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Abstract1

Selective attention is fundamental to cognitive activity and can be deployed in2

different ways. Non-human primate data suggests that spatial and feature-based3

visual attention have qualitatively different effects on neural tuning, but this has4

been challenging to assess in humans. Using multivariate decoding of MEG data,5

we tracked the effects of spatial and feature-selective attention on population-level6

coding of novel objects. We found that spatial and feature-selective attention7

interacted multiplicatively to enhance object representation. Moreover, the two8

types of attention induced qualitatively different patterns of enhancement in9

occipital cortex, and these differences were accounted for by the principles of10

response-gain and tuning curve sharpening derived from single-unit work. A novel11

information flow analysis further showed that stimulus representations in occipital12

cortex were Granger-caused by coding in frontal cortices earlier in time. We find13

that human spatial and feature-selective attention rely on qualitatively different,14

interacting, neural mechanisms.15

At any moment, there is far more information available from our senses than we can16

possibly process at once. Accordingly, only a subset of the available information is17

processed to a high level, making it crucial that brain can dynamically devote greatest18

processing resources to the most relevant information. Our ability to selectively attend19

to relevant information is remarkably flexible. For instance, we can adapt our20

attentional state by directing our attention in space (spatial attention, e.g. attend left),21

to a specific feature dimension (feature-selective attention, e.g. detect changes in color22

across a scene) or based on a particular feature value along that feature dimension23

(feature-based attention, e.g. find all the red objects), using the definitions of Chen et24

al. (2012). Each of these types of attention can change behavior, improving25

performance related to the attended location or feature-dimension, while decreasing26

performance on the ignored dimension/location (Pestilli and Carrasco, 2005; Rossi and27

Paradiso, 1995; Saenz et al., 2003; Carrasco, 2011), consistent with neural resources28

being redistributed.29

What is the neural basis for this important ability, and to what extent do the same30

mechanisms give rise to spatial and feature-based attentional enhancements? Shifts in31

attention induce changes in the responses of individual neurons (Sprague et al., 2015;32

Reynolds and Heeger, 2009; Maunsell, 2015), change the overall responsiveness of brain33
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regions (Corbetta et al., 1990; Chawla et al., 1999; Saenz et al., 2002, 2003; Serences34

and Boynton, 2007; Gouws et al., 2014), and change the information carried by a35

population response (Guggenmos et al., 2015; Woolgar et al., 2015; Vaziri-Pashkam36

and Xu, 2017). The most marked difference between spatial and feature-based37

attention is that the effects of spatial attention vary according to the part of the visual38

field to which a cell responds, whereas feature-based attention is spatially diffuse,39

changing the responses of neurons (Treue and Martinez-Trujillo, 1999; McAdams and40

Maunsell, 2000; Martinez-Trujillo and Treue, 2004) and voxels (Saenz et al., 2002;41

Serences and Boynton, 2007) across the visual field, rather than being restricted to the42

attended location or the stimulus location.43

The reported effects of spatial attention on the tuning of individual neurons are diverse:44

its effects have been characterized as multiplicative response gain (McAdams and45

Maunsell, 1999; Treue and Martinez-Trujillo, 1999; Lee and Maunsell, 2010b), contrast46

gain (Li and Basso, 2008; Martinez-Trujillo and Treue, 2002; Reynolds et al., 2000), or47

a combination of these effects (Williford and Maunsell, 2006). There have also been48

mixed results regarding the effect of spatial attention on contrast response functions49

measured with fMRI (Buracas and Boynton, 2007; Li et al., 2008). Fewer studies have50

investigated the effects of feature-based attention, and only a subset of these where51

shifts in feature-based attention were not accompanied by changes in spatial attention52

(Maunsell and Treue, 2006). Intriguingly, feature-based attention may affect the tuning53

of individual neurons in a subtly different manner to spatial attention. In an influential54

electrophysiological study Martinez-Trujillo and Treue (2004) found effects at the55

single-unit level which would lead to a ‘sharpening’ of the population response around56

the attended feature value across the visual field. In a recent MEG study Bartsch et al.57

(2017) reports similar sharpening of the population response with attention to color.58

However, even this difference in the effects of spatial and feature-based attention does59

not eliminate the possibility of a unified attentional system, where stimulus location is60

treated as one of many stimulus features that can potentially be selected with attention61

(Treue and Martinez-Trujillo, 1999; Maunsell and Treue, 2006; Maunsell, 2015).62

While there is an increasing body of work investigating the effects of spatial and63

feature-based or feature-selective attention, there are few studies that directly compare64
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these two attention types. In one of the few previous studies that simultaneously65

manipulated both spatial and feature-selective attention Cohen and Maunsell (2011)66

implied highly similar processes of spatial and feature-selective attention, affecting the67

same subpopulations of neurons. The main difference between their effects was across68

hemispheres: for feature-selective but not spatial attention the effects were correlated69

across hemispheres. Directly comparing attention types is critical for resolving whether70

and how these attention types produce different effects on the population code, and71

how their effects interact.72

The overlapping characteristics of these two attention types make them difficult to73

separate, as does the diversity of their reported effects. Another complicating factor is74

that much of our current understanding of attention comes from work exploring its75

effects on individual neurons, but attention can also induce changes in the information76

represented by a population of neurons that will not be revealed in the tuning curves of77

individual neurons (Sprague et al., 2015). For instance, attention has been shown to78

decrease response variance (e.g. Mitchell et al. 2007), and decrease (Cohen and79

Maunsell, 2009) or increase (Ruff and Cohen, 2014) the correlation between pairs of80

neurons. It can be difficult to predict how each of changes should affect the81

information represented by the population response, for example, predicting how82

changes in correlation across neurons will affect population codes is non-trivial83

(Moreno-Bote et al., 2014). There is a need, then, to complement measurements of the84

effects of attention on single-unit responses with measurements of its effects on85

information carried by a population of cells (Sprague et al., 2015), via simultaneous86

multi-electrode recordings (Cohen and Maunsell, 2011) or neuroimaging. Multivariate87

classification analyses, applied to multi-electrode recordings or neuroimaging measures,88

provide a means of measuring the overall stimulus-related information that is carried89

by a population response. Unlike the tuning of single neurons, any signal or noise90

correlations that could decrease or increase information carried by the population91

response (Moreno-Bote et al., 2014) should affect classifier accuracy. This sensitivity to92

additional factors make classifier accuracy an ideal intermediate level of description for93

linking single-unit responses to the information in the population response which is94

available for readout by other brain regions, and to the organism’s percept/behaviour95

(Carlson et al., 2018).96
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Another key question for understanding attentional modulation of visual information is97

to identify the regions that drive these changes in processing, and when and how they98

influence visual cortical areas. There is evidence that some prefrontal cortical (PFC)99

regions are critically involved in visual attention and task-based modulations in100

response, including the frontal eye fields (Moore et al., 2003; Gregoriou et al., 2012;101

Zhou and Desimone, 2011), the ventral prearcuate region (Bichot et al., 2015), the102

superior precentral sulcus (Jerde et al., 2012) and lateral PFC (Tremblay et al., 2015;103

Luo and Maunsell, 2018). Selective prioritisation of task-relevant information in104

prefrontal cortex (e.g. Duncan 2001) may provide a source of bias, driving processing105

in visual cortices in favour of task relevant information (Desimone and Duncan, 1995;106

Dehaene et al., 1998; Miller and Cohen, 2001). But precisely what this influence is, and107

when it occurs, remains unknown.108

Here we measured the effects of spatial and feature-selective attention within the same109

datasets of magnetoencephalography (MEG) recordings (n=20), enabling us to directly110

compare and contrast their effects. We obtained fine timescale measures of111

stimulus-related information in two large regions of interest (ROIs): visual cortex and112

frontal/prefrontal cortex. For both ROIs, we found strong, multiplicative effects of113

spatial and feature-selective attention, but these only emerged relatively late (>200ms114

after stimulus onset). We used an information flow analysis to test for how the two115

ROIs were interacting over time: we measured Granger-causal relationships between116

their stimulus-related information. This revealed that for visual cortex, the strongest117

attentional modulation occurred after the onset of feedback from frontal regions. We118

also tested whether spatial and feature-selective attention induced different effects on119

the population response. We predicted that both types of attention would enhance120

stimulus-related information, but that feature-selective attention would induce121

sharpening of the population response around the attended feature value, whereas122

spatial attention would induce a more generalized enhancement across feature values.123

In line with these predictions, we found that spatial attention produced relatively more124

enhancement of discriminability for stimulus pairs that were far apart in feature space,125

while the effects of feature-selective attention were relatively stronger for stimulus pairs126

that were closer in feature space.127
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Results128

Performance on behavioral task129

Participants (n=20) viewed a series of stimuli while we recorded their neural activity130

using MEG. On every trial there were two objects on the screen, one on the left and131

one on the right of fixation (Figure 1A). Participants were instructed to covertly132

attended either to the stimulus on the left or right of fixation (spatial attention133

manipulation), and they were required to make a judgment based on the target134

object’s color or shape (feature-selective attention manipulation). As shown in Figure135

1B, there were four stimulus colors ranging from red to green, and four shapes ranging136

from strongly X-shaped to strongly non-X-shaped. The four feature values along each137

dimension meant that for both tasks the stimuli were either far from the decision138

boundary (e.g. strongly red; ‘easy’ trials) or closer to the decision boundary (e.g.139

weakly red; ‘hard’ trials). As expected, participants were faster and more accurate at140

identifying color and shape for objects that were far from the decision boundary141

relative to those that were near the decision boundary. For the color task, the average142

accuracy was 95.6% (std 3.6%) on the easy trials, and 85.2% (std 7.3%) on the hard143

trials, while median reaction time was 0.69s on the easy trials and 0.81s on the hard144

trials. Similarly, for the shape task the average accuracy was 94.1% (std 3.5%) on the145

easy trials, and 74.1% (std 4.7%) on the hard trials, while median reaction time was146

