
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

10-05696

Spacial and Objective Decompositions for Very Large
SCAPs

Carleton Coffrin
Pascal Van Hentenryck
Russell Bent

2011 Conference on Integration of AI, CP and OR.

Spatial and Objective Decompositions
for Very Large SCAPs

Carleton Coffrin1, Pascal Van Hentenryck1, and Russell Bent2

1 Brown University, Providence RI 02912, USA
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA

Abstract. This paper reconsiders the single commodity allocation prob-
lem (SCAP) for disaster recovery, which determines where and how to
stockpile a commodity before a disaster and how to route the commod-
ity once the disaster has hit. It shows how to scale the SCAP algorithm
proposed in [1] to a geographical area with up to 1,000 storage locations
(over a million decision variables). More precisely, the paper shows that
spatial and objective decompositions are instrumental in solving SCAP
problems at the state scale (e.g., for the state of Florida). The practical
benefits of these decompositions are demonstrated on large-scale hurri-
cane disaster scenarios generated by Los Alamos National Laboratory
using state-of-the-art disaster simulation tools.

1 Background and Motivation

Every year, considerable human and monetary resources are spent to prepare
for, and recover from, seasonal hurricanes. Existing procedures rely on the ex-
perience of policy makers but they are often ad-hoc and do not exploit recent
progress in optimization to address natural disasters more effectively. Our ear-
lier research [1] demonstrated the benefits of optimization technology to meet
the population needs and to reduce storage and transportation costs by using a
two-stage stochastic optimization problems with explicit scenarios generated by
the National Hurricane Center (NHC) of the National Weather Service in the
United States. However, only disasters with up to 100 storage locations (city
scale) were considered, although large-scale planning may require as many as
1,000 storage locations (state scale). Indeed, the start-of-the-art algorithm in
[1], and its underlying MIP model, have difficulties scaling to problems with 250
storage locations and runs out of memory on larger instances.

This paper shows how to scale the approach for disasters at the state scale
using spatial and objective decompositions. The spatial decomposition performs
a geographic clustering of the repositories and aggregates the flows across the
clusters, thus reducing the number of decision variables considerably. The objec-
tive decomposition applies when the SCAP objective function is lexicographic: It
separates the decisions taken for meeting the demands and reducing travel time.
Experimental results demonstrate the benefits of both approaches on large and
very large instances respectively. Given the sizes and complexity of the models
considered here, our results are purely empirical: Their practicability is demon-
strated by showing improvements on the practice in the field. Note also that the

resulting approaches are now deployed and are activated each time a hurricane
of category 3 or above threatens the coast of the United States.

The rest of the paper is organized as follows. Section 2 of this paper reviews
related work. Section 3 presents a mathematical formulation of the SCAP and
Section 4 reviews the approach presented in [1]. Sections 5 and 6 present the
novel decomposition techniques. Section 7 reports the experimental results and
Section 8 concludes the paper.

2 Previous Work

Humanitarian logistics has been investigated since the 1990s but has received
increased attention in recent years due to the increase in major disasters [2–
5]. Humanitarian logistics gives rise optimization problems combining aspects
of inventory routing, supply chain management, warehouse location, and vehi-
cle routing, creating novel challenges for existing technology [2, 3]. They often
combine some, or all, of the following features:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objective goals (e.g. operational costs, speed of service,
and unserved customers) [6–9, 1].

2. Non-Standard Objective Functions - A makespan time objective in
VRPs [6, 10, 1] or equitability objectives [8].

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [8,
1], fixed latest delivery time [6, 8], or a insufficient budget [7, 11, 1].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [7, 9, 1].

Applications in humanitarian logistics are studied at a variety of scales in space
and time. Some problems consider a global scale with time measured in days
and weeks [7], while others focus on the minute-by-minute details of delivering
supplies from local warehouses directly to the survivors [6, 8, 1, 12]. This paper
considers the so-called “last mile” of distribution which involves warehouse se-
lection and customer delivery at the city and state scales.

Humanitarian logistics applications have been mostly formulated as mixed
integer programming (MIP) models, which often do not scale to real-world in-
stances [8, 6, 12]. Moreover, MIP solvers have been shown to have severe diffi-
culties with some of their unique features even when problem sizes are small
(e.g., minimizing the latest delivery time in VRPs [10]). Our earlier research [1]
demonstrated that hybrid optimization and decomposition methods can yield
high-quality solutions to such challenges and scale to real-world instances. This
work extends those results and shows that spatial and objective decompositions
provide significant scaleability. To the best of our knowledge, this is the first
time that SCAPs with over 100 storage locations have been solved.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = 〈N, E〉
where N represents the locations of interest to the allocation problem: Sites

Given:
Repositories: i ∈ R

Capacity: RCi

Investment Cost: RIi

Maintenance Cost: RMi

Vehicles: i ∈ V
Capacity: VC
Start Depot: H+

i

End Depot: H−i
Scenario Data: i ∈ S

Scenario Probability: Pi

Available Sites: ARi ⊂ R
Site Demand: Di,j∈R

Travel Time Matrix: Ti,1..l,1..l

Weights: Wx,Wy,Wz

Budget: B

Output:
The amount stored at each warehouse
Delivery schedules for each vehicle

Minimize:
Wx ∗Unserved Demands +
Wy ∗MAXi∈V Tour Timei+
Wz ∗ Investment Cost +
Wz ∗Maintenance Cost

