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Abstract

We propose a novel approach to image segmentation, called feature and spatial
domain clustering. The method is devised to group pixel data by taking into account
simultaneously both their feature space similarity and spatial coherence. The FSD
algorithm is practically application independent. It has been successfully tested on a wide
range of image segmentation problems, including grey and colour image segmentation,
edge and line detection, range data and motion segmentation. In comparison with
existing segmentation approaches, the method can resolve image features even if their
distributions significantly overlap in the feature space. It can distinguish between noisy
regions and genuine fine texture. Moreover, if required, FSD clustering can produce
partial segmentation by identifying salient regions only.

1 Introduction

Many low and intermediate level image analysis tasks in computer vision are essentialy
image segmentation problems. The aim of image segmentation is to identify, in the
image, regions which can be associated with perceptually meaningful scene primitives.
This can mean either a complete image partitioning or the extraction of a subset of such
regions selected according to some criteria. As pixels in such regions represent the same
physical properties or phenomena, they are expected to exhibit a degree of similarity, i.e.
a clustering tendency, in the feature space characterising the relevant property. However,
a distinctive aspect of image data is its spatial ordering. Thus in the data analysis terms,
image segmentation is a process of clustering spatially indexed data. Consequently, the
grouping of pixels into clusters must take into account not only their similarity in the
feature space but also the requirement of their spatial coherence.

Classically, image segmentation problems have often been viewed as purely feature
space clustering problems [6]. Accordingly, the vector of image features observed at
each pixel is considered as a point in the feature space. Although spatial coherence
is not a constraint explicitly built in, each cluster in the feature space is expected to
group pixels which on the grounds of their homogeneous properties will come from
coherent regions in the image. For low dimensional feature spaces the clustering can be
performed efficiently from a statistical summary of the data in terms of the histogram.
By analysing the histogram one can determine the groups of pixels satisfying the
homogeneity property and thus obtain the corresponding segmentation.

The global statistical analysis of the image data in the feature space has the advantage
of providing a good assessment of the clustering tendency of the data. However, feature



space clustering does not automatically guarantee spatial coherence of the cluster based
pixel groups. If measurements overlap in the feature space, the segmentation results
obtained by this approach can be disappointing, giving a very noisy appearance. This
problem has been tackled in the literature in a number of different ways. One possibility
is to augment the feature vector either by measurements on the neighbouring pixels,
or by pixel coordinates which will encourage spatial consistency of the segmentation
result. The former approach has been particularly popular among the remote sensing
community [16]. However this dramatically increases the dimensionality of the segmen-
tation problem and the associated computational complexity. Alternatively, one may deal
with the issue of spatial coherence by means of postprocessing. Morphological filtering
techniques are one of the examples of methods specifically developed for this purpose.
The main problem with the postprocessing refinement of the raw segmentation is that at
this stage it is impossible to distinguish between noisy labelling and fine genuine image
structures such as those characterised by texture.

On the other hand, region growing methods stress spatial coherence. Techniques
vary, but typically, from an arbitrary starting point in the image an initially small re-
gion is grown to subsume neighbouring regions, provided the appended pixels satisfy a
prespecified similarity measure. A number of termination methods have been devised
to stop the region growing process [5]. By definition, the extracted regions are spa-
tially coherent. However, the use of local statistics to compute the similarity measure
often results in an excessive sensitivity to thresholds leading to oversegmentation or
undersegmentation of the image data.

