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Introduction
Determining the spatial distribution and temporal abundance 

changes of arboreal taxa during the late Quaternary is important 

for understanding present-day distributions of tree populations, 

and for interpreting the driving forces. Accordingly, it has been a 

focus of vegetation scientists for several decades. Vegetation 

change based on pollen-data mapping at a continental/sub- 

continental scale was first investigated for north-eastern North 

America (Bernabo and Webb, 1977) and Europe (Huntley and 

Birks, 1983). More recently, the European Pollen Database was 

used to locate potential glacial refugia for various trees and to 

reconstruct the subsequent migrational pathways to their current 

distributions (Brewer et al., 2002; Giesecke and Bennett, 2004; 

Van der Knaap et al., 2005). Works of comparable spatial extent 

and temporal and taxonomic resolution are currently lacking for 

the Asian continent.

The eastern part of continental Asia, the focus region of this 

study, encompasses various biomes reflecting large climate gradi-

ents. It has a long history of human civilization with potentially 

marked effects on vegetation distribution and taxa abundance 

(Gong et al., 2003; Li et al., 2009; Lu et al., 2009). The region is 

therefore a suitable area to study past natural and human-induced 

range and abundance changes for arboreal taxa.

Spatial distributions and temporal changes of key arboreal 

taxa from Asia have been investigated, for example, Abies/Picea, 

Pinus, Betula, Quercus and Ulmus in China north of the Yangtze 

River (Ren and Beug, 2002; Ren and Zhang, 1998); Picea on the 

Loess Plateau (Zhou and Li, 2012); and Alnus, Pinus (Diploxy-

lon) and Quercus on the southern Korean Peninsula (Yoon et al., 

2011). Furthermore, Ren (2007) studied forest-cover changes in 

China north of the Yangtze River during the Holocene using a 

40% threshold of arboreal pollen to map the forest-steppe bound-

ary. However, the restricted spatial extent of the study areas 

means that these pioneering pollen-mapping studies are unable to 

provide a comprehensive picture of past vegetation changes 

beyond a regional scale.

In this paper, we estimate the pollen abundance thresholds of a 

taxon’s presence/absence and dominance/presence by logistic 
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regression modelling based on the relationship between modern 

pollen abundances and corresponding plant distributions for 14 key 

arboreal pollen taxa (Abies, Betula, Castanea, Castanopsis, Cyclo-

balanopsis, Fagus, Juglans, Larix, Picea, Pinus, Pterocarya, Quer-

cus, Tilia, Ulmus). We then apply these pollen abundance thresholds 

to fossil pollen records derived from a taxonomically harmonized 

and temporally standardized fossil pollen dataset from eastern con-

tinental Asia (Cao et al., 2013) and map the spatial distribution 

changes of the key arboreal taxa since the Last Glacial Maximum 

(LGM). Finally, we compare the obtained pattern of taxa changes 

to those inferred for North America and Europe to highlight 

regional peculiarities and synthesize the relevant information so as 

to glean from past changes a better understanding of likely tree dis-

tribution changes within the frame of recent climate change.

Regional setting

The study area encompasses China, Mongolia, south-eastern 

Siberia (Russia), eastern Kazakhstan and eastern Kyrgyzstan, 

with a latitudinal range from 18°N to 55°N and a longitudinal 

range from 70°Ε to 135°E (Figure 1).

The study area can be divided into three major geographical 

units (Figure 1a): (1) the eastern plains and lowlands (mainly 

below 500 m.a.s.l.), which have long histories of agriculture dat-

ing back to about 10 cal. kyr BP (Gong et al., 2003, 2007; Li et al., 

2009; Lu et al., 2009); (2) the low plateaux and basin areas lie 

mainly between 1000 and 2000 m.a.s.l.; although these areas have 

long histories of civilization too, the natural vegetation has been 

less modified than on the eastern plains (Fu, 2003; Li et al., 2009); 

(a)

(b)