0.74s and 0.82s on the easy and hard trials respectively.147

Decoding attentional state148

We trained classifiers to make a series of orthogonal discriminations in order to149

quantify neural information about the participant’s task and the stimulus. First, we150

trained classifiers to discriminate the participant’s attentional set: the attended151

location (left versus right) and feature (color versus shape). Second, we trained152

classifiers to discriminate the stimuli and compared the strength of discrimination153

between attentional conditions.154

Our first question concerned the timecourse with which we could decode information155

about the participant’s attentional state. For both ROIs we asked whether we could156
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Figure 1: Visual stimuli, showing attention conditions (A) and stimulus dimensions (B).
Attention conditions (A): At the start of each block of trials, participants were told the
location to which they should direct their attention (left or right of fixation), and which task
they should perform for that block of stimuli: either reporting on the target object’s shape (‘X-
shaped’ or ‘non-X-shaped’) or color (reddish or greenish). Two objects appeared on each trial,
and participants covertly attended to one while we used eye tracking to monitor their fixation.
The example above illustrates how the same stimulus configuration was used in each of the four
attention/task conditions. The dotted circle indicates the location of spatial attention, and was
not visible during the experiment. Stimulus dimensions (B): Each object varies systematically
along 2 dimensions, color and shape. In the color task, participants categorized the attended
object as either ‘greenish’ or ‘reddish’. In the shape task, participants categorized the attended
object as either ‘X-shaped’ or ‘non-X-shaped’, based on the orientations of the object’s spikes.
To encourage participants to attend to the overall object shape rather than (for example) the
orientation of a single spike, on each trial the object was randomly selected from 100 exemplars
with the target shape statistics, and there were variations between exemplars in the location,
length and orientation of the spikes. This is illustrated above in the shape variation between
objects in the the same column.
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Figure 2: Regions of interest (A) and classifier performance across participants
(n=20) for decoding attention condition using occipital sources (B) or frontal sources
(C). A: the ‘Occipital’ (cyan) and ‘Frontal’ (yellow) regions of interest shown on the partially
inflated cortical surface of the ICBM152 template brain. B and C: At each timepoint, classifiers
were trained to discriminate the location and feature to which participants were attending. The
shaded error bars indicate the 95% confidence interval of the between-subject mean. At the top
of each plot, boxes indicate the time of the stimulus presentation (shaded area indicates onset
until the median duration of 92ms), the reaction time (RT) distribution (shaded area includes
RTs within the first and third quartiles, black line indicates median RT), and the time during
which participants received feedback on their accuracy on those trials where their RT was <1s
(77% of trials). On trials where RT was >1s (23% of trials), the 200 ms feedback started at
the time of response. Classification performance can be above chance in the pre-stimulus pe-
riod since attentional condition was blocked: participants knew which attentional condition to
perform before the stimulus appeared. Nonetheless, decoding of attentional condition improved
dramatically after the stimulus was presented, and peaked earlier when classifiers were decod-
ing attended location (270 ms and 390 ms after stimulus onset for occipital and frontal ROIs
respectively) than when decoding attended object feature (455 ms after stimulus onset for both
ROIs). Shaded gray region around x-axis indicates the 95% confidence intervals of the same
classifications when performed on permuted data (chance performance level). Colored crosses
below the plot indicate that at every time point classifier accuracy was significantly above the
average chance performance level (chance d’= 0.0001 (A), 0.0000 (B); p ă 0.05 in a one-tailed
t-test of the between-subject mean, FDR corrected at q ă 0.05 for multiple comparisons across
time points).
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Figure 3: Classifier performance across participants (n=20) for decoding object
features. For both occipital (A) and frontal (B) regions of interest, classifiers were trained
to discriminate the color (upper plots) and shape (lower plots) of attended and unattended ob-
jects. Classifier performance is shown for each attention condition separately: attended location,
attended feature (aLaF); attended location, unattended feature (aLuF); unattended location,
attended feature (uLaF); and unattended location, unattended feature (uLuF). Shaded error
bars indicate the 95% confidence interval of the between-subject mean, and boxes at the top
of the plot show relevant trial events. The shaded gray region around the x-axis indicates the
95% confidence intervals of the four classifications when performed on randomly permuted data
(the empirical null distribution). Small dots below each plot indicate timepoints at which the
classification of matching color was above chance level (FDR corrected, q ă 0.05). Below these,
crosses indicate timepoints at which there was a significant effect (FDR corrected, q ă 0.05) of
spatial attention (blue asterisks), feature-selective attention (red asterisks) or an interaction of
the two (black asterisks).
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decode where participants were attending (left or right) and what task they were157

performing (color or shape) at each timepoint. Figure 2 shows that attentional state158

could be decoded from both occipital and frontal sources at most time points (at most159

time points the between-subjects mean was above zero when tested with a one-tailed160

t-test, p ă 0.05, FDR corrected at q ă 0.05 for multiple comparisons across time points,161

(Genovese et al., 2002)). The period of above-chance classifier performance for162

attended location included time points before the onset of the stimulus, when163

participants knew their task and were waiting for the stimulus to appear: classifier164

performance at this time was low but significantly above chance for both ROIs.165

Although we do not have a behavioral measure of the participant’s attentional state at166

this time, these pre-stimulus effects suggest that neural activity differed with the167

location to which participants were covertly attending, or to which they were preparing168

to covertly attend. This interpretation is consistent with previous work demonstrating169

the pre-stimulus effects of spatial attention on neural coding (Kastner et al., 1999; Ress170

et al., 2000).171

Decoding of both attended location and attended object feature increased substantially172

once the stimulus appeared. This presumably reflects changes in neural activity173

associated with enhancing the neural representation of the attended object and the174

task-relevant feature and/or suppressing the neural representation of the unattended175

object and the task-irrelevant feature of the attended object. Classification of attended176

feature was above chance from 70ms and 135ms after stimulus onset in the occipital and177

frontal ROIs respectively. Classifier performance peaked earlier when classifiers were178

decoding attended location (270ms and 390ms after stimulus onset for the occipital and179

frontal ROIs respectively) than when decoding attended object feature (455ms after180

stimulus onset for both the occipital and frontal ROIs). These timing differences could181

reflect differences between the timing of spatial and feature-selective attention182

processes, but these data are not conclusive (particularly for the onset times) since the183

lower overall accuracy for decoding of attended feature may have contributed to the184

delay in onset of above-chance classifier performance (Grootswagers et al., 2017).185
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Decoding object features: color and shape186

We next asked whether we could use the neural signal to decode the features of the187

attended and unattended stimuli, and how this information varied over time and188

attentional state. Our design included simultaneous manipulations of both attended189

feature and attended location, enabling us to ask how these different types of attention190

interact. By balancing the training trials across irrelevant features and creating191

averaged ‘pseudo-trials’ (see Methods), we were able to train classifiers to discriminate192

the color and shape of both the attended and non-attended object. Figure 3 shows the193

decoding of object color and shape for each attention condition, in each case averaged194

across 6 pairwise comparisons, and transformed classifier weights, showing the most195

informative locations in each ROI, are summarized in Figure S7.196

For both decoding object color and object shape, 2-way ANOVAs revealed significant197

main effects of spatial attention and feature-selective attention, and significant198

interactions between these effects, at the times indicated by blue, red and black crosses199

respectively in Figure 3 (p ă 0.05, in each case FDR corrected at q ă 0.05 across time200

points). In the occipital ROI, for both object shape and object color, we found an201

initial peak of robust classifier performance which showed a small effect of spatial202

attention, followed by a selective increase in the neural information concerning the203

relevant feature of the attended object, while all other information was attenuated.204

Around the initial peak of stimulus decoding spatial attention produced a small but205

significant increase in decoding of both color and shape (blue crosses ă 100ms in206

Figure 3A, at 75ms for decoding color and 90 and 105ms for decoding shape). After the207

initial peak, the representation of task-relevant stimulus-related information was208

sustained, persisting beyond the offset of the stimulus (median: 92ms) and beyond the209

median response time (770ms). In the frontal ROI, above-chance decoding accuracy210

emerged later than for the occipital ROI, and was only seen for the attended feature at211

the attended location. This is consistent with frontal areas prioritizing representation212

of task-relevant information.213

Interestingly, for both occipital and frontal regions, the effects of spatial and214

feature-selective attention interacted with each other, consistent with their effects215

combining in a multiplicative rather than an additive manner. For both occipital and216

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 6, 2019. ; https://doi.org/10.1101/530352doi: bioRxiv preprint 

https://doi.org/10.1101/530352


frontal ROIs, whenever both spatial and feature-selective attention had significant217

effects there was generally also an interaction. The interaction reflected the selective218

boost in the decoding of the attended feature at the attended location, with little219

enhancement in classifier performance for spatial attention in the absence of220

feature-selective attention or for feature-selective attention in the absence of spatial221

attention. We think it is unlikely that the lack of an independent effect of222

feature-selective attention in our data reflects a true absence of any effect of223

feature-selective attention at the unattended location, since there are numerous reports224

of feature-based attention having effects at unattended locations (e.g. Treue and225

Martinez-Trujillo 1999; McAdams and Maunsell 2000; Martinez-Trujillo and Treue226

2004; Saenz et al. 2002; Serences and Boynton 2007; Ipata et al. 2012; Bichot et al.227

2015). However, there are two differences between our results and this previous work228

which may reflect a genuine difference. Firstly, these modulations are typically229

reported during responses to stimuli at the unattended location (Treue and230

Martinez-Trujillo, 1999; McAdams and Maunsell, 2000; Martinez-Trujillo and Treue,231

2004; Saenz et al., 2002), whereas here the effects are predominantly after stimulus232

offset (but see Serences and Boynton 2007). Secondly, in our experiment the233

participants were attending to a feature dimension (feature-selective attention) rather234

than a particular feature value (feature-based attention), so the absence of an effect of235

feature-selective attention at the unattended location may reflect a difference between236

these types of feature attention.237

Despite these protocol differences, a more parsimonious explanation is that any effects238

of feature-selective attention on the representation of the unattended stimulus were too239

small to detect. For both feature-based and feature-selective attention, a weak effect of240

feature attention at unattended locations is also predicted where feature attention is241

spatially diffuse but there is a multiplicative interaction between feature and spatial242

attention. The normalization model of Reynolds and Heeger (2009), which is243

considered in greater detail below, includes versions with either additive or244

multiplicative interactions between spatial and feature-based attention. The245

multiplicative version of their model, which is most consistent with our data, predicts a246

strong interaction between the effects of spatial and feature-based attention, and a very247

small effect of feature-selective attention alone (see Figure 7B and discussion below),248
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which may have been too small to detect here. This interaction between spatial and249

feature-selective attention demonstrates that the neural information was highly250

adapted to the participant’s task, and that the brain is efficiently selecting only251

relevant information for sustained processing.252

The earliest peaks in classifier performance for the occipital ROI showed only a slight253

modulation with attention. For decoding object color, the initial peak was at254

105 ´ 110ms after stimulus onset in all attention conditions, and there was no significant255

effect of attended location or attended feature at either time point (2-way ANOVAs,256

with subject as a random factor, at 105ms and 110ms: Fp1,19q “ 2.54, 2.20, p “ .13, .15257

for effect of attended location; Fp1,19q “ .26, .40, p “ .62, .54 for effect of attended258

feature). For decoding object shape, the initial peak was at 95 ´ 100ms after stimulus259

onset in all conditions, and there was a small increase in classifier performance at the260

attended location which reached significance at 95ms (Fp1,19q “ 4.48, p “ .048, q ă .05261

with FDR correction), and approached significance at 100ms (Fp1,19q “ 4.36, p “ .051).262

There was no significant effect of attended feature on decoding of shape at either 95ms263

or 100ms (Fp1,19q “ .18, .41, p “ .68, .53). The weak effects of attention on classifier264

performance in the occipital ROI suggest that at the time of the initial peak the object265

representation in visual cortex is primarily stimulus-driven. This is consistent with the266

lack of above-chance decoding in the frontal ROI at this time. Previous work shows267

that attention tends to have a greater effect on the sustained part of neural responses268

than on onset transients (Fries et al., 2001; Cohen and Maunsell, 2009; Lee and269

Maunsell, 2010a) (although the temporal dynamics of attentional modulation vary270

according to task requirements (Ghose and Maunsell, 2002)). The short duration of271

our stimulus (median: 92ms) means that we cannot confidently separate the sustained272

part of the stimulus-driven response from responses reflecting short-term memory and273

response preparation following stimulus offset, but our finding that the initial transient274

is largely unaffected by attentional task is consistent with these previous results.275