In this paper we argue that, in order to achieve successful segmentation ( either
image partitioning or selection of salient regions ) one should exploit simultaneously
global and local statistics that can be computed from the image, together with pixel
connectivity information. The global statistics of the clustered features defines a model
that can be used in local statistical testing to determine the segment identity of individual
pixels. The idea of performing image segmentation by means of a parallel process of
feature space analysis under spatial coherence constraints has been voiced by Ballard
[1]. However, his paper only identified the issues without advocating any specific so-
lutions to address them. We have developed an effective algorithm that achieves the
objectives of simultaneous feature space-image space clustering. Moreover, we show
that the proposed approach is completely general and consequently applicable to a wide
spectrum of problems, ranging from grey and colour image segmentation, to edge and
line extraction, range data and motion segmentation. In other words, the approach de-
fines a unified framework for a family of image segmentation problems. It can also be
used either to achieve a complete segmentation of the image or select a subset of image
regions according to a prespecified criterion. Currently, region saliancy is used to define
priority.

We discuss the relationship of the proposed method to the perceptual grouping
approach based on robust statistical testing. We show that the proposed method is more
resilient to contamination due to clutter and consequently it can resolve image features
to much enhanced resolution. The practical significance of the proposed method is that it
can distinguishbetween noisy regions and genuine texture. This is particularly important
for correctly segmenting textured motion fields (resulting from object transparency).



The paper is organised as follows. In the next section we first overview one specific
feature space clustering algorithm, namely the graph theoretic (GT) clustering algo-
rithm [9], which is a basic bulding block used in the proposed segmentation method.
The novel feature and spatial domain (FSD) clustering method is then introduced. In
Section 3 we illustrate the main differences between GT and FSD clustering on a set
of test problems. In Section 4 we describe a number of diverse experiments in image
segmentation to demonstrate the properties and versatility of the proposed procedure.
Finally, conclusions are drawn in Section 5.

2 Algorithm

A large number of image segmentation problems involve low dimensional feature spaces
and huge quantities of pixel data. In such situations it is most efficient to base the cluster
analysis of the data on its statistical summary in the form of a histogram. Accordingly
the clustering problem can be viewed as one of partitioningthe feature space into regions
over which the histogram is locally unimodal.

The problem of unimodal cluster separation has received significant attention in
the pattern recognition community [9][7]. We adopted the Graph-theoretical clustering
method of Koontz and Fukunaga. The method can be outlined as follows (for details
and comparison with other approaches see [4]).
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Fig. 1.: Graph-theoretical clustering in 2D space. Arrows sym-
bolise links to bins with the largest count in local neighbourhood.
Different shading highlights the two clusters of the example.
Although the example used 4-neighbourhood, in this particular
case (and generally with well separated clusters) the result is
fairly insensitive to the size of searched neighbourhood. In this
example, identical clustering is obtained with 8 and 12 neigh-
bourhoods.

Algorithm 1: Graph-theoretical clustering

1. Compute feature histogram. In each bin, maintain a list of pixels voting for the bin.
2. For each bin, find the bin with maximal count in a given neighbourhood. Store a

link to this bin.
3. Such links form a forest, with a root of each tree in a local maximum. The set of

pixels voting for bins in a single tree form a unimodal cluster.

The graph-theoretical clustering algorithm requires two parameters: the size of a his-
togram bin and the size of the neighbourhood considered when searching for maximal
bins in local neighbourhood. Methods for automatic selection of these parameters are
given in [7].



The result of the graph-theoretical clustering for a simple example is shown in Figure
1. The arrows symbolise links to maximal bins in the local neighbourhood (in this case
4-neighbourhood). Shaded areas correspond to clusters detected by the method.

In our implementation we compute the links to maximal neighbourhood bins in a
single sweep. In the same pass we insert indices of all local maxima in a list. We sort the
list according to the bin count. Next, bins belonging to the cluster associated with the
local maximum currently at the top of the list are obtained by traversing the tree rooted at
the local maximum. Note that this implementation first outputs the cluster with a mode
in the global maximum, other salient clusters follow. The algorithm therefore does not
need to segment the feature space completely. The process can be terminated if eg. a
cluster with interesting properties was found or a sufficiently large number of pixels
have been analysed. The process can also be easily tuned to serve a top-down process
by eg. considering maxima only from a selected part of the feature space, corresponding
to a specific object.

