cancer cells (Ozen, 1999). Hence, detecting changes in the nuclear 
matrix structure may serve as a valuable tool in cancer diagnostics. 
 

2.2   The nuclear lamina 
 
The nuclear envelope is a double-layered membrane that encloses the contents of the 
nucleus during most of the cell's lifecycle and forms a boundary between chromo-
somes and the cytoplasm in eukaryotic cells. The main components of the nuclear en-
velope are the inner nuclear membrane, the outer nuclear membrane, which is con-
tinuous with the endoplasmatic reticulum, and the nuclear pore complexes (Stuurman, 
1998; Goldman, 2002). On the inner surface of the nuclear membrane, the nuclear 
lamins (type-V intermediate filaments) are polymerized to form a thin fibrous struc-
ture, 20-50 nm thick. The nuclear lamins form together with the inner nuclear mem-
brane (INM) proteins the ‘nuclear lamina’, a stable yet dynamic network that main-
tains extensive interactions with both INM-specific integral membrane proteins and 
chromatin (Hutchison, 2002). There are two classes of lamins, A-type lamins (lamin 
A/lamin C, each alternatively spliced from the same gene) and B-type lamins which 
bind to the lamin B receptor (LBR). Mutations in the lamin A/C and lamin B genes 
result in diseases ranging from cardiac and skeletal myopathies and partial lipodystro-
phy to peripheral neuropathy and premature aging (Mounkes, 2003). Specifically, mu-
tations in the genes encoding for A-type lamins and their binding partners have been 
associated with Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, Dunni-
gan-type familial partial lipodystrophy and Hutchinson-Gilford progeria syndrome 
(Bonne, 1999; Fatkin, 1999; Cao, 2000; Shackleton, 2000; Burke & Stewart, 2002; 
De Sandre-Giovannoli, 2003; Eriksson, 2003). B-type lamins are constitutively ex-
pressed in all somatic cells and contain a stable C-terminal farnesyl modification, 
which mediates tight association with the INM. Unlike B-type lamins, the A-type 
lamins are expressed only in differentiated cells (Lebel, 1987; Stuurman, 1998). They 
are components of the peripheral lamina and of structures in the nuclear interior 
(Moir, 2000). The lamina may be linked to nuclear pore baskets through Nup153 
(Foisner, 2001). 
  
The nuclear lamina is considered to be an important determinant of interphase nuclear 
architecture (Lenz-Bohme, 1997; Schirmer, 2001) because it plays an essential role in 
maintaining the integrity of the nuclear envelope and provides anchoring sites for 
chromatin (Moir, 1995; Gant & Wilson, 1997; Stuurman, 1998; Gant, 1999). In addi-
tion to the well-characterized peripheral location of lamins, there is considerable evi-
dence for an intranuclear distribution of lamins. Both, localization in intranuclear 
spots (Goldman, 1992; Bridger, 1993; Moir, 1994) and a diffuse distribution through-
out the nucleus (Hozak, 1995) have been reported. Intranuclear lamins have been 
shown to localize at sites of DNA replication (Jenkins, 1995; Goldman, 2002; Mar-
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tins, 2003; Gruenbaum, 2003) and to support nuclear activities such as DNA replica-
tion and RNA synthesis (Nili, 2001; Spann, 2002; Wilkinson, 2003; Haraguchi, 
2004). It is not yet clear whether intranuclear lamins form a network and whether 
such a network would be required for the activities supported by the lamins.  
  
The nuclear lamins bind to several INM proteins, including lamina-associated poly-
peptides 1 and 2ß (LAP1, LAP2ß), emerin and Man1, which share a common struc-
tural motif of about 40 amino acid residues, called the LEM (LAPs, emerin and 
Man1) domain (Lin, 2000). Although additional LEM domain proteins such as 
Nesprin, Otefin, and Lem-3 have been identified (Lin, 2000). All LAP1 isoforms and 
LAP2 interact preferentially with A-type lamins, while the lamin B receptor and 
LAP2 interact with the B-type lamins and emerin interacts with both types of lamins 
(Foisner, 2001). Lamins can also bind to chromatin proteins (histone H2A or H2B 
dimers), as well as ostensibly soluble proteins including lamina-associated polypep-
tide-2α (LAP2α), Kruppel-like protein (MOK2), actin, retinoblastoma protein (RB), 
barrier-to-autointegration factor (BAF), sterol-response-element-binding protein 
(SREBP) and one or more components of RNA-polymerase-II-dependent transcrip-
tion complexes and DNA-replication complexes (Gruenbaum, 2003; Zastrow, 2004). 
In cells that lack A-type lamins, many of these proteins are not retained at the NE but 
instead drift throughout the NE/ER network (Sullivan, 1999; Lee, 2002; Liu, 2003; 
Muchir, 2003; Wagner, 2004). Lamins and their associated proteins are proposed to 
have roles in large-scale chromatin organization (Sullivan, 1999; Liu, 2000; Guil-
lemin 2001; Liu, 2003; Raz, 2006; Raz, 2008), the spacing of nuclear pore complexes 
(Liu, 2000; Schirmer, 2001), the positioning of the nucleus in cells (Starr, 2001; Starr 
2002) and the reassembly of the nucleus after mitosis (Lopez-Soler, 2001). Lamins 
have been shown to interact with chromatin at more than 1,300 sharply defined large 
domains, 0.1-10 megabases in size (Guelen, 2008). These lamina-associated domains 
are typified by low gene-expression levels, indicating that they represent a repressive 
chromatin environment (Guelen, 2008). 
  
The nuclear lamina is linked to the cytoskeleton via the nesprin protein family, which 
include high molecular weight proteins embedded in the inner and outer nuclear 
membrane (Zhang, 2001; Mislow, 2002). When nesprins are associated with the outer 
nuclear membrane, the amino-terminus is exposed towards the cytoplasm and binds to 
microfilaments (Zhang, 2001;  Zhen, 2002) and intermediate filaments (Wilhelmsen, 
2005). As such they connect the nucleus to the cytoskeleton (Wang & Suo, 2005). 
This anchorage of the nuclear membrane to the cytoskeleton is essential for migration 
and correct localization of the nucleus inside the cell. Nesprins at the inner nuclear 
membrane (smaller isoforms) bind to lamin A/C and emerin (Mislow, 2002; 
Padmakumar, 2005) through their spectrin repeats in the carboxy-terminus, and – as 
such – interact closely with the nuclear lamina. In this way lamins play not only an 
essential role in the structural integrity of the nucleus but also in the structural integ-
rity of the whole cell, via connections between nuclear lamina, cytoskeleton and ex-
tracellular matrix (Lammerding, 2004; Broers, 2004; Broers, 2005). Absence of the 
A-type lamins or mutations in these structural components of the nuclear lamina leads 
to an impaired cellular response to mechanical stress (Lammerding, 2004). 
Laminopathies show clinical phenotypes comparable to those seen for diseases result-
ing from genetic defects in cytoskeletal components, further indicating that lamins 
play a central role in maintaining the mechanical properties of the cell. 
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Figure 4. Schematic view of the nuclear envelope, lamina and chro-
matin. The inner and outer membranes of the nuclear envelope are shown with their en-
closed lumen. Also lamin filaments and selected nuclear envelope proteins, including 
lamina-associated protein 1 (LAP1), emerin, LAP2β, MAN1, UNC-84, lamin B receptor 
(LBR), nurim and otefin, are shown. (Adapted from Cohen, 2001). 

 
 
2.3  Are lamins part of the nuclear matrix? 
 
Considering the spatial distribution of lamins in the cell nucleus, the question is raised 
whether lamins are part of the nuclear matrix. A large fraction of the filaments seen in 
resinless section images of (RNP-containing) nuclear matrix preparations are 10-11 
nm in diameter (Jackson & Cook, 1988; He, 1990; Hozák, 1995; Wan, 1999), which 
correspond to the size of an intermediate filament. In one report, it has been described 
that these nuclear filaments react with a lamin A specific antibody (Hozák, 1995). In-
truigingly, many different intermediate filament proteins revealed binding affinity for 
nucleic acids and also share some amino acid sequence homology with transcription 
factors (Traub & Shoeman, 1994). Other studies have also found lamins as discrete 
foci present in the nucleoplasm (Goldman, 1992; Bridger, 1993; Moir, 1994), and it 
has been shown that nucleoplasmic lamins undergo dynamic assembly-disassembly in 
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vivo (Goldman, 1992; Moir, 1994; Schmidt, 1994). Altogether this evidence is in fa-
vour of a role for lamins constituting part of the nuclear matrix, possibly by forming a 
complex network with other proteins like emerin, protein 4.1, nuclear actin and nu-
clear myosin (Pestic-Dragovich, 2000; Kiseleva, 2004).  
  
 
 
2.4  Nuclear actin 
 
Since one of the presumed functions of the nuclear matrix is to support and to facili-
tate/regulate intranuclear transport, possible nuclear matrix components may be simi-
lar to protein filament systems already characterized in the cytoplasm. Thus far, there 
is little if no evidence for the presence of tubulin or microtubules in the nucleus. Nu-
clear actin, however, is present and functional in the cell nucleus of various cell types 
(Clark & Merriam, 1977; Fukui, 1978; Fukui & Katsumaru, 1979; Clark & 
Rosenbaum, 1979; Osborn & Weber, 1980; Welch & Suhan, 1985; De Boni, 1994; 
Yan, 1997; Rando, 2000; Pederson and Aebi, 2002; Bettinger, 2004; Castano et al., 
2010). This is also true for nuclear actin binding proteins (Ankenbauer, 1989; Rimm 
& Pollard, 1989) and nuclear myosin (Hauser, 1975; Berrios & Fisher, 1986; Hagen, 
1986; Rimm & Pollard, 1989; Nowak, 1997). Nuclear actin has initially been sug-
gested to play a role in transcription (Scheer, 1984) and later also in mRNA process-
ing (Sahlas, 1993), chromatin remodelling and nuclear export (Machesky & May, 
2001; Goodson & Hawse, 2002; Olave, 2002). Nuclear actin is also found  present in 
the nucleolus (Clark & Merriam, 1977; Funaki, 1995) and TEM analysis of Xenopus 

oocyte nuclei suggested that short bundles of actin extend from nucleoli towards the 
nuclear envelope (Parfenov, 1995). In addition to actin, nuclei also contain a specific 
isoform of myosin I, nuclear myosin 1 (NM1), which is an actin-dependent motor. 
Antibodies directed against nuclear myosin I block transcription by RNA polymerase 
II when injected into mammalian cells and inhibit isolated transcription complexes in 
vitro (Pestic-Dragovich, 2000). 
  

The most important questions about nuclear actin revolve around its polymeric 
state(s). Nuclear actin does not form long actin filaments (‘F-actin’), it is proposed to 
assume shorter, potentially novel conformations (Pederson & Aebi, 2002; Bettinger, 
2004). Nuclear actin ‘rods,’ ‘bundles,’ and ‘tubules’ have been described by a number 
of investigators (Fukui & Katsumaru, 1979; Iida, 1986; Iida & Yahara, 1986; Nishida, 
1987; Wada, 1998), but their supramolecular organization has remained elusive ex-
cept for one case (Sameshima, 2001). Sameshima et al. have described a new type of 
actin rods formed both in the nucleus and the cytoplasm of Dictyostelium discoideum

 

that have been implicated in the maintenance of dormancy and viability at the spore 
stage of the developmental cycle. Examination of their ultrastructure has revealed 
these actin rods as bundles of hexagonally packed actin tubules consisting of three ac-
tin filaments each. (Interestingly, cytoplasmic actin is known to form short ‘protomer’ 
filaments (e.g. at branched intersections with protein 4.1, tropomyosin and spectrin), 
as well as tubes, sheets and short branched filaments (Pederson & Aebi, 2002).). Nu-
clear actin was shown to interact with many structural proteins in the nucleus: the in-
termediate filament protein lamin A (Sasseville & Langelier, 1998), membrane pro-
tein emerin (Holaska, 2004), the nesprin family of filamentous proteins (Zhang, 2002; 
Zhen, 2002) and nuclear-specific isoforms of protein ‘4.1’, an actin scaffolding pro-
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tein (Correas, 1991; Krauss, 1997; Luque & Correas, 2000). An actin network is 
proposed to exist at the INM and to mechanically reinforce the lamina network 
(Holaska, 2004). The actin-binding domain of nuclear-specific isoforms of protein 4.1 
is found to be essential to reconstruct nuclei after mitosis (Krauss, 2003). In 
conclusion, there is ample evidence that actin is present in the cell nucleus and is 
involved in a variety of nuclear processes.  
 
 

3. Telomeres & Nuclear organization 
3.1 Telomere biology 
 
Telomeres are structures at the ends of eukaryotic chromosomes (in greek: telo= end , 
mere= part). They are protein-DNA complexes that protect chromosome termini from 
unregulated degradation, recombination and fusion. They also serve to limit the loss 
of genetic material from chromosome ends that occurs during (incomplete) DNA rep-
lication. After about 60-80 cell divisions, telomere repeats are shortened from a typi-
cal initial length of 10-15 kb in human cells to ~5 kb and below, which triggers cell 
senescence or apoptosis (Harley, 1990; Martens, 2000; Blasco, 2007). The number of 
cell divisions that a normal cell can make before entering in to a state of senescence is 
also referred to as the ‘Hayflick limit’. Leonard Hayflick demonstrated in 1965 that 
normal human diploid cells in a cell culture divide about 50 +/- 10 times (Hayflick, 
1965). 
  
Telomeres consist of tandemly repeated DNA sequences (TTAGGG) bound by vari-
ous telomeric proteins, such as telomere repeat binding factor 1 (TRF1), telomere re-
peat binding factor 2 (TRF2) and protection of telomeres 1 (POT-1) (Blackburn, 
2001). These proteins bind telomeric DNA directly and are interconnected by three 
additional proteins, TIN2, TPP1 and Rap1. Together they form a complex called the 
shelterin complex (figure 6) that allows cells to distinguish telomeres from sites of 
DNA damage (d’Adda di Fagagna, 2004; Shay & Wright, 2004; de Lange, 2005). The 
single stranded end-part of the telomere forms a loop structure, called the t-loop (Grif-
fith, 1999), which is lost when TRF2 function is inhibited by expressing a dominant 
negative allele of TRF2 (van Steensel, 1998). Telomeres have a nonnucleosomal 
chromatin structure, whereas subtelomeric DNA is assembled into nucleosomes 
(Wright, 1992). It is possible that t-loops create an organization similar to nu-
cleosomes that conceal the chromosome ends from the DNA damage surveillance, 
thus preventing telomeres from being degraded. It has been proposed that TRF2 plays 
an important part in protecting telomeres in vivo (Griffith, 1999). Most, if not all 
TRF2 is in a complex with human (h)Rap1, which has been identified as a direct in-
teracting partner of TRF2 (Li, 2000). Two other telomeric proteins, TIN2 and the 
DNA repair protein Ku, interact with telomeres via binding to TRF1 (Kim, 1999; Hsu, 
2000). TRF1 alone is insufficient to control telomere length in human cells, and the 
TIN2 protein is thought to be an essential mediator of TRF1 function (Kim, 1999). 
Moreover, TIN2 is thought to bind TRF1 and TRF2 simultaneously, stabilizing the 
TRF2 complex on telomeres (Ye, 2004). TPP1 was also found to interact with both 
TRF1 and TRF2 and to operate as a negative regulator of telomere length 
(Houghtaling, 2004). 
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The length of telomeres is well-controlled by several different factors. If  this were 
not the case, the chromosomes would shorten dramatically with every cell division. In 
most organisms, telomeres are lengthened by the enzyme telomerase (Greider & 
Blackburn, 1985; Greider, 1996). With the exception of a few cell types, including 
stem cells, human somatic cells undergo programmed telomere shortening, a process 
that appears to involve repression of telomerase expression (Cooke & Smith, 1986; de 
Lange, 1990; Harley, 1990; Hastie, 1990; Counter, 1992; Kim, 1994). This progres-
sive decline of telomere length with each cell division may constitute a tumor sup-
pressor mechanism that limits the replicative potential of transformed cells. In agree-
ment, telomerase is frequently activated in human and mouse tumors and restoration 
of telomere length is correlated with immortalization of human cells in vitro (Counter, 
1992, 1994a, b; Kim, 1994; Blasco, 1996; Broccoli, 1996). During the malignant pro-
gression of cancer cells, the maintenance of telomere length is a crucial prerequisite 
for immortalization (Bacchetti, 1996). Therefore, telomere length has emerged as a 
promising clinical marker to predict the risk and prognosis of patients with malignant 
disorders (reviewed by Svenson & Roos, 2009). Most cancer cells activate a telomere 
maintenance pathway and about 90% of these tumors show telomerase activity (Shay 
& Bachetti, 1997). A significant minority of tumors use an alternative lengthening of 
telomeres (ALT) mechanism (Bryan, 1995; Bryan, 1997).  
 
 
 

  
Figure 6. Schematic representation of shelterin on 
telomeric DNA. The shelterin complex consists of six 
subunits, TRF1,TRF2, POT1, TIN2, TPP1 and Rap1. For 
simplicity, POT1 is only shown as binding to the site closest to 
the duplex telomeric DNA although it can also bind to the 3′ end. 
(Adapted from de Lange, 2005) 

 

 
3.2   ALTernative lengthening of telomeres 
 
Approximately 10% of all human cancers use instead of the enzyme telomerase an 
alternative mechanism for telomere elongation, the ALT-mechanism. Although details 
of the molecular mechanism of ALT are largely unknown, previous studies have 
shown that the ALT mechanism in human cells likely involves recombination be-
tween telomeres (Murnane, 1994; Dunham, 2000). Saccharomyces

 
cerevisiae cells 

that survive in the absence of telomerase require a functional RAD52 gene, a protein 
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required for DNA recombination (Lundblad, 1993). Also, individual telomeres in hu-
man ALT cells undergo steady telomere attrition upon which sudden lengthening and 
shortening events are superimposed in a manner that is suggestive for recombination 
(Murnane, 1994). Finally, functional evidence for the involvement of recombination 
in the ALT mechanism was provided by showing that DNA sequences are copied 
from telomere to telomere in ALT cells (Dunham, 2000). Telomere lengthening is 
also possible via intra-telomeric DNA copying (Muntoni, 2009). These observations 
are all consistent with a recombination-mediated DNA replication mechanism. 
  
The hallmarks of human ALT cells include a large variance in telomere length, with 
telomeres that range from very short ~5kb, to very long ~50 kb (Bryan, 1995), and the 
presence of ALT-associated promyelocytic leukemia nuclear bodies (APBs) contain-
ing telomeric DNA and telomere binding proteins (Yeager, 1999). ABPs are a subset 
of PML bodies that are not found in normal cells, or in tumor cells that express telom-
erase, and contain additional proteins involved in DNA replication, recombination and 
repair that are not found in normal PML bodies (Yeager, 1999; Yankiwski, 2000; 
Stavropoulos, 2002; Tarsounas, 2004). APBs are found in a minority of cells, ap-
proximately 5% within asynchronously dividing ALT cell populations, from which it 
may be concluded that their formation is cell cycle-dependent (Yeager, 1999; 
Grobelny, 2000; Wu, 2000). It has been suggested that APBs may have an integral 
role in the ALT mechanism (Yeager, 1999; Grobelny, 2000; Wu, 2000, 2003; Mole-
naar, 2003). Consistent with this suggestion, inhibition of ALT in somatic cell hy-
brids, formed by fusing ALT and telomerase-positive cells, resulted in a substantial 
decrease in APBs (Perrem, 2001). It has been shown that inhibition of ALT is accom-
panied by a reduction of APBs, providing evidence for a direct link between APBs 
and ALT activity (Jiang, 2005). Furthermore, it has recently been shown that the 
DNA recombination endonuclease MUS81 is involved in ALT specific telomerase 
recombination and localizes to APBs (Zeng, 2009).  
  
Observational and clinical studies on ALT positive tumors may help to fill the gaps in 
our understanding of the ALT mechanism. ALT is most commonly activated in tu-
mors of neuroepithelial origin (astrocytomas) or mesenchymal origin, including os-
teosarcomas, and in soft tissue sarcomas (Henson, 2005). The reason for this is un-
known, but it is possible that some mesenchymal and neuroepithelial cells repress 
telomerase more tightly than epithelial cells and therefore have a higher probability of 
activating ALT during tumorigenesis. In sarcomas, ALT is more frequently activated 

in subtypes that have a complex karyotype, which could be linked to chromosomal 
instability (Montgomery, 2004; Ulaner, 2004). It could be argued that the ALT 
mechanism is, in part, the cause of this instability because the critically short te-
lomeres found in ALT cells are prone to end-to-end fusions, anaphase bridge forma-
tion, break–fusion–break events and ultimately severe chromosomal rearrangements. 
However, not all soft tissue sarcomas showing complex karyotypes are ALT-positive 
(Henson, 2005), indicating that other factors contribute to chromosomal instability as 
well. 
  
Activation of the ALT pathway has been reported to be a prognostic marker for can-
cer progression. In case of glioblastoma, ALT correlated with a better patient progno-
sis, whereas no influence was detected for osteosarcomas. One of 16 non–small cell 
lung cancer (NSCLC) cell lines (VL-9, SK-LU-1, and VL-7) that lacked telomerase 
activity and displayed characteristics of an ALT mechanism showed significantly re-
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duced tumorigenicity in vitro and in vivo compared to the telomerase positive NSCLC 
cell lines (Brachner, 2006). It can be concluded that there is some evidence indicating 
that the ALT mechanism is indicative for a better patient prognosis, although further 
research is needed to substantiate this conclusion.     

 
 
3.3   Telomeres and the nuclear matrix 
 
The positioning of telomeres in the cell nucleus varies among organisms (Dong & Ji-
ang 1998). In yeast, telomeres are positioned at the nuclear periphery while in mam-
malian cells they seem randomly distributed in the nucleoplasm (Henderson, 1996; 
Bilaud, 1997; Broccoli, 1997; van Steensel, 1998). Biochemical and ultrastructural 
data suggest that in mammalian cells telomeric DNA and telomere binding proteins 
colocalize in individual condensed structures at the nuclear matrix (Ludérus, 1996). 
The shelterin complex component TIN2 is believed to play a dual role in tethering 
telomeres to the nuclear matrix (Kaminker, 2009). Consistent with this association to 
the nuclear matrix, telomeric TTAGGG repeats were found to contain an array of nu-
clear matrix attachment sites at a frequency of at least one per kb. The nuclear matrix 
association is supposed to involve large domains of up to 20-30 kb telomeric DNA, 
encompassing the entire length of most mammalian telomeres (Ludérus, 1996). Be-
cause of their association to a nuclear matrix structure, telomeres are thought to play 
an important role in nuclear organization (de Lange, 2002).  
 
In situ hybridization studies revealed that in yeast telomeres are organized in clusters 
at the nuclear periphery Gilson, 1993; Gotta, 1996). This organization in clusters may 
contribute to the repression of transcription of nearby genes, a phenomenon termed 
telomere position effect (TPE) (Gottschling, 1990). Telomeres in yeast have a nonnu-
cleosomal chromatin structure, whereas subtelomeric DNA is assembled into nu-
cleosomes (Wright, 1992). Subtelomeric chromatin in yeast has therefore many of the 
hallmarks of heterochromatin as present in mammalian cells: it imposes transcrip-
tional repression (Gottschling, 1990) and late replication of nearby sequences 
(Ferguson, 1991).  
  