Subject To:
Vehicle and site capacities
Vehicles start and end locations
Costs ≤ B

Notes:
Every warehouse that stores comm-
odities must be visited at least once

Fig. 1. The Single Commodity Allocation Problem Specification.

requiring the commodity after the disaster (e.g., hospitals, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored at
any node of the graph subject to some side constraints and the graph edges, E,
have weights representing travel times. The weights on the edges form a metric
space but it is not Euclidean due to the transportation infrastructure. Moreover,
travel times can vary in different disaster scenarios due to road damage. The
primary outputs of a SCAP are (1) the amount of commodity to be stored at
each node; (2) for each scenario and each vehicle, the best plan to deliver the
commodities. Figure 1 summarizes the entire problem, which we now describe
in detail.

Objectives The objective function aims at minimizing three factors: (1) The
amount of unsatisfied demands; (2) the time it takes to meet those demands; (3)
the cost of storing the commodity. Since these values are not expressed in the
same units, it is not always clear how to combine them into a single objective
function. Furthermore, their relative importance is typically decided by policy
makers on a case-by-case basis using weights Wx, Wy, and Wz. Note that the
routing objective is to minimize the time of the last delivery, which is required
by the Department of Homeland Security in the United States. Minimizing the
time of the last delivery is a very difficult aspect of this problem as demonstrated
in [10]. However, when solved with a combination of large neighborhood search
and constraint programming, the stochastic storage decisions quickly become
the most difficult aspect as the number of storage locations increases.

Side Constraints Each repository i ∈ R has a maximum capacity RCi to store
the commodity. It also has a one-time initial cost RIi (the investment cost) and
an incremental cost RMi for each unit of commodity to be stored. As policy
makers often work within budget constraints, the sum of all costs in the system
must be less than a budget B. Every repository can act as a warehouse and a
customer and its role changes on a scenario-by-scenario basis depending on site

Multi-Stage-SCAP(SCAP G)
1 D ← StochasticStorageProblem(G)
2 for s ∈ S
3 do C ← CustomerAllocationProblem(Gs,Ds)
4 for w ∈ R
5 do T ← RepositoryPathRoutingProblem(Gs, Cw)
6 I ← AggregateF leetRoutingProblem(Gs, T)
7 Fs ← PathBasedF leetRoutingProblem(Gs, T , I)
8 return F

Fig. 2. The Hybrid Stochastic Optimization Algorithm for Solving SCAPs.

availability and demands. Additionally, if a repository is acting as a warehouse
for its own demands a vehicle must still visit that location before the stored
commodities are available for consumption.

SCAPs also feature a fleet of V vehicles which are homogeneous in terms of
their capacity VC . Each vehicle i ∈ V has a unique starting depot H+

i and ending
depot H−i . Unlike classic vehicle routing problems [13], customer demands in
SCAPs often exceed the vehicle capacity and hence multiple deliveries are often
required to serve a single customer.

Stochasticity SCAPs are specified by a set of S different disaster scenarios.
Scenario i ∈ S has an associated probability Pi and specifies the set ARi of sites
which remain intact after the disaster. Moreover, scenario i specifies, for each
repository j ∈ R, the demand Dij and site-to-site travel times Ti,1..l,1..l (where
l = |N |) which capture the damages to the transportation infrastructure.

4 The Basic Approach

This section reviews the state-of-the-art algorithm for solving the SCAP problem
[1]. This multi-stage algorithm, depicted in Figure 2, decomposes the storage,
customer allocation, and routing decisions. The stages and the key decisions of
each stage are as follows: (1) Stochastic Storage: Which repositories store the
commodity and how much do they store? (2) Customer allocation: How is the
stored commodity allocated to each customer? (3) Repository routing: For each
repository, what is the best customer distribution plan? (4) Fleet routing: How
to visit the repositories to minimize the time of the last delivery? The decisions
of each stage are considered independently and use the optimization technique
most appropriate to their nature. The first two stages are formulated as MIPs,
the third stage is solved optimally using constraint programming (CP), and the
fourth stage uses large neighborhood search (LNS) and CP.

This work only considers modifications to the Stochastic Storage Model
(SSM) and uses identical algorithms for the customer allocation and routing
aspects of the problem. Hence, we only review the SSM in detail. The SSM cap-
tures the cost and demand objectives precisely but approximates the routing
aspects. In particular, the SSM only considers the time to move the commodity
from the repository to a customer, not the maximum delivery time. Let D be a

Variables:
Storedi ∈ (0, RCi) - Units stored at repository i
Openi ∈ {0, 1} - Non-zero storage at repository i

Second stage variables for each scenario s:
Outgoingsi ∈ (0, RCi) - Total units shipped from repository i
Incomingsi ∈ (0, Dsi) - Total units coming to repository i
Unsatisfiedsi ∈ (0, Dsi) - Demand not satisfied at repository i
Sentsij ∈ (0, RCi) - Units shipped from repository i to repository j

Minimize:

Wx

X
s∈S

Ps

X
i∈R

Unsatisfiedsi +Wz

X
i∈R

(RIi Openi +RMi Storedi)+

Wy

X
s∈S

Ps

X
i∈R

X
j∈R

Tsij Sentsij/VC

Subject To:X
i∈R

(RIi Openi +RMi Storedi) ≤ B (1)

RCi Openi ≥ Storedi ∀i ∈ R (2)
Incomingsi + Unsatisfiedsi = Dsi ∀s ∈ S, i ∈ R (3)
Outgoingsi ≤ Storedi ∀s ∈ S, i ∈ R (4)X
j∈R

Sentsij = Outgoingsi ∀s ∈ S, i ∈ R (5)X
j∈R

Sentsji = Incomingsi ∀s ∈ S, i ∈ R (6)

Outgoingsi = 0 ∀s ∈ S, i 6∈ ARs (7)

Fig. 3. The MIP Formulation for the Stochastic Storage Model (SSM).

set of delivery triples of the form 〈source, destination, quantity〉. The delivery-
time component of the objective is replaced by

Wy

∑
〈s,d,q〉∈D

Tsd
q

VC

Figure 3 presents the SSM formulation which scales well with the number of
disaster scenarios since the number of integer variables only depends on the
number of repositories. The meaning of the decision variables is explained in the
figure. The objective function sums the unsatisfied demands for each scenario,
the investment and maintenance costs, and the shipping costs for each scenario.
The second stage costs are obviously multiplied by the scenario probabilities.
Constraint (1) captures the budget constraint and constraint (2) ensures that
a repository is open if it stores the commodity. Constraint (3) states for each
scenario that the unsatisfied demand of a repository is the repository’s demand
minus the incoming supply (which can include local storage). Constraint (4)
expresses that the supply shipped from repository i cannot exceed the amount of
commodity stored at repository i. Constraints (5–6) connect the sent, incoming,
and outgoing variables and constraint (7) ensures that damaged repositories ship
no commodity.

Fig. 4. Storage Clustering and Flow Aggregation.

The experimental results in [1] indicate that the fleet-routing stage of the al-
gorithm is the dominant factor in the algorithm runtime. However, for instances
with more than 100 storage locations, the SSM quickly dominates the runtime
(see Section 7 for numerical evidence). The next two sections present two alter-
native models for the stochastic storage problem that provide significant benefits
for scalability. Both stochastic storage models rely on a key observation: In the
baseline algorithm (Figure 2), a customer allocation is computed in the SSM
and then recomputed in the customer allocation stage (once the uncertainty is
revealed). This means, when a customer allocation stage is used, only the storage
decisions are a necessary output of the SSM. The two new SSM models achieve
better performance by approximating or ignoring the customer allocation in the
first-stage storage problem.

5 Spatial Decomposition

In the SSM, the number of variables required for the customer allocation is
quadratic in the number of repositories and multiplicative in the number of
scenarios (i.e., |S||R|2). The number of variables can easily be over one million
when the number of repositories exceeds two hundred. Problems of this size can
take up to 30 seconds to solve with a linear-programming solver and the resulting
MIP can take several hours to complete. Our goal is thus to reduce the number
of variables in the MIP solver significantly, without degrading the quality of the
solutions too much.

The Aggregate Stochastic Storage Model (ASSM) is inspired by the struc-
ture of the solutions to the baseline algorithm. Customers are generally served
by storage locations that are nearby and commodities are only transported over
large distances in extreme circumstances. We exploit this observation by using
a geographic clustering of the repositories. The clustering partitions the set of
repositories R into C clusters and the repositories of a cluster i ∈ C are denoted
by CLi. For a given clustering, we say that two repositories are nearby if they are

Calculate:

CSc =
X

i∈CLc

RCi - Total storage in cluster c

CDsc =
X

i∈CLc

Dsi - Total demand in cluster c in scenario s

Variables:
Storedi ∈ (0, RCi) - Units stored at repository i
Openi ∈ {0, 1} - Non-zero storage at repository i

Second stage variables for each scenario s:
Unsatisfiedsi ∈ (0, Dsi) - Unsatisfied demands at repository i
Incomingsic ∈ (0, Dsi) - Units shipped from cluster c to repository i
Outgoingsic ∈ (0, RCi) - Units shipped from repository i to cluster c
Sentsij ∈ (0,min(RCi, Dsj)) - Units shipped from repository i to repository j
Linkscd ∈ (0,min(CSc, CDsd)) - Units sent from cluster c to cluster d

Minimize:

Wx

X
s∈S

Ps

X
i∈R

Unsatisfiedsi +Wz

X
i∈R

(RIi Openi +RMi Storedi)+

Wy

X
s∈S

Ps

X
c∈C

X
i∈CLc

X
j∈CLc

Tsij Sentsij/VC +Wy

X
s∈S

Ps

X
c∈C

X
d∈C

CTscd Linkscd/VC

Subject To:X
i∈R

(RIi Openi +RMi Storedi) ≤ B (1)