Algorithm 2: Clustering in Feature and Spatial Domains

1. Perform graph-theoretical clustering.
2. Terminate if:

(a) No local maximum exists.
(b) Global maximum is bellow a threshold or the required number of regions is

found.

else select the current global maximum.
3. Traverse the tree rooted at current maximum to obtain a list of bins that belong to a

unimodal cluster (identical to GT-clustering)
4. Check local (ie. connected component) consistency.

(a) Backproject all pixels voting into bins of the unimodal cluster in the image.
Perform connected componet analysis.

(b) Sort the list of connected components by size.
(c) Histogram computed on the largest connected component forms the initial

model of the cluster distribution (in feature space).
(d) Iterating through the sorted list, statistically test whether the current model of

cluster distribution is consistent with the distribution computed on the next
connected component. Votes from accepted components are removed from the
global histogram.

5. Iteratively add pixels that are both in spatial and feature space neighbourhoods of
the cluster.

6. Update the list of local maxima and go to step 2

The complexity of computing connected components is near linear [18]. The histogram
comparison is carried out by a modified method described in [14] or by histogram
intersection [19].



3 Test Cases

This section presents five ‘test cases’, ie. synthetically generated examples of simple yet
common circumstances where feature space clustering alone cannot in principle result
in error-free segmentation. This is due to the fact that the class distributions are chosen
so that they overlap in the feature space.

For simplicity the problems are presented in the context of intensity image segmen-
tation where dimensionality of the feature space is 1 and the data are taken from a 2D
domain. The images contain rectangular patches with pixel values drawn from different
Gaussian distributions. As discussed in detail bellow, the ‘cases’ differ in the character
of the global histogram, number of distributions involved and adjacency relation of the
rectangular patches. The distributions are chosen to highlight a particular limitation of
the purely feature-based clustering methods like Modesp [8] or the Graph-theoretical
(GT) clustering [9] [4]. In particular we shall compare the results of the proposed FSD
method with GT clustering, but the conclusions drawn, in general, are expected to hold
for a large class of feature space clustering algorithms.

Problem 1. Two non-adjacent regions A and B on a black background are shown
in Figure 2 (a). The two overlapping clusters shown in Figure 3 (a) form a single
unimodal cluster in feature space. The situation arises eg. when the clusters are normally
distributedand �1��2 � �1+�2 In this case, GT-clustering detects a single cluster (see
Figure 2 (b)), regardless of the fact that each region has significantly different statictical
properties. This can be shown either by a Chi-square test on the feature (ie. grey-level)
distributions of the regions or simply by comparing interval estimates of the means and
standard deviations of the two distributions. The distributions used in the example wereN (100; 10) and N (120; 15). In Step 4.d, FSD clustering rejects the hypothesis that the
clusters from the two regions are identical and produce the correct segments (see Figure
2 (c)). Note that in the case of the GT-clustering method, a change in the level of noise
could qualitativelyaffect the segmentation result. The FSD method is considerably more
stable. Using the spatial context, it resolves the single modal histogram into two mixture
components (Figure 3 (b)) characterising the respective statistical properties of the two
regions.

Problem 2. Two non-adjacent regions A and B on a black background are shown
in Figure 2 (d). The regions form a histogram with two overlapping modes as shown
in Figure 3 (c). The distributions used were N (100; 10) and N (140; 10). GT-clustering
segments the image data by partitioningthe histogram at the valley point between the two
modes. This results in pixel misclassification (oversegmentation) illustrated in Figure 2
(e). In the case of the FSD method, in Step 4.d small regions are rejected on the grounds
that their pixels are not from different distributions. In Step 5 the small regions are then
incorporated into a neigbouring larger region on the grounds of spatial adjacency to
deliver an error free segmentation of the image as shown in Figure 2 (f).