Figure 1. (a) Total annual precipitation (mm), climatic systems and main topographical units of the study area. (b) Modern vegetation zones. 
Vegetation zone map (modified from Hou (2001) and Olson et al. (2001)): I – tropical rainforest and seasonal rainforest; II – subtropical 
evergreen broadleaved forest; III – warm-temperate deciduous forest; IV – temperate mixed conifer–deciduous broadleaved forest; V – boreal 
conifer forest; VI – temperate steppe; VII – temperate desert; VIII – high-cold meadow and steppe; IX – high-cold semi-desert and desert. The 
contours of total annual precipitation have been interpolated by kriging in ArcMap 10, based on 2592 precipitation observations. Blue crosses 
indicate locations of available pollen records in the fossil pollen dataset (Cao et al., 2013) and the three new added records.
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(3) the Tibetan Plateau with a mean elevation of over 4000 m.a.s.l.; 

human impact is largely limited to grazing in restricted areas.

Most of the Chinese territories and the southern part of the 

Russian Far East belong to an area influenced by the Indian Sum-

mer Monsoon and the East Asian Summer Monsoon. The climate 

of Mongolia, western Inner Mongolia, the north-western Tibetan 

Plateau and areas to their west is dominated by westerly circula-

tion (Tao and Chen, 1987; Wang et al., 2010). There is a marked 

precipitation gradient from south-east China to the desert areas of 

central Asia (Figure 1a).

The vegetation zones in the eastern part of the study area con-

sist of tropical rainforest and seasonal rainforest (south of ~23°N), 

subtropical evergreen broadleaved forest (23°N–32°N), warm-

temperate deciduous forest (32°N–40°N), temperate mixed coni-

fer–deciduous broadleaved forest (40°N–50°N) and boreal 

conifer forest (north of ~50°N). The natural vegetation, following 

the south-east–north-west precipitation gradient, changes from a 

moist coastal forest zone, to steppe to desert, reflecting increasing 

continentality. In the north-western part of the study area, alpine 

conifer forests occur in mountainous areas, with forest-steppe in 

northern Kazakhstan because of the relatively wet climatic condi-

tions. Alpine vegetation zones on the Tibetan Plateau follow a 

southeast to northwest precipitation gradient from mountainous 

forest to high-cold meadow, high-cold steppe, semi-desert and 

high-cold desert (Hilbig, 1995; Hou, 2001; Figure 1b).

Data and methods
Modern pollen percentages (2434 sites) and present geographical 

ranges for the 14 key arboreal taxa from China were used in logis-

tic regression modelling to estimate the pollen abundance thresh-

old for a taxon’s occurrence (presence or dominance) in the 

vegetation. These threshold values reflect pollen–vegetation rela-

tionships reasonably (pollen distributions with more than 0.5 

probability generally coincide with present geographical ranges 

for most taxa) and are mostly in accordance with threshold values 

from previous studies (although Pinus and Pterocarya might be 

respectively under- and over-estimated). More detail on process-

ing is provided in Appendix 1 (available online).

The taxonomically harmonized and temporally standardized 

fossil pollen dataset (Cao et al., 2013) was employed to investigate 

the distribution changes of the 14 arboreal taxa since 22 kyr BP at 

a 500-year resolution in eastern continental Asia. For the 271 pol-

len records included in the dataset, pollen percentage was stan-

dardized (on the basis of the total number of terrestrial pollen 

grains, including Cyperaceae), pollen taxonomy was harmonized, 

age–depth relationships were established for 260 sites using Bacon 

software (Blaauw and Christen, 2011) and linear interpolation was 

used for 11 sites. Pollen abundances for each 500-year time slice 

were interpolated using the linear integration function of Analy-

Series 2.0.4.2 (Paillard et al., 1996). More detail on processing is 

provided in Cao et al. (2013). In this study, we added three new 

pollen records: Lake Donggi Cona (35.5°N, 98.5°E, 4090 m.a.s.l.; 

Wang et al., 2014) from the eastern part of the Tibetan Plateau, 

Lake Sumxi Co (34.6°N, 84.2°E, 5059 m.a.s.l.; Campo and Gasse, 

1993) from the western margin of the Tibetan Plateau, and Lake 

Bayan Nuur (90.9°N, 48.8°E, 1576 m.a.s.l.; Krengel, 2000) from 

north-west Mongolia. For this study, we evaluated the reliability of 

each age–depth model for all pollen records, and excluded 31 pol-

len records because of their low average frequency of dates (more 

than every 5 kyr) from pollen mapping. The 243 available pollen 

records cover the major vegetation zones in the study area.