RCi Openi ≥ Storedi ∀i ∈ R (2)X
j∈R

Sentsji +
X
c∈C

Incomingsic + Unsatisfiedsi = Dsi ∀s ∈ S, i ∈ R (3)X
j∈R

Sentsij +
X
c∈C

Outgoingsic ≤ Storedi ∀s ∈ S, i ∈ R (4)X
i∈CLc

Outgoingsid = Linkscd ∀s ∈ S, c ∈ C, d ∈ C (5)X
i∈CLd

Incomingsic = Linkscd ∀s ∈ S, c ∈ C, d ∈ C (6)

Sentsij = 0 ∀s ∈ S, i 6∈ ARs, j ∈ R (7)
Outgoingsic = 0 ∀s ∈ S, i 6∈ ARs, c ∈ C (8)

Fig. 5. The MIP Formulation for the Aggregate Stochastic Storage Model (ASSM).

in the same cluster; otherwise the repositories are far away. Nearby repositories
have a tightly-coupled supply and demand relationship and hence the model
needs as much flexibility as possible in mapping the supplies to the demands.
This flexibility is achieved by allowing commodities to flow between each pair
of repositories within a cluster (as was done in SSM). When repositories are
far away, the precise supply and demand relationship is not as crucial since the
warehouse to customer relationship is calculated in the customer allocation stage
of the algorithm. As a result, it is sufficient to reason about the aggregate flow
moving between two clusters at this stage of the algorithm. The aggregate flows
are modeled by introducing meta-edges between each pair of clusters. If some
demand from cluster a ∈ C must be met by storage locations from cluster b ∈ C,
then the sending repositories CLb pool their commodities in a single meta-edge

that flows from b to a. The receiving repositories CLa then divide up the pooled
commodities in the meta-edge from b to meet all of their demands. Addition-
ally, if each meta-edge is assigned a travel cost, the meta-edge can approximate
the number of trips required between two clusters by simply dividing the total
amount of commodities by the vehicle capacity, as is the case for all the other
flow edges. Figure 4 visually indicates how to generate the flow decision variables
for the clustered problem and how commodities can flow on meta-edges between
customers in different clusters.

As stated above, the number of variables in the SSM is quadratic in the
number of repositories. Given a clustering CLi∈C , the number of variables in the
clustered storage model is (1) quadratic within each cluster (i.e.,

∑
i∈C |CLi|2);

(2) quadratic in the number of clusters, (i.e., |C|2); (3) and linear in the reposi-
tories connections to the clusters (i.e., 2|R||C|). The exact number of variables
clearly depends on the considered clustering. However, given a specific number
|C| of clusters, a lower bound on the number of variables is obtained by dividing
the repositories evenly among all the clusters, and the best possible variable re-
duction on a problem of size n with c clusters and s scenarios is s (n2

c +2nc+c2).
Given a clustering CLi∈C and cluster to cluster travel times CTscc for each

scenario, the ASSM is presented in Figure 5. The meaning of the decision vari-
ables is explained in the figure. The objective function has two terms for the
delivery times, one for the shipping between repositories inside a cluster and
one for shipping between clusters. Constraints (1–2) are the same as in the SSM
model. Constraints (3–4) take into account the fact that the commodity can
be shipped from repositories inside the clusters and from clusters. Constraints
(5–6) aggregate the outgoing and incoming flow for a cluster, while constraints
(7–8) express the damage constraints. Note that the array of variables Sentsij is
sparse and only includes variables for repositories inside the same cluster (this
is not reflected in the notations for simplicity).

6 Objective Decomposition

The ASSM significantly decreases the number of variables but it still requires
creating a quadratic number of variables for each cluster. Since this is multi-
plied by the number of scenarios, the resulting number of variables can still be
prohibitive for very large instances. This section presents an objective decompo-
sition which applies when the objective is lexicographic, i.e., when policy makers
set the values of the weights such that Wx �Wy �Wz, which is often the case
in practice. Let us contemplate what this means for the behavior of the model
algorithm as the budget parameter B is varied. With a lexicographic objective,
the model will first try to meet as many demands as possible. If the demands
can be met, it will reduce delivery times until it cannot be reduced further or the
budget is exhausted. As a result, the optimization with a lexicographic objective
exhibits three phases as B increases. In the first phase, the satisfied demands,
routing times, and costs increase steadily. In the second phase, the satisfied de-
mands remain at a maximum, the routing times decrease, and the costs increase.
In the last phase, the satisfied demands remain at a maximum, the routing times

Calculate:

SDs =
X
i∈R

Dsi - Total demand in scenario s

Variables:
Storedi ∈ (0, RCi) - Units stored at repository i
Openi ∈ {0, 1} - Non-zero storage at repository i
Useds ∈ (0,SDs) - Units used in scenario s

Minimize:X
s∈S

Ps (SDs −Useds)

Subject To:
RCi Openi ≥ Storedi ∀i ∈ R (1)X
i∈ARs

Storedi ≥ Useds ∀s ∈ S (2)X
i∈R

(RIi Openi +RMi Storedi) ≤ B (3)

Fig. 6. Phase 1 of the Lexicographic Stochastic Storage Model (LSSM-1).

remain at a minimum, and the costs plateau even when B increases further. The
experimental results from [1] confirm this behavior.