Problem 3. Figure 2 (g) shows two adjacent regions A and B generated according
to the same distributions as in Problem 2. A third region C distributed as N (120; 10),
not adjacent to either A or B, overlaps in the feature space heavily both with A and
B. Globally, the feature histogram is unimodal, as apparent from Figure 3 (e). As in
Problem 1 the GT-clustering throws all pixel data into the same foreground cluster
(see Figure 2 (h)). The proposed method resolves the data into three separate clusters



in agreement with human perception. This is depicted in Figures 2 (i) and 3 (f). The
example shows how the GT result depends on non-local context.

Problem 4. Identical to Problem 2, but the two regions with the overlapping his-
tograms are adjacent. It is interesting to observe the behaviour of the segmentation
methods on the boundary shown in Figures 2 (k) and (l). In particular, the position of the
boundary produced by the FSD method can be slightly biased because of the inherent
ambiguity of region membership of pixels which are adjacent both spatially and in the
feature space. The FSD algorithm will attempt to grow a region as far as possible. The
bias will reflect the order in which regions are processed.

Problem 5. Identical to Problem 2, but a number of small regions with distribution
shown in Figure 3 (g) are added to the image (see Figure 2 (m)). This simulates the effect
of textured region. Here we illustrate the case when postprocessing by morphological
filtering would destroy useful image content. Without the filtering, the GT-clustering
method produces a noisy segmentation as shown in Figure 2 (n). In contrast, the FSD
method treats differently the pixels with feature values lying in the overlapping tails of
the cluster distributions and those exhibiting distinct feature space identity, regardless
of the size of the region they form as can be seen in Figure 2 (o).

4 Experiments

All the experiments were carried out using the same program where only the voting
procedure (approximately five to ten lines of code) was application specific. The section
of the code for the FSD clustering computation which is about three orders of magnitude
larger remained unchanged.

Segmentation of a gray level image. A very noisy synthetic image of Figure 4 (a)
referred to as “stamp” which has been used as a benchmark in edge detection studies
[13], has been used to demonstrate the properties of the FDS segmentation scheme. For
comparison with the segmentation approach based on edge detection the image was first
filtered with an optimal filter [13], [12] used in the Petrou-Kittler edge detector. The
result obtained with the edge detector is shown in Figure 4 (e). The filtered image Figure
4 (b) is the input to the FSD and GT clustering algorithms which produce outputs shown
in Figures 4 (c) and (d) respectively. Note the noisy appearance of the GT result. On the
other hand, the FSD method’s biased treatment of larger regions explains why the outer
circular ring is about one pixel wider than its true size. From the FSD segmentation
output the image edges can be obtained by extracting the region boundaries as shown in
Figure 4 (f). When compared to the edge detector output we note the relative quality of
the FSD performance. The edge map in Figure 4 (f) is less noisy and the boundaries are
closed which may help the subsequent analysis. The edge detector output produces less
noisy edge chains along strait lines. However, considering that in contrast to the edge
detection method the FSD approach has no inbuilt knowledge of shape, the clustering
scheme works remarkably well. In the histogram terms, the segmentation result of the
two methods can be seen in Figure 4 (h) for the GT algorithm and in Figure 4 (i) for the
FSD algorithm, with Figure 4 (g) showing the image histogram.

Range Data The approach was tested on depth images from the NRCC database
[17]. The NRCC database contains dense image data with depth available at every



pixel location. A sample image is shown in Figure 5 (a). We estimated the depth image
derivatives dzdx and dzdy using the Sobel operator. Each pair of derivatives defines a normal
which is superimposed on the depth image. Note that points of constant derivative values
belong to a set of pixels lying on parallel planes. The clustering was performed in the dzdx ,dzdy space. The resulting segmentation for the FSD and GT clustering methods is shown
in Figures 5 (b) and (c) respectively. At some pixel location the depth measurements are
not available. At such points estimates of the derivatives are randomly spread over the
feature space and consequently the pixels are not assigned to any cluster (see the white
points in Figures 5 (b) and (c).