We selected pollen abundance thresholds at high probabilities 

(0.5, 0.7 and 0.9 for taxon presence; 0.5 for taxon dominance; 

Table 1) to represent plant presence and/or dominance, and used 

the program ArcMap 10.1 to generate past plant distribution maps 

at each 500-year interval for the 14 arboreal taxa.

Results
The distribution maps for each taxon showing their presence/

absence and dominance thresholds with different probabilities for 

each 500-year interval (Appendix 2, available online) show the 

spatial and temporal distribution changes (significantly or insigni-

ficantly) in different time slices. The distribution maps of the 14 

arboreal pollen taxa at six key time slices (Figure 2) further 

clearly reveal their strong spatial and temporal changes. All ages 

are in calibrated years BP.

Thermophilous broadleaved tree taxa

Castanea (Chestnut). The distribution centre of chestnut trees is 

located in the middle and lower reaches of the Yangtze River. 

Chestnut trees were limited to the estuaries of the Yangtze River 

Table 1. The presence/absence and dominance/presence thresholds of the 14 key arboreal taxa revealed by logistic regression of modern 
pollen percentages versus occurrence in the vegetation inferred from vegetation maps (Hou, 2001; Fang et al., 2011).

Pollen taxa Presence As dominant/indicative species

 Probability p-value of Wald test Probability p-value of Wald test

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5  

Abies 1.2 1.7 2 2.7 3 4 5 <0.001 6 <0.001

Betula – – – 3 6 10 16 <0.001 25 <0.001

Castanea 1 3 5 6 8 10 14 <0.001 – –

Castanopsis 3 5 7 9 10 13 16 <0.001 10 <0.001

Cyclobalanopsis 1 2.5 4 5 7 9 12 <0.001 25 <0.001

Fagus 1 1.3 1.6 1.9 2.2 2.6 3.2 <0.001 – –

Juglans 0.2 0.3 0.5 0.6 0.8 1 1.3 <0.001 – –

Larix 0.2 0.5 0.8 1.1 1.5 1.9 2.5 <0.001 2 <0.001

Picea – – 1 2 4 6 9 <0.001 18 <0.001

Pinus – – – 5 13 23 37 <0.001 20 <0.001

Pterocarya 1 2 3 4 5 6 8 <0.001 – –

Quercus – 2 6 10 15 21 30 <0.001 17 <0.001

Tilia 0.1 0.4 0.7 1 1.5 2 3 <0.001 6 <0.001

Ulmus – – – – 0.5 1 2 <0.001 – –

Bold type indicates the selected pollen percentage thresholds for mapping. The dash means no >0 threshold available for presence probability or no 
available present range as dominant/indicative species.



82 The Holocene 25(1)

Figure 2. (Continued)
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(Continued)



84 The Holocene 25(1)

(Continued)
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(Continued)
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and Zhujiang River during the last glacial period, and expanded to 

the middle reaches of the Yangtze River by about 9.5 kyr BP. 

After 3 kyr BP, chestnut tree abundance decreased markedly.

Castanopsis (Chinkapin). The distribution of chinkapin trees is 

restricted to the coastal areas of China during the LGM. From 

there, chinkapin trees expanded towards south-central China by 8 

kyr BP where a first distribution centre formed from 7.5 to 3.5 kyr 

BP. The occurrence of chinkapin trees in the estuary of the Yang-

tze River was traced back to 12.5 kyr BP, and chinkapin trees 

spread to the middle reaches of the Yangtze River at 8 kyr BP 

where a second distribution centre formed, with remarkable 

increase in abundance in the 9–6 kyr BP interval. After 6 kyr BP, 

the abundance reduced noticeably in both distribution centres.

Cyclobalanopsis (Oriental White Oak). During the LGM, only a 

few sites from south-central China recorded the presence (>0.9 

probability) of oriental white oak trees. After 14.5 kyr BP, oriental 

white oak trees increased in abundance and expanded inland into 

south-central China, achieving a maximum spatial extent between 

c. 6 and 3 kyr BP in a belt from the Yangtze River Delta to the 

Yungui Plateau. After 6 kyr BP (particularly after 3 kyr BP), the 

abundance reduced noticeably.