3.4 Telomere and chromatin mobility in the cell nucleus 

Considering the high DNA content and the large amounts of RNAs and proteins in the 
nucleus, one might intuitively think of the nucleus as a viscous, gel-like environment. 
If this were true, the movement of proteins within the organelle might be severely re-
stricted and specific transport mechanisms would be required to deliver proteins to 
their destinations. Photobleaching experiments have now shown, however, that most 
proteins are highly mobile within the nucleus. The difference between the diffusional 
mobility of nonphysiological solutes in the nucleus as compared to that in an aqueous 
solution is only about fourfold (Fushimi & Verkman, 1991; Seksek, 1997). Thus, 
macromolecules such as fluorescently tagged proteins or RNAs move within the nu-
clear space by simple thermal diffusion at an unexpectedly high speed (Huang, 1998; 
Rademakers, 1999; Phair & Misteli, 2000; Pederson, 2000; Shopland & Lawrence, 
2000; Snaar, 2000; Misteli, 2001,). The time required for travelling from the centre to 
the periphery of the nucleus is in the order of several seconds for an average sized 
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monomeric protein, and only several minutes for a large complex such as a spli-
ceosome or ribosome.   
  
If the subnuclear positioning of any particular chromosomal locus reflects a state of 
transcriptional activity, then genes must be able to move from a transcriptional 
repressive subenvironment to a transcriptional competent environment and to obtain a 
tissue-specific and/or developmental-stage-specific spatial organization. In the past 
few years, various studies addressed the dynamic properties of chromatin in general 
or specific sequences in particular. Using time-lapse imaging of GFP-tagged 
chromosomal loci, Sedat and coworkers showed in yeast and later in flies that 
chromatin is engaged in a continuous random-walk-like motion (Marshall, 1997). 
Later, slightly less constrained random movements were described for multiple yeast 
loci by monitoring the movements of specific chromosomal sites fused to lac 
repressor binding sites that were tagged with GFP-lac repressor proteins (Heun, 
2001a; Heun, 2001b). Telomeres and transcriptionally active non-telomeric loci 
showed clear differences in movement. Active chromosomal loci displayed a random 
walk movement within a radius of 0.5–0.7 µm (Heun, 2001a; Gartenberg, 2004; Sage, 
2005). This represents more than one-quarter of the nuclear diameter in yeast, but less 
than one-tenth of the nuclear diameter in mammalian cells. Because 50% of the yeast 
nuclear volume is contained within a peripheral shell that is <0.4 µm thick, most yeast 
genes have a high probability to encounter the nuclear membrane. Silent telomeres, 
however, moved in a highly constrained manner along the inner surface of the nuclear 
envelope and only rarely occupy the nuclear core (Heun, 2001a; Hediger, 2002; Gar-
tenberg, 2004; Sage, 2005). The movement of a typical yeast telomere is restricted to 
an area at the inner-nuclear-envelope surface occupying 12% of the total nuclear 
volume (Rosa, 2006). Interestingly, a similar constraint movement was observed for a 
subset of active genes. Notably, galactose-induced loci were shown to associate with 
nuclear pores upon induction. In addition, a subtelomeric gene was shown to shift 
from a telomeric focus to a nuclear pore upon induction by low glucose (Cabal, 2006; 
Taddei, 2006). Given their lateral dynamics and striking radial confinement, it was 
suggested that a subset of active genes move from pore to pore (Cabal, 2006). 
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Outline of this thesis 
 
The aim of this thesis is to provide a better understanding of the principles that under-
lie the spatial dynamic organization of the cell nucleus. Chapter 1 reviews the current 
status of knowledge about the structural and functional organization of the cell nu-
cleus. In chapter 2, the development of a computer program is described that has 
been designed to track the 2D and 3D motion of objects in the nucleus of living cells. 
The functionality of the program is demonstrated by tracking the movements of GFP-
tagged telomeres in the nuclei of tumor cells (U2OS) and normal mouse embryonic 
fibroblasts (W8 MEFS). GFP-tagged proliferating cell nuclear antigen (PCNA) is 
used as a nuclear counterstain to correct for cell movements, and as a cell cycle 
marker. In chapter 3, evidence is provided for the existence of a nuclear matrix struc-
ture that is composed of lamin proteins, emerin and actin. By analyzing the dynamics 
of telomeres in nuclei of cells showing reduced levels of lamin expression, it is inves-
tigated whether telomeres anchor to an inner nuclear lamina structure. In chapter 4 

the de novo formation of PML nuclear bodies is described. Using live cell imaging 
and immunocytochemistry it is demonstrated that telomeres play a role in the de novo 
formation of PML bodies. In chapter 5 it is investigated whether nuclear bodies are 
associated with chromatin in the cell nucleus. After treating cells with DNA alkylat-
ing agent MMS, the dynamics of PML bodies, Cajal bodies and speckles has been 
analyzed relative to chromatin in the 3D space of the cell nucleus. In chaper 6 the re-
sults of our studies and future implications are discussed.    
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Introduction 
 

Many processes in the mammalian cell are dynamic. In order to obtain better understanding of 

these processes the dynamic properties of cellular structures have to be measured. Nowadays 

the commercially available fluorescence confocal and wide-field microscope workstations of-

fer excellent facilities to visualize the three-dimensional spatial organization of the cell and to 

study the movement and interaction of nuclear and cytoplasmic particles. However, the soft-

ware provided by the manufacturers of these workstations is more or less dedicated to the con-

trol of the microscope, the acquisition process and the visualization of the acquired 2D and 3D 

image series in time, while at present the analysis tools are mostly limited to simple measure-

ments. However, dedicated image processing and image analysis software is required for 

more complex research questions, such as the tracking of moving structures in a cell.  

 

Particle tracking is applied using a variety of biophysical techniques, such as microrheology 

(Tseng et al., 2002; Weihs et al., 2006; Waigh, 2005), magnetic tweezers (Bausch et al., 

1998), optical tweezers (Ashkin, 1997) and is widely used for particle imaging velocimetry 

(Adrian, 2005; Grant, 1997). A wide range of methods have also been described to track par-

ticles in microscopic optical images (Bacher et al., 2004; Miura, 2005; Cheezum et al., 2001; 

Crocker & Grier, 1996; Sbalzarini & Koumoutsakos, 2005; Carter et al., 2005).  

 

In this paper we describe a software package, called STACKS, that was developed to handle 

research questions that could not be solved with the standard software presently available on 

commercial systems, such as the tracking of particles in 2D and 3D time series and the meas-

urement of the dynamic characteristics of these particles. We considered it important that 

STACKS should be able to operate directly on the data formats as produced by commercial 

microscope systems without a conversion step for the image data. Furthermore, the program 

should be user-friendly, provide visual feedback on each operating step and allow sufficient 

flexibility to cope with different cell types and images of varying quality. The software should 

also allow a sufficient amount of user interactivity for tuning the analysis procedure and edit-

ing the image stack, for instance for the removal of artifacts, which may disturb the analysis, 

or for correction of partly incorrect image segmentation. In STACKS a number of filter opera-

tions are provided to enhance the original image data. As a 4D image stack easily consists of 

more than 1000 images, these filter operations become time consuming when they are based 

on normal CPU processing. In STACKS many of these operations have been accelerated by 

making use of the GPU processor of the video board. In this paper we compare the two ap-

proaches with respect to the efficiency of the image operations. To illustrate the capabilities of 

the STACKS program determination of the dynamics of chromatin during different phases of 

the cell cycle was chosen as a test model. Chromosomes of eukaryotic cells have been shown 

to occupy discrete territories during interphase
 
(Manuelidis, 1985; Trask et al., 1988). Tran-

scriptionally competent regions preferentially
 
localize to the periphery of these chromosomal 
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territories (Verschure et al., 1999), indicating that chromatin is dynamic. This type of organi-

zation is observed not only at the
 
level of the chromosome, but also at the level of a single ge-

netic
 
locus in the total space of the nucleus (for a review, see Spector,

 
2003). Nuclei in higher 

organisms are known to undergo extensive changes
 
in organization as they progress through 

the cell cycle
 
and during development (for a review, see Francastel et al., 2000). For example, 

the brown
Dominant

 (bw
D
) chromosome of

  
Drosophila melanogaster contains a large block of 

heterochromatin
 
near the end of chromosome 2 (2R) (Platero et al., 1998). This distal block 

associates with centric
 
heterochromatin of the second chromosome (2Rh). The association be-

tween
 
bw

D
 and 2Rh is not apparent until at least 5 hours into G1 (Csink & Henikoff, 1996; 

Dernburg et al., 1996). Also, as soon as the nuclear membrane forms in early G1, centromeres 

have been observed to rapidly disperse throughout the nucleus. Coalescing and dispersing of 

centromeres in cultured cells was observed in late G2 and early G1, respectively (Manuelidis, 

1985).  

 

In this study telomeres were chosen as a marker for studying the dynamics of chromatin. Te-

lomeres in living cells were labeled by transfecting U2OS cells with GFP fused telomere 

binding proteins TRF1 and TRF2. Time-lapse movies were recorded of moving telomeres 

during different phases of the cell cycle. GFP- tagged proliferating cell nuclear antigen 

(PCNA) was hereby used as a life cell marker to distinguish the different phases of the cell 

cycle, and as a counterstain to correct for cell movement. The movements of telomeres were 

quantitatively analyzed using STACKS and telomeres were found to be significantly more 

dynamic in the G1 phase than in other phases of the cell cycle (p-value = 0.05). 
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Material and Methods 

 
Hardware  

In our laboratory several fluorescence microscope workstations are present to perform live 

cell analysis: the AF6000, the SP5 (both Leica Microsystems, Wetzlar, Germany) and the 

LSM 710 (Carl Zeiss Microimaging, Jena, Germany). The AF6000 is a wide-field system and 

consists of an inverted DMI 6000B microscope equipped with a metal halide bulb, an auto-

mated motorized z-galvo stage for 3D imaging and a climate chamber for live cell imaging. 

The SP5 is a confocal laser scanning microscope (inverted) system, also equipped with a cli-

mate chamber, and the LSM 710 is a multiphoton confocal laser scanning (upright) system 

equipped with objectives with a large working distance and a special stage for intra-vital mi-

croscopy. The Leica SP5 is equipped with an Argon laser for 405-510 nm, a solid state laser 

and a helium-neon laser for respectively the 561 nm and 633 nm line and a two-photon laser 

with a spectral range of 710-990 nm. The Leica systems are controlled by the LAS AF soft-

ware for image acquisition and analysis. The LSM 710 is equipped with similar lasers as the 

Leica SP5, a two photon laser for the range of 700 – 1060 nm and is controlled by the ZEN 

software system. 

 

The software program described in this paper, STACKS, can be used on a regular personal 

computer running Windows XP, Vista, or Windows 7. It was tested on the 32 bit versions of 

these operating systems. The graphics processing unit (GPU) based image processing func-

tions are currently only supported for Nvidia (Santa Clara, California, USA) video boards 

from the Geforce 7 series or higher with at least shader level 3. The PC used for image analy-

sis was a Precision 380 system from Dell (Round Rock, Texas, USA) equipped with a 

GTX8800 Nvidia video display adapter. 

 

Software system 

The program STACKS has been developed to cope with research questions, which could not 

be solved using the software that comes with commercial confocal systems and live cell 

workstations. It performs dedicated processing and analysis of time lapse 2D and 3D image 

stacks, although it can also handle single 2D and 3D images. Both 8 and 16 bit grey-value im-

age stacks are supported as well as 24 bit color image stacks.  

 

All image operations in STACKS are operated from the main menu. The source for the opera-

tion is always the top window. When additional images or parameters are required for the op-

eration, a dialog is shown to ask the user to specify the additional input and/or output stack. 

Each image operation results in a new image stack. When the user selects an existing stack as 

being the result of an operation, it will be overwritten. The user has also control on which part 

of the image stack an operation is performed. There are 4 modes of operation. It is possible to 

process 1) the entire image stack, 2) the 3D image for the current time point, 3) the z-slice for 

all time points or 4) just a single image. By clicking on the corresponding icons in the toolbar 

the user can specify on which part of a stack an operation is performed. 

 

Image Visualization 

An image stack is normally displayed in a re-sizable window, which maintains the original 

aspect ratio of the image. Two additional scrollbars can be present. The horizontal scrollbar at 

the top of the window allows the user to select a time point within the stack, whereas the ver-

tical scrollbar at the left allows the selection of a certain z-slice; the traditional scrollbars of 
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the window are used for zooming. In case of 3D stacks one may also display the horizontal 

and vertical cross sections of an image stack, as shown in Figure 1. A crosshair is then shown 

in the original image to indicate where the cross sections are located. By moving the mouse 

over an image, the coordinates and grey-value information of the corresponding pixels are 

shown at the status bar at the bottom of the screen and optionally also as a tooltip. It is also 

possible to display a 3D representation of an image stack. This has been implemented using 

the public domain package of the visualization toolkit, VTK [http://www.vtk.org/]. 

 

Data I/O  

STACKS can import experiments of time-lapse 2D and / or 3D image data saved in the Leica 

LIF and the Zeiss LSM file format and can also export the resulting image sets in both for-

mats, although the specific microscope settings of the original data files will be lost in these 

new data files. The data sets can be read in again by respectively the LAS software (Leica) or 

by the ZEN software from Zeiss. Another option in STACKS is to read a set of TIF files from 

a folder; the names of the TIF files should be of a special format containing time point, z-slice 

and channel information in order to reconstruct the time-lapse 3D image set from it. The sup-

ported filename formats are compatible with older confocal laser scanning systems from Leica 

and with Tikal, a software environment for the tracking of 3D microscopic particles as de-

scribed by Bacher (Bacher et al., 2004). Analysis results can be exported as Excel spread 

sheets. 

 

Management of the stacks 

In the program there is currently support for the simultaneous use of 10 4D image stacks and 

10 3D image stacks. For each 8 or16 bit grey-value stack there is also an additional 8 bit stack 

present, which is used for display purposes. This can for instance be obtained after contrast 

stretching of the 16 bit stack. In this way the original data values stay intact. Additionally the 

horizontal and vertical cross sections can be calculated and from each 4D stack the maximum 

projection can be obtained or a z-slice can be selected as being the projection stack. This 

would imply, that the total amount of memory used by image data would become about 11 

Gbytes in case of 10 stacks of 512x512 pixels (16 bit + 8 bit, or 24 bit ) with 40 slices and 25 

time points including cross sections and projections; evidently too large to handle in memory 

for a normal PC. Therefore we have chosen for an approach by which only the current visible 

images and the corresponding images holding the original data of each stack are present in 

memory. At the time that new image stacks are read from disk or created by image transfor-

mations, copies of the complete stacks are created in the /TEMP directory of the system disk 

which are accessible through fast random access. In this way access to the data is optimized 

for display purposes, so that scrolling through the stack appears to occur instantaneous to the 

user. This approach will result in extra overhead when stacks are processed and have to be 

written back to disk.  

 

Segmentation 

In order to segment the particle images from the background various methods are present. 

Global thresholding based on the image background can be applied for the complete data set; 

the user may adjust this threshold per individual image, per slice in time or per time-point. 

Thresholding can be performed on the 8 bit image stack obtained by contrast stretching or di-

rectly on the 16 bit original data. However, it is often easier to segment small structures, such 

as centromeres or centrioles, after performing a 2D top-hat transformation on the image set in 

order to reduce the nonspecific fluorescence within the cell nucleus or the fluorescence fluc-

tuations in the background. Other image transformations are provided to enhance the images 
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before the segmentation step, such as contrast enhancement, convolution filters, Fourier fil-

ters, median and min-max filter operations.  

The 2D or 3D watershed algorithm respresents a more automatic segmentation method, which 

will detect the particles as being local maxima in the 2D or 3D image sets and will find the 

borders of their domains as being the watershed lines between the individual particles. Within 

each domain a local threshold is automatically determined to segment the particles from the 

background. The advantage of the latter algorithm is that touching particles are often correctly 

separated. A possible disadvantage is that this operation may lead to over-segmentation.   

 

Segmentation results in a new 8 bit image stack, from which one bit corresponds with the re-

sult of the segmentation, namely object or background. Other bits are reserved for segmenta-

tions of other image stacks, such as for a second label or for the counterstain. Binary opera-

tions between different bit-planes are provided, like logical AND, OR, or EXOR. Also, image 

transformations can be applied, such as erosion, dilation, and skeleton. The highest bit is re-

served for human interaction, as will be discussed in the following paragraph. The user can 

select which bits of a binary stack will be displayed and edit the binary stack effects in the 

visible bit-planes. 

 

Correction global cell movement 

The program also corrects for global cell movement. The orientation and translation of the cell 

is calculated for each time-point based on the counterstain image of a 2D image set (or on the 

maximal projection in case of a 3D image set). Alternatively, one may also select particles 

which are known to be immobile. The results are then used to perform a translation and / or 

rotation correction for the original image sets. Obviously, such corrections are essential, for 

instance the kinetic characteristics of the tracked particles in a cell nucleus are not very mean-

ingful without a correction for global cell movement. 

 

Particle tracking 

In order to track particles, such as telomeres and centrioles, at first the user has to segment the 

3D or 4D stack. When thresholding is used for segmentation, object labeling is the next step 

of the process. Object labeling will detect separate objects based on 8-connectivity either in 

the 2D or 3D images of the binary stack and will create a new stack, called the label stack, 

where by all pixels of every individual particle obtain a unique index, that corresponds to a 

pseudo-color. However, when the watershed algorithm is applied for segmentation, both the 

binary stack and the label stack are directly created during the process. 

 

Following object labeling position, size and total density of each particle are measured for all 

time-points and the tracks are determined by linking those particles between successive time 

points, which have the highest probability of being the same objects based on these features. 

Particles, which have been classified as being the same, are relabeled with the same pseudo-

color in the label stack. This allows the user to easily verify by scrolling between the time 

points in the bale stack, how successful the classification was performed. Figure 1 shows the 

various stacks involved in the tracking process and the 3D representation of the tracks found. 

Eventually tracks can be split and reconnected by the user to correct for errors made by the 

automatic procedure. Finally kinetic parameters such as mean squared displacement are 

measured to characterize the movement of each individual particle according to the following 

formula: 
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N-n    

MSDp (Δ) = 1/(N-n) ∑ [ pos((m-1). τ  + Δ ) - (pos((m-1). τ ) ] 2 

                 m=1 

 

with Δ= n.τ   τ – measurement interval and n - an integer 

       pos - position vector at a certain time point 

       N    - the total number of time points 

 

Thus the mean squared displacement is averaged over all possible time intervals measured. 

This will inevitably result in a larger standard deviation for increasing values of n, as the 

number of interval pairs decreases. A similar function, called MSDt, was also calculated; the 

position vector in the formula above is then replaced by the distance covered between two 

time intervals. This function provides additional information about the mobility of the parti-

cles over time. 

 

GPU programming 

Nowadays, personal computers are equipped with video boards that provide high processing 

power for use in video games and multimedia applications. These graphics processing units 

(GPUs) are very efficient in parallel processing of small programs (called shaders) on sets of 

vertices and pixels, which makes these boards very suitable for general purpose image proc-

essing. Many papers have already been published on this subject (Moreland et al., 2003; 

Strzodka et al., 2003, 2004; Farrugia et al., 2006) 

  

A number of image operations have been implemented in STACKS using the processing 

power of the GPU. Examples are simple mathematical operations, like adding, subtracting, 

multiplying and dividing of images. They are included, as they are internally used for more 

complex operations. Morphological operations have been added, like erosion, dilation, open-

ing, closing and the top-hat transform. These min/max operations are implemented using the 

so-called “ping-pong” technique. This is caused by the fact that source and result image, 

which are defined as 2D textures in GPU memory, are not allowed to be the same for a 

shader. In the first pass the minimum or maximum is determined with the 4 closed neighbours 

only. In the next pass the result serves as the source while the minimum or maximum is de-

termined with the 4 diagonal neighbours only and this is alternately repeated until the desired 

size of the neighbourhood is reached. By defining an extra image texture it can be prevented 

that the source is changed and that the result is obtained in the correct texture at the end of the 

operation. The access to texture memory is highly optimized by parallel processing, so that 

these operations are very efficiently handled by the GPU even when many passes are in-

volved. 

 

Also other filter and transformation operations based on the GPU have been implemented in 

STACKS, like Sobel, Laplace, Canny edge, Gaussian, median, Kuwahara, convolution up to a 

40 x 40 neighbourhood, unsharp mask, a distance transform (Rong et al., 2006), nearest 

neighbour deconvolution and some specific color transformations, such as RGB to HSI and 

the inverse transform, component blend, component threshold, and color deconvolution (Rui-

frok et al., 2001) Furthermore the 2D fast Fourier and inverse fast Fourier is supported includ-

ing low-pass, band-pass and high-pass Gaussian and Butterworth filters based on the 2D fft. 

Most of the image operations have been implemented for 8-bit and 16-bit grey-value images 

and 24-bit color images and 32-bit float and complex images for the Fourier transform. Also 

48-bit color images (16-bit for red, green and blue) have been programmed for the image op-

erations on the GPU, but these images are not yet supported by STACKS. 
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Initially the shaders have been developed using the HLSL (high level shader language, Micro-

soft) DirectX and Direct3D. More recently Nvidia introduced CUDA as the new high level 

language for general purpose processing on GPU boards. For STACKS two equivalent librar-

ies were developed, one based on HLSL and one on CUDA. Both languages have their advan-

tages and disadvantages. In HLSL the result of a shader program can again be a 2D texture. 

Because the texture format is defined apart from the shader program, the same shader program 

can be applied for different image types such as 8-bit grey, 16-bit grey or 24 bit color. In 

CUDA only the source images can be 2D textures, while the result image of a shader program 

must be a 2D array, so that different shader programs are necessary for the different image 

types. The advantage of using 2D textures as input instead of 2D arrays, is that the structure is 

defined in the texture. Therefore the boundary conditions will be at the borders of the images 

and there is no need to test if neighbouring pixels exceed the borders of the source images in 

the shader programs themselves. CUDA has the advantage that also other memory compart-

ments of the GPU board can be addressed, such as the local memory of the shaders. This can 

lead to more optimized implementations of the shader programs, as is described for the 2D 

convolution filter (Podlozhnyuk et al., 2001). Additionally there is a large community using 

CUDA for general purpose processing and a lot of examples are present in the Nvidia soft-

ware development kit and on their website, which eases the development using CUDA. 

 

In this paper the different implementations of the image operations in HLSL and CUDA are 

compared with the normal software implementation of these operations carried out by the 

CPU. The necessary overhead for processing images by the GPU, such as the additional trans-

fer of images to and from GPU memory and the setup of textures on the GPU board will be 

taken into account. Image management was added to the GPU libraries in order to minimize 

the overhead for creating new 2D textures and reserving memory space on the GPU board. In 

this way new 2D textures are created only when they did not exist yet, but when a 2D texture 

with the same specifications has already been defined during a previous operation, textures 

can be reused for different images with the same specifications. Especially for processing 3D 

and 4D image stacks were all 2D images of the stack are of the same dimensions and the same 

image type, image management is very useful as new textures will be defined only during the 

processing of the first image of the stack. 

 

Interactivity 

The program STACKS allows a large amount of user interaction on the image stacks. For in-

stance one may separate touching objects or reconnect them, so that mistakes made by the 

segmentation process can be corrected. Other functions are included to delete objects or re-

gions, or to select objects or regions and then erase the unselected parts. In this way further 

analysis can be restricted to a part of the image stack or to the objects of interest only. The 

actual drawing and selection is performed on the images of the binary stack, although the user 

can draw or point with the mouse in any of the image stacks with the same dimensions as the 

binary stack. Once an object is selected in the binary stack, there are also options to move, 

duplicate or erase the corresponding original object in the grey-value stack. This may be use-

ful for cleaning up dirt that has moved in during the acquisition of the images. Depending on 

the selected mode of operation interactions are carried out on the 2D image only, on the 3D 

image, on all time-points of a slice, or on the complete 4D stack. User interaction is also pos-

sible on the particles after tracking. Tracks can be selected or erased or split at a certain time-

point or two tracks can be connected at the end of the tracks found. However, in this case the 

program is aware how these tracked objects are connected through the slices and over time-

points, so that the interactions on tracks are correctly handled in 3D and 4D. 
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Measurements 

The program STACKS was originally developed for the tracking of nuclear particles, but in 

order to extend its possibilities, the functionality to execute separate measurements on indi-

vidual particles has been added. The user can select which features have to be measured, like 

size, density and shape. This can be applied for more than one color if required. STACKS also 

provides distance measurements between particles and selected objects. For instance, it may 

be of interest to determine how fast viral particles move through the cell. Measurements can 

also be performed within regions of interest (ROIs), that are drawn by the user in the form of 

simple mathematical shapes like squares, circles, rectangles, ellipses and lines, but also as 

freehand drawn closed regions. Selected objects may be converted into ROIs as well. ROIs 

have a constant shape, position and size for images of a stack in contrast with segmented ob-

jects. However, ROIs can be duplicated and moved through the image, so that exactly the 

same area’s can be measured on different places within the images of a stack allowing for in-

stance FLIP and FRAP measurements to be performed. The results of all measurements are 

shown in the result window and can be saved on disk as an Excel spreadsheet. 