There was also a secondary early peak in the occipital ROI for decoding color276

(„ 165 ´ 240ms after stimulus onset), but not for decoding shape. During this second277

early peak for decoding color there was a significant effect of spatial attention, with278

stronger decoding at the attended location than at the unattended location, but279
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classifier performance in all attention conditions remained relatively high compared to280

later times, where there was a marked attenuation of classification performance for all281

conditions except the attended feature, attended location condition.282

At later time points there were stronger effects of both spatial and feature-selective283

attention for both stimulus features at both ROIs, and an interaction between the284

effects of the two types of attention. In the occipital ROI, the effect of spatial attention285

preceded that of feature-selective attention. For decoding object color there was a286

sustained effect of spatial attention from 165ms after stimulus onset, while the earliest287

significant effect of feature-selective attention was 385ms after stimulus onset. For288

shape there was a sustained effect of spatial attention from 285ms after stimulus onset,289

and an effect of feature-selective attention from 335ms after stimulus onset. In both290

cases (color and shape), the sustained effects of spatial and feature-selective attention291

interacted multiplicatively (seen in the selective enhancement of the aLaF condition,292

and the black crosses in Figure 3).293

Information about the attended feature at the attended location (dark red lines in294

Figure 3) had later, local peaks in the vicinity of 600ms post-stimulus onset for both295

stimulus features in both ROIs: decoding of both color had local peaks at 540ms and296

630ms for the occipital ROI, 595ms and 695ms for the frontal ROI; decoding of shape297

peaked at 590ms in the occipital ROI and 595ms in the frontal ROI. Each of these298

peaks are well after the offset of the stimulus (92ms) and just prior to the median299

response time (770ms), suggesting that classifier performance around this later peak300

may be associated with the participant’s decision and/or the remembered feature301

value. Since we balanced the response mapping (by switching the keys associated with302

each response pair on half the runs) it is unlikely that the motor preparation associated303

with the participants’ response contributed to this effect.304

For both occipital and frontal ROIs, classification of the attended feature of the305

attended object remained above chance well after the median response time. Sustained306

classification of the task-relevant information could reflect processing of the feedback307

presented to participants after 1000ms (see Methods). To limit the scope of the present308

study we include only data from 0 ´ 1000ms after stimulus onset in our next analyses,309

excluding any effects due to the feedback.310
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In summary, classification performance of the occipital ROI contain early peaks in the311

decoding of both color and shape that showed little or no modulation with attention.312

At later times, both spatial and feature-selective attention had robust effects in both313

ROIs, and these effects were multiplicative rather than additive. In the following314

analyses we consider how these effects vary across classifications of varying feature315

difference, and we test for evidence of information exchange between the occipital and316

frontal ROIs.317

Decoding object features: effect of physical difference between stimuli318

and task difficulty319

Next we considered how classifier performance varied with the physical difference in320

the stimuli being discriminated (i.e. with task difficulty). Our design included stimuli321

that were far apart in feature space (e.g. ‘strongly red’ vs ‘strongly green’) and stimuli322

that were close in feature space (e.g. ‘strongly green’ vs ‘weakly green’). Since we323

included 4 steps along both color and shape dimensions, the pairs of object stimuli that324

classifiers were trained to discriminate could be either 1, 2 or 3 steps apart along either325

dimension. These pairs also differ in task difficulty: for those that are 3 steps apart the326

stimuli being discriminated were both from ‘easy’ trials, while those of 1 or 2 steps327

difference contained at least one stimulus from a ‘hard’ trial. In Figure 4 we separately328

consider classifier performance for pairs of different step size separation, where329

participants were attending to the stimulus feature and location (pairs of different step330

size were averaged in Figure 3).331

For both decoding of object color and shape, in the occipital ROI performance at the332

early peak (at around 100 ms after stimulus onset) clearly increased with increasing333

step sizes. This is consistent with the classifier performance at this early time being334

driven by predominantly stimulus-driven neural responses in these cortical visual areas.335

In the case of decoding object shape this ordering persisted throughout the first 1000336

ms after stimulus onset for the occipital ROI, and was also seen in the frontal ROI337

when classification performance emerged.338

For decoding object color in the occipital ROI, the order continued until around 350339

ms after stimulus onset, when classifier performance on the ‘strongly red’ vs ‘strongly340
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Figure 4: Effect of feature step size on the decoding of object color (upper) and
shape (lower) for the occipital (A) and frontal (B) ROIs. In both cases, classifiers
were trained to discriminate the shape or color of the object at the attended location, when
participants were performing the task relevant to the decoded feature (aLaF condition). Shaded
gray region around x-axis indicates the 95% confidence intervals of the same classifications when
performed on permuted data (chance performance level, averaged across classifications). Colored
crosses below the plot show time points at which classifier accuracy was significantly above the
chance performance level (p ă 0.05 in a one-tailed t-test of the between-subject mean, FDR
corrected at q ă 0.05 for multiple comparisons across time points). Shaded error bars indicate
the 95% confidence interval of the between-subject mean.
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green’ discrimination decreased while classifier performance on 1 or 2 step341

discriminations increased. Similarly, when classification of color emerged in the frontal342

ROI performance was weakest for stimuli that were 3 steps apart. The weaker classifier343

performance at later time points for ‘strongly red’ vs ‘strongly green’ could be related344

to the participants taking less time to decide their response when judging color on easy345

trials compared with hard trials. However, this explanation does not account for why346

there was not a similar effect for decoding of object shape, where reaction times and347

accuracy on the easy and hard tasks were comparable to that for color. Another348

possibility is that for the ‘easy’ color trials the participants’ decision was based on349

neural signals related to the categorization of object color, by an area such as VO350

(Mullen et al., 2007) or a more anterior area along the ventral temporal processing351

stream (Lafer-Sousa et al., 2016), with little involvement of frontal areas. Whereas for352

the more difficult color task trials, and for the shape task, which is unlikely to353

correspond to a feature dimension of relevance in the occipital cortex, there could have354

been more involvement by prefrontal areas, which would be consistent with the higher355

classifier performance in the frontal ROI in these cases.356

The relationship between step size and classifier performance was remarkably consistent357

across the occipital and frontal ROIs. Classifier performance in the frontal ROI did not358

include the early peak, suggesting that there was good separation of the signals from359

these different brain regions. But when classifier performance emerged in the frontal360

ROI the occipital and frontal ROIs showed a very similar pattern of variation across361

step size, consistent with functional connectivity between these ROIs and the ongoing362

transfer of stimulus-related information between these brain regions.363

Frontal influence on the occipital representation of object shape and364

color365

To characterize the exchange of stimulus-related information between the occipital and366

frontal ROIs we used an information flow analysis (Goddard et al., 2016). Since we367

have fine temporal resolution measures of each pairwise classification, in each attention368

condition, we used the pattern of classification performance across these measures as a369

summary of the structure of representational space at each timepoint, and tested for370
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evidence of Granger causal interactions between the ROIs (see Methods for details).371

Note that by applying this analysis to patterns of classification accuracy (unlike typical372

Granger causality analyses, which are applied to raw signals), we are not simply testing373

for evidence of connectivity between brain regions, but are specifically testing for374

evidence of the exchange of stimulus-related information between areas.375

The results of this analysis are plotted in Figure 5. For both color and shape, we found376

that the earliest time points were dominated by feedforward information flow377

(FF>FB), consistent with the early visual responses in occipital cortex being relayed378

to frontal regions. These early periods where feedforward information flow dominated379

were followed by periods of feedback information flow, starting at 285ms and 185ms for380

color and shape respectively. In both cases, the information flow is biased towards the381

feedback direction until „ 400ms after stimulus onset. Interestingly, for both color and382

shape the timing of the feedback information flows align with the onsets of the largest383

differences in stimulus decoding across attention condition, despite the later onset of384

these effect for color than for shape. This is seen in Figure 5B, where the large385

divergence between the dark red line (aLaF condition) and the other conditions starts386

around the onset of the first red region (FB>FF), for both color (upper panel) and387

shape (lower panel). This is compatible with the suggestion that frontal feedback to388

occipital regions drives the larger attentional effects observed later in the389

timecourse.390

The timing differences between color and shape also shed light on the nature of these391

feedfoward and feedback information flows. For color the early period of FF>FB392

persisted later than for shape (until 240ms and 115ms after stimulus onset393

respectively). This extra period of feedforward information flow for color appears to394

correspond to the second early peak in decoding performance („ 165 ´ 240ms after395

stimulus onset), and could be related to higher-order processing of color information by396

occipital cortex at this time, such as the ventral temporal occipital areas (Mullen et al.,397

2007; Lafer-Sousa et al., 2016). Conversely, since the shape dimension we constructed398

for this study is highly artificial and unlikely to correspond to a feature dimension of399

relevance in the occipital cortex, it could be that the earlier feedback signal in this case400

is related to the frontal cortex’s involvement in storing information about the shape401
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task and in modifying the responses of occipital areas in such a way that the object’s402

position along the shape dimension can be read out.403

Note that while our results are consistent with a late dominance of feedback from404

frontal to occipital regions, it is possible that the feedback could originate in another405

area. As with any correlation, it is possible that our partial correlations reflect406

correlation with another (untested) area. It is also possible that our source407

reconstruction did not accurately isolate frontal and occipital regions, and that either408

of these include signals from nearby regions. However, note that if, for example, any409

parietal signals were present in both frontal and occcipital ROIs, or in the unlikely410

event that frontal signals were present in the occipital ROI or vice versa, this would411

tend to reduce the measures of feedfoward and feedback information flows, rather than412

introduce false positives, making this a conservative analysis. Indeed, the presence of413

significant feedfoward and feedback information flows provides evidence that the ROIs414

were well segregated from one another, as does the absence of early classification415

performance in the frontal ROI.416

Later oscillations between feedforward and feedback information flows (ą 400ms after417

stimulus onset) are more difficult to interpret. Before the median response time418

(690 ´ 820ms across conditions) there is a period with a trend towards feedforward419

information flow for shape ( 400 ´ 500ms), but not for color. This may reflect the420

‘read-out’ of object shape from occipital cortex, after the occipital responses have been421

modified by the earlier feedback from frontal cortex: future work may explore this422

possibility.423

Differential effects spatial and feature-selective attention across feature424

step size425

Figure 3 shows the effects of both the attended location and attended feature on the426

decoding of object features, and Figure 4 shows that decoding accuracy also varied427

with how far apart the stimuli were along the relevant feature dimension. We next428

asked whether there was an interaction between these effects. We reasoned that if429

feature-selective attention sharpens the population response to the attended feature430

while spatial attention does not, then they would likely produce qualitatively different431
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patterns of enhancement across stimulus pairs of varying feature difference.432

To predict the direction of such an interaction, we used a normalization model of433

attention (Reynolds and Heeger, 2009) to model the effects of spatial and434

feature-selective attention on classifier performance. A number of groups have proposed435

models including normalization to describe the effects of attention on neuronal436

response properties (Reynolds and Heeger, 2009; Boynton, 2009; Lee and Maunsell,437

2009). The normalization model of Reynolds and Heeger 2009 predicts that neuronal438

responses are given by a stimulus drive that is divided (normalized) by a suppressive439

drive that varies with the stimulus drive. In the model, the effect of attention on440

neuronal responses is an ‘attention field’ that varies with spatial position and the441

stimulus feature dimension, to incorporate the effects of both spatial and feature-based442

attention. The attention field affects the stimulus drive, and in turn the suppressive443

drive. Depending on the relative sizes of the stimulus and the attention field, the model444

can predict changes in both response gain and contrast gain in the response to the445

attended stimulus. The model also accounts for the sharpening of tuning curves across446

the visual field with feature-based attention (Martinez-Trujillo and Treue, 2004).447