Optic Flow We tested the suitability of the technique for motion segmentation
on a pair of images 6 (a) taken from the ‘Lab’ sequence of images analysed in the
thesis of Bober [2], page 53. The image contains a stationary background and two
moving objects undergoing distinct translatory motion. The optic flow field in Figure
6 (b) was computed using a robust Hough Transform technique described in [3], with
the following parameters: block size 16x16, final reslolution 0.01 pixel. The sequence
was preprocessed by Gaussian filtering, sigma 3 pixels. The results of the FSD and GT
clustering methods are shown in Figures 6 (c) and (d) respectively. It can be seen that
both moving objects are segmented out. The differences are insignificant as the clusters
corresponding to the two motions are not overlapping. In both cases the segmentation
is noisy because the regions contain flow vectors which are distribution outliers. Note
that these errors are the artifact of the optic flow computation rather than produced by
the clustering procedures. It should also be pointed out that for nontranslatory motion,
a more general motion model would have to be assumed to achieve feature space and
spatial domain coherence to allow satisfactory segmentation.

Line Detection by Hough Transform In order to demonstrate a completely different
application of the FSD clustering method we consider the problem of detecting straight
lines in the image shown in Figure 7 (a). Edge position and direction is mapped into
the � - � line parameter space. The connected component analysis (Step 3.a ) in this
case effectively compares the properties of the individual line segments associated with
the infinite straight line defined by the mode of each cluster. Note that at this stage the
lines that are grouped together in a single unimodal cluster will be resolved into a set
of contributing lines with distinct parameters. In this sense the proposed approach does
not have the tendency to merge several lines of slightly different parameters into a long
ghost line with incorrect ‘averaged’ parameters. The FSD clustering output is shown in
Figure 7 (c) for comparison with the robust Hough transform output [15] in Figure 7
(b). There are no significant differences in performance. The slight oversegmentation
produced by the Hough transform method could be reduced by threshold modification.
Also note that the FSD method outputs edge chains, rather than line models. Different
clusters of edge pixels are denoted by different greylevels. The main aim here is to
demonstrate the versaltility of the FSD method.

Segmentation of Colour Images The RGB values of the image in Figure 8 (a) were
projected into the chromatic plane to achieve illumination invariant segmentation results
[11]. The underlying assumptions for successful segmentation are diffused reflection,
and the ability to treat specularities and interreflections as noise as discussed in [10].
Here the FSD scheme performs significantly better (see Figure 8 (c)) than GT clustering



(Figure 8 (b)), specially in the dark and/or specular regions where clusters corresponding
to different reflectances overlap. They are disambiguated by the FSD procedure by
considering the spatial context.

5 Conclusions

We have proposed a novel approach to image segmentation, called feature and spatial
domain clustering. The method is devised to group pixel data by taking into account
simultaneously both their feature space similarity and spatial coherence. The FSD
algorithm is practically application independent. It has been successfully tested on a wide
range of image segmentation problems, including grey and colour image segmentation,
edge and line detection, range data and motion segmentation. In comparison with
existing segmentation approaches, the method can resolve image features even if their
distributions significantly overlap in the feature space. It can distinguish between noisy
regions and genuine fine texture. Moreover, if required, FSD clustering can produce
partial segmentation by identifying salient regions only.
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Fig. 2.: Test case images.
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Fig. 3.: Test case image histograms.
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Fig. 4.: Stamp (from [12]).
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Fig. 5.: Bolts. (a) Original image. (b) FSD clustering. (c) GT clustering.
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Fig. 6.: Lab sequence.

(a) (b) (c)

Fig. 7.: A polyhedral scene. (a) Original image. (b) Lines detected by Hough Transform (c) Results
of clustering

(a) (b) (c)

Fig. 8.: Colour. (a) Original image. (b) GT clustering. (c) FSD clustering.