Fagus (Beech). Beech trees survived only in one site from the 

Yungui Plateau in south-west China during the LGM. After 14 kyr 

BP, beech trees spread to the middle and lower reaches of the 

Yangtze River; the maximum abundance occurred between 2.5 

and 1.5 kyr BP. After 1 kyr BP, beech tree abundance decreased 

markedly.

Pterocarya (Wingnut). Wingnut trees appeared with limited spa-

tial extent in the Zhujiang River Delta between 16.5 and 12.5 kyr 

BP and after 10.5 kyr BP in the Yangtze River Delta.

Eurythermal broadleaved tree taxa

Juglans (Walnut). Walnut trees have three distribution centres after 

the LGM, located in the middle and lower reaches of the Yangtze 

River, the south-eastern Loess Plateau and mountainous areas of 

Figure 2. Spatial distributions of the 14 taxa at key time slices inferred by the pollen abundance and the pollen percentage threshold value. 
Grey hatching indicates the present geographical ranges (Fang et al., 2011), and the dark grey area shows the present distribution of dominant/
indicative taxa (Hou, 2001).
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north-central China, and Changbai Mountain and adjacent areas. 

Walnut trees survived in two sites from the Yungui Plateau and the 

middle reaches of the Yangtze River during the LGM. Its first dis-

tribution centre formed in the middle and lower reaches of the 

Yangtze River after 17.5 kyr BP, and reached its maximum spatial 

extent between 6.5 and 1.5 kyr BP. At 14.5 kyr BP, walnut trees 

appeared on the south-eastern Loess Plateau and Changbai Moun-

tain, then expanded northward into the two distribution centres, 

with a maximum spatial extent during 9.5–6 kyr BP and 6.5–3 kyr 

BP, respectively. Walnut tree abundance in north-east and north-

central China reduced markedly after 6 kyr BP.

Quercus (Oak). Oak tree presence is only recorded in the coastal 

areas of southern China and the Yangtze River Delta during the 

LGM. From 14.5 kyr BP, the distribution of oak trees expanded to 

the south-eastern rim of the Tibetan Plateau, into the coastal areas 

of the Russian Far East, and onto the Loess Plateau. Oak tree 

abundance reached a maximum by c. 6.5 kyr BP. After c. 3 kyr 

BP, oak tree abundance decreased throughout the study region, 

especially in northern and central China.

Tilia (Linden). Linden trees have two major distribution centres: 

one on Changbai Mountain and its adjacent areas, and a second in 

mountainous areas of north-central China. Linden trees appeared 

in the Yangtze River Delta at c. 19 kyr BP and at c. 15 kyr BP in 

north-central China where they reached their maximum abun-

dance between 8.5 and 7.5 kyr BP. After 13 kyr BP, Linden trees 

appeared on Changbai Mountain, and then expanded north-

eastward to the Russian Far East. Linden trees had their maxi-

mum spatial extent and abundance between 5.5 and 4.5 kyr BP. 

Linden tree abundances decreased markedly in north-central 

China and the Changbai Mountain areas after 6 kyr BP.

Ulmus (Elm). Elm trees were present in a few sites from present-

day tropical and subtropical areas of China during the LGM, and 

the maximum in abundance occurred during the last deglaciation 

(14.5–11.5 kyr BP). Its appearance in north-central China 

occurred at 20 kyr BP and they flourished in the first half of the 

Holocene (c. 10–5 kyr BP). After 16.5 kyr BP, elm trees appeared 

on Changbai Mountain and spread north-eastward to adjacent 

areas during the last deglaciation, and flourished in the period 

6–2.5 kyr BP. After 6 kyr BP, elm tree abundance in north-east 

and north-central China reduced markedly.

Cold-resistant broadleaved tree taxa

Betula (Birch). Birch trees have four major distribution centres 

located on Changbai Mountain and adjacent areas, the mountain-

ous areas of north-central China, the south-eastern Tibetan Pla-

teau and the north-western study region. Only a few pollen spectra 

(from Changbai Mountain and adjacent areas and the Lake Baikal 

area) reveal a continuous presence of birch trees during the LGM. 