The Lexicographic Stochastic Storage Model (LSSM) assumes that the objec-
tive is lexicographic and solves the first phase with a much simpler (and faster)
model. The goal of this phase is to use the available budget in order to meet the
demands as best possible and it is solved with a two-stage stochastic allocation
model that ignores the customer allocation and delivery time decisions. Since
each scenario s has a total demand SDs that must be met, it is sufficient to
maximize the expected amount of demands that can be met, conditioned on the
stochastic destruction of storage locations. Figure 6 presents such a model. The
meaning of the decision variables is explained in the figure.

During the first phase, the model in Figure 6 behaves similarly to the SSM
for a lexicographic objective. But the model does not address the delivery times
at all, since this would create a prohibitive number of variables. To compensate
for this limitation, we use a second phase whose idea can be summarized by the
following greedy heuristic: ”if all the demands can be met, use the remaining
budget to store as much additional commodity as possible to reduce delivery
times”. This greedy heuristic is encapsulated in another MIP model (LSSM-2)
presented in Figure 7. LSSM-2 utilizes the remaining budget while enforcing the
decisions of the first step by setting the lower bound of the StoredExi variables
to the value of the Storedi variables computed by LSSM-1. This approximation
is rather crude but produces good results on actual instances (see Figures 9 and
10 in Section 7). Our future work will investigate how to improve this formulation
by taking account of customer locations, while still ignoring travel distances.

The resulting approach is less flexible than the SSM and ASSM approaches
because it ignores the weighting factors Wx, Wy, and Wz. However, it produces
a significant increase in performance by decreasing the number of decision vari-
ables from quadratic to linear. The asymptotic reduction is essential for scal-
ing the algorithm to very large instances. Note that it is well-known in the

Variables:
StoredExi ∈ (Storedi, RCi) - Units stored at repository i
OpenExi ∈ {0, 1} - Non-zero storage at repository i

Maximize:X
i∈R

StoredExi

Subject To:
RCi OpenExi ≥ StoredExi ∀i ∈ R (1)X
i∈R

(RIi OpenExi +RMi StoredExi) ≤ B (2)

Fig. 7. Phase 2 of the Lexicographic Stochastic Storage Model (LSSM-2).

goal-programming community that lexicographic multi-objective programs can
be solved by a series of single-objective problems [14]. The sub-objectives are
considered in descending importance and, at each step, one sub-objective is op-
timized in isolation and side constraints are added to enforce the optimization
of the previous steps. Our decomposed storage model follows the same schema,
except that the second step is necessarily approximated due to its size.

7 Benchmarks and Results

Benchmarks The benchmarks were produced by Los Alamos National Labo-
ratory and are based on the infrastructure of the United States. The disaster
scenarios were generated by state-of-the-art hurricane simulation tools similar to
those used by the National Hurricane Center [15]. The problem sizes and algo-
rithm parameters are presented in Table 1. The Trip Lower Bounds are simply
the total amount of commodities that are shipped divided by the vehicle capac-
ity. These values are included because they are a good metric for the routing
difficulty of a benchmark. The amount of commodities that need to be moved
can vary significantly from scenario to scenario. Therefore, we present both the
smallest and the largest trip bounds across all the scenarios. Benchmarks 3 and
6 feature scenarios where the hurricane misses the region; this results in the
minimum trip bound being zero. This is important since any algorithm must
be robust with respect to empty disaster scenarios which arise in practice when
hurricanes turn away from shore or weaken prior to landfall. The algorithm
parameters include a runtime cap for the client allocation and fleet routing sub-
problems (defined in [1]), and the number of clusters that will be used in the
ASSM model. All of the experimental results have fixed values of Wx, Wy, and
Wz satisfying the field constraint Wx � Wy � Wz and we vary the value of
the budget B to evaluate the algorithm (as was done in [1]). The results are
consistent across multiple weight configurations, although there are variations
in the problem difficulties.

The Algorithm Implementation and the Baseline Algorithm The algorithms were
implemented in the Comet system [16] and the experiments were run on Intel
Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate our

Benchmark |R| |V | |S| Min Trip Max Trip CA Fleet Clusters
Lower Bound Lower Bound Timeout Timeout

BM1 25 4 3 6 27 30 10 4

BM2 25 5 3 60 84 30 20 4

BM3 25 5 3 0 109 30 20 4

BM4 30 5 3 35 109 30 20 4

BM5 100 20 3 82 223 90 200 4

BM6 25 5 18 0 140 30 20 4

BM7 30 10 18 7 23 30 20 4

BM9 250 10 18 7 23 250 90 10

BM10 500 20 18 13 45 - 180 -

BM12 1000 20 3 64 167 - 300 -

Table 1. Benchmark Statistics and Algorithm Parameters (timeouts in seconds).

Greedy-Truck-Agent (GTA)()
1 while there exists some commodity to be picked up and demands to be met
2 do if I have some commodity
3 then drop it off at the nearest demand location
4 else pick up some commodity from the nearest warehouse
5 goto final destination

Fig. 8. The Agent-based SCAP Algorithm Simulating the Practice in the Field.

results, we compare our proposed storage models with those of the previous study
[1]. Our routing time results also include the solution from the Greedy Truck
Agent (GTA) algorithm proposed in [1] which mimics how actual decision makers
operate in the field and thus provides a sense of improvement and scale in solution
quality. The agent-based algorithm uses the same storage model but builds a
routing solution without any optimization. Each vehicle works independently to
deliver as much commodity as possible using the algorithm in Figure 8.