 

Macro recording 

Macro recording was added to STACKS to easily execute a sequence of instructions on dif-

ferent data sets. STACKS supports the use of 10 different macro’s simultaneously, which is 

sufficient for most applications. Some operations, such as thresholding require user interac-

tion. These operations are also recorded in the macro, but when the macro is executed the user 

can specify, whether he wants to be prompted to perform the interaction again on a new data 

set, or whether the macro should apply the same settings, as defined during the recording of 

the macro. Macro’s can be executed once or repeatedly. The latter can be very useful espe-

cially when the image content is changed in each pass of the execution. For instance when a 

particular part of the nucleus is photo-activated and the user likes to study how the activated 

subcellular structures or particles diffuse through the nucleus. The user may select the photo-

activated part at the first time-point and measure the intensity within this area as function of 

time. However, by dilating the region in each pass of the macro this intensity can also be cal-

culated as function of the distance to the original region. 

 

Macro’s can be stored to disk in the so called “preferences” file, which contains also all other 

parameters and settings. How a given data set was analyzed can be saved in this way. The set-

tings also specify other parameters such as predefined positions and sizes of the windows, the 

default lookup tables for the windows, and the parameters which are used for the analysis, 

such as the minimum object size for objects to be detected and the maximum distance over 

which objects still should be considered as being the same between two successive time points 

during the tracking analysis.  

 

 

 

Cell Culture 

A study of the dynamics of telomeres during different phases of the cell cycle was performed 

in order to illustrate the possibilities of STACKS for particle tracking. Human osteosarcoma 

cells (U2OS) were cultured at 37ºC on 3.5 cm glass-bottom culture dishes (MatTek) in Dul-

becco’s modified Eagle’s medium (DMEM) without phenol red and containing 1.0 mg/ml 

glucose, 4% FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin, pH 7.2 

(all from Invitrogen).  
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Plasmids and cell transfection 

The coding sequences for TRF1 and TRF2 have been cloned into the DsRedExpress vector 

(Clontech) according to standard procedures. The GFP-tagged proliferating cell nuclear anti-

gen (PCNA) protein was a gift from M.C. Cardoso. Cells were transiently transfected with 0.5 

µg vector DNA using lipofectamine 2000 (Invitrogen).  

 

Live cell imaging 

Wide-field fluorescence microscopy was performed on the AF6000 multi-dimensional work-

station for live cell imaging. 4D image stacks were collected using a 63×NA 1.25  HCX plan 

Fluotar objective in combination with the automated motorized z-galvo stage. During imag-

ing, the microscope was heated to 37 ºC in a CO2 perfused and moisturized chamber. Gener-

ally, image stacks were collected every 30 seconds for 10 minutes. Image deconvolution was 

performed using the Leica software. For each experiment and cell type at least six image se-

ries were analyzed. 
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Results 
 

Disk overhead 

As described the program STACKS only has the current visible image of each stack present in 

memory. This will introduce extra overhead when a complete stack is processed, namely to 

fetch all images from disk and to restore the resulting images back to disk. An overview of the 

overhead measured is given in Table 1. The overhead was measured for 3 stacks of 25 time-

points and 40 slices with varying image sizes of 256 x 256, 512 x 512 and 1024 x 1024 pixels. 

The following times were measured: the time to read the grey-value stack for the first time 

and create the random access files (8-bit for display purposes and 16-bit original data values) 

in the /TEMP directory, the time to only read the complete stack and the time to read and 

write the stack back to disk. The latter two measurements give an indication respectively for 

the overhead when the user scrolls through the stack and when a complete stack is processed. 

In Table 1 the results are given using two different disks, namely a 1TB disk, type HD103UJ, 

from Samsung (Seoul, Korea) and the solid state disk of 120 GB, type SSD2 from OCZ (San 

Jose, California, USA). If the time to read a stack is divided by 1000, the overhead for scroll-

ing from image to image through the stack is obtained. This time is very short, so that scroll-

ing appears to occur instantaneous to the user. 

 

Comparison between CPU and GPU processing 

In Table 2 a comparison is shown for the various image operations using respectively shaders 

written in HLSL and CUDA and the software equivalent of these operations written in C++.  

The figures are given as the processing time per image. The time to put an image on the GPU 

board and the time to get an image from the GPU board are part of the processing time. It ap-

pears that image processing using the GPU is more effective when image operations become 

more complex or when kernel sizes increase. The GPU is for all measured image operations in 

Table 1 much faster than the software equivalent despite the overhead of transferring images 

between the GPU board and computer memory. The shader programs written in HLSL are 

almost always faster than those written in CUDA. The difference for processing color images 

is even more distinct. However, there are possibilities to improve most of the CUDA shader 

programs written for color images and therefore some improvement is to be expected. On the 

other hand the CUDA implementation of the functions based on the fast Fourier transform is 

significantly more efficient that the HLSL equivalent. In Figure 2 the dilatation or MAX op-

eration is shown for a 16-bit image with varying image and kernel sizes. As expected, there is 

a linear relationship with increasing kernel size. An estimate for the time necessary to transfer 

an image between the GPU board and computer memory is obtained at the points where the 

lines cross the y-axis.  

 

Tracking 

In this study the dynamics of telomeres during different phases of the cell cycle were meas-

ured during mitosis using the STACKS software. Global cell movement was first determined 

based on the nuclear image stained with GFP-PCNA.  The translational and rotational move-

ment from the cell was then removed from the stack containing the telomeres, after which the 

movement of individual telomeres was tracked. The MSD was measured for 6 cells for each 

cell cycle phase. Using GFP tagged PCNA we were able to discriminate the G1 and the G2 

phase of the cell cycle, and also three different stages with in the S-phase (Leonhardt et al., 

2000). In Figure 3 the MSD is determined in two different ways, one method uses the distance 

that the telomeres have traveled, and is referred to as MSDp, and the other method determines 

the area in which the telomeres have moved, which is the MSDt. The extreme values were 

omitted, and in order to perform statistical analysis 142 telomeres per cell cycle phase were 
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randomly selected for analysis. In Figure 4 the average MSD curves are shown for the differ-

ent phases of the cell cycle. First a Mixed Model analysis was performed using SPSS in order 

to determine whether there was a group effect of the telomeres that were measured within a 

cell, for both the MSDt and the MSDp values. The group-effect was not significant in both the 

MSDt and the MSDp measurements, so subsequently a One-Way Anova analysis was per-

formed on both. For the MSDp (the distance travelled by a telomere) we found that telomeres 

travel over a significantly larger distance in the G1-, the G2- and the beginning of the S-phase 

(BegS) than during the middle (MidS) or late part (LateS) of the S-phase. For the MSDt, the 

nuclear area in which a telomere moves, telomeres were found to move in a significantly 

greater volume during the G1- and the G2 phase than during the entire S-phase. 
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Discussion 
 

This paper describes the basics and features of the program STACKS, which was developed 

for the tracking of nuclear particles. It has been shown that this program provides sufficient 

visual feedback of the processing steps involved. It offers the user adequate options and flexi-

bility to analyze data sets of varying quality. There are also tools to interactively correct for 

improper automatic segmentation and even when particles are incorrectly tracked, the tracks 

can still be corrected by the user so that finally the proper measurements can be obtained. Ad-

ditional features and measurements have been built in to make the program suitable for other 

applications as well.  

 

An approach was chosen, where only the visible images are kept in memory, so that no spe-

cial requirements are necessary to run the program on a regular PC. It is shown that this has 

hardly any impact on the responsiveness of displayed stacks. However, it gives some over-

head (in the order of a few seconds) when a complete stack is processed, which increases to 

about a minute for a stack of 1000 images of 1024 x 1024 pixels. This overhead-time will be 

reduced with almost 50% when a SSD disk is applied, and probably similar results would be 

obtained when disks would be put in RAID. It should be realized that neither the PC used in 

this paper, nor the GPU board and the SSD drive are nowadays the fastest on the market. 

When a new system would have to be assembled as of today, performance would even be bet-

ter. 

 

The program provides a number of image operations based on the GPU. They were pro-

grammed using two different shader languages, namely HLSL (using DirectX) and CUDA. 

For most functions the HLSL implementation is somewhat more efficient, especially for the 

operations on color images. It appears also that the time to transfer images between the GPU 

board and computer memory is also faster using DirectX and HLSL. On the other hand the fft 

library from CUDA is more efficient than the fft functions written in HLSL and the convolu-

tion filter in CUDA, which is based on local memory, is also faster than the implementation 

using global texture memory in HLSL. The operations programmed in software carried out by 

the CPU are always slower compared to GPU processing despite the overhead of transferring 

images to and from the GPU board. The use of GPU programming especially for the process-

ing of 4D stacks is extremely useful as more than thousand images have to be processed 

thereby reducing the total processing time from minutes to seconds. 

 

The market for GPU boards is dominated by two contenders, namely Ati-Amd and Nvidia. 

Ati-Amd has also made a software development kit available for general purpose GPU proc-

essing, called Stream. Unfortunately, both CUDA and Stream are dedicated to the hardware of 

the specific vendor, so that the shader programs cannot be exchanged. A future choice could 

be to make use of OpenCL from Apple and DirectCompute from Microsoft, which will offer 

support for GPU boards of both vendors. Currently there is no support in STACKS for hard-

ware acceleration using Ati boards. As all image operations in STACKS are also written in 

CPU based software, it is still possible to run STACKS anyway. However, it was shown that 

GPU based processing provides a significant speed improvement for image operations espe-

cially when the kernel size becomes larger. 

 

STACKS can operate directly on the image files derived from commercially available Zeiss 

and Leica microscope systems. It is, however, also possible to read images from a folder. By 

renaming independent 2D images in a way that the program “thinks” that they form a 3D or 
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4D stack, it is possible to analyze large image sets of independent images using STACKS. In 

this way large image sets have already been analyzed using STACKS. 

 

 

 

Future Developments 

 
The current version of STACKS supports the tracking of maximal 255 objects as object label-

ing was originally developed for 8 bit images only. This is sufficient for tracking telomeres in 

one cell at a time, but when for instance viral particles have to be tracked in larger images, 

this will become a bottleneck. Object labeling has already been extended to 16 bit and the 

tracking in 16 bit images and thus tracking more than 65000 objects will be realized in the 

near future.  

 

The number of stacks that can be simultaneously handled by the program is currently fixed to 

4 grey-value 4D stacks, 4 color 4D stacks, a binary and a label 4D stack with the same amount 

of 3D stacks, when a maximum projection is performed. This limitation is mainly caused by 

the fact that only those stacks are foreseen in the menus and dialogues. In a future release 

those limitations will be removed by making the menus dynamic and by providing facilities to 

create additional stacks. In this way a larger number of stacks can be opened simultaneously, 

as long as memory and disk space allow it.  

 

Currently all image operations based on the GPU are 2D operations. 3D Object labeling and 

3D watershed is carried out by normal CPU processing and the GPU based nearest neighbour 

deconvolution takes only the slice below and above into account. However, the latest release 

of CUDA supports 3D textures which will ease the development of 3D image operations, such 

as 3D Min / Max operations, 3D convolutions and 3D distance transforms. It can also help 

with more complex operations such as 3D deconvolution. A new library with the 3D fast Fou-

rier is also released by Nvidia, so that 3D deconvolution based on inverse filtering should be 

relatively easy to implement.  

 

Up to now only one graphic board is supported by STACKS. It is possible to have more GPU 

boards in a PC or additional special boards for general GPU processing like the Tesla boards 

from Nvidia. This can boost the performance of GPU processing even further. STACKS 

would be ideally suited for this approach, as the processing of different 2D or 3D images  

could be easily be carried out in parallel. This possibility will be explored in future. Finally it 

should be mentioned that the program STACKS is free of charge available on request for non-

commercial use.
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Figures  
 

 

 
 

Figure 1.  The desktop of STACKS is shown with the windows of the various stacks. Note that the 

window of the color stack is expanded with the cross-sections at the position of the crosshair pointer. 

The Green stack is displayed enlarged. This adds scroll bars to the bottom and the right for positioning 

the image. The scrollbar at the top is reserved for the time points and at the left for the z-slices. It is 

possible to show intensity information at the position of the cursor as is shown in the window of the 

Green stack. 

 

 

 

Dimensions Stack Samsung disk OCZ SSD 

 Create 

stack 

(s) 

Read 

stack 

(s) 

Read / 

Write stack 

(s) 

Create 

stack 

(s) 

Read 

stack 

(s) 

Read / Write 

stack 

(s) 

25x40x256x256 5.4 0.20 3.75 4.7 0.18 2.50 

25x40x512x512 25.9 1.01 14.5 16.9 0.98 8.83 

25x40x1024x1024 137.1 4.19 54.80 88.7 4.10 27.83 

 

Table 1. This table shows the time needed to create a new stack when it is opened for the first time, to 

read an existing stack only and to read an existing stack and write it back after processing. Reading the 

stack only occurs when the user scrolls through the stack. The last column is an indication for the disk 

overhead that is involved during processing. Using a solid state disk a significant improvement is ob-

tained. 
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Operation Bit 

Depth 

HLSL 

(ms) 

CUDA 

(ms) 

Software CPU 

(ms) 

Erosion (cycles: 8) 8 2.4 5.1 65.8 

 16 2.8 4.9 66.1 

 24 4.8 10.2 184.1 

Opening (cycles: 8) 8 2.8 6.6 113.5 

 16 2.9 6.9 113.8 

 24 5.7 10.2 324.4 

Sobel filter 8 2.0 2.7 11.4 

 16 2.5 3.1 13.5 

 24 4.2 8.9 30.2 

LaPlace filter 8 2.0 2.7 5.3 

 16 2.5 3.1 6.4 

 24 4.1 8.8 13.6 

Convolution (kernel:21x21) 8 6.2 4.1 118.1 

 16 6.7 4.4 115.2 

 24 17.2 11.5 387.9 

Median (kernel: 3x3) 8 2.1 3.7 151.2 

 16 2.6 4.0 153.4 

 24 4.3 12.1 354.1 

Kuwahara (kernel: 5x5) 8 5.8 5.4 182.7 

 16 5.8 5.6 181.3 

 24 7.2 16.7 533.2 

Unsharp Mask (kernel: 7x7) 8 2.2 3.3 80.5 

 16 2.9 3.7 78.4 

 24 4.7 11.7 249.5 

FFT spectrum 8 7.9 4.4 230.2 

 16 8.6 4.8 228.4 

Butterworth band pass (FFT) 8 11.9 8.1 not imple-

mented 

 16 13.9 8.3 not imple-

mented 

Gaussian low pass (FFT) 8 11.8 8.5 not imple-

mented 

 16 13.7 8.8 not imple-

mented 

RGB->HSI 24 4.0 8.2 43.4 

Component Blend 24 4.3 8.7 13.3 

Colour Deconvolution 24 4.7 8.8 127.9 

Distance Transform 8 6.5 17.6 27.1 

Nearest Neighbour (32 

slices) 

8 189.4 214.9 2772.6 

 16 522.3 535.2 2798.3 

 24 308.6 495.8 8597.7 

 
Table 2. This table gives an overview of the time needed to process one image of 512 x 512 

pixels for various image operations using the GPU and software. The overhead of transferring 

images to and from the GPU is included for all operations. For the nearest neighbour deconvo-

lution the time to process 32 slices is given and the overhead to transfer the images to and from 

disk is included for this operation as well.  
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Max operation using HLSL and CUDA for various image sizes (16 bit)
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Max operation using Software for various image sizes (16 bit)
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Figure 2.  Figure 2A shows the MAX operation as function of the number of cycles for the HLSL 

shader and the CUDA shader program. HLSL is always faster. The time to transfer an image to/from 

the GPU board is included. By extrapolating the function to the y-axis the time necessary for image 

transfer is obtained. In figure 2B the equivalent is shown for the software implementation using the 

CPU.
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Figure 3. MSDt and MSDp graphs. A) The average values of the mean squared displacement 

(MSDt) and the standard deviation for the area in which the telomeres move in U2OS cells 

are shown. B) MSDp: Distance travelled by telomeres during different phases of the cell cy-

cle.  
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Figure 4. The MSDt and the MSDp curves are shown for the different phases of the cell cycle. A total of 6 cells 

and 142 telomeres were tracked per cell using the STACKS tracking software. Error bars represent the variance. 

Note that, as the telomeres become more dynamic, the error bars are also increasing. This may indicate that par-

ticularly during the G1 phase the MSD values show strong variance. This variance during the G1 phase of the 

cell cycle may very well be caused by a change of telomere dynamics during the G1 phase. A likely explanation 

could be that telomeres are very dynamic during the beginning of the G1 phase and that their dynamics decrease 

as they approach the end of the G1 phase. This hypothesis is in compliance with the idea that chromatin is very 

dynamic immediately after mitosis, because at that time many chromatin rearrangements take place (Walter et 

al., 2003). It is possible that for the same reason telomeres are increasingly dynamic in the G2 phase, indicating 

that just before mitosis also chromatin rearrangements may occur at a higher frequency.  
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Summary  
The interphase nucleus is thought to contain a three-dimensional filamentous protein 

network that provides structural support to chromosomes and facilitates transcription, 

RNA processing, DNA replication and DNA repair. The molecular composition of 

this network is, however, not clear. In this work we investigate whether telomeres, 

which are distributed throughout the nuclear interior, are attached to a nuclear matrix 

structure composed of lamin proteins. We used RNA interference to knockdown 

components of the nuclear matrix and latrunculin to depolymerize the nuclear actin 

network. Fluorescence time-lapse imaging revealed that telomeres become more dy-

namic in lamin A/C depleted cells but not in lamin B2 depleted cells. In addition, te-

lomeres are more dynamic in emerin depleted cells and in cells that have been treated 

with latrunculin. These results suggest that telomeres are associated to a complex con-

sisting of lamin A/C, emerin and actin and that the movement of telomeres is con-

strained by this association.  

 

 

Introduction 
The cell nucleus is subdivided in distinct compartments including chromosome do-

mains and nuclear bodies. Different types of nuclear bodies have been distinguished, 

each type housing a unique set of proteins that creates a specific microenvironment. 

The nuclear bodies are positioned in the interchromatin domain space, which sepa-

rates the individual chromosome domains (Spector, 2003). The separation of chromo-

some domains is not absolute as some intermingling between neighbouring chromo-

somes has been observed (Branco & Pombo, 2006). In general, however, the spatial 

positioning of chromosome domains in the three-dimensional space of the interphase 

cell nucleus is rather fixed and non-random, though may vary among cells and change 

with the differentiation and proliferation state of the cell. The general concept is that 

gene poor chromosomes are positioned at the nuclear periphery and that gene rich 

chromosomes are positioned towards the nuclear interior (Croft et al., 1999). This 

concept is consistent with observations where the positioning of specific genes at the 

nuclear periphery resulted in their silencing and is explained by the predominant het-

erochromatic nature of chromatin at this site and by the attachment to the lamina 

(Finlan et al., 2008; Reddy et al., 2008). Thus, the composition of the nuclear periph-

ery might be such that it does not favour transcriptional activity. Some genes, how-

ever, are not silenced when located at the nuclear periphery and show transcriptional 

activity (Kumaran & Spector, 2008). This is particularly true for genes that are posi-

tioned at nuclear pores (Casolari et al., 2004; Dieppois et al., 2006). Also, genes in 
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centromeric and telomeric regions, which are supposed to be heterochromatic, have 

been found to display transcriptional activity. Hence, additional factors are required to 

establish a transcriptionally competent microenvironment. These could include the 

spatial positioning of active genes at the periphery of compact chromatin domains fac-

ing the interchromatin domain space (Mahy et al., 2002). But also, the positioning of  

genes at transcription factories or at speckles (Sexton et al., 2007; Sutherland & 

Bickmore, 2009). These speckles are distinct nuclear bodies enriched for splicing and 

transcription factors. Clustering genes at transcription factories or speckles would al-

low for a coordinated regulation of transcription, RNA processing and RNA transport. 

Specific associations of genes with other nuclear bodies, like PML and Cajal bodies, 

have been reported as well (Trinkle-Mulcahy & Lamond, 2008). Together, these find-

ings suggest that the spatial arrangement of genomic regions and probably also that of 

nuclear bodies in the cell nucleus is important to control gene activity. 

 

One of the key questions is how the spatial organization of the cell nucleus is estab-

lished and maintained during interphase, and how it reorganizes in response to exter-

nal factors that may either activate or silence genes. Several lines of research suggest 

that the nucleus contains a rigid though dynamic nuclear skeleton or matrix structure 

that provides anchorage sites for chromatin and nuclear bodies. DNA loops are at-

tached to the nuclear matrix via loop anchorage regions (LARs). These genomic re-

gions may include matrix attachment regions (MARs), topoisomerase II binding sites 

and other discrete sequence motifs (Razin, 1996; Vassetzky et al., 2000). At present, a 

clear view about the composition and localization of the nuclear matrix does not exist. 

Therefore, the nuclear matrix has often been defined as a three-dimensional filamen-

tous protein network that remains present after high-salt extractions and the removal 

of chromatin. Among the candidate proteins that are part of the nuclear matrix struc-

ture are the lamin proteins. The lamin proteins are encoded by three genes, the lamin 

A, lamin B1 and lamin B2 genes. Lamin C is a splice variant of lamin A. The lamin A 

and B proteins form the lamina, which is a protein filament meshwork at the nuclear 

periphery connected to the inner nuclear membrane (Broers et al., 2006). Lamins also 

exist throughout the nuclear volume and have been suggested to support transcription 

and DNA replication (Moir et al., 1994; Spann et al., 2002; Tang et al., 2008). Consis-

tent with a role of lamin proteins in supporting chromatin organization are observa-

tions that the expression of mutant lamina proteins leads to nuclear reorganization 

(Broers et al., 2005; Taimen et al., 2009).  

 

Previous work indicated that telomeres are firmly attached to the nuclear matrix and 

thereby contribute to the spatial organization of chromatin in the cell nucleus (de 

Lange, 1992; Luderus et al., 1996; Weipoltshammer et al., 1999). The components 

that mediate this interaction have, however, not been identified yet. To investigate a 

possible role for lamin proteins in tethering telomeres we realized a knockdown of 

nuclear lamin proteins by expressing specific shRNAs and measured the dynamics of 

telomere movement in cells by fluorescence time-lapse imaging.    
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Results 

 

Reduction of lamin A/C but not lamin B2 results in an increase in telomere dy-

namics 

To knockdown the expression of lamin A and lamin B2 we selected for each gene 5 

short hairpin (sh) RNA constructs from a viral-vector-based shRNA library targeting 

7100 annotated human genes. Each construct was selected to target a different region 

of the gene sequence and tested for its efficiency for knockdown. To this end U2OS 

cells were transiently transfected and cultured in the presence of puromycin for 72 

hours. As a control, cells were transfected with an empty vector. Cells were lysed and 

subjected to Western blot analysis. Finally, we selected one shRNA construct for each 

target gene on the basis of most efficient knockdown of protein expression. The se-

lected constructs were packed in lentiviral particles and used to transduce U2OS cells. 

