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The skin is a complex living ecosystem harboring diverse microbial communities. Its highly variable 

properties and influence of intrinsic and extrinsic factors creates unique microenvironments where 
niche-specific microbes thrive. As part of the skin, hair supports its own microbial habitat that is also 
intra and inter-personal variable. This little explored substrate has significant potential in forensics 
microbiome research due to the unique signatures that are available on an individual. To further 
investigate this, we explored the hair microbiota from scalp and pubic regions in healthy adults to 
investigate how the hair shaft microenvironment varies microbially. Our results suggest that there 
are distinct differences between the microbial communities identified on hair shafts originating 
from different parts of the body. The taxonomic composition of the communities from different hair 
sources are most reminiscent of those identified from their associated cutaneous region. We further 
demonstrate that the hair microbiota varies by geographical origin and has the potential to be used to 

predict the source location of the hair.

�e skin, our frontline defense against environmental antagonists, supports a living ecosystem of diverse hab-
itats colonized by a range of microbes1,2. Microbial colonization is driven by the physiological and topological 
variation of the skin, contributing to distinct ecological niches and supporting complex microbial communi-
ties2–5. Cutaneous appendages, such as hair follicles and sebaceous and sweat glands, comprise sub-habitats 
that are associated with their own unique microbial species6,7. Most numerous on the face and scalp, the anoxic 
microenvironment of sebaceous glands support the growth of lipophilic bacteria such as Propionibacterium spp.7, 
whereas Staphylococcus and Corynebacterium spp. generally colonize skin regions associated with moist environ-
ments such as that of the inguinal crease3. Dry skin exhibits the greatest diversity with variable populations and 
abundances among the Actinobacteria, Proteobacteria, Firmicutes and Bacteriodetes phyla3. In�uenced by both 
endogenous host (i.e., age, ethnicity etc.) and exogenous environmental (i.e., diet, geography, etc.) factors, the 
skin is a highly dynamic environment. Variations in skin properties will thus select for di�erences in microbial 
communities8–11, as seen in the microbiota of other anatomical areas12–14. Yet despite these variations, the skin 
microbiota remains relatively stable over time4,15,16.

As an outgrowth of the skin and part of the pilosebaceous unit, the hair sha� is also a likely source of colo-
nizing bacteria. �e microbiota of hair sha�s originating from the scalp and pubic region are distinguishable17. 
Additionally, based on the relative abundance of Lactobacillaeae observed in the pubic hair microbiota, pubic 
hair samples can be discriminated by sex17,18. �e abundance of Bi�dobacteriales and Bacillales was also found to 
signi�cantly vary between males and females, and the taxonomic distribution of the microbiota found on pubic 
hairs can be used to di�erentiate speci�c individuals18.

In this study, we explored the microbiota of scalp and pubic hair in healthy adults to investigate how these 
microecosystems vary across body sites and between individuals in di�erent geographical locations. Results show 
signi�cant compositional di�erences between hair sha�s originating from scalp and pubic areas with the microbi-
ota at each site mostly resembling microbial communities associated with adjacent cutaneous regions. We further 
show that variations in the hair sha� microbiota may be predictive of geographical origin of a sample.
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Methods
Ethics Statement. �e study was approved by the Institutional Review Board at the J. Craig Venter Institute 
(JCVI) (#2016-238), and all methods were performed in accordance with relevant guidelines and regulations. 
Written informed consent was obtained from all participants prior to sample collection.

Cohort description and sample collection. Hair samples derived from scalp and pubic areas were col-
lected from adults residing in Maryland (MD, n = 8) and California (CA, n = 8). Additionally, scalp hairs were 
collected from adults residing in Virginia (VA, n = 5). Both males and females from diverse ethnicities were 
recruited for this study. Samples were self-collected by participants over one week during late winter of 2016. Each 
individual provided multiple hairs, for a total of 42 and 32 hair samples from scalp and pubis respectively. �e 
hair collection protocol was as described in Tridico et al.17. Sha� hair samples were self-collected at the same body 
location. Scalp hair was collected from behind the right ear, near the right retroauricular crease, and pubic hair 
was collected from their right pubis, near the right inguinal crease. Participants clipped rather than plucked hair 
to distinguish the hair sha� from the follicle. Prior to DNA extraction, hair length was measured and classi�ed as 
short (<2 cm), medium (2–4 cm) or long (>4 cm).

Sample preparation and DNA extraction. Hair samples were resuspended in 1200 ul of lysis bu�er 
(20 mM Tris-Cl, pH 8.0, 2 mM EDTA, 1.2% Triton X-100) in preparation for DNA extraction. DNA from hair 
samples was extracted using enzymatic lysis; 200 mg/ml lysozyme (Sigma/Aldrich, St Louis, MO) and 20 mg/ml 
proteinase K (Life Technologies, Carlsbad, CA), followed by phenol chloroform isoamyl alcohol extraction and 
ethanol precipitation. Residual PCR inhibitors were removed using the MOBio Powerclean kit (MOBio Labs, 
Carlsbad, CA). DNA was quanti�ed using �uorometric methods (SybrGold, �ermoFisher, Waltham, MA) prior 
to downstream applications.