Here we tested whether this normalization model could also predict the effects of448

spatial and feature-selective attention for our population-level measures of449

stimulus-related information. Normalization models are based on the average effect of450

attention on the responses of single neurons, ignoring the heterogeneity of effects across451

neurons, and the effects of factors such as signal and noise correlations (Sprague et al.,452

2015; Moreno-Bote et al., 2014). We tested whether this model was useful for453

predicting patterns of classifier performance despite these simplifications. The model454

predictions for our experimental design are illustrated in Figure 6A-B. Figure 6A455

shows the effects of spatial and feature-selective attention on the population response456

for an example set of parameters, illustrating the predicted sharpening of the457

population response with feature-selective attention, compared to a more general458

facilitation across the population response with spatial attention. Details of the model459

predictions, including further illustrations, are found in the Methods section (see460

Figure 7). Since the model is descriptive (Reynolds and Heeger, 2009), with a large461

number of free parameters, we systematically generated model predictions for a wide462
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range of model parameter sets, 172,800 in total. Across these different parameter sets,463

there was variation in the predicted magnitude of the effects of spatial attention and464

feature-selective attention, and there was also variation in which stimulus pair feature465

distances (step sizes) showed the greatest enhancement. However, when compared with466

spatial attention, feature-selective attention tended to produce relatively more467

enhancement of small stimulus feature differences than larger ones, as seen in the468

average difference across all model parameter sets (Figure 6B). As seen in Figure S2, a469

majority of model parameter sets (83%) showed this qualitative pattern of relative470

enhancement across attention types. Furthermore, there were some combinations of471

spatial and feature attention excitatory and inhibitory widths for which this same472

qualitative pattern was found for all 400 combinations of the remaining model473

parameters (bright red cells in Figure S2).474

If feature-selective attention especially enhances the discrimination of small differences475

along that feature dimension, then we should see a larger effect of feature-selective476

attention (compared with spatial attention) for pairs of stimuli that differ by only one477

step, rather than 2 or 3, along the relevant feature dimension. That is, we should see478

the qualitative pattern from Figure 6B in our data. Alternatively, if spatial and479

feature-selective attention produce qualitatively similar enhancements in the480

population representation of the stimulus features, we would expect this difference481

measure (Diff = SpatAtt-FeatAtt) to be constant across stimulus step size.482

To test this prediction, for stimulus pairs of each step size difference we calculated483

metrics summarizing the effects of spatial attention (SpatAtt, Eqn 1 in Methods) and484

feature-selective attention (FeatAtt, Eqn 2), as shown in Figure 6C, for the decoding485

of color in the occipital ROI. In Figure 6C-E and in subsequent figures we plotted data486

as ‘tuning curves’ across step size, mirror-reversing the data from 1 and 2 steps487

difference to visually highlight differences between spatial and feature-selective488

attention in their influence on the shape of these curves. For all statistical analyzes we489

used data without the mirror reversals.490

While our key prediction concerns the difference between SpatAtt and FeatAtt, in491

order to give a more complete depiction of the data we plotted these two metrics492

separately in Figure 6C, including data from every step size and time point. In these493
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color plots, cyan to lime indicates that there was little or no effect of attention on494

classifier performance, while yellow through to red indicates a small to large increase in495

discriminability. While it is possible for the metrics to have a negative (dark blue)496

value, which would indicate decreased classifier performance with attention, this was497

not seen in the data.498

If spatial and feature-selective attention produced qualitatively similar effects on neural499

responses, then the plots in Figure 6C should look similar, and the regions of500

yellow-red should have a similar shape. Instead, visual comparison of the plots in501

Figure 6C reveals differences between the two types of attention in their effects on502

decoding of color in the occipital ROI. Consistent with the data in Figure 3, the effect503

of spatial attention emerges earlier than that of feature-selective attention: at « 200504

ms there is a band of yellow for spatial but not feature-selective attention. Critically,505

there was also a systematic difference between spatial and feature-selective attention in506

their relative effects on classifier performance across step size. In 6C this is seen most507

clearly in the ‘convex’ versus ‘concave’ shape of the yellow-red regions from 300 ms508

after stimulus onset in the upper and lower plots. Furthermore, while spatial attention509

tended to produce the greatest increase in classifier performance (the largest red area)510

for stimuli separated by 2 steps in feature space, feature-selective attention tended to511

produce greatest enhancement for stimuli separated by only 1 step along the relevant512

feature dimension (the stimulus pairs that were most similar).513

To identify times at which spatial and feature-selective attention differed in their514

effects across step size we performed a 2-way ANOVA, with subject as a random515

factor, at each time point. Clusters of time points at which there was a significant516

interaction between attention type and step size (p ă 0.05, at least 2 consecutive time517

points) are indicated by the black crosses in Figure 6C. The earliest cluster began after518

the second peak in classification performance, at 340ms after stimulus onset. To519

visualize the interaction at these times, and in order to plot the inter-subject520

variability, for each cluster we plotted the average effect of spatial and feature-based521

attention (Figure 6D), including 95% confidence intervals of the between-subject mean.522

For every cluster of timepoints for which there was a significant interaction between523

attention type and step size the effect went in the same direction: spatial attention had524
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a greater effect than feature-selective attention at the largest step size, while525

feature-selective attention had a larger effect than spatial attention at the smallest step526

size. This is illustrated most clearly in the difference plots (SpatAtt-FeatAtt) of527

Figure 6E. As an additional control, we confirmed that the same pattern of results528

persists when excluding participants with any bias toward the attended location in529

their average fixation location (Figure S4). These data suggest a robust qualitative530

difference between spatial and feature-selective attention in the way they enhance the531

color information in occipital areas.532

For the decoding of shape in the occipital ROI, the effects of spatial and533

feature-selective attention were more uniform across step sizes (see Figure S5), and534

there were no clusters of time points with a significant interaction between attention535

type and step size. This was also true for the frontal ROI, for decoding of both color536

and shape (data not shown). In order to test if there any interaction between attention537

types and step size for object shape when data from the entire brain was included, we538

also calculated SpatAtt and FeatAtt for the decoding of object shape based on sensor539

data (before any source localization). In this case, there were 2 clusters of consecutive540

time points where there was a significant interaction between attention type and step541

size (Figure S6), and the earliest of these began at 365ms after stimulus onset. Notably,542

where these interactions occurred, the effects were also in the predicted direction,543

despite variation in the effect of step size on decoding color and shape (Figure 4). This544

suggests a general qualitative difference between spatial and feature-selective attention545

in the way they enhance the information that is carried by neural population codes,546

which aligns with that predicted by a normalization model.547
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Figure 5: Analysis of feedforward and feedback interactions between occipital and
frontal cortices. A FF (see Eqn 3) minus FB (see Eqn 4) based on classification performance on
decoding stimulus color (upper plot) and shape (lower plot). Time points at which the difference
is significantly above or below zero (FF>FB, or FF<FB) are shown in blue and red respectively
(p-values based on bootstrapped distribution, FDR corrected to q<0.05). Shaded error bars
indicate the 95% confidence interval of the between-subject mean. InB the occipital classification
performance in each attention condition is replotted from Figure 3A. The background of the plot
is colored according to the data from A, as indicated by the colorbar. Time points where FF-FB
was significantly different from zero are also replotted, here with black crosses.
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Figure 6: Effects of spatial and feature-selective attention on the decoding of object
color in the occipital ROI. A: The predicted effects of spatial and feature-based attention on
a population of neuronal responses, for an example set of model parameters. According to the
model, spatial attention tends to boost the response of all neurons as a multiplicative scaling of
the original response, while feature-based attention produces both facilitation of neurons which
prefer the attended value, and suppression of neurons preferring nearby values, which leads
to sharpening of the population response around the attended value. B: Predicted difference
between the effects of spatial (SpatAtt, Eqn 1) and feature-selective attention (FeatAtt, Eqn
2) on classifier performance across pairs of stimuli with different feature differences, averaged
over all 172,800 sets of model parameters we tested. C: The effects of spatial attention (upper
plot) and feature-selective attention (lower plot) on decoding of stimulus color were calculated
by taking the difference in classifier accuracy (d’) between the relevant attended and unattended
conditions, normalized by the accuracy in the aLaF condition at each time point, for each step
size (see Equations 1 and 2). Data from three epochs of interest were averaged and plotted in
the insets below (D). In E the difference between the two attention effects (from the same time
points as in E) are plotted, and p-values indicate the result of the significance of the interaction
between attention type and step-size in each case. The difference values plotted in C correspond
to the prediction from the model in B. Shaded error bars indicate the 95% confidence interval of
the between-subject mean.
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Discussion548

Attentional selection is critical for fast and accurate processing of behaviorally relevant549

visual information. There are different methods by which we can select a subset of550

visual information for further processing, but the extent to which these are551

implemented by similar or different neural processes, and how these attentional effects552

interact, remains unclear. Spatial and feature-selective attention have rarely been553

directly compared within the same experiment, and to our knowledge this is the first554

test of two key predictions regarding their interaction: that spatial and feature-selective555

attention interact in a multiplicative way in their effects on neural coding, and that556

they induce qualitatively different patterns of enhancement across fine and coarse557

feature differences. We found that a normalization model of attention, designed558

primarily to account for the effects of attention on individual neurons, predicts these559

effects of attention on the information carried by a population neural signal.560

Previous neuroimaging work has revealed some of the effects of spatial (Brefczynski561

and DeYoe, 1999; Jehee et al., 2011; Guggenmos et al., 2015; Sprague and Serences,562

2013) and feature-selective (Corbetta et al., 1990; Chawla et al., 1999; Saenz et al.,563

2002; Serences and Boynton, 2007; Saproo and Serences, 2014; Jackson et al., 2016;564

Vaziri-Pashkam and Xu, 2017) attention at a population level. Like some previous565

fMRI studies, we used classifier accuracy as an intuitive means of measuring the effects566

of attention: using classifier accuracy as a proxy for the amount of information that is567

potentially available in the neural response. Here we applied this decoding approach to568

MEG data, which allowed us to explore the timecourse of these effects using the569

millisecond resolution of MEG. We found evidence that both spatial and570

feature-selective attention boost the stimulus-related information in the population571

response, and we were able to measure these effects in both frontal and occipital572

regions. In both frontal and occipital regions, the effects of spatial attention emerged573

earlier than those of feature-selective attention. Through our information flow analysis574

of Granger-causal relationships between occipital and frontal regions, we found that575

stimulus-related activity in frontal regions influenced occipital representations from as576

early as 185ms after stimulus onset, and that the onset of this influence coincided with577

the largest magnitude attentional effects in occipital regions. In addition, we found578
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evidence confirming two predictions relating to how the effects of spatial and579

feature-based attention interact, and how they differ in their relative enhancement of580

the discriminability small versus large stimulus feature differences. We consider each of581

these findings below.582

Earliest responses in occipital areas modulated by spatial but not583

feature-selective attention584

For the decoding of both color and shape, we found that spatial attention had only a585

small effect and feature-selective attention had no significant effect on the initial peak586

of classifier performance in the occipital ROI („ 100ms), but much larger effects at587

later times. The effect of feature-selective attention on occipital stimulus representation588

was only significant from 335 ´ 385ms: at least 200ms after the effect of spatial589

attention. Furthermore, while there was a small effect of spatial attention around the590

initial peak in classifier performance („ 100ms after stimulus onset) there was no591

significant effect of feature-selective attention, consistent with another report that the592

earliest occipital responses are not affected by feature-based attention (Bartsch et al.,593