At 72 hours post transduction, the knockdown of lamins was analyzed by both West-

ern blotting and immunocytochemistry. By Western blotting we observed an almost 

complete reduction in expression of both lamin proteins (Fig. 1A). Next, we analyzed 

the efficiency of lamin protein knockdown by immunocytochemistry. As shown in 

Fig. 1B, the majority of cells showed an absence or strong reduction of lamin A/C 

staining. After counting 285 cells, we calculated an almost complete knockdown of 

lamin A/C in 87% of cells. For lamin B2, we calculated that 97% of cells showed a 

strong reduction in protein expression. 

 

Following lentiviral transductions of U2OS cells targeting lamin A/C and lamin B2 

respectively, the cells were transfected after 72 hours with TRF1-DsRed together with 

GFP-PCNA. As a control, cells were either not transduced or transduced with a lenti-

virus containing a non-silencing expression vector (SHC002). In previous studies it 

has been shown that TRF1-DsRed is a specific marker for telomeric DNA (Molenaar 

et al., 2003; Brouwer et al., 2009) and that GFP-PCNA is an efficient live cell marker 

to discriminate cell nuclei and cell cycle phases (Leonhardt et al., 2000). 3D time-

lapse images were collected every 30 seconds for 20 minutes and the mean square 

displacements (MSDt) of telomeres were determined using the image analysis pro-

gram STACKS. Because all MSDt curves obtained for telomere movement showed 

the same shape we present the MSDt values at Δt 360 seconds in order to compare 

telomere movements measured under the various conditions tested in this study. 

STACKS first corrects for cell movements and then calculates the movements of te-

lomeres in 2D and time. A correction has been made to compensate for the fact that a 

cell is a 3D object. MSDt plots representing measures for the space in which an indi-

vidual dot is moving inside the cell nucleus during a given time-period. Fig. 2 shows 

an example of a graph representing the tracks of individual telomeres in a cell nu-

cleus. Consistent with our previous data, we observed that the movement of telomeres 

in control cells is constrained (Molenaar et al., 2003) and we calculated an MSDt 

value of ~0.35 m
2
 (at Δt 360 seconds). All MSDt values in this study represent the 

total of telomeres measured in 10 individual cells. When G1 cells were excluded from 

the analysis on basis of PCNA staining, we calculated an MSDt value of ~0.25 m
2
, 

consistent with observations that telomeres are more dynamic during the G1 phase 

(Vrolijk et al., in preparation). Reduction of lamin A/C expression by shRNA inter-

ference resulted in an increase in telomere movement as compared to cells transduced 

with the SHC002 control virus, MSDt ~ 0.53 m
2
 (stdev ~0.46 m

2
) versus 0.22 m

2
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(stdev ~0.05 m
2
) (Fig. 3). Surprisingly, a reduction of lamin B2 did not reveal an 

increase in telomere dynamics (MSDt ~ 0.19 m
2
, stdev ~0.12 m

2
) (Fig. 3).  

 

Telomere movement in emerin depleted cells  

Emerin is a nuclear membrane protein, which is missing or defective in Emery-

Dreifuss muscular dystrophy (EDMD). It is a member of a family of lamina-

associated proteins which includes LAP1, LAP2 and laminB receptor (LBR) (Holmer 

& Worman, 2001). Emerin binds directly to both A- and B-type lamins in vitro 

(Clements et al., 2000; Lee et al, 2001), colocalizes with lamins in vivo (Manilal, 

1998), and is associated with the actin network in the nucleus (Holaska et al., 2004). 

Since emerin has also been identified as part of the nuclear matrix (Squarzoni et al., 

1998), we decided to investigate its role in telomere positioning and kinetics. From 

five shRNA constructs we selected one construct that when expressed in U2OS cells 

resulted in a 94% reduction of emerin protein as compared to endogenous levels. This 

construct was used to assemble lentiviral particles and then to transduce U2OS cells. 

Transduction resulted in a strong reduction of cells showing emerin staining. Of 452 

cells that were analyzed, 85% showed absence of emerin staining (Fig. 4). Next, cells 

were first transduced to knockdown emerin expression and then, after 72 hours, trans-

fected with TRF1-DsRed together with GFP-PCNA. Analysis of 3D image stacks, 

which were recorded every 10 seconds during 20 minutes and collected from 10 cells 

revealed an increase in telomere mobility (MSDt value of ~2.1 m
2
, stdev ~1.5 m

2
) 

as compared to cells transduced with the control construct (~0.35 m
2
).  

 

 

 

Preventing actin polymerization causes an increase in telomere mobility 

Nuclear actin has been identified as a potential nuclear matrix component (Kiseleva et 

al., 2004; Albrethsen et al., 2009) and as a binding partner of lamin A (Sasseville and 

Langelier, 1998; Zastrow et al., 2004) and emerin (Lattanzi et al., 2003). Thus 

telomeres could be directly or indirectly linked to a nuclear matrix by actin. To test 

this possibility, we treated U2OS cells expressing both TRF-DsRed and GFP-PCNA 

with latrunculin A, a drug that inhibits actin polymerisation in vitro (Coue et al., 

1987; Morton et al., 2000) and in vivo (Spector et al., 1983). Analysis of 3D time-

lapse recordings of telomere movements in 10 cells using STACKS revealed a mean 

MSDt value of ~0.54 m
2
 as compared to an MSDt ~0.35m

2
 that was calculated for 

telomeres in untreated control cells, suggesting that telomeres become more mobile in 

the absence of polymerized nuclear actin (Fig. 5). To confirm this finding we also 

treated mouse embryonic fibroblasts (W8 MEFs) expressing TRF1-DsRed together 

with GFP-PCNA with latrunculin A and collected 4D image stacks. Quantitative 

analysis of telomere movement by the program STACKS revealed a three-fold in-

crease in MSDt value, MSDt ~1.01 m
2
  as compared to MSDt ~0.35 m

2
 in un-

treated cells (Fig. 6). 

 

Nuclear actin has been shown to be involved in the transcription process (Zhu et al., 

2004). Preventing actin polymerization by latrunculin may therefore result in global 

transcription inhibition, which then may result in a change in chromosome 

organization, leading to less constrained telomere mobility. Treatment of  U2OS cells 

with the transcription inhibitor 5,6-dichloro-1-ß-D-ribobenzimidazole (DRB) resulted 

in some decrease in telomere mobility (MSDt ~0.23 m
2
), suggesting that telomere 

mobility is not increased by changes in global transcriptional activity but more likely 
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by losing their association with an actin containing complex (Fig. 5). Also in W8 

MEFs, we observed a decrease in telomere mobility, although not significant, after 

treatment with DRB, (MSDt ~0.32 m
2
 as compared to MSDt ~0.35 m

2
 in untreated 

cells (Fig. 6). 
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Discussion 
The spatial positioning and dynamic properties of telomeres in the cell nucleus have 

been addressed by various studies. These studies show that in yeast telomeres are po-

sitioned at the nuclear periphery and anchored to the inner nuclear membrane by Ku 

and Sir proteins (Hediger et al., 2002). This anchoring puts a constraint on the mobil-

ity of telomeres in yeast cells and has been functionally linked to gene regulation. 

Unlike in yeast, in mammalian cells telomeres are positioned throughout the nucleus 

(Molenaar et al., 2003; Weierich et al., 2003). Still, their mobility is not very different 

from that of yeast telomeres and appeared to be constrained (Molenaar et al., 2003; 

Jegou et al., 2009). This constrained movement can be explained by a compact or-

ganization of chromatin in the cell nucleus, but also by an association to a supporting 

structure like the nuclear matrix. 

 

In this work we show that telomeres are more mobile in cells with reduced expression 

of lamin A/C or emerin but not in cells with reduced lamin B2 expression. These find-

ings are consistent with the idea that lamin A/C is a component of the nuclear matrix 

and anchors telomeres to this structure. Patients with a 433G>A mutation in the α-

helical central rod domain of the A-type lamin gene show multiple nuclear alterations 

including mislocalization of telomeres (Taimen et al., 2009). This mutation prevents 

lamin A to organize in higher order structures and may thereby lose its function to 

anchor telomeres. Consistent with this idea, telomeres have been found to be shifted 

towards the nuclear periphery in MEFs devoid of A-type lamins (Gonzalez-Suarez et 

al., 2009). Recently, we showed that lamin redistribution in the cell nucleus is one of 

the first hallmarks of a senescent state of mesenchymal stem cells and that this redis-

tribution is accompanied by a redistribution of telomeres, suggesting that telomeres 

are physically associated with a lamin structure (Raz et al., 2008). Previous studies 

suggested that telomeres are associated with a nuclear matrix structure (Gonzalez-

Suarez et al., 2009). Following various nuclear extraction procedures telomeres were 

shown to remain attached to structures in the cell nucleus while most other DNA se-

quences did not (de Lange, 1992; Ludérus et al., 1996; Weipoltshammer et al., 1999). 

These studies, however, did not identify lamin proteins being responsible for retaining 

telomeric sequences. It was, however, observed that telomere binding protein TRF 

colocalizes with telomeric DNA in nuclear matrix preparations and that TRF was re-

tained in the nuclear matrix even after removal of telomeric DNA, suggesting that an-

choring of telomeres to the nuclear matrix is mediated by TRF (Ludérus et al., 1996). 

Interestingly, fluorescence recovery after photobleaching analysis showed that the as-

sociation of TRF1 and TRF2 with telomeres is highly dynamic (Mattern et al., 2004). 

However, a fraction of TRF2 has been identified that forms more stable complexes 

with telomeres (Mattern et al., 2004) and might be involved in stabilizing the interac-

tion of telomeres with a nuclear lamina structure.  

One may also argue that a dynamic binding of TRF1 and TRF2 at telomeres may al-

low dynamic interaction with a nuclear lamina scaffold structure which may be essen-

tial for a dynamic nuclear organization. Recently, it has been shown that deletion of 

TRF2 in mouse cells resulted in increased telomere mobility and was dependent on 

53BP1. The supposed rationale for the increased telomere mobility is to facilitate non-

homologous end joining to repair DNA damage (Dimitrova et al., 2008).  

 

A question that has not been answered yet is which factors mediate the interaction be-

tween telomeres and the nuclear matrix. Proteins in the nuclear matrix may directly 

interact with telomeric DNA or indirectly by association with telomere proteins. Di-
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rect interactions of lamin proteins with TRF1 or TRF 2 have thus far not been ob-

served. Recently, it has been shown that the telomere associated protein TIN2, bind-

ing both TRF1 and TRF2, associates with the nuclear matrix and thereby may mediate 

the binding of telomeres to the nuclear matrix (Kaminker et al., 2009).  

Our observation that emerin knockdown results in an increase in telomere dynamics is 

consistent with a role for emerin in structuring the cell nucleus. Emerin has been 

shown to interact directly with A- and B-type lamins (Clements et al., 2000; Lee et 

al., 2001) and in patients lacking emerin lamins A, C and B2 are more soluble sug-

gesting a disrupted lamina architecture (Markiewicz et al., 2002). Together with our 

observation that nuclear actin plays a role in tethering telomeres to a nuclear structure 

our data support a previously proposed model in which lamin A, actin and emerin 

form a complex which forms or is part of a network in the nucleus (Mehta et al., 

2008). Telomeres could be associated with such a complex to help structuring chro-

mosome organization in the interphase nucleus. The fact that lamin B2 knockdown 

does not result in increased telomere mobility suggests that telomeres are not linked to 

a structure composed of B type lamins. Previously, photobleaching experiments re-

vealed that A and B type lamins show different exchange rates in the nucleoplasm, 

suggesting that both types are present in distinct structures (Moir et al., 2000). At the 

nuclear periphery, A and B type lamins were shown to be present in a separate but 

interconnected network (Shimi et al., 2008). This may also be true when both proteins 

are present in the internuclear space. Furthermore, in vitro experiments showed that 

lamin B does not bind to telomeric DNA while lamin A/C does (Shoeman & Traub, 

1990). Thus, intranuclear B-type lamins may contribute to a stable nuclear architec-

ture in a different fashion as compared to A-type lamins, for example by supporting a 

framework for RNA synthesis (Tang et al., 2008). 
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Materials and Methods 
 

Cell Culture 

Human Osteosarcoma cells (U2OS) and mouse embryonic stem cells (W8 MEFs) 

were cultured at 37 ºC on 3.5-cm glass-bottom culture dishes (MatTek) in Dulbecco’s 

modified Eagle’s medium (DMEM) without phenol red, containing 1.0 mg/ml glu-

cose, 4% FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin, 

pH 7.2 (all from Invitrogen). Actin depolymerisation was induced by treating cells 

with 2 µg/ml latrunculin A for 2h. Transcription inhibition was achieved by treating 

cells with 30 µg/ml DRB (5,6-dichloro-1-ß-D-ribobenzimidazole) for 2h. 

 

Plasmids and transfection 

The cloning of TRF1 in the DsRedExpress vector (Clontech) has been described 

(Brouwer et al., 2009). The GFP-tagged proliferating cell nuclear antigen (PCNA) 

protein was a gift from M.C. Cardoso (Leonhardt et al., 2000). Cells were transiently 

transfected with 0.5 µg vector DNA using Lipofectamine 2000 (Invitrogen) according 

to instructions of the manufacturer. At 16 hours post transfection 1.5 µg/ml puromy-

cin was added to the culture medium and cells were assayed 72 hours after transfec-

tion. 

 

Protein blot analysis 

Cells were lysed in NuPAGE LDS sample preparation buffer (Invitrogen).
 
Protein 

samples were then size fractionated on Novex 4–12%
 
BisTris gradient gels using a 

MOPS buffer (Invitrogen) and were
 
subsequently transferred onto Hybond-C extra 

membranes (Amersham Biosciences)
 
using a submarine system (Invitrogen). Blots 

were stained for
 
total protein using Ponceau S (Sigma-Aldrich). After blocking

 
with 

PBS containing 0.1% Tween 20 and 5% milk powder, the membranes
 
were incubated 

with monoclonal mouse antibodies against lamin A/C (sc-7292, Santa Cruz Biotech-

nology), lamin B2 (NLC-LAM-B2, Novocastra), emerin (NCL-emerin, Novocastra) 

and with a mouse polyclonal antibody against tubulin (1:2000; Sigma-Aldrich). The 

secondary antibody used was HRP-conjugated anti-mouse (1:5,000; Pierce). Bound 

antibodies were detected by chemiluminescence
 
using ECL Plus (Amersham Biosci-

ences). 

 

Virus production and transduction 

The shRNA lentiviral plasmid vectors targeting lamin A/C, lamin B2 and emerin were 

selected and obtained from the Sigma human shRNA library MISSION
TM

 TRC-Hs 

1.0 (Sigma-Aldrich). The pLKO.1Puro lentiviral shRNAvectors generating an effi-

cient knockdown of lamin A/C, lamin B2 and emerin were used to generate lentiviral 

particles. For this purpose 293T cells were transfected with the appropriate lentiviral 

shRNA vector together with the vectors pCMV-VsVG, pMDLg-RRE and pRSV-Rev 

using calcium phosphate precipitation. At 48 and at 72 hours after transfection the vi-

ral supernatants were harvested and filtered through a 0.45 μm pore size filter. Virus 

titers were determined by measuring HIV-1 p24 antigen levels by ELIZA using a 

RETRO-TEK HIV-1 p24 antigen ELIZA system (ZeptoMetrix, Buffalo, USA). Cells 

were transduced with lentiviral particles (MOI 3, MOI5 and MOI 10) in the presence 

of 8 µg/ml Polybrene (Sigma) and incubated overnight at 37 ºC. Then, the cells were 

washed 3 times in medium and cultured in fresh culture medium until analysis.  
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Live cell imaging 

Wide-field fluorescence microscopy was performed on a multi-dimensional work-

station for live cell imaging (model DMI3000B; Leica Microsystems, Mannheim, 

Germany) equipped with a metal halide bulb and a 63× NA 1.25  HCX plan Fluotar 

objective. 4D image stacks, each containing 20 sections of 0.5 μm, were collected us-

ing an automated motorized z-galvo stage. During imaging, the microscope was 

heated to 37 ºC in a CO2 perfused and moisturized chamber. Image stacks were col-

lected every 30 sec for 10 min. Image deconvolution was performed using Leica 

software. For each experiment and cell type at least ten movies were analyzed. 

Telomere movements were quantified using an in house developed object tracking 

program called STACKS (Vrolijk et al., in preparation). With this program tracks of 

moving objects in a cell can be visualized and quantified. The movements of te-

lomeres were quantified by measuring their mean squared displacement, or MSDt, as 

described in chapter 2 of this thesis.   
 
 
 

Immunofluorescence 

The following antibodies were used for immunofluorescence staining of cells: a 

mouse monoclonal antibody against lamin A/C (sc-7292, Santa Cruz Biotechnology), 

a mouse monoclonal antibody against lamin B2 (NLC-LAM-B2, Novocastra) and a 

mouse monoclonal antibody against emerin (NCL-emerin, Novocastra). Cells were 

grown on coverslips, washed three times in PBS and then fixed in 2% formaldehyde 

in PBS for 10 minutes at room temperature. After fixation, cells were washed three 

times in PBS, permeabilized in PBS containing 0.2% Triton X-100 for 15 min and 

washed once in TBS containing 0.1% Tween 20. Then, cells were incubated with 

primary antibody for 45 minutes at 37 ºC, followed by three washes in TBS contain-

ing 0.1% Tween 20. Finally, cells were incubated with an appropriate Alexa-Fluor 

488, Alexa-Fluor 594 (both Invitrogen) or Cy3 secondary antibody conjugate for 45 

minutes at 37 ºC, washed in TBS containing 0.1% Tween 20, and mounted in 

Citifluor (Agar Scientific) containing 400 µg/ml DAPI (Sigma-Aldrich). 
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Figures 

 

Figure 1A  U2OS cells were transiently transfected with short hairpin (sh) RNA constructs 

from a viral based vector system directed against lamin A and lamin B. As a control, cells 

were transfected with an empty vector. Cells were lysed and subjected to Western blot analy-

sis, 72 hours post transduction. An almost complete reduction in expression of both lamin A 

and lamin B proteins was achieved.  
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Figure 1B. Immunocytochemical images of U2OS cells transiently transfected with short 

hairpin (sh) RNA constructs from a viral based vector system directed against lamin A and 

lamin B. Cells were stained with anti-lamin A and anti-lamin B antibodies and showed an 

absence or strong reduction of lamin A/C and lamin B2 staining. Nuclei are stained with 

DAPI (blue).  
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Figure 3. Reduction of lamin A/C expression by shRNA interference resulted in an increase 

in telomere movement as compared to cells transduced with the SHC002 control virus. Cells 

transduced with a lentiviral contruct to knockdown emerin expression revealed a strong in-

crease in telomere mobility (MSDt value of ~2.1 m2, stdev ~1.5 m2) as compared to cells 

transduced with the control construct (~0.35 m2). 4D image stacks, each containing 20 sec-

tions of 0.5 μm, were collected using an automated motorized z-galvo stage multi-

dimensional workstation for live cell imaging (model DMI3000B; Leica Microsystems). 

MSDt values were calculated using the STACKS tracking program. 
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Figure 4. A reduction of emerin by shRNA interference in U2OS cells is shown in the lower 

panel, using an antibody directed against endogenous emerin. Untreated U2OS cells stained 

for emerin are shown in the upper panel. All cells are counterstained with DAPI (blue).  

 

 

 
Figure 5. Measuring telomere mobility in U2OS cells treated with an actin depolymerizing 

agent latrunculin A revealed a mean MSDt value of ~0.54 m2 as compared to a MSDt 

~0.35m2 that was calculated for telomeres in untreated control cells. Additionally U2OS 

cells were treated with the transcription inhibitor 5,6-dichloro-1-ß-D-ribobenzimidazole 

(DRB) which resulted in a slight decrease in telomere mobility (MSDt ~0.23 m2). MSDt 

values were calculated using the STACKS tracking program. 
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Figure 6. Measuring telomere mobility in mouse embryonic fibroblast cells (W8 MEFs) 

treated with the transcription inhibitor 5,6-dichloro-1-ß-D-ribobenzimidazole (DRB) resulted 

in a slight decrease in telomere mobility, similar to the result in U2OS cells. MSDt values 

were calculated using the STACKS tracking program. 
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Abstract 

The cell nucleus harbors a variety of different bodies that vary in number, composition 

and size. Although these bodies coordinate important nuclear processes little is known 

about how they are formed. Among the most intensively studied bodies in recent years is 

the PML body. These bodies have been implicated in gene regulation and other cellular 

processes and are disrupted in cells from patients suffering from acute promyelocytic 

leukemia. Using live cell imaging microscopy and immunofluorescence, we show in sev-

eral cell types that PML bodies are formed at telomeric DNA during interphase. Recent 

studies revealed that both SUMO modification sites and SUMO interaction motifs in the 

promyelocytic leukemia (PML) protein are required for PML body formation. We show 

that SMC5, a component of the SUMO ligase MMS21-containing SMC5/6 complex, lo-

calizes temporarily at telomeric DNA during PML body formation, suggesting a possible 

role for SUMO in the formation of PML bodies at telomeric DNA. Our data identify a 

novel role of telomeric DNA during PML body formation. 
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Introduction 
 

The cell nucleus harbors a variety of distinct compartments and bodies, which are in-

volved in a variety of nuclear activities, such as transcription and RNA processing. These 

bodies are not surrounded by membranes but accumulate specific sets of proteins by 

means of protein-protein interactions. Furthermore, most proteins that reside in bodies are 

in a dynamic equilibrium with their surroundings (Misteli, 2001) and a few of these pro-

teins have been reported to shuttle between various bodies (Snaar et al., 2000). Typical 

examples of nuclear bodies are nucleoli, which are sites of rRNA synthesis and ribosome 

subunit assembly, speckles, sites involved in RNA splicing metabolism, and Cajal bodies, 

which are processing sites for several ribonucleoproteins (Spector, 2001). 

 

The PML body has been implicated in many different cellular pathways and is character-

ized by the presence of the PML protein, first identified in patients with acute promyelo-

cytic leukemia (APL) (de The et al., 1991). Virtually all APL patients carry the chromo-

somal translocation t(15,17), resulting in a fusion protein between the retinoic acid 

receptor-α (RAR) and the PML protein (de The et al., 1991; Melnick and Licht, 1999). 

The PML-RARα fusion protein fails to locate to PML bodies (Melnick and Licht, 1999)
 

and is thought to block differentiation of bone marrow cells (Naeem et al., 2006). In addi-

tion, the leukemic blast cells of APL patients reveal fragmented PML bodies. Treatment 

of APL patients with all-trans-retinoic acid or arsenic trioxide results in the degradation 

of the PML-RARα fusion protein, restoration of PML bodies and remission of the disease 

(Koken et al., 1994; Weis et al., 1994). 

 

Each cell nucleus contains, depending on cell type and cell cycle stage, approximately 10 

to 30 PML bodies ranging in size from 0.2 to 1 μm. In addition to PML, more than 50 

PML body-associated proteins have been characterized, including Sp100, SUMO-1, 

Daxx, pRB, p53, HAUSP, CBP, Hp1 and BLM, which function in transcription, DNA 

replication, DNA repair, antiviral defense, chromatin organization, cell cycle control and 

apoptosis (Borden, 2002; Dellaire and Bazett-Jones, 2004; Bernardi and Pandolfi, 2007; 

Everett and Chelbi-Alix, 2007). Thus, PML bodies play active roles in a broad variety of 

nuclear processes but they also apparently function as nuclear storage depots regulating 

the availability of nucleoplasmic proteins in response to external stimuli (Negorev and 

Maul, 2001). 