Baseline Efficiency Results Table 2 depicts the runtime results for the baseline
algorithm in [1]. In particular, the table reports, in average, the total time in
seconds for all scenarios (T1), the total time when the scenarios are run in parallel
(T∞), the time for the storage model (STO), customer allocation (CA), the
repository routing (RR), the aggregate fleet routing (AFR), and the fleet routing
(FR). The first three fields (T1, T∞, STO) are averaged over ten identical runs
on each of the budget parameters. The last four fields (CA, RR, AFR, FR) are
averaged over ten identical runs for each of the budget parameters and each
scenario. Since these are averages, the times of the individual components do
not sum to the total time. The results show that the approach scales well with
problems with 100 repositories or less. However, benchmark 9 (250 repositories)
clearly indicates that the runtime of the storage model has exploded and becomes
the dominating factor of the algorithm. Benchmarks 10 and 12 are unsolvable
due to memory issues: These models require over 3,000,000 variables.

ASSM Quality and Efficiency Results Table 3 depicts the improvement of our
ASSM for the SCAP algorithm. Observe in column STO that ASSM runs about

Benchmark µ(T1) σ(T1) µ(T∞) σ(T∞) µ(STO) σ(STO) µ(CA) µ(RR) µ(AFR) µ(FR)

BM1 89.89 21.90 39.96 13.01 0.9293 0.4670 9.257 0.1746 10.057 10.13

BM2 169.1 35.93 66.02 10.47 0.5931 0.2832 16.67 0.1956 19.26 20.00

BM3 98.58 14.51 61.07 13.79 0.3557 0.1748 7.225 0.1050 12.04 13.33

BM4 184.2 26.25 68.76 5.163 0.8892 0.3940 21.24 0.2075 19.58 20.00

BM5 1308 62.01 520.5 32.70 46.70 21.31 90.87 1.225 128.0 200.0

BM6 723.5 58.76 75.34 3.079 5.165 3.076 10.81 0.1281 13.35 15.56

BM7 832.0 97.05 75.13 13.31 16.15 5.153 5.500 0.4509 19.31 20.00

BM9 16123 13661 11108 13459 10672 13458 143.7 1.377 65.97 90.00

Table 2. Runtime Statistics in Seconds for the Baseline Algorithm (SSM).

Benchmark µ(T1) σ(T1) µ(T∞) σ(T∞) µ(STO) σ(STO) µ(CA) µ(RR) µ(AFR) µ(FR)

BM1 89.77 22.19 39.25 13.28 0.5464 0.2389 9.043 0.1791 10.04 10.12

BM2 169.4 35.91 65.93 10.49 0.4846 0.1850 16.81 0.2084 19.26 20.00

BM3 98.73 14.49 61.15 13.81 0.3986 0.1609 7.245 0.1092 12.05 13.33

BM4 182.8 24.28 69.74 3.822 0.6950 0.3717 20.88 0.2122 19.56 20.00

BM5 1266 70.41 487.4 35.18 18.40 7.700 90.88 0.8691 123.9 200.0

BM6 714.86 59.04 73.28 1.032 3.130 1.041 10.57 0.09642 13.27 15.56

BM7 823.6 98.79 67.95 12.99 8.849 2.666 5.479 0.4475 19.28 20.00

BM9 6377 803.6 1184 363.8 747.7 363.5 153.9 0.8491 66.72 90.00

Table 3. Runtime Statistics in Seconds for the Aggregated Model (ASSM).

twice as fast on benchmarks 1 through 7 and 14 times faster on benchmark 9.
The clustering was obtained using ten samples of the k-means algorithm. The
sample with the smallest mean sum is used in the clustered storage model. The
distances between clusters are calculated on a scenario-by-scenario basis using
the average distance between all pairs of points in each cluster. The runtime
benefits of the clustering algorithm are largely due to the reduction in the number
of variables in the model. Section 5 analyzed the variable reduction and pointed
out that the reduction is tightly coupled with the clustering. Due to geographic
considerations in these instances, the clustering exhibits great variation from
instance to instance and it is important to report the actual reduction in problem
size. Table 4 presents the number of variables of the SSM and the ASSM, as well
as the lower bound on the number of variables. Observe that the benefits become
more significant as the problem size grows and the runtime results confirm this.

Table 5 describes the relative changes in routing times when using ASSM
instead of SSM. The quality degradation of the GTA algorithm is also presented
to provide a sense of scale. Because the ASSM is a courser approximation of
the travel times, some decrease in routing quality is expected. Fortunately, the
reduction in quality is not significant and negligible when compared to GTA. It
is also surprising that sometimes the clustering model improves the quality of
the routing solution. This is a result of the fact that the travel time objective
is only approximated in all of the stochastic storage models. When there are
large distances between nodes, the ASSM meta-edges provide a more accurate
estimate of the number of trips needed between two clusters. Unfortunately,

Benchmark BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM9 BM10 BM12

SSM 1875 1875 1875 2700 30000 11250 16200 1125000 - -
ASSM 1116 1206 1248 1470 12246 7344 9576 237420 - -

Lower Bound 1101 1101 1101 1443 9948 6606 8658 204300 - -

Table 4. The Number of Variables in the SSM and ASSM.