2017). This finding that spatial attention effects preceded those of feature attention is594

consistent with previous results from electrophysiological recordings in V4 and FEF595

(Zhou and Desimone, 2011; Bichot et al., 2015), although the delay observed here is596

longer than in this previous work. For both features, feature-selective attention had an597

impact on classifier performance in the occipital only after feedback from the frontal598

ROI began to dominate the information flow (FB>FF). Since information flow analysis599

specifically measures the exchange of stimulus-related information, this result suggests600

that the effects of feature-selective attention in occipital cortex may rely on feedback of601

stimulus-related information from frontal areas.602

The degree to which subjects are engaging attention prior to stimulus onset could also603

have contributed to the pre-stimulus decoding of attentional task for spatial but not604

feature-selective attention (Figure 2) and to the earlier effects of spatial attention,605

relative to feature-selective attention on the stimulus representation (Figure 3). For606

example, it may be easier to prepare to attend to a location than to prepare to attend607

to a feature dimension. A previous study reported that feature-based attention can608
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modulate event-related potentials (ERPs) much earlier than in our data, within 100ms609

of the stimulus onset (Zhang and Luck, 2009) (in contrast to 335 ´ 380ms onset in the610

our results). This discrepancy may reflect a difference between feature-based attention611

(attending to a feature value, e.g. ‘red’) and feature-selective attention (attending to a612

feature dimension, such as ‘color’). Another critical difference between these studies is613

in stimulus design: Zhang and Luck (2009) recorded responses to a flashed probe614

stimulus of red or green dots while subjects attended to dots of one color in another615

covertly attended stimulus, where dots of both colors were always present. In our616

experiment, the stimuli were always preceded by a blank screen, so that subjects were617

planning to attend to a particular stimulus feature rather than already attending to it.618

In our data, decoding of attention condition became much stronger once stimuli619

appeared and the participants were actively performing the task. We hypothesize that620

these stimulus differences account for the later onset of feature-selective attention’s621

effect on stimulus representation here, and that the early effects of feature-based622

attention reported by Zhang and Luck (2009) are only present when the subject is623

already engaged in attending to one feature value (or suppressing the irrelevant feature624

value, see Moher et al. 2014; Andersen and Müller 2010).625

Information flow analysis: the role of frontal feedback in attentional626

modulation627

The earliest responses of the occipital cortex showed little modulation with attentional628

condition, consistent with a stimulus-driven response. Shortly after these initial629

responses there were large effects of both attention types: attention changes the630

stimulus information representated by the population response in occipital cortex.631

What regions drive the effects of attention on the occipital population response?632

Within occipital cortex, previous work suggests that attentional effects are present first633

in higher-order visual areas that induce a top-down modulation of earlier areas (Buffalo634

et al., 2010), but this leaves open the possibility that effects in higher-order visual635

areas are driven by another region. Our information flow analysis suggests a636

contribution from frontal areas, with stimulus-related information coding in occipital637

cortex appearing to follow from the information coding in the frontal lobe shortly638
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beforehand. A class of models of prefrontal function converge on the proposal that639

prefrontal cortex implements cognitive control by affecting processing in more640

specialised cortices (Duncan, 2001; Desimone and Duncan, 1995; Dehaene et al., 1998;641

Miller and Cohen, 2001). By tracking the dynamics of information exchange between642

frontal and occipital cortex we were able to test this suggestion and resolve the643

timecourse of the proposed top-down effects.644

We found that information flow was initially dominated by feedforward propagation of645

information from occipital to frontal lobe, then later dominated by information flowing646

in the opposite direction, with information coding in the frontal ROI predicting647

subsequent information coding in occipital cortex (see also, Goddard et al. 2016;648

Karimi-Rouzbahani 2018). Moreover, the onset of feedback dominating the flow of649

information between frontal and occipital cortex corresponded to the time at which the650

occipital lobes showed a divergence between task-relevant and task-irrelevant651

information. For decoding color, where there was a second early peak in classifier652

performance, this period was later (285ms) than for decoding shape (185ms), but in653

both cases it aligned with the time at which information processing in the occipital654

lobes became dominated by the task-relevant information (classifier performance in the655

attended location, attended feature condition remained steady or increased, while656

performance in other conditions was strongly attenuated).657

Our finding that prefrontal cortex appears to shape responses in occipital areas is658

consistent with work demonstrating that the responses of frontoparietal regions contain659

stimulus-related information (for example, Freedman et al. 2001), that increases with660

spatial (Woolgar et al., 2015) and feature-selective (Jackson et al., 2016) attention, and661

that attentional effects in frontal cortices precede those in sensory cortex (e.g. Lennert662

and Martinez-Trujillo 2013). One prominent model of prefrontal cortex function663

(biased competition model Desimone and Duncan 1995; Duncan 2006) proposes that664

the prefrontal cortex biases processing in more specialized (visual) cortices in favor of665

task-relevant information. In line with such a proposal, our data suggest that after an666

initial feedforward sweep of information, feedback from frontal to occipital cortices667

drives the selective representation of information in the occipital cortex.668

Future work could build on these findings in two ways. First, we chose not to resolve669
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into more fine-grained parcellations of the frontal lobe here because of the limitations670

of not having individual MRI scans and concerns about the inverse problem. This671

presents and interesting avenue for future work using the methods described here,672

perhaps using concurrent EEG and individualized MRI scans to constrain the inverse673

problem. Second, with better source estimation it would be interesting to examine the674

role of other brain regions, particularly the parietal lobe (which is known to have675

important roles in attention, e.g. Duncan 2010; Woolgar et al. 2011; Hebart et al. 2018;676

Jerde et al. 2012). In the context of information flow analyses such finer parcellations677

could identify cases in which correlations between two brain regions are likely mediated678

by both areas correlating with a third.679

Differential effects of spatial and feature-selective attention as680

predicted by a normalization model of attention681

Much of our knowledge of spatial and feature-selective attention comes from studies682

that have investigated their effects in separate experiments. As such, the results683

presented here provide valuable new insight into how these two types of attention684

interact. We found that where there were effects of both types of attention there also685

tended to be an interaction between them, which is consistent with a multiplicative686

rather than an additive combination of attentional effects. In the normalization model687

of attention presented by Reynolds and Heeger (2009), they modeled all but one of the688

results with a multiplicative rather than additive interaction1689

We used results from single-unit work to predict how differences in the effects of spatial690

and feature-selective attention might manifest in population-level codes for stimulus691

features. Specifically, we predicted that feature-selective attention would produce692

relatively more enhancement of classifier performance for small feature differences than693

for large feature differences, as compared with the effects of spatial attention. We694

confirmed this intuition by using a normalization model (Reynolds and Heeger, 2009)695

to generate predictions for our data. Normalization models of attention are primarily696

based upon the electrophysiological study of the effects of spatial and feature-based697

attention on tuning of individual cells, yet here we demonstrate that the same model698

1In Reynolds and Heeger (2009) the parameter ‘Ashape’ was set to ‘oval’ rather than ‘cross’ for all
but one of their figures, but to our knowledge our result is the first test of this prediction.
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can account for population level data, and can be extended to predict the effects of699

feature-selective attention. It is particularly important that we understand how the700

effects of attention manifest at a population level since there are significant effects at a701

population level that cannot be captured by measuring the tuning curves of individual702

cells (Sprague et al., 2015; Cohen and Maunsell, 2009). The results of our classification703

analyses based on the MEG data revealed that spatial and feature-selective attention704

have distinct effects on stimulus-related information coding at a population level, and705

these differences were consistent with the predictions of the normalization model.706

The fact that classifier performance was consistent with the predictions of the707

normalization model does not definitively identify what information the classifier708

analysis is using to decode stimulus color and shape, which is difficult to pin down in709

any case where classifiers are used to measure stimulus-related information from710

neuroimaging data (Carlson et al., 2018). However, this result suggests that the711

information that is accessible to the classifier varies in signal strength in a manner that712

is consistent with what we expect based on the effects on single-unit tuning predicted713

by the normalization model. Additionally, differences between decoding of color and714

shape are broadly consistent with color (but not ‘X-shaped-ness’) being a feature715

dimension that is explicitly encoded by visual cortex. We found the most marked716

difference between the attention types in the decodability of stimulus color in the717

occipital ROI. Of the two feature dimensions we manipulated (shape and color) it is718

more plausible for color that there are single-units with response functions that719

approximate those included in the normalization model. Neurons in a range of visual720

cortical areas are tuned for color (for example, Komatsu et al. 1992; Hanazawa et al.721

2000), and attention to color is a form of feature-based and feature-selective attention722

that has been investigated in single-unit work (for example, Motter 1994; Bichot et al.723

2005; Chen et al. 2012). In contrast, the shape dimension (from ‘X-shaped’ to724

‘non-X-shaped’) is an artificial, more complex dimension than color. It is possible that725

this dimension could align with the feature selectivity of some neurons in an area with726

intermediate to high level shape selectivity, such as the in area V4 (see review by727

Pasupathy 2006), but it is unlikely that there is population tuning for this shape728

dimension in the same way that we expect a population code for the color dimension.729

Although the tuning differences between spatial and feature-selective attention were730
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weaker for shape than for color, where these differences were significant (in the731

sensor-level decoding) the effect was in the same direction as for color. This suggests732

that a population tuning curve framework may be helpful for understanding the effects733

of attention on arbitrary, higher level feature dimensions as well as for lower-level734

ones.735

Normalization models of attention can account for a range of the effects of attention736

observed at the level of a single neuron (Boynton, 2005; Reynolds and Heeger, 2009;737

Boynton, 2009; Lee and Maunsell, 2009). Although designed to model single-neuron738

effects, these models can be used to predict attention-based changes in the information739

carried by the population response, such as in the implementation used in the present740

study. For both single-unit and population responses these models are primarily741

descriptive rather than quantitative, but in selecting ranges of model parameters we742

considered parameters that are feasible for single-unit responses and found that these743

same parameters could account for population-level effects. Our results demonstrate744

that the same principles that describe phenomena at the single-unit level, such as745

multiplicative scaling in spatial attention, and sharpening of the population response in746

feature-selective attention, can account for population level changes, particular in the747

encoding of color by occipital areas. Notably, the normalization model successfully748

predicted these population-level effects despite the fact that the model does not749

incorporate any heterogeneity of effects across neurons, nor any effects of signal or750

noise correlations, which could have caused differences between single-unit and751

population-level effects (Sprague et al., 2015; Moreno-Bote et al., 2014). This opens the752

possibility of using such models as an explanatory bridge between levels of description:753

if future work constrains model parameters for the normalization model at either the754

single-unit or the population level this may generate predictions that can be tested at755

other, to further characterize the similarities and differences between these levels of756

description. When model parameters are further constrained by data, another direction757

for future work is to test quantitative as well as qualitative predictions of these758

models.759
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Conclusions760

We used multivariate pattern analysis of MEG recordings to measure the effects of761

spatial and feature-selective attention on the amount of stimulus-related information762

decodable from large populations of neurons. We manipulated both spatial and763

feature-selective attention simultaneously in order to compare these attention types764

within the same dataset, and to test how these attention types interact in their effects765

on population-level representation of visual stimuli. We found that both spatial and766

feature-selective attention enhanced the representation of visual information and that767

the two types of attention interacted in a multiplicative way to yield an adaptive768

neural representation which prioritised the task relevant feature of the attended object.769