 

Most significantly, PML nuclear bodies apparently coordinate DNA repair and cell cycle 

checkpoint activities, as these bodies were shown to temporarily associate with sites of 

double strand breaks and to recruit p53 and the hMre11/Rad50/NBS1 DNA repair com-

plex following ionizing radiation (Carbone et al., 2002). Also, PML nuclear bodies likely 

regulate and/or coordinate the expression of a variety of genes. Recently, it was shown 

that the expression of genes within the major histocompatibility class I genomic locus, 

which have a high degree of association with PML bodies (Shiels et al., 2001), is coordi-

nated by the formation of higher-order chromatin-loop structures mediated by PML and 

SATB1 (Kumar et al., 2007). Also, it has been reported that a selection of gene rich and 

transcriptional active genomic loci, present on several chromosomes, reveal a non-

random association with PML bodies (Wang et al., 2004). Furthermore, the observation 
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that a number of DNA viruses transcribe their genomes at PML bodies underscores a role 

of the PML body in transcription (Maul, 1998). Finally, consistent with the idea that 

PML bodies associate with transcriptionally active regions, newly synthesized mRNA 

transcripts have been found associated with the periphery of PML bodies (Boisvert et al., 

2000; Kieβlich et al., 2002). 

 

Although the mechanism by which PML bodies move to and associate with specific ge-

nomic loci is not known yet, the frequency with which these associations are observed 

suggests that PML bodies are non-randomly organized in the cell nucleus. To address this 

issue, we visualized the de novo formation of PML bodies after the disassembly of all 

PML bodies in the cell nucleus and identified the sites at which they form. 
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Materials and Methods 
 

Cell Culture 

U2OS, immortalized mouse embryonic fibroblast W8 cells (gift from T. Jenuwein, Vi-

enna, Austria), immortalized mouse embryonic PML-/- fibroblasts (gift from P.P. Pan-

dolfi, Harvard Medical School, Boston, MA), HeLa and haematopoietic leukemia NB4 

cells (gift from M. Lanotte) were cultured at 37 ºC on 3.5-cm glass-bottom culture dishes 

(MatTek) in Dulbecco’s modified Eagle’s medium (DMEM) without phenol red and con-

taining 1.0 mg/ml glucose, 4% FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 

µg/ml streptomycin, buffered with 25 mM Hepes, pH 7.2 (all from Invitrogen). To induce 

alkylating DNA damage, cells were incubated with 0.02% MMS (Sigma) for 45 minutes 

or 1.5 hour.  

 

Plasmids and cell transfection 

The construction of vectors EYFP-PML I and ECFP-Sp100 is previously described (Wi-

esmeijer et al., 2002). The coding sequence for PML III has been cloned in the pEYFP-

C1 vector (Clontech) and the coding sequences for TRF1, TRF2 and ASF have been 

cloned into the DsRedExpress vector (Clontech) according to standard procedures. The 

SUMOylation-deficient YFP-tagged K65/160/490R PML mutant protein (verified by se-

quencing) was a gift from O.A. Vaughan. Cells were transiently transfected with 0.5 µg 

vector DNA using lipofectamine 2000 (Invitrogen). For the bimolecular fluorescence 

complementation assay, the DNA sequences for PML III and TRF1 were cloned into vec-

tors containing YN173, corresponding to residues 1-173 of EYFP or CC155, correspond-

ing to residues 155-238 of ECFP (Hu et al., 2002). TEL-YN was a gift from D. Baker. 

All protein coding sequences used in this study were of human origin. The correct local-

ization of all expressed proteins was verified and confirmed in both U2OS and W8 MEF 

cells. PML-YFP expressing cells were stained with antibodies specific for endogenous 

Sp100, Daxx and Hausp to confirm the localization of PML-YFP in PML bodies. The 

localization of DsRed-TRF1 and DsRed-TRF2 at telomeric DNA was confirmed by 

PNA-FISH (Molenaar et al., 2003). Furthermore, it has been demonstrated before that the 

TTAGGG repeat binding sites in mouse and human TRF1 and TRF2 show a high level of 

sequence homology (Broccoli et al., 1997a) and bind to TTAGGG repeat DNA with the 

same preference (Broccoli et al., 1997b).     

 

Analysis of Fluorescence Complementation 

Cells were cotransfected with combinations of the plasmids encoding PML-CC155 and 

YN173-TRF1 or YN173-TEL as well as YN173-PML and TRF2-CC155. The comple-

mentation assay was essentially performed as described (Hu et al., 2002). Transfected 

cells were first incubated for 3 hours at 37˚C and then for 16 hours at 30˚C to promote 

fluorophore maturation. Cells were monitored either alive or following fixation in 2% 

formaldehyde. 

 

Live cell imaging 

Wide-field fluorescence microscopy was performed on a multi-dimensional workstation 

for live cell imaging (model DMIRE2; Leica Microsystems, Mannheim, Germany) 

equipped with a metal halide bulb and a 63× NA 1.4 PlanApo objective lens. 4D image 
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stacks were collected using an automated motorized piezo Z-stage. The Z-stacks were 

collected with 0.4-μm steps and contained generally 20 Z-slides. During imaging, the mi-

croscope was heated to 37 ºC in a CO2 perfused and moisturized chamber. Image stacks 

were collected every 10 minutes for 1 to 4 hours and deconvolved by using the Leica 

software. Deconvolution is a computational algorithm that restores out-of-focus fluores-

cent signals resulting in a decrease of blur and an improved contrast. For each experiment 

and cell type at least 10 movies were analyzed. 

 

Immunofluorescence 

The following antibodies were used for immunofluorescence staining: mouse monoclonal 

antibody 5E10 against PML (gift from R. van Driel, Amsterdam, The Netherlands), rab-

bit polyclonal antibody against PML (1130 directed against seq: MEPAPARSPRP-

QQDP), rabbit polyclonal antibody against SP100 (ab1380, Chemicon), rabbit polyclonal 

antibody against Daxx (sc-7152, Santa Cruz), rabbit polyclonal antibody against Hausp 

(A300-033A, Bethyl Laboratories), mouse monoclonal antibody against TRF1 (ab10579-

50, Abcam), mouse monoclonal antibody against TRF2 (IMG-124, Imgenex), human 

autoimmune serum against centromeres (Antibodies Incorporated), rabbit polyclonal an-

tibody against γH2AX  (A300-081A, Bethyl Laboratories), rabbit polyclonal antibody 

against 53BP1 (NB100-304, Novus Biologicals) and rabbit polyclonal antibody against 

SMC5 (A300-236A, Bethyl Laboratories). Cells were grown on coverslips, washed three 

times in PBS and then fixed in 2% formaldehyde in PBS for 10 minutes at room tempera-

ture. After fixation, cells were washed three times in PBS, permeabilized in PBS contain-

ing 0.2% Triton X-100 for 15 min and washed once in TBS containing 0.1% Tween 20. 

Then, cells were incubated with primary antibody for 45 minutes at 37 ºC, followed by 

three washes in TBS containing 0.1% Tween 20. Finally, cells were incubated with an 

appropriate Alexa-Fluor 488, Alexa-Fluor 594 (both Invitrogen) or Cy3 secondary anti-

body conjugate for 45 minutes at 37 ºC, washed in TBS containing 0.1% Tween 20, and 

mounted in Citifluor (Agar Scientific) containing 400 µg/ml DAPI (Sigma-Aldrich). 

 

Fluorescence in situ hybridization 

NB4 cells were grown on coverslips, fixed in 4% formaldehyde in PBS for 10 minutes 

and permeabilized in PBS containing 1% Triton X-100 for 10 minutes. Then, cells were 

washed twice with distilled water, dehydrated in a graded series of ethanol and dried. For 

combined PML-immunostaining and PNA-FISH, cells were incubated with 1 ng/μl te-

lomere PNA probe (DAKO) in 40% formamide/2x SSC. Cells and probe were denatured 

at 80°C for 3 minutes. After hybridization for 1 hour at 37°C, the cells were washed 3x5 

minutes in TBS containing 0.5 % Triton X-100. Then, cells were incubated with respec-

tively primary and secondary antibodies as described above. 

 

Protein blot analysis 

Cells were lysed in NuPAGE LDS Sample Preparation Buffer (Invitrogen).
 
Protein sam-

ples were then size fractionated on Novex 4–12%
 
BisTris gradient gels using a MOPS 

buffer (Invitrogen) and were
 
subsequently transferred onto Hybond-C extra membranes 

(Amersham Biosciences)
 
using a submarine system (Invitrogen). Blots were stained for

 

total protein using Ponceau S (Sigma-Aldrich). After blocking
 
with PBS containing 0.1% 

Tween 20 and 5% milk powder, the membranes
 
were incubated with antibody 5E10 
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against PML  or a rabbit antibody against SUMO (directed against seq:  

MEDEDTIDVFQQQTG) and with a mouse polyclonal antibody against tubulin (1:2000; 

Sigma-Aldrich). The secondary antibodies used were HRP-conjugated anti-mouse 

(1:5,000; Pierce) and HRP-conjugated anti-rabbit (1:2000; Pierce). Bound antibodies 

were detected by chemiluminescence
 

using ECL Plus (Amersham Biosciences).
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Results  
 

PML bodies do not necessarily form at previously used sites after recovery from 

stress 

A number of different cellular stresses have been described that induce the disassembly 

of PML bodies and result in the formation of PML residual bodies, PML microstructures 

or even in a complete disappearance of the PML body (Maul et al., 1995; Eskiw et al., 

2003; Nefkens et al., 2003; Conlan et al., 2004). To examine whether PML bodies have 

predetermined spatial positions in the nucleus, we treated U2OS human osteosarcoma 

cells with the DNA methylating agent methylmethane sulfonate (MMS). This agent has 

previously been shown to cause a complete dispersal of PML bodies (Conlan et al., 

2004). By immunofluorescence, we confirmed that PML bodies indeed disassemble 

completely in response to MMS treatment and that PML proteins redistribute throughout 

the nucleus in a diffuse manner (Fig. 1A). However, these results do not exclude the pos-

sibility that the level of PML in PML bodies is greatly reduced below the detection level 

or that some of the other PML body components may organize into body structures. To 

confirm that PML bodies indeed disassemble in response to MMS treatment, we evalu-

ated the levels of SUMO-modified PML by immunoblot analysis. Previous studies 

showed that the assembly and integrity of PML bodies is dependent on post-translational 

modification of PML by SUMO (Zhong et al., 2000). Furthermore, it has been shown that 

PML is a preferential SUMO2 specific target protein (Vertegaal et al., 2006). As illus-

trated in Fig. 1B, the amount of SUMOylated PML was markedly reduced by MMS 

treatment, while the total amount of SUMO2/3 did not decrease (Fig. 1C). Also shown in 

Fig. 1B is that the total amount of PML protein did not significantly change by MMS 

treatment, which is consistent with the observed subnuclear redistribution of PML and 

with previous data (Conlan et al., 2004). 

 

To image the disassembly of PML bodies in live cells, we collected 3D image stacks of 

U2OS cells and of mouse embryonic fibroblasts (W8 MEFs), both expressing EYFP-

PML III, at 10 minute time intervals. Image collection was started immediately after 

MMS treatment and continued throughout the dispersal process of the PML bodies, 

which took on average 1 hour. Among cells there appeared to be quite some variability in 

the duration of the dispersal process which could possibly be due to a cell cycle depend-

ent action of MMS. PML body dispersal was accompanied by a gradual loss of PML pro-

tein from these bodies. Some PML bodies, however, first fused into larger bodies which 

then rapidly dispersed (Fig. 2 and Movie 1). In a few cells some remnant PML bodies 

remained present after MMS treatment. Such bodies may have dispersed when cells were 

incubated with MMS for a longer time period. As a control, we analyzed the movement 

of PML bodies in untreated U2OS and W8 MEF interphase cells (10 cells each). 3D im-

age stacks were collected every 10 minutes for 50 minutes (Supplemental Fig. 1). The 4D 

stacks show that fusions of PML bodies occur but at low frequencies and that PML bod-

ies show constrained as well as dynamic movements consistent with previous observa-

tions about PML body dynamics (Muratani et al., 2002; Wiesmeijer et al., 2002; Jegou et 

al., 2009). In a subfraction of cells, we noticed that the number of PML bodies increased 

during the imaging period, which is most likely related to cell cycle phase (Dellaire et al., 

2006a,b). 
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Interestingly, the dispersal of PML bodies proved reversible as we observed that PML 

bodies recover when the cells were incubated in fresh culture medium lacking MMS. 

Consistent with this observation, we found that the amount of SUMOylated PML in-

creased when cells recovered from MMS treatment (Supplemental Fig. 2). All live cell 

experiments were performed by expressing PML isoform III and were confirmed by ex-

pressing PML isoform I. We examined whether after MMS treatment PML bodies would 

recover at the same spatial position in the nucleus, possibly at the same chromatin site, as 

they were positioned before treatment. Both, U2OS and W8 MEF cells, were transiently 

transfected with EYFP-PML. The 3D image stacks were collected every 10 minutes be-

fore, during, and after MMS treatment using both the YFP channel and the differential 

interference contrast (DIC) channel and converted to maximum projections (Fig. 3). 

These projections were used to denote the spatial areas occupied by PML bodies before 

MMS treatment by drawing 2 μm circles around them. After analyzing the maximum 

projections of 10 interphase U2OS cells, collected before and 90 minutes after recovery 

from MMS treatment, it appeared that only 50% (± 10%) of the original number of PML 

bodies has been formed de novo after treatment. Of these bodies, 35% (± 15%) formed 

outside the circled areas. Because the total nuclear area occupied by circles is relatively 

large it is expected that a significant number of PML bodies are formed in these areas just 

by chance. Hence, at least 35% of the de novo formed PML bodies are positioned at new 

locations (Fig. 3A, Table 1). The analysis of the maximum projections of 4D image 

stacks of 10 interphase W8 MEFs taken before and 50 minutes after recovery of MMS 

treatment revealed that 45% (± 10%) of the original number of PML bodies has been 

formed de novo after treatment and that a median of 75% of these PML bodies formed 

outside the circled areas (Fig. 3B, Table 1). Whether previously used chromatin sites 

have moved in the intervening time to other positions in the nucleus should be addressed 

by additional experiments using photoactivatable GFP-tagged histone H4 (Wiesmeijer et 

al., 2008). Our observations suggest that a subset of PML bodies form at new locations in 

the cell nucleus and that this is particularly true for W8 MEFs. 

 

PML bodies form de novo on telomeric DNA 

U2OS cells are ALT cells which contain extrachromosomal telomeric DNA and a subset 

of these cells contain variable numbers of PML bodies that are associated with telomeric 

DNA sequences (Yeager et al., 1999). Because we found in U2OS cells that about 65% 

of the new PML bodies formed at approximately the same positions as they were found 

before MMS treatment, we speculated that these positions might contain telomeric DNA. 

Thus, PML bodies may form de novo at telomeric DNA following recovery from MMS 

treatment. We therefore monitored PML body dispersal in interphase U2OS cells, ex-

pressing EYFP-PML together with DsRed-TRF1 or EYFP-PML together with DsRed-

TRF2, during MMS treatment and then visualized the formation of PML bodies during 

the recovery period by capturing 3D image stacks at 10 minute time intervals. The col-

lected 3D image data sets show that PML bodies were indeed formed at telomeric DNA 

foci labeled by DsRed-TRF1 or DsRed-TRF2 in U2OS cells. Approximately 1 hour after 

incubating the cells in fresh medium without MMS, EYFP-PML was shown to accumu-

late first at a few sites that are labeled by DsRed-TRF1 or DsRed-TRF2. When time pro-

ceeds, EYFP-PML was accumulating at an increasing number of telomeric sites during 

the time-course of the experiment (Fig. 4 and Movie 2). It should be noted, however, that 
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we cannot not discriminate between telomeres and extrachromosomal telomeric material, 

which are both present in ALT cells (Ogino et al., 1998). The amount of extrachromo-

somal telomeric DNA may even be increased by MMS treatment. It has been reported 

previously that DNA damage can lead to a 2-fold increase in extrachromosomal telomeric 

DNA (Fasching et al., 2007), Hence, PML bodies may form at both telomeres and ex-

trachromosomal telomeric material in U2OS cells. The specificity of DsRed-TRF1 and 

DsRed-TRF2 localization at telomeric DNA was confirmed by their localization at Cy3-

peptide nucleic acid -labeled telomere sequences as described previously (Molenaar et 

al., 2003). Both, MMS-treated and non-treated U2OS cells were stained for telomeric 

DNA using a PNA probe and for endogenous or exogenous TRF1 using antibodies. Dou-

ble-labeled cells, both treated and non-treated, revealed 1-4 TRF1 foci that did not colo-

calize with telomeric DNA (Supplemental Fig. 3). Thus, a few TRF1 or TRF2 foci may 

label other sites in the nucleus which may represent protein aggregates formed by over 

expression. The presence of TRF1 or TRF2 foci that do not colocalize with telomeric 

DNA staining may also be explained by a poor hybridization and detection efficiency of 

PNA probes at short telomeres. 

 

W8 MEFs, expressing EYFP-PML and DsRed-TRF1, were included as non-ALT control 

cells in live cell experiments and subjected to the same treatment as U2OS cells. W8 

MEF cells contain relatively long telomeres but do not contain extrachromosomal telom-

eric DNA and ALT associated PML bodies. Similar to what we observed for U2OS cells, 

a median of 60% of EYFP-PML bodies was shown to accumulate at fluorescently-labeled 

telomere sequences in W8 MEFs (Movie 3). These data suggest that after dispersal, new 

PML bodies form and that a substantial set of these bodies use telomeric DNA as initial 

assembly sites. 

 

To confirm our findings using nontransfected U2OS cells, we analyzed the formation of 

PML bodies in 10 U2OS cells that were allowed to recover from MMS treatment and 

were fixed and incubated with antibodies against PML and TRF2. Consistent with the 

live cell experiments, we observed that 70% (± 15%) of the newly formed PML bodies 

were in association with telomeric DNA (Fig. 5, A and B). As a non-ALT human control, 

we studied the de novo formation of PML bodies in telomerase expressing HeLa cells. 

These cells were first treated with MMS and then allowed to recover in fresh medium 

before they were fixed and incubated with antibodies specific for PML and TRF2. Simi-

lar to what we observed in U2OS cells, a significant number of PML bodies colocalized 

with telomeres (Fig. 5C). 

 

To examine whether together with PML other typical PML body proteins are recruited to 

telomere sequences when PML bodies are formed, we stained cells recovering from 

MMS treatment for TRF2 and Sp100, Daxx or Hausp using specific antibodies. As 

shown in Fig. 5D, Sp100 is recruited to telomeric sites when PML bodies are formed. Be-

fore MMS treatment, no colocalization of Sp100 with TRF2 foci was observed and dur-

ing MMS treatment Sp100 appeared diffuse (Supplemental Fig. 4). In addition to Sp100, 

both Hausp (Fig. 5E) and Daxx (not shown) were also observed to be recruited by telom-

eric sites in cells recovering from MMS tretament. These results suggest that together 
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with PML all other major PML-body components assemble in de novo formed PML bod-

ies at telomeric sites. 

 

Because MMS is a DNA damaging agent, it could be possible that PML bodies form 

preferentially at damaged telomeric DNA. Therefore, we investigated the presence of 

DNA damage at sites of telomeric DNA before, during and after MMS treatment by 

staining DsRed TRF1 expressing U2OS cells for PML and γH2AX. The latter is a marker 

for double-stranded DNA breaks. Before MMS treatment there is no significant amount 

of γH2AX staining observed in nucleus. Small γH2AX foci were observed in the nucleus 

of MMS treated cells showing dispersal of PML bodies. In the recovery phase when PML 

bodies are formed γH2AX was not necessarily found present at telomeric DNA that colo-

calized with de novo formed PML bodies (Supplemental Fig. 5, A-C). Similar results 

were obtained when cells were stained for 53BP1, a component of DNA damage repair 

foci (Supplemental Fig. 5, D and E). 

 

Next, we examined the possibility that PML bodies may form at other nuclear compart-

ments as well. We therefore expressed the nuclear body markers EYFP-ASF, EYFP-

coilin or EYFP-S5, which localize respectively at speckles, Cajal bodies and nucleoli to-

gether with DsRed-PML in U2OS cells and W8 MEFs. Following MMS treatment and 

PML body recovery, we observed that only 2-4 % of PML bodies colocalized with these 

other nuclear bodies (data not shown). Because a previous study reported a dynamic as-

sociation of PML with centromeres (Everett et al., 1999a), we also wished to examine 

whether PML bodies could form at these chromosomal sites consisting of tandem repeti-

tive elements. Using antibodies to the centromere protein CENPA and PML, no signifi-

cant (less than 1%) colocalization of PML with centromeres was observed in both U2OS 

and W8 MEF cells that recovered from MMS treatment (Fig. 5F). 

 

Together, these data suggest that at least a subset of PML bodies are formed at telomeric 

DNA sequences and not at any other specific nuclear structure, in both ALT and non-

ALT cells. However, we cannot rule out the possibility that PML bodies may be formed 

at other nuclear sites as well.  

 

Ectopical expression of PML in PML-/- MEFs leads to de novo PML body forma-

tion at telomeric DNA 

As PML bodies may assemble at telomeric DNA due to some effect of MMS treatment 

other than inducing DNA damage at telomeres, we wished to investigate whether PML 

bodies may also form at telomeric DNA in untreated cells. To this end we examined the 

formation of PML bodies in PML-/- mouse embryonic fibroblasts, which lack intact PML 

bodies (Wang et al., 1998). Both, EYFP-PML and DsRed-TRF1 were transiently ex-

pressed in PML-/- MEFs and 3D image stacks were captured at 3 hours after transfection. 

Analysis of 20 deconvolved image stacks showed a consistent colocalization of assem-

bled PML bodies with fluorescently tagged telomeric DNA (Fig. 6A). Similar results 

were obtained when cells were transfected with a vector encoding EYFP-PML, incubated 

for 3 hours in culture medium, fixed and then stained with a TRF2 antibody or hybridized 

with a telomere-specific PNA probe (data not shown). 
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Because we observed a variable number of PML bodies that were not associated with te-

lomeric DNA at 3 hours post transfection, we also followed the fate of PML bodies at 

later time points following a cotransfection of PML-/- MEFs with EYFP-PML together 

with DsRed-TRF1. Image stacks collected at 7 hours and 19 hours after transfection 

demonstrated that at 7 hours less PML bodies were associated with telomeric DNA as 

compared to 3 hours post transfection and that at 19 hours none or only very few PML 

bodies were associated with telomeric DNA (Fig. 6A). Together, these observations sug-

gest that PML bodies dissociate from telomeric DNA after they are formed at these sites. 

To monitor the dissociation of de novo formed PML bodies form telomeric DNA sites, 

PML-/- MEF cells were cotransfected with EYFP-PML together with DsRed-TRF1 and 

at 3 hours post transfection 4D image stacks were collected every 1 minute for 30 min-

utes. Analysis of 10 image stacks suggests that PML bodies dissociate from telomeric 

DNA once they are formed at these sites (Fig. 6B and Movie 4). By analyzing single Z 

planes in the 3D stacks we confirmed that PML bodies are indeed associated with telom-

eric DNA sites before they released from these sites.  

 

Recovery of PML bodies in the APL-patient derived cell line NB4 

A characteristic morphologic feature of APL is that patient derived cells lack any intact 

PML bodies, however, treatment of patients with retinoic acid or arsenic trioxide results 

in the restoration of PML bodies. As expected, when NB4 cells (Lanotte et al., 1991) 

were treated with arsenic trioxide, fixed, and stained with an antibody against PML, we 

observed the formation of PML bodies, while untreated cells revealed a diffuse and punc-

tate staining pattern of nuclear PML (Supplemental Fig. 6). This punctate pattern of PML 

staining is consistent with the observation that PML is localized in nuclear microspeckles 

in APL cells (Koken et al., 1994). To address whether the formation of PML bodies in 

APL patient derived cells also involve telomeric DNA, we examined the accumulation of 

PML protein at telomeric DNA following arsenic trioxide treatment for 2 to 8 hours. 