16S rRNA gene V4 sequencing. Microbiota pro�ling was performed targeting the V4 region of the 16S 
rRNA gene. 16S rRNA gene ampli�cation in each sample was performed using adaptor and barcode ligated V4 
speci�c primers so that sequences from each sample in the library were identi�ed with unique barcode indices. 
Mock community DNA was included in the library preparation step as described previously in Kozich et al.19. 
�e mock community serves as a control for contaminants as well as a tool to ensure reproducibility and quality 
sequence reads, indicating the presence of unexpected spurious operational taxonomic units (OTUs). In addition, 
PhiX DNA was spiked into all sequencing runs as an integral control for sequencing. A high % of PhiX spike in 
(10–20%) adds diversity to 16S rRNA gene runs and improves quality. Amplicon from extraction controls and 
no template controls was also included to determine if any contamination occurred during DNA extraction or 
during the library prep stage. 16S rRNA gene libraries were analyzed on the High sensitivity DNA chip (Agilent) 
to ensure that libraries were free of adapter dimers contaminants and that they are appropriately sized for the 
platform. 16S rRNA gene libraries were sequenced using V2 chemistry 2 × 250 bp format on Illumina MiSEQ 
(Illumina Inc, La Jolla, CA) using standard manufacturer’s speci�cations. QC analysis was performed a�er each 
sequencing run where the % reads >= Q30, passing �lter clusters and yield/sample were monitored.

16S rRNA gene quantification. To determine the absolute quanti�cation of the bacterial biomass in each 
sample, quantitative real-time polymerase chain reaction (qPCR) was performed using 1 µl of each sample (20 uL 
total reaction volume) with LightCycler® 480 SYBR Green I Master (Roche Diagnostics, Rotkreuz, Switzerland). 
Reactions were performed in duplicate using the LightCycler® 480 (Roche Diagnostics). �e following ampli�ca-
tion protocol was used: 60 cycles each of 95 °C for 10 sec, 60 °C for 10 sec, and 72 °C for 30 sec with single acquisi-
tion, using 16S rRNA V4 primers19 at a �nal concentration of 200 nM. Streptococcus pneumoniae serotype 4 strain 
TIGR4 genomic DNA (NC_003028) was used as the positive control, and a melt curve was performed to con�rm 
speci�city of the primers for the target.

16S rRNA gene sequence data analysis. Sequence reads from the 74 hair samples obtained plus 2 neg-
ative controls were processed using an in-house 16S rRNA gene data analysis pipeline. Operational taxonomic 
units (OTUs) were generated using the default parameters in UPARSE20 and taxonomies were assigned to these 
OTUs with mothur21 using 123 version of the SILVA 16S rRNA gene database22 as the reference database. Samples 
with more than 500 reads (65 samples) were further considered for downstream analysis. OTU count tables were 
normalized to relative abundances of reads mapping to di�erent taxa at all taxonomic levels using the R-package 
Phyloseq23.

Statistical analysis. Non-metric multidimensional scaling (NMDS) graphs were generated using the 
Phyloseq R-package, while the permutational multivariate analysis of variance (PERMANOVA) calculations 
were performed to detect statistical signi�cance using the VEGAN R-package using Bray-Curtis dissimilarity 
matrix24. To detect di�erential abundances in the hair microbiota at the genus level, phyloseq data was converted 
into a DESeq2 object using the phyloseq_to_deseq2 function, and DESeq2 package version 1.12.3 in R was used25 
for di�erential abundance. DESeq2, using a local �t type to estimate dispersions, was used for its multiple test-
ing adjustment applying Benjamini & Hochberg False Discovery Rate26. �e p-value cuto� for the selection of 
signi�cant OTUs is 0.05 a�er false discovery rate (FDR) adjustment for multiple comparisons. Random Forest 
algorithm implemented in R was used to perform classi�cation of the MD vs CA samples.

Availability of data and materials. Raw datasets and associated metadata generated and analyzed as part 
of this study are available in the NCBI SRA database under the accession number: SRP149455 as part of the NCBI 
Bioproject PRJNA417700. Processed datasets can be analyzed in comparison with other publicly available human 
microbiota data through the Forensic Microbiome Database (FMD) http://fmd.jcvi.org/.
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The processed read sequences analyzed from the HMP are available in the HMP Data Analysis and 
Coordination Center, http://hmpdacc.org/HM16STR/1.