Since the beginning of the Bølling/Allerød period (B/A; c. 14.5 

kyr BP), the distribution areas of birch trees increased in the four 

centres and flourished on the south-eastern Tibetan Plateau during 

the early Holocene (10–9 kyr BP), in north-central China (8.5–7.5 

kyr BP) and the north-western part of the study region in the mid-

Holocene (8.5–3.5 kyr BP), and in the Changbai Mountain areas 

during the late Holocene (4.5–3 kyr BP). Birch tree abundance 

decreased in north-central China and on the south-eastern Tibetan 

Plateau during the late Holocene, particularly after 2 kyr BP.

Conifer taxa

Abies (Fir). Fir trees have two major distribution centres over the 

last 22 kyr: the south-eastern Tibetan Plateau and Changbai Moun-

tain and adjacent areas. Three sites record fir trees throughout the 

LGM: Qinling Mountain, the eastern Tibetan Plateau and Chang-

bai Mountain. Fir trees spread to Hengduan Mountain and the 

south-eastern rim of the Tibetan Plateau, where the first distribu-

tion centre formed at around 14.5 kyr BP, and increased in abun-

dance remarkably during the end of last deglaciation and early 

Holocene (12–9 kyr BP). Fir trees also invaded a few more sites in 

north-central China (16–10.5 kyr BP) and on Altai Mountain (10–

0 kyr BP) but at low coverage and/or small spatial extent. The 

second distribution centre was established on Changbai Mountain 

and its adjacent areas after 5.5 kyr BP with increasing abundance, 

gradually expanding its range area until the present.

Larix (Larch). There are no pollen spectra indicating a continuous 

presence of larch trees during the period between 22 and 15.5 kyr 

BP. After 15 kyr BP, larch trees were steadily present in the Lake 

Baikal region and Altai Mountain, indicating a maximum spatial 

extent during the early Holocene (10.5–8.5 kyr BP).

Picea (Spruce). A first distribution centre formed on the north-

eastern Tibetan Plateau rim during the Late Glacial period, and 

spruce trees spread to the west and the south after c. 13.5 kyr BP, 

having an early-to-mid-Holocene maximum and decreased in 

abundance markedly after c. 6 kyr BP.

From 17.5 kyr BP, spruce trees occurred continuously, and a 

spruce tree distribution centre formed around the Altai and Khan-

gai mountains showing maximum abundance between 14 and 

11.5 kyr BP. The presence of spruce trees around the Tianshan 

Mountain was c. 6500 years later than on Altai Mountain. Spruce 

trees were continually present in the mountainous areas of north-

central China during the last 22 kyr. They increased after c. 14.5 

kyr BP and reached their maximal spatial extent and abundance 

between 13 and 12 kyr BP, but they decreased markedly after c. 3 

kyr BP. Spruce trees occurred in southern parts of the distribution 

centre located around Changbai Mountain throughout the last 22 

kyr, and they spread to the northern parts by c. 6 kyr BP and 

reached their maximum extent and abundance there during the 

late Holocene.

Pinus (Pine). During the LGM, only a few sites record pine tree 

presence with high probabilities, such as the mountainous areas of 

north-central China, the Yangtze Delta, the south-western Loess 

Plateau and the south-eastern rim of the Tibetan Plateau. From c. 

14.5 kyr BP, pine trees extended into surrounding areas. The dis-

tribution centre in east China reached a maximum abundance at c. 

8 kyr BP. The area of pine trees extended on the eastern Tibetan 

Plateau after the beginning of the Holocene.

Pine trees appeared in the areas around the Altai, Khangai and 

Hentiy mountains from 14 kyr BP, where their maxima occurred 

during the late Holocene. Pine trees were absent in north-eastern 

parts of study region until about 8.5 kyr BP, but from that time on, 

their spatial extent and abundance increased and flourished in 

these areas after c. 3 kyr BP.

Discussion

Tree taxa distribution and abundance changes in 

space and time and their driving forces

Plant-macrofossil data of high taxonomic resolution are assumed 

to best document local vegetation composition, but vegetation 

reconstructions on a sub-continental scale in eastern North Amer-

ica derived from fossil pollen data have remarkable similarities to 

those obtained from macrofossil data (Jackson et al., 1997). 