Combined immunofluorescence and telomere PNA FISH revealed a high extent of colo-

calization between newly formed PML bodies and telomeric DNA (Fig. 6C; Supplemen-

tal Fig. 6), further validating our hypothesis that non-ALT PML bodies form de novo at 

telomeric DNA. Maximum projections of image stacks collected from untreated cells re-

vealed many PML microspeckles, some of which colocalize with telomeric DNA. Nota-

bly, this colocalization was only sporadically observed when viewing single optical sec-

tions. 

 

PML directly interacts with TRF1 and TRF2  

To further confirm that PML bodies assemble at telomeric DNA, we made use of a bi-

molecular fluorescence complementation assay (Hu et al., 2002). This assay is based on 

the reconstitution of a fluorescent protein by the close proximity of two fragments of 

fluorescent proteins, which are non-fluorescent themselves, when proteins fused to the 

fragments interact. To visualize the possible interaction of PML with TRF1 and/or TRF2 

we engineered the expression constructs PML-CC155, YN173-PML, YN173-TRF1 and -

TRF2-CC155, cotransfected PML-/- MEFs with the combinations PML-CC155 and 

YN173-TRF1 or YN173-PML and TRF2-CC155 and monitored the appearance of fluo-

rescence signals in living cells using fluorescence microscopy. As shown for the combi-

nation PML-CC155 and YN173-TRF1, approximately 16 hours after transfection, we ob-
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served the appearance of fluorescent spots in the nucleus (Fig. 7A). Similar results were 

obtained with the combination YN173-PML and TRF2-CC155 (data not shown). The oc-

currence of fluorescent spots indicates complementation and thus suggests that PML di-

rectly interacts with TRF1 as well as with TRF2. As a negative control we cotransfected 

PML-/- MEFs with the constructs YN173-TRF1 and TEL-CC155. TEL is a transcription 

repressor protein and is not expected to have an interaction with TRF1. Indeed, we ob-

served no fluorescence appearing at 16 hours after transfection, indicating that comple-

mentation did not take place (Fig. 7B). In addition, expression of the single complemen-

tation halves did not result in any fluorescent signal (data not shown). Finally, 

coexpression of PML-CC155 and YN173-TRF1 in MEF W8 cells that were not treated 

with MMS did also not result in fluorescence complementation (data not shown). This 

experiment suggests that overexpressed TRF1 does not localize to already existing PML 

bodies. Thus, the observed complementation between PML-CC155 and YN173-TRF1 

and YN173-PML and TRF2-CC155 suggest that PML bodies form at telomeric DNA, at 

least in part through protein-protein interactions. 

 

PML body formation at telomeric DNA: a role for SUMO? 

It has recently been reported that PML requires SUMOylation sites and SUMO interac-

tion motifs
 
for the nucleation and formation of PML bodies (Shen et al., 2006). The 

SUMO interaction motifs are possibly important for the interaction of PML with other 

SUMOylated proteins. We therefore investigated whether SUMOylation of PML and te-

lomere associated proteins was involved in the formation of PML bodies at telomeric 

DNA. Transient expression of DsRed-TRF1, ECFP-Sp100 and an YFP-tagged PML mu-

tant that cannot be SUMOylated in PML-/- MEFs resulted in the formation of PML ag-

gregates, which did not accumulate Sp100. Furthermore, the newly formed PML aggre-

gates did not colocalize with telomeric DNA (Fig. 8A), suggesting that SUMOylation of 

PML is required for PML to localize at telomeric DNA. Similar observations were made 

in U2OS cells that were cotransfected with EYFP-tagged SUMOylation deficient PML 

and DsRed-TRF1, treated with MMS, and then incubated in fresh medium (Supplemental 

Fig. 7). 

 

Because the SMC5/6 complex, containing the SUMO ligase MMS21, has recently been 

shown to stimulate SUMOylation of telomere binding proteins, including TRF1 and 

TRF2, and to be required for the recruitment of telomeres to PML bodies in ALT cells 

(Potts and Yu, 2007), we investigated whether the SMC5/6 complex colocalized with te-

lomeric DNA at PML bodies. U2OS cells, recovering from MMS treatment, and PML -/- 

MEFs expressing EYFP-PML showed a specific staining of the SMC5/6 complex at sites 

of newly formed PML bodies (Fig. 8, B and C). Similar results were obtained in MMS-

treated W8 MEFs (data not shown). In cells that were not treated with MMS to elicit 

PML body formation, the SMC5/6 complex showed both a diffuse and dot-like staining 

in the nucleus. As shown for non-treated and MMS-treated W8 MEFs, this pattern did 

clearly not colocalize with telomeric DNA (Fig. 8, D and E). Together, these results sug-

gest a role for the SMC5/6 complex in the assembly of PML bodies at telomeric DNA, 

possibly by mediating SUMOylation of telomere binding proteins. 
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Discussion 
 

To date, little is known about the molecular mechanisms which drive and regulate the 

formation of specific bodies in the cell nucleus. Only recently it was shown that PML 

SUMOylation and binding of PML to SUMOylated PML through a SUMO binding motif 

are instrumental for PML body formation and for the recruitment of other proteins that 

localize at PML bodies (Shen et al., 2006). PML bodies are formed when cells progress 

from G1 to G2 during the cell cycle with the highest number of PML bodies found in G2 

(Everett et al., 1999b; Dellaire et al., 2006a). It remained, however, unclear how PML 

body formation is initiated. Our results indicate for the first time an unexpected role for 

telomeric DNA in the formation of PML bodies. 

 

To investigate whether PML nuclear bodies occupy preferred positions in the interphase 

cell nucleus, we first treated cells with the DNA demethylating agent MMS to disrupt 

PML bodies and then followed the reassembly of PML bodies during a recovery phase. 

We found that all PML bodies disassemble in response to the DNA demethylating agent 

MMS and that new PML bodies form during a recovery phase. Generally, the numbers of 

PML bodies formed are less than the original numbers of PML bodies in cells. This dif-

ference might be explained by the short time-window of recovery in which we analyze 

the cells. Also, cells may first have to complete a full cell cycle to obtain a full set of 

PML bodies. Interestingly, our data indicate that new PML bodies do not necessarily 

form at their original positions in the cell nucleus. Previous data, however, indicated that 

PML bodies are formed at pre-determined positions in the nucleus (Eskiw et al., 2003). 

PML bodies were shown to largely disassemble in response to heat shock, leaving behind 

residual PML bodies that maintain their spatial position. When cells were allowed to re-

cover from the stress, these residual bodies were shown to recruit PML containing mi-

crobodies to form intact PML bodies. Because PML bodies were not found at new loca-

tions, it was concluded that PML bodies are formed at pre-determined positions only. Our 

results clearly indicate that PML bodies, after disassembly, do not necessarily recover at 

their original positions. Instead, we provide evidence that PML bodies nucleate at new 

sites, which we identified being telomeric DNA. It is probably in ALT cells only that 

newly formed PML bodies remain associated with telomeric DNA. In contrast to most 

tumor cells, ALT cells lack the enzyme telomerase for telomere maintenance and use an 

alternative lengthening of telomeres mechanism which is thought to involve homologous 

recombination (Dunham et al., 2000). A characteristic feature of ALT cells is that they 

contain, in addition to telomeres, extrachromosomal telomeric material and a subset of 

PML bodies that is in a complex with telomeric DNA. The possible function of these 

complexes is still not completely known (Henson et al., 2002). PML bodies that are in 

complex with telomeric DNA are referred to as ALT-associated PML bodies. It should be 

noted that the formation of ALT-associated PML bodies might be different from that of 

regular PML bodies that are present in both ALT and non-ALT cells. Recently, it has 

been described that ALT-associated PML bodies form by the binding of an existing PML 

body to a telomere and the subsequent recruitment of free PML protein (Jegou et al., 

2009). 
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While G2 cells contain the highest number of PML bodies, mitotic cells contain the few-

est number. When cells enter mitosis PML bodies lose SUMO1 and Sp100 which is ac-

companied by a strong reduction in PML body number. However, accumulations of PML 

protein remained present during mitosis, some of which stably associated with chromatin 

(Dellaire et al., 2006). While we analyzed the formation of new PML bodies in U2OS 

cells following mitosis we noticed that many of the mitotic PML accumulations were as-

sociated with telomeric DNA which hampered our analysis of PML body formation at 

late telophase/early G1. Our analysis of the formation of new PML bodies is therefore 

limited to interphase cells.    

 

Although we observed that the majority of new PML bodies are initially positioned at 

telomeric sites, we do not exclude the possibility that some PML bodies are formed at 

other loci in the nucleus. Indeed, we observed in our time-lapse recordings that a few new 

PML bodies did not colocalize with a telomeric site. Since PML bodies have been found 

in association with some specific chromatin domains, it is conceivable that these domains 

may function as nucleation sites as well. It may, however, also be true that some new 

PML bodies dissociate rapidly from telomeric sites and that some PML bodies were al-

ready dissociated before we started capturing images. We frequently observed the disso-

ciation of new PML bodies from telomeric DNA, suggesting that most PML bodies dis-

sociate from telomeric sites shortly after their formation. Although we observed quite 

some variability in the time period PML bodies remain associated with telomeric DNA, 

the fact that they dissociate is possibly the reason why PML-telomere associations re-

mained thus far unnoticed except for ALT cells containing ALT associated PML bodies. 

As we analyzed the formation of PML bodies in a limited number of cell types, we do not 

exclude the possibility that other cell types support a different mechanism of PML body 

formation. 

 

In addition to PML protein, we showed that newly formed PML bodies also contained 

Sp100, Daxx and Hausp, indicating that PML protein is not just temporarily aggregating 

at telomeric DNA. Whether all PML body components are recruited at the same time to 

the newly formed PML bodies has yet to be determined. Recent data suggest a step-wise 

recruitment of PML body constituents to PML bodies in early G1 cells, thereby prevent-

ing the early maturation of PML bodies at this stage (Chen et al., 2008). It can be envis-

aged that new, immature, PML bodies have still the ability to move to and attach to spe-

cific nuclear sites, before they recruit factors that determine their function or strengthen 

their interaction with chromatin. Once settled, most PML bodies reveal a constrained 

movement, which is consistent with their association with chromatin (Chen et al., 2008).  

 

We propose that SUMOylation of telomere binding proteins may play an important role 

in the formation of PML bodies at telomeric DNA. Recent data demonstrated a role for 

the SMC5/6 complex in the formation of ALT-associated PML bodies by SUMOylation 

of six telomere-binding proteins, including TRF1 and TRF2 (Potts and Yu, 2007). Our 

data suggest that the SMC5/6 complex, containing the SUMO ligase MMS21, may not 

only fulfill a role in the telomere lengthening mechanism in ALT cells, but also in a 

mechanism supporting the formation of PML bodies at telomeric DNA. At present, it is 

unclear how and when the SMC5/6 complex is recruited to telomeric DNA and whether 
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this complex is essential for PML body formation. A potential mechanism could be that 

PML protein is recruited to SUMOylated telomere binding proteins by the SUMO bind-

ing sites present in PML. SUMOylation of PML at these sites may then lead to the re-

cruitment of more PML protein and other PML nuclear body proteins including Sp100. 

Consistent with this idea is that a PML mutant that cannot be SUMOylated does not ac-

cumulate at telomeric DNA while a wild type PML protein does. However, it remains 

unclear whether SUMOylation of telomere associated proteins is indeed essential for 

PML body formation. Our initial attempts to detect SUMOylated forms of endogenous 

TRF1 or TRF2 in cells showing PML body formation by immunoblot analysis failed, 

possibly due to the rapid turnover of SUMOylated TRF1 and TRF2. 

 

The suggestion that the telomere binding proteins TRF1 and TRF2 are likely to play a 

role in the formation of PML bodies is supported by our observation that both TRF1 and 

TRF2 interact with PML in the fluorescence complementation assay. Whether other te-

lomere associated proteins may also be involved in PML body formation has to be inves-

tigated. Experiments aimed at reducing telomere binding protein levels by RNA interfer-

ence will perhaps shed more light on the function of these proteins in PML body 

formation. Furthermore, it will be interesting to investigate whether each telomere has the 

capacity to initiate PML body formation. We cannot exclude the possibilities that the size 

or activity of telomeric DNA play a role in the recruitment of PML protein. This could, 

for example, result in the impairment of PML body formation in aged cells, which gener-

ally have short telomeres, adding another potential mechanism as to why aged cells are 

less responsive to stress. Studies to test these hypotheses will enrich our understanding of 

the biological functions of PML bodies. 

 

In conclusion, this study provides new insights in the assembly of new PML bodies in the 

cell nucleus and establishes a role for telomeric foci in the recruitment of PML protein. 
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Tables 

 

 

 

 
Table 1. De novo PML body formation in U2OS and W8 MEF cells. Quantitative determination of 

PML bodies that form de novo in cells which recovered from MMS treatment as compared to the 

original numbers and positions of PML bodies present in the same cells before MMS treatment. The 

data are an average of 10 U2OS cells and 10 W8 MEF cells. Error bars, SD.
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Figures 

        
Figure 1. PML nuclear bodies disperse by MMS treatment. (A) U2OS cells were stained with an anti-PML an-

tibody to detect endogenous PML and with DAPI (blue). In untreated cells, the PML protein is localized in 

PML nuclear bodies (upper panel) as shown by fluorescence microscopy. In cells treated with the DNA alkylat-

ing agent MMS, the PML bodies are dispersed and the PML protein is present throughout the nucleus in a dif-

fuse and punctate pattern (lower panel). Images were not deconvolved. (B) Immunoblot analysis of PML in 

total lysates of U2OS cells that are treated with MMS for increasing time periods. (C) Total cell lysates from 

U2OS cells that are treated with MMS for increasing time periods were subjected to immunoblotting with anti-

PML and anti-SUMO2/3 antibodies, respectively.  
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Figure 2. PML body dispersal is preceded by a fusion of PML bodies in MMS-treated cells. (A) U2OS 

cells were transiently transfected with an expression vector encoding EYFP-PML. Image acquisition of live 

cells was started immediately after MMS addition to the culture medium and a 3D image stack was taken 

every 10 minutes. Image stacks were captured using 50 millisecond exposure times and deconvolved to 

reduce out of focus information. Each picture shows a maximum projection of a deconvolved 3D image 

stack. Arrows indicate PML bodies that fuse and then disperse shortly after. (B) A similar procedure as 

described in (A) was used to image the disassembly of PML nuclear bodies in live W8 MEFs. 
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Figure 3. Not all PML bodies form at previously used sites in the cell nucleus. (A) Double projections of 

DIC and fluorescence images show the dispersal and formation of PML bodies in a U2OS cell. U2OS cells 

expressing EYFP-PML were treated with MMS for 40 min and then incubated in fresh medium without 

MMS. During the course of the experiment image stacks were taken every 10 minutes. To determine 

whether PML bodies recover at the same position a 2 μm orange circles are placed around the PML bodies 

of a cell before treatment and the nucleoli are marked by a green line (enlarged image). The orange circles 

were grouped together with the most nearby nucleolus (green line) and the grouped items were placed on 

top of the same cell after recovery. The PML bodies outside the orange circles indicate those that are 

formed at a different spatial position as they occupied before MMS treatment. The contour of the nucleus is 

indicated with a blue line. (B) Double projections of DIC and fluorescence images show the dispersal and 

formation of PML bodies in a W8 MEF cell. Treatment and imaging conditions were the same as for U2OS 

cells. The image taken after 50 minutes of recovery time shows PML bodies that are positioned both inside 

and outside the orange circles. The contour of the nucleus is indicated with a blue line. 
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Figure 4. New PML bodies form on telomeric sites when U2OS cells recover from MMS treatment. 

U2OS cells were cotransfected with expression vectors encoding EYFP-PML and DsRed-TRF1, and 

3D stacks were acquired every 10 minutes. 3D image stacks were captured using 50 millisecond ex-

posure times and deconvolved. The images taken during the recovery phase show the spatial position 

of telomeric DNA in red and the accumulation of PML protein in yellow. 
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Figure 5. Endogenous PML, Sp100 and Hausp accumulate at telomeric sites but not at centromeres in U2OS 

cells recovering from MMS treatment. (A) Immunofluorescence image of a U2OS cell treated with MMS, 

fixed and stained with anti-PML (green) and anti-TRF2 (red) antibodies. (B) Image of a U2OS cell that re-

covers from MMS treatment and is stained with antibodies against PML (green) and TRF2 (red). The arrows 

indicate the positions where PML colocalize or associate with TRF2 foci. (C) Localization of Sp100 at telom-

eric sites in a U2OS cell that recovers from MMS treatment. During recovery from MMS treatment, U2OS 

cells were fixed and stained with anti-Sp100 and anti-TRF2 antibodies. (D) Immunofluorescence image of a 

U2OS cell that recovers form MMS treatment. Sites were Hausp colocalize with telomeric DNA are indicated 

by arrows. (E) PML does not colocalize with centromeres in a U2OS cell that recovers from MMS treatment. 

Following MMS treatment, U2OS cells were incubated in fresh medium, fixed and stained with anti-PML 

(green) and anti-CENPA (red) antibodies. All cell nuclei are counterstained with DAPI (blue). 
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Figure 6. New PML bodies form on telomeric DNA in a DNA damage independent manner. (A) Ectopically 

expressed EYFP-PML form de novo PML bodies at telomeric DNA in PML-/- MEFs. PML-/- MEFs are co-

transfected with EYFP-PML and DsRed-TRF1 and 3D  image stacks are collected after 3 hours, 7 hours and 

19 hours. Arrows indicate the positions where PML colocalize with TRF1. Note that the number of PML bod-

ies that are associated with telomeric sites decreased at 7 and 19 hours post transfection. (B) Newly formed 

PML bodies dissociate from telomeric sites. PML-/- MEFs were cotransfected with EYFP-PML and DsRed-

TRF1 and at 3 hours post transfection each minute a 3D image stack was taken. The area in the circle points 

to a PML body separating from a telomere. (C) NB4 cells were treated with Arsenic trioxide for 8 hours to 

initiate PML body assembly. Cells were fixed, subjected to FISH using a telomere-specific PNA probe and 

stained with anti-PML antibody. Arrows indicate positions were PML localize at telomeric DNA. Finally, 

cells were counter stained with DAPI. 
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Figure 7. PML directly interacts with TRF at telomeric DNA. (A) Ectopically expressed PML interacts with 

TRF1 in the nucleus of PML-/- MEFs as shown by the appearance of yellow fluorescent signals in a com-

bined fluorescence-DIC image. PML -/- MEFs were cotransfected with the fluorescent complementation ex-

pression vectors PML-CC155 and YN173-TRF1 and incubated at 30°C for 16 hours to allow for correct fold-

ing of fluorescent YFP. (B) Ectopically expressed YN173-TRF1 and TEL-CC155 does not interact as shown 

by the absence of fluorescence complementation. 
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Figure 8. A role for SUMO in the formation of new PML bodies. (A) SUMOylation-deficient PML does not 

localize at telomeric DNA in PML-/- MEFs. PML-/- MEFs were cotransfected with DsRed-TRF1, ECFP-

Sp100 and YFP-tagged SUMOylation-deficient PML. The image shows the formation of PML aggregates 

(yellow), which do not colocalize with Sp100 (cyan) and do not localize at telomeric DNA that are stained by 

DsRed-TRF1 (red). (B) The SMC5/6 complex is present at sites where PML bodies form at telomeric DNA. 

U2OS cells were transfected with DsRed-TRF1, treated with MMS, and allowed to recover in fresh medium. 

Cells were fixed and stained with anti-PML and anti-SMC5 antibodies. The arrows point to positions in the 

nucleus where PML (yellow) and SMC5 (cyan) localize at telomeric sites (red). (C) Ectopically expressed 

PML localizes together with SMC5 at telomeric DNA in PML-/- MEFs. PML-/- MEFs were cotransfected 

with EYFP-PML, to induce PML body formation, and DsRed-TRF1, fixed and stained with anti-SMC5 anti-

body. The arrows indicate the positions where PML (yellow) and SMC5 (cyan) localize at telomeric DNA 

(red). (D) PML and SMC5 do not localize at telomeric DNA in untreated and (E) MMS-treated W8 MEFs. 

W8 MEFs were cotransfected with YFP-PML and DsRed-TRF1 and either not treated or treated with MMS. 

Cells were fixed (without recovery) and stained with anti-SMC5 antibody. Both, untreated and MMS-treated 

cells show that the SMC5/6 complex (cyan) localize in a punctate/diffuse pattern, which does not colocalize 

with telomeric sites (red) or PML (yellow). 
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Supplemental figures 
 

 

 

           
 

Supplemental Figure 1. 3D time-lapse recording of PML bodies in (A) a 

U2OS cell and (B) a W8 MEF, both expressing EYFP-PML. Both cells were 

not treated with MMS.  
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Supplemental Figure 2. Total cell lysates from U2OS cells that are treated with MMS for increas-

ing time periods were subjected to immunoblotting with anti-PML and anti-SUMO2/3 antibodies, 

respectively. Total cell lysates from cells that were allowed to recover from the MMS treatment are 

shown as well. The amount of SUMOylated PML decreases during MMS treatment and returns 

after recovery from MMS treatment. 
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Supplemental Figure 3. Double labeling of exogenous TRF1 and telomeric DNA in (A) a 

nontreated U2OS cell and (B) an MMS treated U2OS cell. Telomeric DNA was hybridized with a 

telomere specific PNA probe (red) and exogenous TRF1 was labeled using a anti-GFP antibody 

(green). Nuclei were counterstained with DAPI (blue). 

 

 
Supplemental Figure 4. Localization of Sp100 (green) and TRF2 (red) in a U2OS cell without 

(A) and with (B) MMS treatment as shown by immunofluorescence. Note that the Sp100 local-

ization before and after treatment is similar to that observed for PML (see also figure 5). Al-

though the cell shown in (A) does not show a colocalization of Sp100 with TRF2, a colocaliza-

tion of the two is observed in U2OS cells that show in addition to regular PML bodies ALT-

associated PML bodies.  
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Supplemental Figure 5.  The DNA damage markers γH2AX and 53BP1 are mostly not present at 

telomeric DNA at which PML bodies form. (A-C) Representative immunofluorescence images of 

U2OS cells expressing DsRed-TRF1 and stained with antibodies directed against PML (green) and 

γH2AX (cyan). (A) U2OS cell without treatment, (B) treated for 2 hours with MMS and (C) recov-

ered from MMS treatment. Arrows indicate sites of newly formed PML bodies that colocalize with 

telomeric DNA but not with DNA damage foci. (D, E) Representative immunofluorescence images 

of U2OS cells stained with antibodies specific for 53BP1 (green) and TRF2 (red). (D) U2OS cell 

treated with MMS for 2 hours and (E) U2OS cell 2 hours after recovery from MMS treatment. Nu-

clei were counterstained with DAPI (blue). 
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Supplemental Figure 6. PML bodies form in NB4 cells when treated with arsenic trioxide. (A) 

PML does not preferentially localize at telomeric DNA in untreated NB4 cells. NB4 cells were 

fixed, hybridized with a telomere-specific PNA probe and stained with anti-PML antibody. PML is 

present in a diffuse and punctate pattern (yellow) which does not significantly overlap with the 

staining pattern of telomeric DNA (red). (B) Arsenic trioxide-treated NB4 cells show PML bodies 

that localize at telomeric DNA. NB4 cells were treated with arsenic trioxide for 8 hours, fixed, hy-

bridized with a telomere-specific PNA probe and stained with anti-PML antibody. Nuclear DNA 

was counter stained with DAPI. 