Results
Microbial biomass variability and alpha diversity. Molecular and statistical analysis of the hair micro-
biota revealed 16S rRNA gene bacterial biomass and alpha diversity di�erences between hair originating from 
di�erent body sites. Pubic hair has signi�cantly more biomass than scalp hair (Pubic mean = 7.23e6; Scalp 
mean = 2.47e5; 2-sided t-test, p = 0.044), and there is a signi�cant di�erence in alpha diversity (Shannon index) 
of the two hair types (ANOVA p = 0.02), with pubic hair showing lower alpha diversity than scalp hair (Fig. 1). 
Considering hair length, there is no signi�cant di�erence in the bacterial biomass of scalp or pubic hair of varying 
hair lengths. However, longer scalp hairs show signi�cant greater alpha diversity (Shannon index) than shorter 
hairs (ANOVA p = 0.004), though this is not seen with pubic hairs (ANOVA p = 0.7) (Supplementary Fig. S1). 
Samples generated from multiple hairs (n = 10) produced more biomass compared to using a single hair, and 
the amount did positively correlate with number of hairs for both pubic (r = 0.154, p = 0.0151) and scalp hairs 
(r = 0.52, p = 5.12e-08), but not with higher alpha diversity (Supplementary Fig. S2).

Taxonomic composition and structure. Hair sha�s from both scalp and pubis areas showed a similar 
taxonomic pro�le but in di�erent abundances (Fig. 2a,b). In both body sites, a majority of the sequences map 
to four dominant taxa (pubic hair = 69%, scalp hair = 61%). �e top four taxa identi�ed among the scalp hair 
microbiota is Staphylococcus, uncultured, Corynebacterium, and unclassi�ed, while the top four taxa identi�ed 
among the public hair microbiota are Corynebacterium, Staphylococcus, Finegoldia, and Micrococcus. �e genus 
Staphylococcus is similarly abundant in both sites (24% in pubic hair and 32% in scalp), while uncultured bacteria 
is more abundant in scalp than in the pubic hair respectively (18% vs 2%), and Corynebacterium is more abundant 
in the latter (7% vs 40%) (DESeq2, adjusted p = 6.38e-4). Of the scalp hair genera not classi�ed (comprising 10 
OTUs (10%)), nine have a taxonomic rank at the phyla level. An NMDS ordination plot showed compositional 
di�erences between the microbiota of the two hair types that were statistically di�erent based on Bray-Curtis 
distance (PERMANOVA, r2 = 0.13, p = 0.001) (Fig. 2c).

Our �ndings also show taxonomic patterns similar to previous hair and skin microbiota studies, with some 
distinct differences emerging. Overall, taxonomic patterns between the hair samples were more similar to 
each other than to the skin, right retroauricular crease, or vaginal samples, vaginal introitus, from the Human 
Microbiome Project (HMP)1, with the vaginal samples being most distinct (Fig. 2d). Previous work on scalp and 
pubic hair also found that Corynebacterium is either the most or second most abundant genus17. However, other 
common genera found in the hair microbiota like Staphylococcus and Streptococcus are not observed17, but are rel-
atively common in the skin microbiota described by the HMP1 or Grice et al.3. Likewise, we found Anaerococcus, 
an abundant genus in both the scalp and pubic hair transcriptomes17, at lower abundance (1.6% in pubic hairs 
and 0.7% in scalp hairs). Pubic hair shows the largest disagreement compared with other studies. For instance, 
the most predominant taxa observed in HMP vaginal introitus samples1, Lactobacillus represents the most abun-
dant species in female pubic hair microbiota17,18, whereas in our study Lactobacillus was found at low abundance 
(1.6%). Sex and ethnic data was not collected from participants, therefore this observation of low abundance 
could be skewed due to the combined analysis of pubic hair samples regardless of sex or it could be re�ective of 
the inherent vaginal microbiota variability of women from di�erent ethnicities14,27,28. Noticeably absent from 
our scalp hair samples is the genera Propionibacterium, which has been reported as the most abundant species in 
three scalp skin microbiota studies29–31 as well as in right retroauricular crease skin samples from the HMP1. �is 
absence could be attributed to a niche preference of Propionibacterium which thrives in an anaerobic environ-
ment such as that of the hair follicle where sebum serves as a nutritional source32.