Although there is no confirmatory macrofossil data for our region 

and available pollen records are sparse in the tropical and sub-

tropical regions (which might cause a bias in representing tree 

distribution changes accurately), we are confident that the 
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arboreal distribution changes revealed by our fossil pollen dataset 

do roughly indicate the distribution changes of major tree taxa at 

a sub-continental scale in eastern continental Asia.

The present ranges of thermophilous broadleaved tree taxa 

(Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) 

are mostly restricted to tropical/subtropical regions of China. 

Their distribution (except for Fagus which only occurred on the 

Yungui Plateau) was restricted to the southern and south-eastern 

coastal areas of China during the LGM, where it was sufficiently 

warm and wet: LGM climate simulations (Jiang et al., 2011; Ju et 

al., 2007) suggest mean annual temperatures of about 11–16°C 

and annual precipitation of >900 mm for these areas. These taxa 

spread into the lower reaches of the Yangtze River during the B/A 

period or early Holocene. Their extent expanded westward into 

south-central China during the early Holocene and achieved their 

maximum distribution and highest abundance during the early or 

mid-Holocene, which correlates with the occurrence of the cli-

mate optimum in this area (Shi et al., 1993; Wang et al., 2005).

Based on syntheses of the temporal and spatial distributions of 

rice relic sites, Gong et al. (2007) suggest that early rice farming 

was widespread in the middle and lower reaches of the Yangtze 

River as well as throughout southern China during the late Holo-

cene, which coincides with the decrease in tree abundances. 

Zheng et al. (2004) consider the decrease in tree abundance to be 

the result of the primitive ‘slash and burn’ method for land recla-

mation. Fuller and Qin (2010), however, suggest that the regional 

declines in nut-bearing trees (such as oak, chestnut and chinkapin) 

were the result of a cooling climatic event. In southern China, the 

late-Holocene precipitation was highest for the entire 20 kyr 

period (Liu et al., 2014) and the mean temperature of the current 

tropical/subtropical areas during the late Holocene was only 

about 1–2°C lower than during the mid-Holocene megathermal 

period (Shi et al., 1993; Zheng et al., 2004). Therefore, we think 

that climate cooling was unlikely to markedly reduce the spatial 

extent of these taxa, and the significant decrease in abundance 

throughout the current tropical/subtropical regions during the late 

Holocene is likely to have been caused by the destruction of for-

ests by human activities instead.

Juglans, Quercus, Tilia, Ulmus have broad present-day ranges 

from the tropical/subtropical areas to the cool temperate area, 

and, in addition, Ulmus has a broad distribution in north-west 

China. During the LGM, these taxa were limited to the current 

tropical or subtropical regions (south of c. 30°N). They then 

spread northwards to north and north-east China and increased in 

abundance during the B/A period and early Holocene. They 

reached their maximum abundance and areal extent in eastern 

China during the mid-Holocene, reflecting the general climate-

change patterns in the monsoonal regions of the study area (An et 

al., 2000; Shi et al., 1993; Wang et al., 2010).

During the late Holocene, Quercus abundance decreased in 

north-central China and the middle and lower reaches of the 

Yangtze River. North-central China is on the fringe of the East 

Asian Summer Monsoon area, and its natural ecosystem is highly 

sensitive to the summer monsoon migration (Qian et al., 2012). 

The weakening of the summer monsoon in the late Holocene has 

been confirmed by several studies based on various proxies (Shi 

et al., 1993; Wang et al., 2010; Zhang et al., 2011). During the late 

Holocene (after about 6 kyr BP), a decrease in Quercus abun-

dance might be caused by the weak summer monsoon. However, 

decreases in Quercus abundance in the middle and lower reaches 

of the Yangtze River could be because of the destruction of forests 

by human activities (see discussion above). In addition, the cool-

ing in the north-eastern part of the study region during the late 

Holocene might reduce the abundance of Quercus and Tilia.

Because of their cold resistance, Abies, Betula, Picea and 

Pinus have the broadest distribution ranges in the LGM among 

the three groups. Climate simulations suggest that mean annual 

precipitation was 20–40% (or more) lower than today (Jiang et 

al., 2011; Shi et al., 1997) in north China and on the Tibetan Pla-

teau. Low temperatures, but particularly the dry climate and the 

low atmospheric CO2 in the LGM, may have contributed to the 

restricted distribution of forest, particularly in arid and high-

elevation areas (Herzschuh et al., 2011; Levis et al., 1999). These 

taxa then increased in abundance and spread to surrounding areas 

since the last deglaciation, with no specific expansion direction.