 

 

 

 
Supplemental Figure 7. SUMOylation-deficient PML does not localize at telomeric DNA in 

U2OS cells that recover form MMS treatment. U2OS cells were cotransfected with DsRed-TRF1 

and EYFP-tagged SUMOylation-deficient PML, treated with MMS for 1.5 hours and allowed to 

recover in fresh medium. During the recovery phase, cells were fixed and analyzed by fluorescence 

microscopy. The image shows the formation of PML aggregates (yellow), which do not colocalize 

with telomeric DNA (red). 
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Summary 

The cell nucleus contains distinct nuclear bodies which are involved in key cellular proc-

esses. Factors that determine the integrity and spatial positioning of these bodies in the 

cell nucleus are unknown. Here we investigate the dynamic behavior of three prominent 

nuclear bodies, PML bodies, Cajal bodies and speckles relative to that of chromatin. All 

three bodies seem to be associated with chromatin and this association is lost in response 

to methylmethane sulfonate treatment. Once dissociated from chromatin, the nuclear bod-

ies have more freedom to move in the three dimensional nuclear space. Furthermore, 

PML bodies will eventually disassemble but not Cajal bodies and speckles, suggesting 

that PML body structural integrity is dependent on its association with chromatin.   

 

 

Introduction 
 

The cell nucleus contains various distinct nuclear compartments or bodies which differ in 

size, morphology, composition and function. The diversity in nuclear bodies has been 

explained by the various activities that are supported by the cell nucleus including tran-

scription, RNA processing, RNA transport and DNA repair. Each of these activities re-

quires the recruitment of multiple factors and an ordered assembly of multi-component 

machineries. Among the most prominent and best studied nuclear bodies are nucleoli, 

PML bodies, Cajal bodies and speckles. Nucleoli are sites of rRNA synthesis, rRNA 

processing and ribosome subunit assembly. Each of these steps is performed by different 

protein assemblies and takes place in three different subcompartments of the nucleolus. 

The functions of the other nuclear compartments are still not fully understood. Speckles 

have been suggested to function as storage sites of RNA processing and RNA transport 

factors, from which these factors are recruited to transcriptionally active genes (Misteli et 

al., 1997; Dirks et al., 1997; Snaar et al., 1999). Observations of active genes that are 

preferentially associated with speckles suggested that these domains may also function as 

hubs, facilitating and possibly coordinating the synthesis of mRNAs (Hall et al., 2006). In 

addition, speckles have also been implicated in steps of mRNA splicing control and nu-

clear export (Hattinger et al., 2002; Molenaar et al., 2004; Schmidt et al., 2006). 
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Functionally related to speckles are Cajal bodies, which have been identified as assembly 

sites of spliceosomal small nuclear ribonucleoproteins (snRNPs) and have been found 

present mainly in proliferating cell types (Stanek & Neugebauer, 2006). 

 

PML bodies have been implicated in many different cellular processes such as transcrip-

tion regulation, apoptosis, senescence, DNA repair, proteosomal degradation and genome 

stability (Bernardi & Pandolfi, 2007). Furthermore, they have been suggested to function 

as nuclear depots in which proteins are temporally stored (Negorev & Maul, 2001). Re-

cent evidence suggests that PML bodies are sites at which post-translational modification 

of proteins by both ubiquitin and SUMO is integrated to regulate proteosomal degrada-

tion (Bailey & O’Hare, 2005; Sharma et al., 2010). 

 

Although nuclear bodies are distinct, stable structures during interphase, their protein 

content is in a continuous flux with the surrounding nuclear space, allowing rapid 

changes in body composition. This protein flux indicates that proteins do not necessarily 

exert their function within or at the surface of a nuclear body but possibly elsewhere in 

the nucleus. Nevertheless, there is ample evidence that nuclear bodies have the ability to 

transiently associate with chromosomal sites. This has not only been reported for nucle-

oli, which associate with ribosomal DNA genes but also for PML bodies (Ching et al., 

2005; Kießlich et al., 2002; Gialitakis et al., 2010), Cajal bodies (Platani et al., 2002) and 

speckles (Brown et al., 2008).   

 

Live cell studies revealed that nuclear bodies generally show little movement inside the 

cell nucleus, which could reflect a rather stable interaction with chromatin. Alternatively, 

it has been suggested that nuclear body mobility is mainly determined by the poor acces-

sibility and the slow dynamics of chromatin (Görisch et al., 2004). Also, nuclear bodies 

have been suggested to be connected to a nuclear matrix structure, limiting their move-

ment. Physical associations of chromatin with immobile nuclear bodies may then restrict 

the movement of chromatin or even support the spatial organization of chromatin in the 

nucleus (Chubb et al., 2002).  

 

A key question is whether the association of nuclear bodies with chromatin or with activi-

ties that take place at chromatin is an essential factor to ensure the stability/integrity of 

the bodies. Recently, we observed that the mobility of PML nuclear bodies significantly 

increase in cells that were treated with the DNA-methylating agent methyl methanesul-

fonate (MMS), before the PML bodies dispersed as a result of this treatment (Brouwer et 

al., 2009). Whether the increase in PML body dynamics reflects an increase in chromatin 

dynamics has not yet been investigated. Photoactivatable GFP (PA-GFP) Histone H4 has 

been used as a marker for chromatin to examine their dynamic properties in living cells 

(Post et al., 2005; Wiesmeijer et al, 2008). In this study, we used this marker, together 

with fluorescent markers for PML bodies, speckles and Cajal bodies to investigate their 

dynamic spatial arrangements in cells exposed to MMS treatment by fluorescence time-

lapse imaging.  
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Materials and Methods 

Cell culture and transfection 

Human Osteosarcoma cells (U2OS) were cultured in 3.5 cm glass bottom petri dishes 

(MatTek Corporation, Ashland, MA) in Dulbecco's modified Eagle's medium without 

phenol red, containing 1.0 mg/ml glucose, 10% fetal bovine serum (FBS), 2 mM gluta-

mine, 100 U/ml penicillin, and 100 μg/ml streptomycin (all from Invitrogen, Carlsbad, 

CA). Cells at 70%–80% confluency were transiently transfected with PA-GFP histone H4 

(Wiesmeijer et al., 2008) together with either coilin-DsRed, SF2/ASF-DsRed or PML-

DsRed by using lipofectamine 2000 (Invitrogen). Coilin, SF2/ASF and PML I were 

originally cloned into a GFP vector (Molenaar et al., 2004; Wiesmeijer et al., 2002) and 

subcloned into a DsRed vector (ClonTech, Mountain View, CA). Cells were incubated 

with 0.01% methyl methanesulfonate (MMS; Sigma-Aldrich, St. Louis, MO) for time 

periods ranging from 45 minutes to 2 hours. Cells were allowed to recover from MMS-

treatment by incubating them in fresh medium containing 20% FBS for 2 to 3 hours. 

 

Photoactivation and microscopy 

Photoactivation and subsequent time-lapse imaging were both performed using a Leica 

TCS SP5 confocal laser scanning microscope (Leica Microsystems, Mannheim, Ger-

many) equipped with a climate control box. During the course of the experiments, the 

temperature of the cells was kept constant at 37°C and the CO2 concentration at 5%. PA-

GFP was activated using the 405 nm laser line at 12% laser power during a 300 ms pulse. 

Following photoactivation, subsequent time-lapse images were taken with a 63× NA 1.4 

PlanApo oil objective lens and 488 nm and 561 nm laser lines of respectively an Argon 

(multi-line) and a DPSS (561nm) laser. An additional 6-fold scanning zoom was applied 

to collect high-resolution Z-stacks. At each time-point a two-channel Z-stack of 15-25 Z-

slices (thickness 0.4 μm) was acquired using 2-5% laser power, 400 Hz scanning 

frequency and 512 x 512 pixels per frame. 4D image stacks were collected every 30 sec-

onds for 10 minutes. Image acquisition and analysis were performed using the Leica SP5 

software. All images and movies shown are representative of 6-10 repeats of the same 

experiment.  
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Results 
MMS treatment causes PML bodies to detach from chromatin  

On average, PML bodies show little movement in the cell nucleus (Wiesmeijer et al., 

2002; Eskiw et al., 2003). Only a small subset of PML bodies display high mobility (Mu-

ratani et al., 2002), while directional movements of PML bodies are observed only when 

cells enter mitosis (Chen et al., 2008). When U2OS cells are treated with the DNA me-

thylating agent MMS, the majority of PML bodies display a dynamic movement until 

they disperse (Brouwer et al., 2009). There are two possible explanations for this increase 

in PML body mobility. Either chromatin domains become more dynamic and accessible 

as a result of the DNA methylation or, alternatively, PML bodies dissociate from the 

chromatin to which they are bound and become dynamic.  

 

To analyze whether the observed increase in PML body mobility after MMS treatment is 

related to an increase in chromatin mobility, U2OS cells were transfected with EYFP-

PML-I  together with DsRed-TRF2, treated with MMS, and 3D image stacks were col-

lected at 30 second time intervals for 10 minutes. At 2 hours following MMS treatment, 

the majority of PML bodies moved rapidly through cell nucleus as compared to te-

lomeres, which showed little mobility (Fig. 1 and Movie 1). Thereby, the movement of 

PML bodies was not limited to a confined area in the nucleus but PML bodies were 

shown to move over large distances. Ultimately, as indicated by arrows, PML bodies fuse 

with each other and disperse. As telomere movement may not be indicative for the dy-

namics of other chromatin regions, in particular those surrounding PML bodies, we em-

ployed a histone H4 fused at its carboxy terminus with a photoactivatable (PA) GFP, as a 

marker for chromatin. Incorporation of histone H4-PAGFP into chromatin allows photo-

activation of selected chromatin regions in the cell nucleus using 405 nm laser light and 

there after their visualization using 488 nm laser light. Fluorescence 3D time lapse re-

cordings of PML bodies containing DsRed-PML-I together with photoactivated histone 

H4-PAGFP surrounding these bodies showed a similar slow mobility for both compart-

ments (Fig. 2A, Movie 2). PML bodies remained enclosed by photoactivated histone H4-

PAGFP-labeled chromatin for at least 10 minutes, the maximum time-period in which we 

imaged cells. A time course of 10 minutes appeared optimal to obtain 3D stacks at a high 

temporal resolution without photobleaching of the photoactivated H4-PAGFP. A side-

view of the same nucleus that is shown in Fig. 2A shows that PML bodies are evenly dis-

tributed throughout the cell nucleus (Fig. 2B). Next, U2OS cells expressing DsRed-PML-

I and H4-PAGFP were incubated with MMS for 2 hours and chromatin regions directly 

surrounding PML bodies were photoactivated. DsRed-labeled PML bodies were observed 

losing contact with the fluorescently labeled chromatin and moving rapidly throughout 

the nucleus (Fig. 3A, B, Movie 3). The number of PML bodies that lost contact with the 

surrounding photoactivated chromatin varied among cells but seemed to increase when 

exposed to MMS for a longer time period. In some cells all PML bodies lost contact with 

the surrounding chromatin while in others only a few PML bodies did. Notably, during 

the time course in which PML bodies lose contact with chromatin, the photoactivated 

chromatin seemed to remain positionally stable and did not change its state of compac-

tion in the cell nucleus. This indicates that the increase in PML body motion is not a re-

sult of an increase in chromatin mobility or a change in chromatin compaction as far it 

can be judged at the light microscopical level of resolution. By looking at the side-view 
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of cells, it appeared that the spatial distribution of PML bodies changed from being posi-

tioned throughout the 3D nuclear volume in untreated cells to a more confined localiza-

tion in a Z-plane located at the centre in the 3D space of the nucleus following MMS 

treatment (Fig. 4). These side views in the x-z plane of cells support the conclusion that 

PML bodies dissociate from chromatin in response to MMS treatment. 

 

Cajal bodies and speckles dissociate from chromatin in response to MMS treatment 

Next, we investigated whether the spatial positioning and dynamics of speckles and Cajal 

bodies in U2OS cells is also altered by MMS treatment. U2OS cells were transiently 

transfected with the speckle marker construct DsRed-ASF together with construct histone 

H4-PAGFP. Chromatin regions surrounding speckles were selected and photoactivated 

and cells were imaged at regular time intervals for 10 minutes. Both speckles and photo-

activated chromatin showed a constrained Brownian type of movement (Fig. 5A, Movie 

4). Consistent with previous data, chromatin remained associated with speckles during 

the 10 minutes period in which the cells were imaged (Wiesmeijer et al., 2008). In re-

sponse to MMS treatment, however, speckles became more dynamic as compared to the 

chromatin surrounding the speckles (Fig. 5B, Movie 5). This can also be concluded from 

a side view of the cell (Fig. 4). Frequently, speckles were observed losing contact with 

the surrounding photoactivated chromatin and remaining detached from it. Probably be-

cause speckles are relatively large nuclear structures with an irregular shape, their move-

ments are still confined to a small nuclear region as if restricted by a physical barrier. 

Different from what we observed for PML bodies, speckles did not disperse after they 

lost their association with chromatin, even after imaging the cells for another hour. In ad-

dition, we did not observe speckles to merge in larger structures. The effect of MMS on 

speckle behavior proved reversible as cells that were first incubated with MMS and then 

washed and incubated in fresh medium revealed a speckle distribution and dynamics 

similar to that of untreated control cells.   

 

To analyze the movement of Cajal bodies together with that of the surrounding chroma-

tin, U2OS cells were cotransfected with DsRed-coilin and histone H4-PAGFP.  Time 

lapse recordings of untreated cells showed that both the Cajal bodies and the surrounding 

chromatin display similar slow kinetics (Fig. 6A, Movie 6). After the cells were treated 

with MMS a response similar to that of PML bodies and speckles was observed. The Ca-

jal bodies moved away from the surrounding photoactivated chromatin and became more 

dynamic (Fig. 6B, Movie 7). Like speckles, Cajal bodies did not become dispersed when 

they lost contact with chromatin in response to MMS treatment. 
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Discussion 
 

Recently, it has been questioned whether nuclear bodies physically interact with chroma-

tin foci. The interpretation of time-lapse imaging data of nuclear body and chromatin 

movement has lead to the proposition that nuclear bodies move by diffusion in a chroma-

tin environment. The mobility of the bodies would then be reflected by the dynamics and 

accessibility of the chromatin environment (Görisch et al., 2004). The time-lapse imaging 

data presented in this study show that PML bodies, Cajal bodies and speckles are associ-

ated with chromatin. Treatment of cells with the DNA methylating agent MMS result in 

the dissociation of these nuclear bodies from chromatin. Consequently, both Cajal bodies 

and PML bodies move through a larger area in the cell nucleus. Consistent with data 

showing that PML bodies, Cajal bodies and speckles associate with specific chromatin 

loci, our results suggest that nuclear bodies are relatively immobile in the cell nucleus 

because of their association with chromatin.  

 

PML bodies have been found associated with specific, mostly transcriptionally active, 

chromatin loci while a subset of PML bodies have been found transiently associated with 

telomeric DNA in telomerase negative cells which maintain telomere length by the alter-

native lengthening of telomeres (ALT) mechanism (Yeager et al., 1999; Molenaar et al., 

2003; Jegou et al., 2009). Furthermore, indirect evidence suggests that PML plays a role 

in higher-order chromatin organization (Kumar et al., 2007). Consistent with these obser-

vations, PML has been shown to physically and functionally interact with the matrix at-

tachment region (MAR)-binding protein, a special AT-rich sequence binding protein 1 

(SATB1), to organize the major histocompatibility complex (MHC) class I locus into dis-

tinct higher-order chromatin-loop structures (Kumar et al., 2007). In this and in our pre-

vious work we have shown that treatment of cells with MMS leads to an increase in PML 

body dynamics before they disperse (Brouwer et al., 2009). By photoactivating chromatin 

regions that surround PML bodies, using histone H4 fused with a photoactivatable GFP 

as a marker for chromatin, and subsequent fluorescence time lapse confocal imaging, we 

show that the increase in PML body dynamics is not accompanied by an increase in 

chromatin dynamics at PML bodies. This observation is consistent with our previous 

work showing that MMS treatment has no major impact on general chromatin dynamics 

(Wiesmeijer et al., 2008). Therefore, the increase in PML body movement might be ex-

plained by a retraction of chromatin from the surface of the PML bodies. At present, it is 

not known to what extent PML bodies interact with chromatin. Also, it is not known 

which proteins are involved in this interaction. Electron spectroscopic images of human 

neuroblastoma cells suggest that PML bodies are connected to chromatin at multiple sites 

(Eskiw et al., 2004).  

 

Since MMS induces alkylating DNA damage and activates a DNA repair mechanism it is 

conceivable that the increase in PML body dynamics is a direct response to the DNA 

damage. Recently, it has been shown that following DNA damage, several repair factors 

transit through PML NBs in a temporally regulated manner implicating these bodies in 

DNA repair (Dellaire & Bazett-Jones, 2004). It is possible that PML bodies dissociate 

from chromatin as a result of DNA methylation and finally disassemble into large su-

pramolecular complexes, dispersing associated repair factors to sites of damage. 
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In addition to PML bodies, Cajal bodies have also been reported to be associated with 

chromatin sites, including histone and snRNA genes. Although it is suggested that these 

bodies alternate between an association state with chromatin and a diffusion state in 

which the bodies move within the interchromatin space (Platani et al., 2002), the associa-

tion state may continue as long genes are transcribed and ATP is available  (Platani et al., 

2002).   

Compared to PML and Cajal bodies, speckles do not show a dramatic increase in mobil-

ity following MMS treatment, although various genes have been observed positioned at 

the periphery of speckles. Speckles have been implicated in mediating gene associations 

and to function as hubs (Brown et al., 2008). Most likely, it is the size of this body and its 

irregular shape that limits its mobility in the chromatin environment. 

 

Methylmethane sulfonate (MMS) is a compound that methylates biologically important 

nucleophilic
 
sites in DNA, through an SN2 reaction, and interacts with amino acids

 
in pro-

teins (Paik et al., 1984). When cells are treated with MMS, PML bodies lose their integ-

rity and become dispersed (Conlan et al., 2004; Brouwer et al., 2009). The mechanism of 

their dispersal is not clear but could be a result of the applied DNA damage. However, 

there are other examples of cellular stress that cause PML bodies to become dispersed. 

Environmental stresses such as heat shock, heavy metal shock,
 
or viral protein expres-

sion, cause the dissociation of PML bodies
 
into many smaller punctate domains (Maul et 

al., 1995). MMS has been found to induce hyperacetylation of both cytoplasmic and nu-

clear proteins as well (Lee et al., 2007). Notably, the acetylation level upon MMS treat-

ment was strongly correlated with the susceptibility of cancer cells, and the enhancement 

of MMS-induced acetylation by histone deacetylase (HDAC) inhibitors was shown to 

increase the cellular susceptibility to cancer.  

 

Since PML bodies become dispersed after applying DNA damage, and Cajal bodies and 

speckles do not, this could implicate that regulated dispersal is an important and func-

tional property of PML bodies. The regulated dispersal of PML bodies may facilitate the 

enhanced release of DNA repair proteins from NB depots, in order to respond adequately 

to extensive DNA damage (Conlan et al., 2004). Both speckles (Mintz et al., 1999) and 

Cajal bodies (Lam et al., 2002) have been isolated and this has not been achieved for 

PML bodies, further implying structural differences between PML bodies and other nu-

clear bodies. It is possible that PML body integrity depends on their interaction with 

chromatin, and that as soon as the interaction with chromatin is lost, PML bodies become 

dispersed. Further studies are necessary to investigate the effect of the association be-

tween chromatin and PML bodies on PML body stability. Also, alkylation or acetylation 

of the PML protein or other proteins present inside PML bodies may affect the integrity 

of PML bodies.   
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Figures 
 

   
Figure 1. PML/TRF1 dynamics are shown in U2OS cells transfected with EYFPPML and 

DsRedTRF1 and subsequently treated with MMS for 2 hours. PML bodies are more dynamic 

than telomeres and fuse with other PML bodies and with telomeres. Dynamic or fusing PML 

bodies are indicated by arrows. 
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Figure 2 A) Dynamics of PML bodies are shown in untreated U2OS cells. Photoactivatable His-

ton4 (H4-PAGFP) was used as a marker for chromatin and DsRed-PML-I was used as a marker 

for PML bodies. H4-PAGFP was photoactivated around PML bodies using the 405 nm laser on a 

SP5 confocal microscope. DsRed-PML-I together with photoactivated histone H4-PAGFP sur-

rounding these bodies show a similar slow mobility. Images were acquired with 2-4% laser 

power, 400 Hz scanning frequency and 512 * 512 pixels per frame. B) A side-view of the 15-25 

Z-stack slices (thickness 0.4 μm) of the same cell is shown, time step t=0 seconds.  
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Figure 3A. H4-PAGFP surrounding PML bodies was photoactivated using the 405 nm laser on a 

SP5 confocal microscope after 2 hours of MMS treatment. Arrows indicate PML bodies that lose 

contact with the surrounding chromatin and move away from their original positions, displaying 

increased dynamics compared to the photoactivated H4-PAGFP.  
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Figure 3B. PML bodies are dynamic after MMS treatment and lose contact with the sur-

rounding chromatin. A section of the nucleus from figure 3A is shown at higher magnifica-

tion and a PML body dissociates from the surrounding chromatin and moves away from its 

original position, as a result of MMS induced DNA damage.  
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Figure 4. A side-view of photoactivated H4-PAGFP surrounding PML bodies, speckles and Cajal 

bodies using the 405 nm laser on the SP5 confocal microscope. The spatial distribution of PML 

bodies appears changed from being positioned throughout the 3D nuclear volume in untreated 

cells to a more confined localization in a Z-plane located at the centre in the 3D space of the nu-

cleus following MMS treatment.  
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Figure 5A.  H4-PAGFP surrounding speckles was photoactivated in U2OS cells transfected 

with DsRed-ASF as a marker for speckles. Chromatin regions surrounding speckles were se-

lected and photoactivated and cells were imaged at regular time intervals for 10 minutes. Simi-

lar to PML bodies, speckles are rather immobile relative to the surrounding chromatin, suggest-

ing that there is an interaction between speckles and the surrounding chromatin that keeps them 

in a fixed position.   
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Figure 5B. In response to 2 hours of MMS treatment U2OS cells transfected with H4-PAGFP 

and DsRed-ASF show a strong increase in dynamics of speckles compared to the chromatin 

surrounding the speckles. Dynamic speckles that move away from their original position are 

indicated by arrows.  
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Figure 6A. Histon4-PA was photoactivated around Cajal bodies to study their dynamics com-

pared to the surrounding chromatin. Similar to PML bodies and speckles, Cajal bodies are 

nearly immobile relative to the chromatin, suggesting that there is an interaction between the 

Cajal bodies and the surrounding chromatin that keeps the Cajal bodies in a fixed position.   
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Figure 6B. As a response to MMS treatment Cajal bodies display increased dynamics similar 

to PML bodies and speckles and likewise Cajal bodies appear to lose contact with the surround-

ing chromatin. Dynamic Cajal bodies are indicated by arrows.  
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6 Summary and discussion 
 

The aim of this Thesis work was to gain insight into the spatio-temporal organization of 

the cell nucleus by using live cell imaging approaches. Chromatin domains and protein 

containing nuclear bodies were visualized in living cells by expressing fluorescently-

tagged proteins that localize specifically to these compartments. Chromatin organization 

in the cell nucleus is nonrandom and its spatial organization is related to the transcrip-

tional activity of genes. Besides chromatin, the cell nucleus contains variable numbers of 

different nuclear protein compartments, also referred to as nuclear bodies. These bodies 

are characterized by the presence of a distinct set of proteins although some proteins 

travel between two or more nuclear compartments. The specific protein content of nu-

clear bodies has linked them to various cellular activities, including transcription, RNA 

processing and to more general phenomena like apoptosis and senescence. Thus, the 

various nuclear bodies are believed to be essential in facilitating and coordinating specific 

nuclear activities. However, there is still a lot unknown about the underlying mechanisms 

that link bodies to specific nuclear activities, about the architecture of the nuclear bodies, 

and about the way nuclear bodies are formed. A key question is whether the spatial or-

ganization of nuclear compartments and the associated nuclear functions are supported by 

an underlying nuclear matrix structure. This question dominated the field of nuclear or-

ganization for many years and still remains elusive. Because the existence of a network 

structure resembling that of a cytoskeleton has not been demonstrated by immunocyto-

chemistry many scientists doubt its existence in the cell nucleus. If such a structure exists 

it is very dynamic indeed and not comparable to the well described cytoskeleton architec-

ture. Throughout this Thesis the term “nuclear matrix structure” has been used. By com-

bining tools in live cell imaging, immunocytochemistry and molecular cell biology, this 

Thesis offers new insights in the structural organization of the cell nucleus and in the 

formation of one of the most intriguing nuclear bodies, the promyelocytic leukemia 

(PML) body.  