Figure 1. �e 16S rRNA Gene Sequencing Biomass and Alpha Diversity by Collection Site. (a) Alpha diversity 
(Shannon index) in hair sha� samples taken from the scalp and pubic hairs (>500 reads). (b) Microbial biomass 
of hair sha� samples taken from the scalp and pubis.

http://hmpdacc.org/HM16STR/
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Geographical variability. Microbial communities di�er in composition and function across di�erent geo-
graphical locations. Random Forest analysis was performed to determine if di�erences in the hair microbiota are 
associated with geography. We performed DESeq225 di�erential abundance testing on scalp and pubic hair and 
observed Peptoniphilus and Staphylococcus as di�erentially abundant at FDR 0.05 when comparing MD and CA 
samples based on pubic and scalp hair samples respectively (Fig. 3a). Even though the weighted NMDS plots do 
not show signi�cant clustering based on geographical location in each hair type (Fig. 3b), we achieved 17.24% 
out-of-bag (OOB) error rate and 0.93 Area Under the Curve (AUC) using Random Forests showing moderate 
classi�cation values for MD vs. CA using scalp hair samples. In the case of pubic hair samples, we obtained higher 
OOB error rate 22.58% and lower AUC 0.82, suggesting that scalp hair has higher geolocation prediction power 
as compared to pubic hairs. Likewise, using only the 10 most distinct genera as identi�ed by mean decrease GINI 
from the Random Forest analyses (Supplementary Tables S1 and S2) increases the geolocation power of the hair 
samples as compared to using all the taxa (Fig. 3c) in both scalp and pubic hair.

Discussion
These results offer a novel perspective to a study area of the human microbiota that has been tradition-
ally neglected: the microbiota of human hair. Our study con�rms that human hair sha�s harbor unique bac-
terial communities, distinctive from that of the hair follicle and more reminiscent of its associated cutaneous 
region. Staphylococcus, a common genera found in the skin1,3, was also found to be abundant in hair. However, 
Propionibacterium, a predominant bacterium that colonizes the skin and hair follicles7, is noticeably absent in 
this dataset. �e hair sha� environment may be unfavorable for growth of Propionibacterium which prefer low 
oxygen levels and high sebum content as that of the hair follicle32. �is �nding is consistent with other hair studies 
where the hair was cut rather than plucked to di�erentiate the hair sha� from the follicle17,18. Like the skin, the 
hair microbiota varies regionally on the body with bacterial composition and structure di�ering between varying 
hair environments. Corynebacterium, a di�erentially abundant taxa identi�ed in pubic hair prefers moist envi-
ronments such as that of the groin3. �is result di�ers from previously published hair studies where Lactobacillus 
is the predominant genus identi�ed in female pubic hair samples17,18, highlighting the importance of considering 
sex and ethnicity in future hair microbiota research.

Variable characteristics of hair, such as hair length, are one of many in�uential factors that may a�ect the 
intra-personal variability of hair microbial communities. Our study suggests that longer scalp hair (>4 cm) shows 
signi�cantly greater alpha diversity than shorter hairs (<4 cm), an observation not found with pubic hairs. �us, 

Figure 2. Taxa Distribution of Hair Sha� Samples to Corresponding Human Microbiome Project (HMP) Sites. 
Taxonomic pro�les (genus level) of scalp hair sha� samples (a) and pubic hair sha� samples (b) with signi�cant 
di�erentially abundant genera by DESeq2 in bold. Weighted NMDS plot of microbiome composition di�erences 
(OTU level) between the scalp and the pubic hair samples (c) NMDS plot between the scalp and the pubic hair 
samples and HMP samples from the right retroauricular crease and the vaginal introitus body sites (d).
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from a sampling perspective, actual hair microbiota variability may be confounded by technical sources of var-
iation. �is could be particularly challenging for forensic applications of the scalp hair microbiota, but shows 
promise of the pubic hair microbiota as suggested by other studies17,18.

Figure 3. Hair microbiota di�erences according to hair type (scalp and pubic) and geographical location (CA 
and MD). (a) Di�erentially abundant taxa for scalp (Staphylococcus) and pubic (Peptoniphillus) hair between 
hairs collected in La Jolla, CA and Rockville, MD. (b) Weighted NMDS plots showing scalp and pubic hair 
microbiome composition di�erences between subjects from La Jolla and Rockville. (c) Weighted NMDS plots 
based on the most discriminant 10 taxa selected by mean decrease GINI from the Random Forest classi�cation 
analyses from each of scalp and pubic hair.
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Human hair sha�s also show distinct geographic variation in the microbial communities. Comparisons 
between the hairs collected in CA and MD show scalp hair having greater potential to predict geolocation than 
pubic hair, which is of critical relevance for forensic applications. However, as human scalp hair generally inter-
acts with the environment more so than pubic hair, it is possible that any geographic signature on the scalp 
hair will be comparatively transient, or intrinsically linked to environmental or lifestyle factors. �is di�erence 
highlights the value of hair microbiota as biomedical or forensic tools, with scalp and pubic hair being relevant in 
speci�c scenarios (e.g. geolocation, gender/individual identi�cation or biomarker detection). Increasing sample 
sizes and performing longitudinal studies would help further clarify the usefulness of both types of hair as an 
indicator of forensic information.
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