Yang et al. (2010) discovered dune formation and activation in 

the Horqin dunefield from north-east China during the last glacial 

period, implying an arid late glacial period. Accordingly, the for-

est in the north-eastern study region was restricted to its southerly 

part during the last glacial period with Picea and Betula as the 

dominated components. Based on the synthesis of several palaeo-

climate records, Shi et al. (1993) and An et al. (2000) infer the 

early-to-mid-Holocene to be warm and wet and the late Holocene 

to be cool and arid in this area. The eurythermal broadleaved taxa 

(Juglans, Quercus, Tilia, Ulmus) flourished during the early and 

mid-Holocene, and the conifer taxa (Abies, Picea, Pinus) abun-

dances increased from the late Holocene (c. 6 kyr BP) and the 

modern temperate mixed conifer–deciduous broadleaved forest 

may have existed since then.

On the north-east rim of the Tibetan Plateau, Picea flourished 

during the B/A and the early Holocene, and Betula during the 

early and mid-Holocene, corresponding with increasing precipita-

tion during the B/A period, and humid conditions in the early and 

mid-Holocene recorded by sediment redness from Qinghai Lake 

(Ji et al., 2005). Hence, precipitation should be an important driv-

ing force for forest expansion in this area. During the late Holo-

cene, the regional decrease in abundance of Picea and Betula 

could result from the regional-scale climate drying event (Ji et al., 

2005; Stauch et al., 2012). However, human impact, although not 

indicated in the scarce archaeological record, might also have 

contributed to forest decline (Schlütz and Lehmkuhl, 2009) but 

probably only at a local scale (Herzschuh et al., 2010), because of 

the enhanced human requirements for timber and agriculture.

Comparison of distribution change of trees between 

different continents

The major tree taxa in Europe, northern Eurasia and eastern 

North America show a consistent northward migration pattern 

because of warming and a moister climate since the LGM, as 

revealed by syntheses of fossil pollen and plant macrofossil data 

on continental scales (Binney et al., 2009; Brewer et al., 2002; 

Huntley and Birks, 1983; Jackson et al., 1997). In continental 

East Asia, the thermophilous and eurythermal broadleaved taxa 

have south-to-north expansion patterns generally similar to those 

in Europe, northern Eurasia and eastern North America, while 

the conifer taxa and Betula do not have distinct expansion direc-

tions. Additionally, the eurythermal broadleaved tree taxa have a 

slight westward spread with a shorter spatial range. Potential rea-

sons for these different expansion patterns in our study region are 

as follows:

1. The relatively narrow latitude-range of this study region. 

In Europe, the northern limits of the glacial refugia for 

conifer taxa and Betula were at c. 43–63°N; these taxa 

spread northwards to limits north of their present ranges 

at c. 70°N during the Holocene (e.g. Binney et al., 2009; 

Feurdean et al., 2013). In eastern North America, the north-

ern limits of conifer taxa and Betula during the full glacial 

period were at c. 45°N; these taxa spread northwards to 

c. 60°N after glacier retreats (Jackson et al., 1997). This 

study focuses on lower and middle latitudes, which were 
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relatively warm during the LGM compared with Europe 

and North America because of the continental climate and 

the lack of continental glaciers (Shi, 2005; Svendsen et al., 

2004). Pollen mapping in the relatively narrow latitude-

range fails to reveal the northward expansion pattern of 

these cold-resistant trees. In addition, in Europe and North 

America, complex expansion directions for cold-resistant 

trees were also noted for lower and middle latitudes (e.g. 

Bernabo and Webb, 1977; Van der Knaap et al., 2005), 

which support our findings.