Benchmark BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM9 BM10 BM12

ASSM Change(%) -0.356 0.0834 -0.108 -0.504 -0.887 3.54 -0.308 2.95 - -

GTA Change(%) 56.4 43.1 73.7 52.0 64.0 92.2 55.5 259 - -

Table 5. Degradation of the Routing Times Compared to the SSM Results.

the ASSM still suffers from the same memory issues as the SSM on very large
instances and is unable to solve benchmarks 10 and 12.

LSSM Quality and Efficiency Results Table 6 depicts the performance improve-
ment of the LSSM and the consistent reduction in runtime of the storage model
(STO), which runs about 1,000 times faster than the SSM on benchmark 9 on
the most difficult configuration and 200 times faster on average. Benchmarks
10 and 12 are now in the scope of the solution method. Note that, due to the
enormous size of benchmarks 10 and 12, the customer allocation stage does not
return a feasible solution within 1000 seconds. To resolve this difficulty, we sim-
ply ignore the integer variables, solve the LP relaxation, and round the results.
Table 6 indicates that solving the LP relaxation of these problems can take over
ten minutes. The MIP solver is also terminated whenever the optimality gap is
smaller than 0.05% to stabilize its runtime behavior on the largest instances.

Table 7 describes the relative change in routing times from the SSM. The
quality degradation of the GTA algorithm is also presented to provide a sense of
scale. Because the LSSM has no information about the travel time, some decrease
in routing quality is expected. Again, it is impressive that the reduction is so
small (especially when compared with the GTA algorithm). This model is the
first that can solve benchmarks 10 and 12, and thus can report the relative
improvements over the GTA algorithm. However, it cannot report the relative
change compared to the SSM because that model cannot solve these instances.
Some policy makers may be concerned by the 7.0% increase in delivery time in
benchmark 6 and may prefer to use the SSM. However, some types of disasters
require immediate response where every minute is valuable. In those extreme
situations, the ASSM and LSSM provide a much faster alternative to the SSM.
Our results thus allow policy makers to choose on a case-by-case basis which is
preferable: A more immediate response or a higher quality solution.

The lack of information about travel time is an advantage for the memory
usage of the LSSM. Only three pieces of the problem specification need to be
considered, the repository information, scenario demands, and scenario damages.
This resolves the memory issues faced by the other models since the travel times
can be handled at the scenario level and not globally. This allows the LSSM to
scale to the largest benchmarks. Figure 9 visually summarizes the runtime and
quality tradeoffs of the SSM, ASSM, and LSSM. The left graph shows how the

Benchmark µ(T1) σ(T1) µ(T∞) σ(T∞) µ(STO) σ(STO) µ(CA) µ(RR) µ(AFR) µ(FR)

BM1 94.97 24.38 41.32 12.79 0.11 0.06 11.46 0.19 9.819 10.00

BM2 169.3 36.04 65.59 10.43 0.16 0.08 16.86 0.24 19.25 20.00

BM3 98.85 14.31 60.97 13.76 0.17 0.09 7.28 0.13 12.12 13.34

BM4 183.8 24.26 69.15 3.53 0.25 0.19 21.27 0.25 19.59 20.00

BM5 1240 69.07 468.6 33.70 2.12 0.86 90.94 0.81 120.6 200.0

BM6 719.8 56.91 70.46 0.08 0.35 0.09 11.06 0.09 13.23 15.56

BM7 810.5 100.8 59.54 13.51 0.70 0.15 5.40 0.37 19.17 20.00

BM9 5859 458.6 488.9 26.32 53.84 27.30 164.8 0.70 65.92 90.00

BM10 32048 1708 1921 108.9 17.34 22.02 1385* 8.66 175.7 180.0

BM12 18201 73.11 6146 46.54 14.12 0.22 5485* 14.28 227.3 300.0

Table 6. Runtime Statistics in Seconds for the Lexicographic Model (LSSM).

Benchmark BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM9 BM10 BM12

LSSM Change(%) 3.47 -0.891 0.165 0.919 3.38 7.02 -0.0884 6.77 - -

GTA Change(%) 61.1 42.5 74.5 53.5 67.0 103 55.5 295 78.5 91.5

Table 7. Degradation of the Routing Times Compared to the SSM Results.

runtime of all the storage models varies as the number of repositories increases.
The logarithmic scale illustrates the significant time savings of ASSM and LSSM
over SSM. The right graph shows the change in the routing quality when ASSM
and LSSM are used instead of SSM. Despite the significant reduction in runtime,
the degradation of solution quality is no more than 6% on average.