 

Image analysis using STACKS 

In order to understand the structural organization of the cell nucleus, it is essential to 

study the nuclear components in living cells as these components are dynamic in nature. 

To describe the dynamic properties of structures that reside in the cell nucleus we devel-

oped a software program called STACKS. Despite the fact that many software packages 

for quantitative image analysis were already commercially or freely available, we consid-

ered it important to develop a new software program in which the possibilities for image 

segmentation, object tracking, distance measurement, displacement quantification and 

cell movement correction are all integrated. Also, the program should offer fast image 

processing and enable user interaction. The features of this program are described in de-

tail in chapter 2 and illustrated by describing the dynamic behavior of telomeres in nor-

mal as well as in tumor cells in different phases of the cell cycle. In general, when study-

ing the dynamic behavior of structures inside the cell nucleus it is important to know 

whether this behavior is related to a specific cell cycle stage. For example, it has been 

shown in yeast, in which
 
a centromere, a telomere, and an internal

 
chromatin site were 

fluorescently tagged, that the internal chromatin loci moved more rapidly and over larger 

distances in G1- and S-phase as compared to the other stages of the cell cycle (Heun et 
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al., 2001). Smaller, saltatory movements (<0.2 µm) were shown throughout
 
interphase in 

both yeast and flies (Heun et al., 2001). Analysis of telomere movement by the STACKS 

program confirmed observations that telomeres move faster in G1 cells as compared to 

cells in other cell cycle stages. This was also expected because when cells exit from mito-

sis chromatin is unfolding and moves to its favored position in the cell nucleus.   

 

As mentioned, the STACKS program contains various options for quantitative data proc-

essing and image transformations, which are not offered by the commercial software that 

comes with most wide-field and confocal microscopes. Because image analysis opera-

tions become complex and have to be performed on large data sets computation time is 

an issue. For this reason, the STACKS program allows GPU processing using the GPU 

processor of the video board. A direct comparison of image operations based on CPU and 

on GPU processing showed that GPU processing indeed greatly increases processing 

speed, which is necessary when large 4D image data sets have to be analyzed. The 

STACKS program is able to operate directly on data formats as produced by the com-

mercial microscope systems, and has a convenient user interface. Furthermore, STACKS 

provides feedback on each operating step and offers great flexibility in order to cope with 

various cell types and images of varying quality or intensity. As research questions can 

be diverse, STACKS has been developed in a way that additional software tools can eas-

ily be added to the program, creating great flexibility for the user. In conclusion, 

STACKS is a major step ahead for scientists who wish to track and quantify the move-

ments of objects in living cells or the movements of entire cells in cell or tissue cultures. 

In the coming years, the STACKS program will be developed further by adding specific 

applications to facilitate a broad spectrum of research questions. 

 

 

Telomeres anchor at a protein complex containing lamin A/C, emerin and actin  

In chapter 3 of this thesis the program STACKS is used to answer the question whether 

telomeres are associated with a nuclear matrix structure. To this end, cells have been in-

cubated with shRNAs or drugs to disturb the nuclear matrix structure and movements of 

fluorescently labeled telomeres have been measured. Previous studies indicated that the 

movement of telomeres is constrained in the cell nucleus. In yeast, this constrained 

movement was explained by the attachment of telomeres to the inner nuclear membrane 

by the Ku and Sir proteins (Hediger et al., 2002). In human cells, however, telomeres are 

supposed to be associated to an inner nuclear matrix structure as they are not removed 

from cell nuclei after extensive extraction procedures that remove all soluble proteins and 

most DNA. Because this retention of telomeres could be an artifact of the extraction pro-

cedure, we wished to investigate whether a selective reduction of potential nuclear matrix 

proteins would increase the dynamics of telomeres by a lack of anchorage sites. RNA in-

terference and specific drugs have been used to knock down or disturb proteins that are 

thought to be members of the nuclear matrix structure. We quantified the dynamics of 

telomeres using the program STACKS and found that latrunculin A-induced depolymeri-

zation of actin filaments resulted in an increase in telomere dynamics. Also a reduction of 

lamin A/C or emerin expression by RNA interference was shown to increase telomere 

dynamics. Although lamin B2 is also a constituent of the nuclear lamina structure, a re-

duction of lamin B2 did not result in an increase in telomere dynamics. These observa-
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tions suggest that in mammalian cells telomeres are attached to a complex containing 

lamin A/C, emerin and actin proteins. Although lamin A/C and actin have been found 

present in the nucleoplasm, these findings raise many interesting questions. More ex-

periments are needed to determine whether the association of telomeres with this com-

plex is direct or indirect. Also, biochemical experiments need to be performed to address 

the full composition of the protein complex telomeres are attached to. Furthermore, it 

needs to be investigated whether telomeres are the only genomic regions that are an-

chored to lamin A/C containing protein complexes. These are important issues because 

dysfunctional telomeres and mutations in lamin proteins are associated with ageing and 

age-related diseases (Cooke & Smith, 1986; Merideth et al., 2008). Consistent with our 

observations, an increase in telomere mobility has been measured recently in fibroblasts 

derived from a patient carrying a mutation in lamin A (Vos et al., 2010). 

 

A role for telomeres in de novo PML body formation 

Besides chromatin, the cell nucleus contains nuclear bodies that vary in protein composi-

tion, number and shape. Knowledge about the function of these bodies is steadily increas-

ing but still little is known about the mechanisms that lead to their formation. In chapter 4 

the de novo formation of PML nuclear bodies is described. PML bodies disperse after 

treatment with the (DNA) alkylating agent methylmethane sulfonate (MMS) but reas-

semble when MMS is absent. Surprisingly, it was observed that PML bodies formed at 

telomeric DNA of U2OS cells and similar results were obtained in mouse embryonic fi-

broblasts. Also in cells that were derived from a patient suffering from acute promyelo-

cytic leukemia and lack intact PML bodies we observed that expression of PML protein 

or treatment with arsenic trioxide resulted in the formation of PML bodies at telomeric 

sequences. The reason why the nucleation of PML bodies occurs at telomeres is currently 

not known. Initial experiments indicate that SUMO modification of telomere binding pro-

teins might be involved. It was observed that SMC5, a component of the SUMO ligase 

MMS21-containing SMC5/6 complex, localizes temporarily at telomeric DNA during 

PML body formation. Obviously, this observation needs additional experimental support. 

A knockdown of SMC5/6 may confirm that the localization of this protein at telomeres is 

essential for PML body formation. Furthermore, it should be clarified which telomere 

binding proteins are sumoylated. Initial experiments were not conclusive. Knockdown of 

SMC5 by siRNAs prevented the formation of PML nuclear bodies after MMS treatment, 

but not in all cells. Furthermore, it needs to be investigated whether a reduction of SMC5 

leads to a stress response preventing PML body formation. These and other experiments 

may unravel the mechanism by which PML bodies are formed de novo. This knowledge 

is important because PML bodies have been implicated in virus replication, monogenic 

transformation, cellular stress and senescence and could possibly play a role in age re-

lated disorders.  

 

Chromatin is intimate with nuclear bodies 

Nuclear bodies are positioned in the interchromatin space and an intermingling of chro-

matin with nuclear bodies, with exception of the nucleolus, has not been reported thus 

far. Nevertheless, nuclear bodies show in general little movement in the nucleus which 

might suggest that they interact with chromatin at their surface. Indeed, specific genomic 

regions have been shown to be associated with PML bodies, Cajal bodies or speckles. In 
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chapter 5 it is shown that during MMS treatment nuclear bodies become more dynamic in 

the cell nucleus while the dynamic behavior of chromatin is not altered. This suggests 

that due to MMS induced alkylating DNA damage, the interaction between nuclear bod-

ies and chromatin is lost. To analyze the interaction of chromatin with nuclear bodies, 

cells have been cotransfected with constructs expressing different fluorescent marker pro-

teins. One is a fluorescent fusion protein that localizes to a nuclear body and the other is a 

photoactivatable variant of GFP (PA-GFP) fused to a histone protein that is incorporated 

into chromatin. By selective activation of PA-GFP-histone proteins using 405 nm laser 

light the chromatin that surrounds nuclear bodies could be visualized selectively and 

tracked in time. The time-lapse images show clearly that nuclear bodies lose their contact 

with chromatin as a result of MMS treatment, suggesting that nuclear bodies are usually 

intimately connected with chromatin. What this means in functional terms has to be clari-

fied yet. Recent work suggests that speckles function as nuclear hubs that connect various 

chromatin regions in order to facilitate and coordinate gene expression. Also, it is possi-

ble that some nuclear bodies are for their structural integrity dependent on chromatin.  

 

A view of the cell nucleus at high resolution 

Important insights in the spatial-temporal organization of the cell nucleus have mainly 

been obtained using wide-field fluorescence microscopy and fluorescence laser scanning 

confocal microscopy providing a spatial resolution in xy of about 200-300 nm and in z of 

about 500 nm. Using these imaging systems, detailed structural information about nuclear 

bodies and the way they interact with chromatin cannot be obtained. Electron microscopy 

offers the highest spatial resolution but its application in the study of nuclear bodies has 

been limited. The main reason is that the bodies show little or no contrast in standard EM 

preparations and as such cannot be identified. Immunogold labeling techniques have been 

used to identify nuclear bodies but the labeling is often poor and provides little architec-

tural detail. One exception is the nucleolus whose architecture has mainly been resolved 

by EM studies. 

 

Fascinating possibilities concerning high resolution imaging lay ahead with the develop-

ment of high resolution optical imaging systems. Among others, important innovations 

have been developed by Stefan Hell by introducing Stimulated Emission Depletion 

(STED) microscopy, a technique that uses the non-linear de-excitation of fluorescent 

dyes to overcome the resolution limit imposed by diffraction with standard confocal laser 

scanning microscopes and conventional far-field optical microscopes (Hell et al., 1994). 

The resolution of a confocal scanning microscope is limited to the spot size to which the 

excitation spot can be focused. STED microscopy reduces the size of the excitation spot 

by using a short excitation pulse that is directly followed by a doughnut-shaped depletion 

pulse that acts only on excited dye molecules at the periphery of a spot and quenches 

them. As a result the fluorescence at the center of the doughnut remains unaffected and a 

12-fold increase in spatial resolution can be obtained (Donnert et al., 2006). In addition to 

STED, Stefan Hell also pioneered 4Pi microscopy using two objective lenses opposing 

each other reaching an axial resolution of about 100 nm. The impact that high resolution 

microscopy can have on elucidating nuclear body architecture has recently been 

demonstrated by elucidating the ultrastructure of PML bodies using 4Pi fluorescence 

laser scanning microscopy (Lang et al., 2010). It was shown that the PML bodies consist 
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of a sphere having a 50 – 100 nm thick shell of PML and Sp100 proteins and that 

telomeric repeat DNA and HP1 was found positioned inside the PML bodies.  

 

Forthcoming high resolution microscopy techniques are photo-activated localization 

microscopy (PALM) (Hess et al., 2006; Egner et al., 2007), a similar technique called 

stochastic optical reconstruction microscopy (STORM) (Betzig et al., 2006) and 

structured illumination microscopy (SIM) (Gustafsson, 2005). In PALM/STORM the 

imaging area is filled with many dark fluorophores that can be photoactivated into a 

fluorescing state by a flash of light. Because photoactivation is stochastic, only a few well 

separated molecules will "turn on." Then Gaussians are fit to their PSFs at high precision. 

After the few bright dots photobleach, another flash of the photoactivating light again 

activates a random collection fluorophores, and the PSFs that belong to these well spaced 

objects are determined. This process is repeated many times, building up an image 

molecule-by-molecule; and because the molecules were activated at different times, the 

precise localization of all fluorophores can be accurately determined by calculating their  

centers of mass. The result is that the resolution of the final image can be much higher 

than that limited by diffraction. With the PALM/STORM technique a resolution of 25 nm 

can be reached (Betzig et al., 2006; Rust et al., 2006). The image formation in SIM is 

based on the illumination of samples with patterned light resulting in interference patterns 

from which a multicolor high 3D (100 nm) resolution image can be reconstructed 

(Schermelleh et al., 2008). The main limitation of the PALM/STORM technique is that it 

is, like other high resolution imaging techniques, less suitable for analyzing dynamic 

structures in living cells. It is expected, however, that image acquisition and reconstruc-

tion will become much faster in the near future making PALM/STORM systems ideal 

tools for live cell imaging at high resolution. In this respect, faster image reconstruction 

software has been developed recently providing a 20-fold enhancement of the analysis 

routine (Hedde et al., 2009). The limitation that PALM/STORM imaging could be 

achieved in 2D only has been solved recently in a way that high resolution 3D images of 

cells can be obtained (Huang et al., 2008). 

 

It should be mentioned that also correlative light-electron microscopy is a rapidly evolv-

ing field allowing the examination of fluorescently labeled objects in cells at nanometer-

scale EM resolution. Currently, this approach is mainly used for analyzing complex struc-

tures in the cytoplasm of cells but it is in principle also applicable to structures that reside 

inside the cell nucleus (Lang et al., 2010). It is expected that with the rapid development 

of high, also mentioned super, resolution microscopy more detailed information about the 

structural organization of the cell nucleus will be obtained. This detailed knowledge 

about the structure of nuclear compartments is of crucial importance to understand the 

architecture of chromatin and nuclear bodies better, as well as the functional processes 

that are associated with these structures and dictate cellular function and behavior. 
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Eukaryotische cellen bevatten een celkern welke in hoge mate georganiseerd is. De cel-

kern bevat naast genetische informatie, in de vorm van chromatine, verschillende kernli-

chaampjes die in grootte, aantal, samenstelling en functie van elkaar verschillen. De 

ruimtelijke organisatie van chromatine en eiwitten in de celkern is van groot belang voor 

de regulatie en coördinatie van de verschillende processen die in de celkern plaatsvinden. 

Naast genexpressie gaat het hierbij om DNA replicatie, DNA schadeherstel, RNA pro-

cessing en RNA transport. Chromatine, een complex van DNA en eiwitten, is in meerde-

re (heterochromatine) of mindere (euchromatine) mate opgevouwen in de celkern. Op-

merkelijk is dat ieder chromatinemolecuul (chromosoom) een concrete plek in de celkern 

inneemt en dat deze chromosoomdomeinen elkaar niet of slechts in geringe mate over-

lappen. Het is vooral in de ruimte tussen de chromosoomdomeinen waar zich de verschil-

lende kernlichaampjes bevinden en waar transport van grote complexen plaats kan vin-

den. Men denkt dat door compartimentalisatie van celkerncomponenten vooral de 

efficiëntie van processen die in de kern plaatsvinden verhoogd wordt. Om tijdig in te 

kunnen springen op veranderende omstandigheden waarin een cel zich bevindt, is de or-

ganisatie van de celkern dynamisch. 

 

Voorbeelden van kernlichaampjes zijn Cajal lichaampjes, speckles, PML lichaampjes en 

nucleoli. Deze kernlichaampjes zijn gepositioneerd tussen chromatinedomeinen. In te-

genstelling tot de organellen in het cytoplasma van de cel zijn kernlichaampjes, ook wel 

kernorganellen genoemd, niet omgeven door een celmembraan. Hoe deze kernlichaam-

pjes in de celkern gevormd worden, in stand gehouden worden en zich verplaatsen, is 

grotendeels onduidelijk. Verschillende onderzoeken laten een verband zien tussen een 

afwijkende kernorganisatie en ziekten. Een duidelijk voorbeeld hiervan is progeria, een 

vervroegd verouderingsyndroom, waarbij een mutatie in het lamine A/C gen leidt tot een 

verstoorde kernarchitectuur wat de expressie van genen beïnvloedt. Veranderingen in 

kernorganisatie zijn ook gekoppeld aan verschillende vormen van kanker en aan veroude-

ring. Dit proefschrift is gewijd aan de dynamiek van verschillende structuren in de cel-

kern.  

 

In hoofdstuk 2 wordt de ontwikkeling van het computerprogramma “STACKS” beschre-

ven. Dit programma is ontworpen om de beweging van objecten in een 2-dimensionaal 

vlak of in een 3-dimensionale ruimte in de tijd te analyseren en te kwantificeren. De ef-

fectiviteit van het programma wordt gedemonstreerd door de beweging van telomeren, 

structuren welke de uiteinden van chromosomen vormen, in verschillende fasen van de 

celcyclus te meten. Een belangrijk aspect hierbij is dat de metingen verricht worden aan 

beelden die opgenomen zijn van levende cellen, die gedurende de tijd bewegen en moge-

lijk van vorm veranderen. In het computerprogramma zijn mogelijkheden opgenomen om 

te corrigeren voor bewegingen die de cel gedurende de gehele opnameperiode maakt. 

Voor het zichtbaar maken van de telomeren in een levende cel is een DNA construct ge-

maakt dat codeert voor een fusie-eiwit dat bestaat uit een telomeer-bindend eiwit (TRF) 

en een fluorescerend eiwit (green fluorescent protein, GFP, en varianten daarvan). Dit 

DNA construct is door middel van transfectie in humane tumorcellen (U2OS) en in em-

bryonale fibroblasten van de muis gebracht om tot expressie te komen. Om cellen in ver-
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schillende fasen van de celcyclus te herkennen en om de kerncontouren duidelijk zicht-

baar te maken is tevens een fusie-eiwit bestaande uit een proliferatiemarker (proliferating 

cell nuclear antigen, PCNA) en een fluorescerend eiwit in dezelfde cellen tot expressie 

gebracht. De telomeren van cellen die zich in de S- of G2-fase van de celcyclus bevinden 

blijken een zeer beperkte bewegingsvrijheid te vertonen. Zij veranderen nauwelijks van 

positie gedurende de periode dat er beelden met de fluorescentiemicroscoop zijn opge-

nomen. Veel dynamischer zijn telomeren in cellen die zich in de G1-fase bevinden, de 

fase die direct volgt op de celdeling en waarin chromatine zich positioneert. Dit verschil 

in dynamiek werd zowel in tumorcellen als in embryonale fibroblasten van de muis ge-

meten, waarbij de metingen in hoge mate reproduceerbaar bleken te zijn. Het ontwikkel-

de beeldbewerkingprogramma blijkt dus goed te werken, waarbij opgemerkt moet wor-

den dat het programma gebruik maakt van snelle grafische processors (GPU) om snelle 

beeldbewerking te bewerkstelligen. Naast snelheid zijn de belangrijke kenmerken van het 

programma dat alle beeldbewerkingen en metingen binnen hetzelfde programma uitge-

voerd kunnen worden, wat veel tijd bespaart, en dat op ieder gewenst moment visueel 

beoordeeld kan worden wat het effect van een bewerking is op een te meten object (bij-

voorbeeld een telomeer). Door het toekennen van een kleur aan ieder individueel object 

kunnen zij eenvoudig in de tijd gevolgd worden. 

 

In hoofdstuk 3 wordt een onderzoek beschreven naar de mogelijke rol van een nucleaire 

matrix bij de positionering van telomeren in de celkern. In het verleden is vastgesteld dat 

telomeer DNA in de celkern achterblijft wanneer eiwitten, RNA en DNA uit kernen ge-

extraheerd worden. Als verklaring hiervoor werd gegeven dat telomeren aan een nucleai-

re matrixstructuur vast zouden zitten en zo een rol zouden spelen bij de ruimtelijke posi-

tionering van chromosomen in de celkern. Het bestaan van een nucleaire matrix is al 

lange tijd controversieel en het is onduidelijk waaruit deze matrixstructuur zou moeten 

bestaan. Van lamine-eiwitten is bekend dat zij een netwerk vormen aan de binnenzijde 

van de kernmembraan, maar bovendien verspreid aanwezig zijn door de gehele kern. Om 

te onderzoeken of deze lamine-eiwitten mogelijk betrokken zijn bij de positionering van 

telomeren is RNA interferentie toegepast om de expressie van de lamine-eiwitten lamine 

A/C, lamine B2 en het lamine-geassocieerde eiwit emerine sterk te reduceren in U2OS 

cellen. Daarbij is onderzocht of een sterke afname van deze eiwitten invloed heeft op de 

positionering en/of dynamiek van telomeren in de levende cel. Om een eventuele rol van 

nucleaire actinefilamenten in de positionering van telomeren te onderzoeken zijn cellen 

opgegroeid in aanwezigheid van een stof welke actinepolymerisatie remt. De dynamische 

bewegingen van de telomeren worden gekwantificeerd met het in hoofdstuk 2 beschreven 

computerprogramma STACKS. De resultaten laten zien dat vermindering van lamine 

A/C, emerine, en gepolymeriseerd actine, maar niet van lamine B2, leidt tot een toename 

van mobiliteit van telomeren. Dit suggereert dat telomeren verankerd liggen aan een 

structuur die lamine A/C, emerine en actine bevat, maar geen lamine B2. Een eventuele 

rol voor het eiwit lamine B1 bij de positionering van telomeren in de celkern wordt nog 

onderzocht.     
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In hoofdstuk 4 wordt aangetoond dat telomeren een belangrijke rol spelen bij de vorming 

van PML lichaampjes. In U2OS en in embryonale cellen van de muis leidt blootstelling 

aan de DNA methylerende stof methyl methaansulfonaat (MMS) tot het uiteenvallen van 

PML lichaampjes. Nadat de cellen van de DNA methylering hersteld waren, blijken de 

PML lichaampjes zich weer te herstellen, wat ons in staat stelde om de de novo vorming 

van PML lichaampjes te bestuderen. Na verschillende structuren in de celkern onderzocht 

te hebben, blijkt de vorming van PML lichaampjes plaats te vinden aan telomeer DNA.  

 

Cellen afkomstig van leukemiepatiënten (acute promyelocytische leukemie) worden ge-

typeerd door de afwezigheid van intacte PML lichaampjes. In deze cellen is het mogelijk 

om de vorming van PML lichaampjes te induceren door de cellen te behandelen met ars-

eentrioxide. Toediening van arseentrioxide is één van de behandelmethoden voor acute 

promyelocytische leukemie. Bij deze leukemiecellen blijken de PML lichaampjes ook 

aan telomeren gevormd te worden. Bovendien blijkt tijdens de vorming van PML li-

chaampjes een eiwit dat betrokken is bij de sumoylering van eiwitten aanwezig te zijn op 

telomeren. Dit doet vermoeden dat modificatie van telomeereiwitten met SUMO de vor-

ming van PML lichaampjes initieert. 

 

In hoofdstuk 5 is een onderzoek beschreven naar de associatie van kernlichaampjes met 

chromatine. Op basis van studies waarin de dynamiek van chromatine met die van kernli-

chaampjes is vergeleken is geconcludeerd dat de dynamiek van kernlichaampjes beperkt 

wordt door de toegankelijkheid en dynamiek van chromatine, terwijl stabiele interacties 

met chromatine werden uitgesloten. Deze conclusie staat haaks op studies waarin associa-

ties van PML and Cajal lichaampjes met specifieke chromatine loci waargenomen zijn. 

Om te onderzoeken of de dynamiek van kernlichaampjes inderdaad beperkt wordt door 

de dichtheid van chromatine zijn cellen blootgesteld aan de stof MMS. Als gevolg hier-

van blijkt de dynamiek van kernlichaampjes enorm toe te nemen zonder dat er aanwijzin-

gen zijn dat de dynamiek van chromatine toeneemt. De kernlichaampjes blijken los te 

komen van hun chromatine omgeving en daarna door de kern te bewegen. Uit deze ob-

servaties kan geconcludeerd worden dat de kernlichaampjes door hun associatie met 

chromatine sterk in hun beweging beperkt worden. 
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