An information flow analysis suggested that the largest attentional effects in occipital770

areas may be driven by feedback from frontal areas.771

We further found that modelling the distinct effects of spatial and feature attention at772

the level of single cells predicted the qualitative differences between spatial and773

feature-selective attention in our population level recordings. The success of the774

modelling was remarkable given that the model only included the effects of attention775

on tuning properties, without modelling, for example, any influence of attention on the776

correlation structure of the population. Specifically, consistent with a normalization777

model of attention in which feature-selective attention results in tuning curve778

sharpening and spatial attention predominantly yields response gain, we found that for779

decoding of color in occipital cortex, feature-selective attention produced more780

enhancement of the neural representation of small stimulus feature differences than781

spatial attention did, while spatial attention resulted in greater discrimination of large782

stimulus feature differences.783

Our ability to direct our attention to different locations and to different features of the784

environment appears to rely on interacting attentional mechanisms that induce785

qualitatively distinct changes in population-level neural responses in sensory786

cortices.787
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Materials and Methods788

Participants789

20 volunteers (14 female, 6 male) participated in this study, and were paid $50 as790

compensation for their time. Participants ages ranged from 18-32 years (mean 22.4791

years). All were right-handed, had normal or corrected to normal vision, had no792

history of neurological or psychiatric disorder, and were näıve to the purposes of the793

study. All participant recruitment and experiments were conducted with the approval794

of the Macquarie University Human Research Ethics Committee.795

Visual stimuli796

Visual stimuli were generated and presented using Matlab (version R2014b) and797

routines from Psychtoolbox Brainard (1997); Pelli (1997). We created novel object798

stimuli that varied in color and in their shape statistics (see Figure 1B), using custom799

code. The shapes were variants of ‘spikie’ stimuli used in previous work (Op de Beeck800

et al., 2006; Woolgar et al., 2015; Jackson et al., 2016). All our ‘spikie’ shapes had a801

common almost spherical body and 16 spikes varying in location, length and802

orientation. All shapes were rendered with diffuse illumination and a direct (upper left)803

illuminant source, and presented on a black background. We varied the spike804

orientation statistics to create four classes of ‘spikie’ objects: strongly ‘X-shaped’,805

weakly ‘X-shaped’, weakly ‘non-X-shaped’, and strongly ‘non-X-shaped’ (Figure 1B).806

When performing the shape-based task participants categorized the target object as807

either ‘X-shaped’ or ‘non-X-shaped’. We created 100 unique versions of each shape808

class by adding random variation in the spike locations, lengths and orientations, to809

ensure that participants could not perform the task by attending to a single feature,810

and to encourage them to attend to the object’s overall shape.811

In color, there were also four classes: ‘strongly red’, ‘weakly red’, ‘weakly green’ and812

‘strongly green’ (Figure 1B). When performing the color-based task participants813

categorized the target object as either ‘reddish’ or ‘greenish. Each object had a814

maximum luminance of 108.1 cd{m2, and constant u’v’ and xy chromaticity coordinates815

(Wyszecki and Stiles, 1982). The chromaticity coordinates were as follows; strongly red816
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u’v’: 0.35, 0.53 (xy: 0.56, 0.38); weakly red u’v’: 0.27, 0.54 (xy: 0.50, 0.44); weakly817

green u’v’: 0.23, 0.55 (xy: 0.45, 0.48) and strongly green u’v’: 0.16, 0.56 (xy: 0.36818

0.57). The weak red and weak green colors were defined as lying on a line joining the819

strong red and strong green coordinates in u’v’ space, and their distance from the line’s820

midpoint was 30% of the distance between the midpoint and the relevant821

endpoint.822

During MEG sessions, stimuli were projected through a customized window by an823

InFocus IN5108 LCD back-projection system (InFocus, Portland, Oregon, USA)824

located outside the Faraday shield, onto a screen located above the participant.825

Participants, lying supine, viewed the screen from 113cm. Individual ‘spikie’ objects826

each had a central body of 195 pixels (5.8 degrees visual angle [dva]) wide x 175 pixels827

(5.2 dva) high. Their total size varied with their spikes, but the spikes never reached828

the border of the object image (403x403 pixels). On each trial, the stimulus included 2829

‘spikie’ object images side-by-side (total size 806 pixels wide x 403 pixels high: 24 x 12830

dva). A white fixation cross, with height and width of 1 dva, was drawn in the center831

of the screen (Figure 1A). The display system was characterized in situ using a Konica832

Minolta CS-100A spectrophotometer and calibrated as described previously (Goddard833

et al., 2010).834

Experimental design: MEG and eye tracking835

MEG data were collected with a whole-head MEG system (Model PQ1160R-N2, KIT,836

Kanazawa, Japan) consisting of 160 coaxial first-order gradiometers with a 50 mm837

baseline (Kado et al., 1999; Uehara et al., 2003). Prior to MEG measurements, five838

marker coils were placed on the participant’s head. Marker positions, nasion, left and839

right pre-auricular points, and the participant’s head shape were recorded with a pen840

digitizer (Polhemus Fastrack, Colchester, VT), using a minimum of 2000 points.841

Each participant’s MEG data were collected in a single session of approximately 90842

minutes, at a sampling frequency of 1000Hz. On each trial participants responded using843

a Fiber Optic Response Pad (fORP, Current Designs, Philadelphia, PA, USA).844

We tracked participant’s eye movements using an EyeLink 1000 MEG-compatible845
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remote eye-tracking system (SR Research, 500Hz monocular sampling rate). Before846

scanning we tested participants for their dominant eye (usually right), and focused the847

eye-tracker on this eye.848

Experimental design: participant’s task849

Each participant’s MEG session was divided into 8 blocks, where the location of the850

attended object (left or right of fixation) and the task (reporting the attended object’s851

shape or color category) was constant within each block. Figure 1A illustrates the four852

different attention conditions. Before the experiment, each participant was familiarized853

with the ‘X-shaped’ and ‘non-X-shaped’ object categories and completed a training854

session on a laptop outside the MEG scanner where they practiced the color and shape855

tasks.856

On every trial we presented two objects, one each on the left and right of fixation. We857

presented the objects simultaneously since both spatial attention (Reynolds and858

Desimone, 1999; Sundberg et al., 2009) and feature-selective attention (Saenz et al.,859

2003) effects are stronger when attended and unattended stimuli simultaneously860

compete for access to perceptual processing. Within each block every pairing of the 16861

objects in Figure 1B was included once, giving 256 (16x16) trials. These 256 trials862

were presented in a counterbalanced order within each block, so that objects of each863

shape and color were equally likely to precede objects of all shapes and colors. A864

different counterbalanced order was used for each block, and to this sequence of 256865

trials the last trial was added to the beginning, and the first trial was added to the866

end, giving a total of 258 trials in each block. Data from these first and last trials were867

discarded.868

The participant’s task alternated between shape and color on every block, and the869

location of the attended object alternated after the 2nd, 4th and 6th blocks. Starting870

location and task were counterbalanced across participants. Within each pair of blocks871

where the attention condition was the same (e.g. blocks 1 and 5), the buttons872

corresponding to the two response options were switched, so that response mappings873

were counterbalanced across blocks.874
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Every block commenced with an instruction regarding the attended object, the task,875

and the response mapping for that block. Before the first trial participants were876

required to identify the response buttons correctly with a keypress. Participants also877

repeated the eye-tracker 5-point calibration, before the block commenced.878

Every trial began with the fixation marker alone while the participant’s fixation was879

verified using the eye tracker. Participants had to fixate within 1 dva of the fixation880

marker for at least 300 ms before the stimulus would appear. During the stimulus881

(maximum 150ms) a 50x50 pixel white square appeared in the bottom right corner of882

the projected image (outside the stimulus region), which was aligned with a883

photodetector, attached to the mirror, whose signal was recorded with the MEG signal884

from the gradiometers. We used the photodiode signal to accurately align MEG885

recordings with stimulus timing during data analysis. When eye-tracking showed886

participants were no longer fixating during the 150ms stimulus presentation, the887

stimulus was removed from the screen. Due to eye tracker variability (e.g. eye tracker888

missing frames), this resulted in an unexpectedly high number of shorter trials: the889

median stimulus duration was 92ms, and the first and third quartiles were 64 and890

126ms. Since this affected a majority of trials, we included all trials in our analysis,891

but ran an extra analysis to check that variability in stimulus duration did not account892

for our results (see below). After stimulus offset, the fixation marker remained white893

until participants responded to the appropriate task via a button press. After the894

participant’s response, but no sooner than 1000 ms from the onset of the stimulus, the895

fixation marker changed for 200 ms to provide feedback: dimming to gray for ‘correct’,896

or turning blue for ‘incorrect’. After feedback, there was a variable inter-trial interval897

(300-800ms), which comprised the fixation check for the subsequent trial. We used a898

variable inter-trial interval to avoid expectancy effects. Across participants, the median899

reaction time was 0.77s (shape task: 0.78s; color task: 0.75s); on 77% of trials the900

reaction time was shorter than 1 s and the feedback onset was 1 s. The first and third901

quartiles of the distributions of reaction times are shown in Figures 2 and 3.902
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MEG data analysis: Source reconstruction903

Forward modeling and source reconstruction were performed using Brainstorm (Tadel904

et al., 2011), which is documented and freely available for download online905

(http://neuroimage.usc.edu/brainstorm). First, we created a model of each906

participant’s brain by manually aligning the ICBM152 template brain (Fonov et al.,907

2011) to their head shape using nasion, pre-auricular points, and head shape data.908

Once aligned, we applied nonlinear warping to deform the template brain to the909

participant’s head shape, which provides a superior model to an unwarped canonical910

template (Henson et al., 2009). We generated a forward model for each model by911

applying a multiple spheres model (Huang et al., 1999) to the individually warped912

template brain and their measured head location.913

Functional data were preprocessed in Brainstorm with notch filtering (50, 100 and914

150Hz), followed by bandpass filtering (0.2-200Hz). Cardiac and eye blink artifacts915

were removed using signal space projection (SSP): cardiac and eye blinks events were916

identified using default filters in Brainstorm, manually verified, then used to estimate a917

small number of basis functions corresponding to these noise components, which were918

removed from the recordings (Uusitalo and Ilmoniemi, 1997). From these functional919

data we extracted two epochs for each trial: first, a measure of baseline activity (-100920

to -1ms relative to stimulus onset), and secondly the evoked response (0 to 1000ms).921

We used the baseline measures to estimate the noise covariance for each run, then922

applied a minimum norm source reconstruction to the evoked data. For each source923

reconstruction, we used a 15,000 vertex cortical surface (standard for the ICBM152924

template, with atlas information). Dipole orientations in the source model were925

constrained to be normal to the cortical surface, the noise covariance was regularized926

using the median eigenvalue and all other options were set to their default values. We927

visually inspected the quality of the source reconstruction: the average trial data928

included an initial ERP at the occipital pole and subsequent ERPs at sources within929

the occipital cortex but lateral and anterior to the occipital pole, consistent with930

extrastriate areas along the ventral visual pathway (see Supplementary Figure931

S1).932
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MEG data analysis: Preprocessing and dataset definitions933