Behavioral Analysis of LSSM The LSSM ignores the algorithm parameters
Wx, Wy, and Wz, and implicitly assumes the field constraint Wx � Wy � Wz.
Although the other storage models are more flexible in this regard, all the stor-
age models are configured for this field constraint for the purpose of this study.
This means that the storage decisions for the LSSM will be exactly the same as
the SSM until all of the demands are met. Once all of the demands are satis-
fied, the LSSM will degrade because it cannot determine how to use additional
funds to decrease the delivery time. However, as the budget increases, it will
approach the same solution as the SSM because these solutions correspond to
storing commodities at all of the repositories. Figure 10 presents the experi-
mental results on benchmark 6 which exhibits this behavior most dramatically
(other benchmarks are less pronounced and are omitted for space reasons). The
graph on the left shows how the satisfied demand increases with the budget,
while the graph on the right shows how the last delivery time changes. We can
see that, as the satisfied demand increases, the routing times of both algorithms
are identical until the total demand is met. At that point, the routing times
diverge as the travel distance becomes an important factor in the objective, but
they re-converge as the budget approaches its maximum and all of the reposito-
ries are storing commodities. These results confirm our behavioral expectation.
The experimental results also demonstrate that the degradation of the decom-
posed model is not significant when compared to the choices made by the GTA
algorithm, representing the practice in the field.

1
10

0
10

00
0

 Maximum Storage Model Runtime

Instance Number

R
un

tim
e

(s
ec

on
ds

)
lo

g
sc

al
e

●

●
●

●

●

●

●

●

1 2 3 4 6 7 5 9 10 12

● SSM
ASSM
LSSM

0
2

4
6

 Average Distance from Original Routing Solution

Instance Number

R
el

at
iv

e
D

is
ta

nc
e

(%
)

● ● ● ● ● ● ● ●

1 2 3 4 6 7 5 9 10 12

● SSM
ASSM
LSSM

Fig. 9. Runtime and Quality Tradeoffs of SSM, ASSM, and LSSM.

500000 1000000 1500000

0
20

40
60

80
10

0

 Expected Demand Met

Budget ($)

E
xp

ec
te

d
D

em
an

d
M

et
 (

%
)

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

SSM
LSSM

500000 1000000 1500000

0
50

0
10

00
15

00

 Expected Last Delivery Time

Budget ($)

E
xp

ec
te

d
T

im
e

● ●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ● ● ●

●

GTA
LSSM
SSM

Fig. 10. Behavior of SSM and LSSM on Benchmark 6.

8 Conclusion

This paper studied the scalability of the SCAP problem in the field of humanitar-
ian logistics. The SCAP models the strategic planning process for disaster recov-
ery with stochastic last-mile distribution. The paper proposed two new stochas-
tic storage models that produce high quality solutions to real-world benchmarks
that were hitherto unsolvable. The algorithms use spatial and objective decom-
positions to exploit the problem structure and speedup stochastic storage de-
cisions. The experimental results on water allocation benchmarks indicate that
the algorithms are: (1) practical from a computational standpoint; (2) produce
significant scalability over previous work; (3) deliver better performance than ex-
isting relief delivery procedures. This work is currently deployed at Los Alamos
National Laboratory and is activated every time a hurricane of category 3 or
above threatens the United States in order to aid federal organizations such as
the Department of Energy and the Department of Homeland Security in prepar-
ing for, and responding to, disasters.

References

1. Van Hentenryck, P., Bent, R., Coffrin, C.: Strategic Planning for Disaster Recovery
with Stochastic Last Mile Distribution. [17] 318–333

2. Wassenhove, L.V.: Humanitarian aid logistics: supply chain management in high
gear. Journal of the Operational Research Society 57(1) (2006) 475–489

3. Beamon, B.: Humanitarian relief chains: Issues and challenges. 34th International
Conference on Computers & Industrial Engineering (2008) 77–82

4. United-States Government: The Federal Response to Hurricane Katrina: Lessons
Learned (2006)

5. Fritz Institute.: Fritz Institute Website. http://www.fritzinstitute.org (2008)
6. Barbarosoglu, G., Ozdamar, L., Cevik, A.: An interactive approach for hierarchical

analysis of helicopter logistics in disaster relief operations. European Journal of
Operational Research 140(1) (2002) 118 – 133

7. Duran, S., Gutierrez, M., Keskinocak, P.: Pre-positioning of emergency items
worldwide for care international. Interfaces (to appear) (2009)

8. Balcik, B., Beamon, B., Smilowitz, K.: Last mile distribution in humanitarian
relief. Journal of Intelligent Transportation Systems 12(2) (2008) 51–63

9. Gunnec, D., Salman, F.: A two-stage multi-criteria stochastic programming model
for location of emergency response and distribution centers. In: INOC. (2007)

10. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts.
Transportation Science 42(2) (2008) 127–145

11. Griffin, P., Scherrer, C., Swann, J.: Optimization of community health center
locations and service offerings with statistical need estimation. IIE Transactions
(2008)

12. Gunes, C., van Hoeve, W.J., Tayur, S.: Vehicle routing for food rescue programs:
A comparison of different approaches. [17] 176–180

13. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, Pennsylvania (2001)

14. Ignizio, J.P.: A review of goal programming: A tool for multiobjective analysis.
The Journal of the Operational Research Society 29(11) (1978) pp. 1109–1119

15. FEMA: FEMA HAZUS Overview. www.fema.gov/plan/prevent/hazus (2010)
16. Dynadec, Inc.: Comet 2.1 User Manual. http://dynadec.com/ (2009)
17. Lodi, A., Milano, M., Toth, P., eds.: Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems, 7th Interna-
tional Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Proceedings.
In Lodi, A., Milano, M., Toth, P., eds.: CPAIOR. Volume 6140 of Lecture Notes
in Computer Science., Springer (2010)