2. The geomorphological pattern. The distribution of these 

conifer taxa and Betula were mostly restricted to the 

mountainous areas in our study. The microclimates caused 

by the varied topography might provide suitable habitats 

for trees (Taberlet and Cheddadi, 2002), which might also 

result in their wide distribution during the LGM. In addi-

tion, the lack of an east–west-stretching high mountain 

barrier in our study region, like the Alps in Europe (Van 

der Knaap et al., 2005), allowed fast tree spreading dur-

ing a relatively warmer phase in the last glacial period, for 

example, the remarkably fast spread of Quercus, starting 

at the beginning of the B/A (after about 14.5 kyr BP) from 

southern China to the north-eastern rim of the Tibetan 

Plateau and north-central China. In contrast, Quercus was 

restricted to south of the Alps until the early Holocene (c. 

11.5 kyr BP) in Europe (Brewer et al., 2002).

3. The role of precipitation in tree migration patterns. Hunt-

ley et al. (1995) suggest that temperature plays a key role 

in determining tree distributions in northern and central 

Europe, while moisture is the major determinant in south-

ern Europe. Hence, major tree taxa were restricted to mid-

elevation refugia in southern Europe (e.g. Bennett et al., 

1991), which were warmer than higher latitudes (e.g. Bar-

ron and Pollard, 2002; Jost et al., 2005; Wright et al., 1993) 

and moister than the surrounding low plains (more oro-

graphic precipitation) during the LGM. This is in contrast 

to conditions in eastern continental Asia where the temper-

ature gradient was not as steep but a strong precipitation 

gradient between coastal and inland areas existed because 

of the lack of a monsoonal circulation. Precipitation is still 

a major determinant of the present-day regional vegetation 

distribution (Fang et al., 2005; Hou, 1983), especially in 

arid/subarid areas (such as north-central China, the Loess 

Plateau and the Tibetan Plateau; Lu et al., 2011; Xu et al., 

2010). Accordingly, in the arid/subarid area of northern 

China (35°–45°N, 110°–125°E), the eurythermal broad-

leaved taxa spread into the eastern parts of this area first 

(e.g. the coastal area and Changbai Mountain) during the 

B/A, and then spread into the western parts (e.g. the moun-

tainous areas of north-central China and the northern part 

of the Loess Plateau) in the early or mid-Holocene. Hence, 

we infer that this westward expansion was related to the 

enhancement of the Asian Summer Monsoon during the 

early and mid-Holocene.

Implications for tree-range changes in the frame of 

global warming

From our study, the range expansion and/or abundance increase 

of all tree taxa occurred at the beginning of the B/A and the 

beginning of the early Holocene, at a time of the highest tem-

perature and moisture increase rates during the last 22 kyr (Her-

zschuh, 2006; Wang et al., 2010). The westward expansion of 

the eurythermal broadleaved taxa into the arid/subarid areas 

suggests that precipitation plays a more important role than tem-

perature in determining their distribution in these areas. The 

observational and theoretical evidence implies that recent (and 

thus future) global warming causes weakening of the East Asian 

Summer Monsoon which leads to regional drought over north-

ern China (Zhao et al., 2010; Zhu et al., 2012). The drying cli-

matic conditions could cause shrinkage in the range of 

eurythermal broadleaved taxa (Juglans, Quercus, Tilia and 

Ulmus) in the arid/subarid areas, adding to the loss of forests in 

these areas from past and recent human impact. However, the 

‘Grain for Green Project’ initiated by the Chinese government in 

1999 has already yielded some forest restoration success espe-

cially in the northern forest-steppe transitional areas (Li et al., 

2013). There is thus a chance that enhanced environmental 

awareness and active forest restoration will foster the extension 

and densification of the remaining forest fragments, even against 

a background of drier climatic conditions.

Conclusion
Our investigation of 14 key arboreal taxa has revealed signifi-

cant changes in their spatial and temporal distributions. The 

changes are a reflection of both climate dynamics and historical 

human activity. The tree expansion patterns are different from 

those in Europe and North America, not only because of the spe-

cific environmental setting (i.e. the lack of inland glaciers dur-

ing the LGM and of east–west stretching mountain ranges as 

well as the limiting effect of moisture) but also because of (the 

still not fully quantifiable) human impact. Based on our study, 

we can forecast that drying in the areas of the East Asian Sum-

mer Monsoon, as predicted by climate studies, would cause 

shrinkage of the total area suitable for eurythermal broadleaved 

taxa. Forest loss, however, may be compensated if reforestation 

projects within the prospective areas of the climatic niche of 

these taxa are successful.
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