For classification analyses we generated three datasets: the first included preprocessed934

data from all sensors, without source reconstruction. The second included sources in935

occipital, occipito-temporal, and inferior-temporal cortices (‘Occipital’ ROI, 3302936

vertices) in the atlas for the ICBM152 template, and the third included frontal and937

prefrontal cortices (‘Frontal’ ROI, 3733 vertices), as shown in Figure 2A.938

For each dataset, we extracted data from -100 ms to +2000 ms relative to the stimulus939

onset of each trial. We then reduced each data set, comprising 2100 ms of data for each940

of 2048 trials and up to 160 sensors or up to 3733 sources, using PCA. We retained941

data from the first n components which accounted for 99.99% of variance (mean, std n:942

85.3, 6.9 for frontal ROI; 76.6, 5.8 for occipital ROI; and 157.2, 1.1 for whole brain943

sensor data) and down-sampled to 200Hz using the Matlab ‘decimate’ function.944

MEG data analysis: Classifier analyses945

We used classification analyses to measure the extent to which brain activity could946

predict attention condition and the color and shape of the stimuli on each trial. For947

every classification we repeated the analysis at each time point (each 5ms bin) to948

capture how the information carried by the neural response changed over time: we949

trained classifiers to discriminate between two categories of trial and tested on held-out950

data. We report results obtained with a linear support vector machine (SVM)951

classifier, using the Matlab function fitcsvm with ‘KernelFunction’ set to ’linear’. We952

also repeated our analyses with a linear discriminant analysis (LDA), using the Matlab953

function classify with ‘type’ of ‘diagLinear’ and obtained very similar results (not954

shown).955

For each classification we created ‘pseudo-trials’ by averaging across trials with the956

same value on the dimension-of-interest, but with differing values along other957

dimensions. We used pseudo-trials in order to increase signal-to-noise along the958

dimension-of-interest (e.g. see Guggenmos et al. 2018; Grootswagers et al. 2017). For959

example, when classifying the attended location, we took the 4 blocks of 256 trials960

where the participant attended to the object on the left, and generated 256961
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pseudo-trials, each the average of 4 trials with one randomly-selected trial from each962

block. This meant that each pseudo-trial included data from an equal number of trials963

from the attended feature conditions (attend to color and attend to shape). For each964

classification we generated 100 sets of pseudo-trials, updating the random assignment965

of trials for each set, and averaged classification performance across these.966

Features that were balanced across pseudo-trials varied with the feature-of-interest967

being classified. As mentioned above, when classifying attended location pseudo-trials968

were balanced across attended feature. Similarly, for classifying attended feature969

pseudo-trials were balanced across attended location. When training classifiers to970

discriminate object color and shape, we trained and tested within a single attention971

condition (e.g. attend left, report color), comprising two blocks (512 trials). We972

trained classifiers separately on each pair of the 4 levels along each feature dimension,973

at each object location, using pseudo-trials to balance across irrelevant dimensions. For974

example, when classifying ‘strongly green’ versus ‘weakly green’ objects on the left of975

fixation, we balanced pseudo-trials across left object shape, and right object color and976

shape. Since balancing across all 3 of these irrelevant dimensions would not provide977

sufficient data for classifier training (only 2 pseudo-trials per category), we instead978

created pseudo-trials that were balanced across 2 of these 3 irrelevant dimensions, and979

randomized across the third (allowing 8 pseudo-trials per category). As before, we980

generated 100 sets of the pseudo-trials, each with a different randomization.981

Additionally, we repeated this entire process 3 times, balancing across different pairs of982

irrelevant features. For each of set of pseudo-trials, we trained a classifier using 7 of the983

8 pseudo-trials in each condition and tested using the remaining pair of trials,984

repeating 8 times. We averaged classifier performance across these 8 classification985

boundaries, and across the 300 sets of pseudo-trials.986

For color and shape we performed the classification analysis pairwise for each pair of987

feature values, then averaged classifier performance across feature differences of the988

same ‘step size’. Since both dimensions had 4 values, pairs were either 1, 2 or 3 steps989

apart along the given feature dimension. Pairs 2 or 3 steps apart belonged to opposite990

categories in the participant’s task (‘greenish’ vs ‘reddish’ and ‘X-shaped’ vs991

‘non-X-shaped’). Pairs 1 step apart could be within or across these categories; we did992
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not find any differences between these data (data not shown) so averaged across these993

when reporting our results.994

For all analyzes we expressed average classifier accuracy in d’ (a unit-free measure of995

sensitivity) which provides an intuitive measure of effect size: a d1 value of 0996

corresponds to no stimulus-related information, which was useful when calculating the997

effects of spatial and feature-selective attention (below). To test whether classifier998

performance was above chance performance, we repeated each classification analysis for999

data where trial labels were randomly permuted. We repeated this 10 times for data1000

from every 4th time bin (one every 20ms). In statistical tests we tested whether the1001

observed classification performance exceeded the average chance performance across1002

time bins. Across classifications, average chance performance varied from d’=0.000 to a1003

maximum of d’=0.015.1004

Additionally, to predict the effect of variable trial duration, we repeated each1005

classification of stimulus feature using the stimulus state (on or off) at each time point.1006

Across time points, the maximum average classifier accuracy was d’=0.4 for this data,1007

indicating that stimulus variability could have made a small contribution to overall1008

accuracy. However, there was very little difference between this decoding for different1009

attention conditions or across step sizes. When we performed the statistical tests1010

reported in Figures 3 on the trial duration data, the only significant result (effect of1011

attended location for decoding stimulus color) was in the opposite direction (decoding1012

was higher for unattended than attended locations).1013

For each stimulus classification boundary, we averaged the classifier weights across each1014

set of pseudo-trials to generate an estimate of the classifier weights for each1015

participant’s data, at each time point. The magnitudes of raw classifier weights can1016

vary with both signal strength and noise magnitude, making maps of raw weights1017

difficult to interpret (Haufe et al., 2014). To obtain more informative maps we followed1018

a method used previously (Haufe et al., 2014; Wardle et al., 2016) to transform the1019

classifier weights: For each vector (W) of average classifier weights across occipital or1020

frontal vertices, we obtained the transformed weights (W’) using the covariance matrix1021

of the n pseudo-trials that constituted the classifier training/test data1022

(covppseudotrialsq), using W’ “ covppseudotrialsq ˚ W. We averaged these1023
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transformed weights (W’) across all pairwise comparisons before multiplying the1024

weights by the subject-specific PCA coefficients, and finally averaging across1025

participants.1026

To summarize the effects of spatial attention (SpatAtt) and feature-selective attention1027

(FeatAtt), we used the following metrics, based on classifier performance (d1) in the1028

attended location, attended feature (aLaF) condition, the attended location,1029

unattended feature (aLuF) condition, the unattended location, attended feature (uLaF)1030

condition, and the unattended location, unattended feature (uLuF) condition. For both1031

attention effects, we normalized the effects by the classifier accuracy in the aLaF1032

condition to minimize the influence of overall classifier accuracy on the estimates of1033

attention effects.1034

SpatAtt “ paLaF ` aLuF ´ uLaF ´ uLuFq{aLaF; (1)

FeatAtt “ paLaF ` uLaF ´ aLuF ´ uLuFq{aLaF; (2)

Modeling the effects of spatial and feature-selective attention on1035

population representations of shape and color1036

We used a normalization model of the effects of attention at the cellular level to make1037

predictions of how attention would affect stimulus-related information in the1038

population response. Intuitively, we expected that if feature-based attention sharpens1039

the population response to the attended feature, then feature-selective attention should1040

particularly increase classifier performance for stimulus pairs with small feature1041

differences. Conversely, spatial attention, which is not thought to sharpen population1042

responses, should produce relatively more enhancement of classifier performance for1043

larger feature differences. To formalize this intuition we implemented the Reynolds and1044

Heeger (2009) normalization model of attention to generate predictions, as illustrated1045

in Figure 7 and detailed in the Supplementary Methods.1046
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Figure 7: Summary of a normalization model of attention (Reynolds and Heeger,
2009), as implemented here to predict the effects of spatial and feature-selective
attention on classifier performance. A: an illustration of each of the model elements from
Reynolds and Heeger (2009), Figure 1, for a set of example model parameters, where each
grayscale image depicts a matrix of values varying along a spatial dimension (horizontally) and a
feature dimension (vertically). For each set of model parameters we generated a single ‘stimulus
drive’, and two versions of the ‘attention field’, which lead to subtly different ‘suppressive drives’
and ‘population responses’. From these two population responses we derived curves predicting
the population response as a function of each neuron’s preferred feature value for each of the
four attention conditions (the columns of the matrix indicated with different colored vertical
lines in A). These population responses are plotted again as lineplots in B. In C (redrawn from
Figure 6A) the predicted effects of spatial and feature-based attention on the population response
are summarized as the difference between relevant population curves from B. D: We predicted
classifier performance in each attention condition by centering the population response from B
on 4 different stimulus feature values and predicting classifier performance when discriminating
between population responses to stimuli of that were either 60, 40 or 20 (arbitrary) units apart
along the feature dimension, to simulate the population response to stimuli that were 3, 2 or 1
steps apart in either color or shape. We predicted classifier performance (d’) using the separation
of the two population responses, in a manner analogous to that used in signal detection theory
(see Supplementary Methods for details)
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MEG data analysis: Granger analysis of feedforward and feedback1047

information flows1048

We tested for temporal dependence between the patterns of classifier performance in1049

occipital and frontal datasets, seeking evidence of information flows from occipital to1050

frontal cortices (feedforward) and from frontal to occipital cortices (feedback),1051

following the rationale we developed in earlier work (Goddard et al., 2016).1052

Specifically, we tested for Granger causal relationships between the patterns of1053

classifier performance based on the occipital and frontal datasets. We summarized the1054

color and shape information for each region (occipital and frontal), at each timepoint,1055

as a 6x4 dissimilarity matrix (DSM) of classifier performances. For both color and1056

shape, the 6x4 DSM was defined as each pairwise comparison (6 classifications across1057

the 4 levels of the feature), by 4 attention conditions (aLaF, aLuF, uLaF, uLuF).1058

The logic of Granger causality is that time series X ‘Granger causes’ time series Y if X1059

contains information that helps predict the future of Y better than information in the1060

past of Y alone (for a recent review of its application in neuroscience, see Friston et al.1061

(2013)). We performed a sliding-window analysis of a simplified (special case) of1062

Granger causality, using the partial correlations in Equations 3 and 4 to define1063

‘Feedforward’ (FF) and ‘Feedback’ (FB) information flows at each time point (t).1064

FFpt, d,wq “ ρDS Mp f rontal,tqDS Mpoccipital,t,d,wq.DS Mp f rontal,t,d,wq (3)

FBpt, d,wq “ ρDS Mpoccipital,tqDS Mp f rontal,t,d,wq.DS Mpoccipital,t,d,wq (4)

where DS Mploc,tq is the DSM based on the sources at location loc at time tms post1065

stimulus onset, and DS Mploc,t,d,wq is the DSM based on the sensors at location loc,1066

averaged across all time points from t ´ dms to t ´ pd ` wqms post stimulus onset. We1067

calculated FF and FB for 30 overlapping windows: for 5 window widths (w = 10, 20,1068

30, 40 or 50 ms) for each of 6 delays (d = 50, 60, 70, 80, 90 or 100). We tried a range1069

of values for w and d in order to capture interactions between occipital and frontal1070

cortices that may occur at different timescales.Since the results were broadly similar1071
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across values of w and d (see Figure S8) we report FF and FB values averaged across1072

all values of w and d.1073

We report the results of this analysis in terms of the difference between the feedforward1074

and feedback information flows (FF-FB). To assess whether this difference was1075

significantly above or below chance, we generated a null distribution of this difference1076

at every timepoint by performing the same analysis on 1000 bootstraps of data from1077

each subject where the exemplar labels were randomly permuted for each of the DSMs1078

used in Equations 3 and 4.1079

Data availability1080

All the raw data and the results of our classification analyses are available on an Open1081

Science Framework project (after publication we will make this project publically1082

accessible and include the DOI for the project in our manuscript).1083
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Supplementary Material1316

Supplementary 1: Event related potentials1317
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Supplementary 2: Modelling: extended methods and results1318

We started with the Matlab routines from Reynolds and Heeger (2009) that are freely1319

available from http://www.cns.nyu.edu/heegerlab/. Since we did not have strong a1320

priori predictions for many of the model parameters, we tested a broad range of1321

plausible model parameters (see Table 1). For each set of model parameters (172,8001322

sets in total) we used the Reynolds and Heeger (2009) model to predict the response of1323

the neural population as a function of stimulus feature preference (along the shape or1324

color dimension), for each of four cases, illustrated by lines of different colors in Figure1325

7A-B. In every case the stimulus was a single feature value (a specific color or shape)1326

at 2 fixed locations (left and right of fixation). In two cases, we simulated attention to1327

one location in the absence of any feature-based attention (simulating attention to the1328

orthogonal feature dimension). In the other two cases we simulated attention to one1329

location and attention to the feature value of the stimuli. From these we predicted the1330

population response at attended and unattended locations, in the presence and absence1331

of feature-based attention. As illustrated in Figure 7C, according to the model spatial1332

attention tends to boost the population response as a multiplicative scaling of the1333

original response, while feature-based attention produces both facilitation and1334

suppression of the response which leads to sharpening of the population response1335

around the attended value.1336

One difference between the Reynolds and Heeger (2009) model and our experiment is1337

that the model is designed to capture feature-based attention (attending to a specific1338

feature value, e.g. red), whereas we manipulated feature-selective attention (attending1339

to a feature dimension, e.g. color). While feature-based attention has received greater1340

attention in the electrophysiology literature, feature-selective attention has been1341

demonstrated to have similar effects at the level of single neurons (Cohen and1342

Maunsell, 2011). We therefore implemented the feature-selective attention1343

manipulation in the model by generating population responses to two stimuli of the1344

same feature value, and modeling the presence of feature-selective attention as1345

feature-based attention to that feature value.1346

For every predicted population response we predicted classifier performance when1347

discriminating responses to stimuli of different feature values. To do this we compared1348
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Model parameter Parameter description Values tested

stimWidth Spatial extent of stimulus 25 (Fixed value)

stimFeatureWidth Extent of stimulus along fea-
ture dimension

25 (Fixed value)

ExWidth Spread of stimulation field
along spatial dimension

30, 40, 50, 60, 70, 80, 90
or 100

EthetaWidth Spread of stimulation field
along feature dimension

30, 40, 50, 60, 70 or 80

IxWidth Spread of suppressive field
along spatial dimension

=C*ExWidth, where
C=1.5, 2 or 2.5

IthetaWidth Spread of suppressive field
along feature dimension

=C*EthetaWidth,
where C=1.5, 2 or 2.5

AxWidth Extent/width of the spatial
attention field

=ExWidth

AthetaWidth Extent/width of the featural
attention field

=EthetaWidth

ApeakX Peak amplitude of spatial at-
tention field

2, 4, 6 or 8

ApeakTheta Peak amplitude of the feature-
based attention field

2, 4, 6 or 8

Abase Baseline of attention field for
unattended locations/features

1 (Fixed value)

baselineMod Amount of baseline added to
stimulus drive

0, .1, .3, .5 or 1

baselineUnmod Amount of baseline added af-
ter normalization

0, .1, .3, .5 or 1

sigma Constant that determines the
semi-saturation contrast

1e-6 (Fixed value)

Ashape either ‘oval’ or ‘cross’ ‘oval’ (Fixed value)

Table 1: Model parameters from the normalization model of attention (Reynolds
and Heeger, 2009) that we used in model simulations. We defined the stimulus and
response matrices as varying from -200 to 200 along both spatial and feature dimensions (ar-
bitrary units). We generated the model predictions for every combination of the above model
parameters, resulting in 172,800 sets of model predictions. The process of estimating classifier
accuracy from the model predictions is summarized in Figure 7.
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two population responses that were identical except that they were centered on1349

different feature values, as shown in Figure 7D. To simulate the three steps of stimulus1350

difference, we considered cases where the centers of the population responses were1351

separated by either 20, 40 or 60 in the arbitrary units of the feature dimension. In the1352

case of stimuli varying in color, the chromaticity coordinates of the stimuli varied from1353

strongly red u’v’: 0.35, 0.53, to strongly green u’v’: 0.16, 0.56, which means that for1354

the model we were treating a difference of 60 arbitrary units as a distance of1355

approximately 0.19 in the u’v’ chromaticity plane. For shape the feature dimension is1356

defined by the transition from ‘X-shaped’ to ‘non-X-shaped’. We are not asserting that1357

there exist neurons tuned to this novel complex shape dimension in the same way as1358

there are neurons tuned to color, but for the purposes of the model we treated these1359

dimensions as equivalent. Since subject performance was similar for the color and1360

shape task, we used the same distances (20, 40 and 60 in the arbitrary units) to avoid1361

adding another parameter to the modeling results.1362

Using the pairs of population responses (such as those in Figure 7D) we predicted1363

classifier performance (d’) using the separation of the two population responses, in a1364

manner analogous to that used in signal detection theory. To determine d’ for these1365

population responses we calculated a ‘hit rate’ for an optimal observer detecting a1366

signal (stimulus two) amongst noise (stimulus one), where their criterion (c) is at the1367

midpoint between the peaks of the two curves. We defined the ‘hit rate’ (hits) as the1368

area under the blue curve to the right c, and the ‘false alarm rate’ (FA) as the area1369

under the red curve to the right of c. Then the predicted classifier performance d’ =1370

norminv(hits) - norminv(FA). In this way, for each set of model parameters we1371

predicted classifier performance in each attention condition, for each of the three step1372

sizes in feature difference.1373

From the predicted classification performance, we summarized the predicted effects of1374

spatial attention and feature-selective attention using the SpatAtt and FeatAtt1375

values from equations 1 and 2.1376
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Figure S2: Comparing the model predictions across 4 model parameters. The model
predictions across 4 model parameters: the excitation and inhibition width of the spatial and
feature-based attention fields (ExWidth, IxWidth, EthetaWidth and IthetaWidth in Table 1). In
each cell, there were 400 sets of model parameters (where other model parameters were varied).
For each set of model parameters, we calculated the difference between attention effects (Diff =
SpatAtt-FeatAtt) across feature difference (as in Figure 6). Here we show number of model
parameter sets for which the pattern of results was qualitatively similar to the average model
prediction (Figure 6B) and to the data (e.g. Figure 6E). That is, model sets where Diff at 3
steps (Diff(3)) minus Diff at 1 step difference (Diff(1)) was positive (red cells, 95% of cases).
There were also some combinations of excitation and inhibition widths for which all 400 cases
followed this pattern (bright red cells, 16% of cases).
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Supplementary 3: Control analysis on the effects of spatial bias in1377

fixation location1378

To encourage participants to suppress eye movements we provided explicit instructions1379

to maintain fixation on the constantly-present fixation cross, and we informed1380

participants that we were using an eye tracker to measure their eye movements. We1381

also informed participants that the onset of each trial was contingent on the eye tracker1382

detecting their fixation. We chose a short stimulus duration (maximum 150ms) to1383

discourage eye movements after the onset of the stimulus, and if the eye tracker1384

indicated the participant was no longer fixating the stimulus was removed1385

immediately.1386

Due to eye tracker variability we treated fixation locations within 1 dva of the center of1387

the screen as ‘fixating’ for the purposes of the fixation-contingent onset, in order to1388

avoid extensive delays in the experiment. Because of this, we could not exclude the1389

possibility that participants had a small bias to fixate slightly towards the attended1390

location. From the eye tracking data, we found that most participants (16 of 20)1391

showed a small bias to fixate slightly towards the attended location (see Figure S3). To1392

check that this bias was not driving the differences we observed between spatial and1393

feature-selective attention, we repeated our group analyses including only the 41394

participants who had a small bias to fixate towards the unattended location, and found1395

the same pattern of results as in the main analyses (Figure S4).1396
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Figure S3: Distributions of fixation locations, for individual participants. In each
distribution, red lines show the median, and the shaded gray box indicates the first and third
quartiles of the distribution of 1024 fixation locations. Participants are ordered by their overall
bias, from biased towards unattended to biased towards attended location.
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Figure S4: Effects of spatial and feature-selective attention across decoding of
object color in occipital ROIs for participants with a slight bias to fixate toward the
unattended location. Results for a subset of participants (n=4, participants 1-4 in Figure S3).
Plotting conventions for A-C are as in Figure 6C-E.
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Supplementary 4: Effects of spatial and feature-based attention on1397

decoding of shape1398

Figure S5: Effect of spatial and feature-based attention on the decoding of object
shape in the occipital ROI. Plotting conventions as in Figure 6C. In this case, there were no
consecutive time points at which there was a significant interaction between attention type and
step size.
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Figure S6: Effects of spatial and feature-selective attention across decoding of
object shape for all MEG sensors. Plotting conventions for A-C are as in Figure 6C-E.
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Supplementary 5: Information flow analysis, varying averaging1399

window1400

Figure S7: Average event-related potential (ERP) and transformed classification
weights (W’). For both the occipital (A-B) and frontal (C-D) ROIs we spatially binned the
ROI into 50 equally spaced bins across two dimensions: posterior to anterior (A,C) and left
to right (B,D). In each subplot, the bins span the distance indicated by the red line over the
ROI in the leftmost column. In the remaining columns, we plot, as a function of time, the
average ERP (2nd column) and average transformed classifier weights (W’, see methods) for
decoding in the attended location, attended feature condition (columns 3-6). That is, ‘Left color’
(column 3) is the decoding of the color of the left object color when performing the color task
on the left object, ‘Right shape’ (column 6) is the decoding of the shape of the right object
shape when performing the shape task on the right object, etc. The occipital ROI showed a
lateralization consistent with classifier performance being driven by retinotopically organized
visual cortex: when decoding of features of the stimulus in the left visual field the classifier
tended to give higher weight to right hemisphere locations, and vice versa. The frontal ROI did
not show clear evidence of lateralization, consistent with frontal regions containing information
about both contra- and ipsilateral visual fields (e.g. Lennert and Martinez-Trujillo (2013)).

64

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 6, 2019. ; https://doi.org/10.1101/530352doi: bioRxiv preprint 

https://doi.org/10.1101/530352


Supplementary 6: Information flow analysis, varying averaging1401

window1402

Figure S8: Information flow analysis across varying averaging windows. Upper and
lower plots show, for color and shape respectively, the direction of information flow (FF-FB) for
each averaging window, given by 5 window widths (w = 10, 20, 30, 40 or 50 ms) for each of 6
delays (d = 50, 60, 70, 80, 90 or 100). Lines are colored according to the midpoint of the window,
and translucent shaded error bars of the same colour indicate the 95% confidence intervals of
each between-subject mean. The thick black line shows the average of these lines, replotted from
Figure 5A (see Figure 5A for confidence intervals of this average).
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